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Abstract.

We describe a very general technique for generating families of combinatorial objects

without isomorphs. It applies to almost any class of objects for which an inductive con-

struction process exists. In one form of our technique, no explicit isomorphism testing

is required. In the other form, isomorph testing is restricted to within small subsets of

the entire set of objects. A variety of different examples are presented, including the

generation of graphs with some hereditary property, the generation of Latin rectangles

and the generation of balanced incomplete block designs. The technique can also be

used to perform unbiased statistical analysis, including approximate counting, of sets of

objects too large to generate exhaustively.

Note.

This file approximately matches the published version in J. Algorithms, 26 (1998)

306–324, except for one corrected value in Table 2 and the erratum noted in Section 7.

1. Introduction.

Problems of exhaustive generation fall into several genres, depending on the struc-

ture of the objects being generated. The objects most easily generated seem to be

characterised by having easy isomorphism problems, frequently due to a fundamentally

recursive structure. There is a vast literature on the generation of subsets, permuta-

tions, partitions, trees, and similar objects. At the other extreme, we have generation

problems typified by graphs. In this case the isomorphism problem tends to be difficult,

and the success of efficient methods is due in large part to devices for avoiding it. These

latter are the sort of problems we will be concerned with in this paper.

Most methods proposed for such problems can be classified into three types, though

the boundary between them is far from clear. In the most common method, there is
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a canonical labelled object in each isomorphism class and that is the one generated.

This approach is usually called “orderly” generation, though the word is also used more

generally. The labelling is chosen to impose restrictions on sub-objects; for example

that there must be one maximal sub-object which is also canonical. This method was

pioneered independently by Faradzev [12] and Read [38]. Faradzev [13] has given what is

perhaps the most general description. More recent examples, of many, are Brinkmann’s

generator of cubic graphs [5], Meringer’s generator of regular graphs [37], and the gener-

ation of one-factorisations of the complete graph by Dinitz, Garnick and this author [11].

An interesting theoretical extension of this idea appears in [16].

The second method, the subject of this paper, can be loosely described as genera-

tion by canonical construction path, as opposed to canonical representation. Objects

are produced by somehow augmenting a smaller object, with only objects made via a

canonical augmentation being accepted. Intermediate objects can even be relabelled at

random with no effect. The first published use of this method was for cubic graphs

in 1986 [33], but many applications have appeared since. We will give a list of known

examples later. These are so diverse in nature that a very abstract setting is required

to define the method in sufficient generality to cover them all. This paper is devoted to

that task.

A third method, recently developed by Laue and others [18], is the “method of

homomorphisms”. In this approach objects are constructed along a path of combi-

natorially determined sub-objects, using elementary group computations to describe

the relationship between the automorphism structure of consecutive sub-objects. This

description allows the use of an orderly method to construct the nonisomorphic sub-

objects from those at the previous level. It is necessary to use another method for the

sub-objects which do not decompose further. For example, Meringer’s generator for

regular graphs [37] can be used as the basis for a very fast generator of graphs with a

specified degree partition.

There are complicated relationships between these methods, but to a large extent

they have not been explored. Of recent generation algorithms that do not precisely fit

any of our three categories, perhaps the method of Brinkmann and Dress for generating

fullerenes [7] is the most interesting.

In several recent papers [1, 2], Avis and Fukuda describe their “reverse search”

method for generating classes of objects. Reverse search shares with our method the

idea of defining a tree structure on a set of objects by means of a “parent” function,

then scanning it from the root outwards. The major difference in our approach is that

we allow a rich group of symmetries to be acting, whereas the examples treated by Avis
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and Fukuda are essentially labelled.

The advantages of our approach are several. Most importantly, the method applies

to a great number of diverse problems, as we shall demonstrate. Secondly, representa-

tives of each isomorphism type are generated in a stream with no need to store more than

a handful at a time, which allows us to generate extremely large classes. Thirdly, the

method allows for very simple parallelization with near-linear speedup. Finally, a simple

extension of the method (in many cases) allows unbiased sampling of the isomorphism

types in a class too big to generate exhaustively.

2. The Algorithm.

In order to assist the reader in understanding the formal treatment, we will take an

actual example and carry it along in parallel. Our example will be the generation of

triangle-free graphs (TFGs) starting with a single vertex and repeatedly adding vertices.

To keep the general description distinguishable from the example, we will use the labels

“General” and “TFG”.

General: Let G be a permutation group acting on a (possibly infinite) set L. The

elements of L will be called labelled objects, and the orbits of G in L will be called

unlabelled objects. The set of unlabelled objects will be denoted by U . Each labelled

object X ∈ L has an order o(X) ∈ N, with the restriction that o(X) is constant on

unlabelled objects. This restriction permits us to define o(S), for S ∈ U , to be the

common order of the labelled objects comprising S.

TFG: In our example, L is the set of all labelled TFGs, using the labels {1, 2, . . . , n}

to label a TFG X with n vertices. Take o(X) = n. The group G is the group of all

relabellings of labelled TFGs, so that one orbit (an “unlabelled TFG”) consists of all

the TFGs isomorphic to given TFG. Formally, we can take G = S
1
× S

2
× S

3
× · · · ,

where the action on L is such that the factor Sn is the symmetric group of degree n

permuting the labels on TFGs of order n.

General: The general problem we will consider is that of making a list of labelled

objects, such that the list contains exactly one labelled object from each unlabelled

object whose order is at most some specified value. We will see that a small amount of

extra structure permits this to be done in a systematic manner.

With each labelled object X ∈ L, associate a finite set L(X) of lower objects and

a finite set U(X) of upper objects. Define Ľ =
⋃

X∈L
L(X) and L̂ =

⋃

X∈L
U(X). For

distinct X1, X2 ∈ L we require that the six sets {X1}, L(X1), U(X1), {X2}, L(X2) and

U(X
2
) be mutually disjoint. The order of the elements of L(X) and U(X) is defined

to be the same as the order of X , with the same notation. Furthermore, suppose there
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is a relation Rf ⊆ Ľ × L̂ and a group G acting on L ∪ Ľ ∪ L̂ such that axioms C1-C7

stated below hold. We will find it notationally convenient to access Rf via two functions

f : Ľ → 2L̂ and f ′ : L̂ → 2Ľ defined by

f(Y̌ ) = {X̂ ∈ L̂ | (Y̌ , X̂) ∈ Rf};

f ′(X̂) = {Y̌ ∈ Ľ | (Y̌ , X̂) ∈ Rf}.

C1. G fixes each of L, Ľ and L̂ setwise.

C2. For each X ∈ L and g ∈ G we have L(Xg) = L(X)g and U(Xg) = U(X)g.

C3. For each Y̌ ∈ Ľ, f(Y̌ ) 6= ∅.

C4. For any Y̌ ∈ Ľ, g ∈ G, X̂
1
∈ f(Y̌ ) and X̂

2
∈ f(Y̌ g), there exists h ∈ G such that

X̂h
1 = X̂2.

C5. For any X̂ ∈ L̂, g ∈ G, Y̌1 ∈ f ′(X̂) and Y̌2 ∈ f ′(X̂g), there exists h ∈ G such that

Y̌ h
1

= Y̌2.

C6. For each X ∈ L and g ∈ G, we have o(Xg) = o(X).

C7. For each Y̌ ∈ Ľ and X̂ ∈ f(Y̌ ), we have o(X̂) < o(Y̌ ).

A corollary of C4 is that the elements of f(Y̌ ) are equivalent under G. However, we

do not require that f(Y̌ ) is an orbit of G. Similarly for C5.

TFG: We are making TFGs by adding a new vertex to a smaller TFG, and a lower

object contains the information needed to go backwards one step. We can define it as

a pair 〈X, v〉, where X is a TFG and v ∈ V (X). This provides a route “remove v from

X” from a larger TFG to a smaller one. The set L(X) contains all such pairs, except

for the special case L(K
1
) = ∅. Conversely, an upper object contains the information

needed to go from a smaller object to a larger one. So, we define U(X ′) to be the set

of all pairs 〈X ′, W 〉, where W ⊆ V (X ′) is an independent set of X ′. It provides a route

“add a new vertex to X ′, and join it to W” to increase the order. (W must be an

independent set in order to prevent the creation of triangles.)

The action of G is easily extended to upper and lower objects: just take 〈X, v〉g =

〈Xg, vg〉 and 〈X ′, W 〉g = 〈X ′g, W g〉. This reasonable consistency of the action of G on

L, Ľ and L̂ is all that we need for C2 to be satisfied.

Condition C3 can be seen as a design feature of Ľ. The graph K
1

has L(K
1
) = ∅,

so C3 is irrelevant there.

Clearly, the upper and lower objects are complementary: 〈X, v〉 ∈ L(X) is related

to 〈X−v, W 〉, where W is the neighbourhood of v in X . If we add the principle that we

are not interested in the actual labelling of the vertices, we have Rf . This is formalized

by the function f : 〈X, v〉 7→ {〈X − v, W 〉g | g ∈ G}.

General: We will say that two labelled objects X
1
, X

2
∈ L are isomorphic if X

2
= Xg

1

for some g ∈ G. Similarly, for any labelled object X ∈ L, the automorphism group
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Aut(X) of X is the stabiliser {g ∈ G |Xg = X}. From condition C2 we see that

Aut(X) fixes each of L(X) and U(X) setwise.

An unlabelled object S ∈ U will be called irreducible if L(X) = ∅ for each X ∈ S.

Other unlabelled objects are reducible. (Note that the condition L(X) = ∅ is invariant

under G, by condition C2.) Define U0 to be the set of irreducible unlabelled objects,

and U1 to be the set of reducible unlabelled objects. Thus, U = U0 ∪ U1.

TFG: In our example, the concepts of isomorphism and automorphism are just the

usual ones. We have only a single irreducible object, namely the unlabelled graph K
1
.

General: Our final requirement is a function m : L → 2Ľ satisfying the following

conditions.

M1. If L(X) = ∅, then m(X) = ∅.

M2. If L(X) 6= ∅, then m(X) is an orbit of the action of Aut(X) on L(X).

M3. For each X ∈ L and g ∈ G we have m(Xg) = m(X)g.

The properties of the mappings f and m enable us to define a nilpotent mapping p

from U
1

to U that imposes a structure on U in the form of a forest of disjoint trees.

Lemma 1. There is a unique mapping p : U1 → U with the following property.

P1. For each S ∈ U
1
, X ∈ S and X̌ ∈ m(X), we have f(X̌) ⊆ U(Y ) for some

Y ∈ p(S).

Proof. Choose S ∈ U
1

and X
1
, X

2
∈ S. For i = 1, 2 choose X̌i ∈ m(Xi) and Ŷi ∈

f(X̌i), and define Yi by Ŷi ∈ U(Yi). It will suffice to show that Y
1

and Y
2

are isomorphic.

Since X
1
, X

2
∈ S, there is g ∈ G such that X

2
= Xg

1
. From conditions M2 and M3, this

implies the existence of h ∈ G such that X̌
2

= X̌h
1
, which in turn implies that Ŷ

2
= Ŷ k

1

for some k ∈ G, by condition C4. Finally, condition C2 implies that Y2 = Y k
1 .

TFG: The definition of m(X) is the most onerous requirement for any practical appli-

cation. A possible definition of m(X) would be this: consider all the labellings of X ,

and choose the one which is greatest under some ordering of labelled graphs (such as

a lexicographic ordering). Let v∗ be the vertex whose label is “1” in this maximal la-

belling. Then define m(X) to be the set of lower objects 〈X, v〉 such that v is equivalent

to v∗ under Aut(X).

It is easy to see that conditions M2 and M3 are satisfied, but we are faced with the

problem of computing m(X). In practice, we can do better using sophisticated tools for

canonical labelling, with judicious screening beforehand using combinatorial invariants.

We will discuss this in more detail in Sections 3 and 4; meanwhile we can continue with

the definition above for the sake of the example.
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The nilpotent function p predicted by Lemma 1 is now easily identified. Starting

with a reducible unlabelled object (isomorphism class of nontrivial TFGs) S, choose

any labelled graph X ∈ S, then any lower object 〈X, v〉 ∈ m(X), then any 〈X ′, W 〉 ∈

f(〈X, v〉) then, finally, note the unlabelled object (isomorphism class) S′ containing X ′.

The point of Lemma 1 is that the same S′ is reached no matter how the three arbitrary

choices are made.

General: The unlabelled object p(S) will be called the parent of the unlabelled object

S, and the set {S, p(S), p(p(S)), . . .} will be called the ancestors of S. The inverse

concepts child and descendant are defined in the obvious way. It is clear from condition

C7 that p is nilpotent, in other words that no object has more than finitely many

ancestors.

The relation {(S, p(S)) |S ∈ U1} on U is a set of disjoint directed rooted trees with

the edges directed towards the roots. The roots are precisely the irreducible unlabelled

objects. In order to achieve our aim of generating a transversal for U , we can scan these

trees in some systematic way. We will use a preorder traversal (also called depth-first

search). This is achieved by the following algorithm.

procedure scan(X : labelled object, n : integer)

output X

for each orbit A of the action of Aut(X) on U(X) do

select any X̂ ∈ A

if f ′(X̂) 6= ∅ then

select any Y̌ ∈ f ′(X̂), and suppose Y̌ ∈ L(Y )

if o(Y ) ≤ n and Y̌ ∈ m(Y ) then scan(Y, n) endif

endif

endfor

endprocedure

Theorem 1. Suppose X
0
∈ S

0
∈ U with o(X

0
) ≤ n. Then the call scan(X

0
, n) will

output exactly one labelled object belonging to each unlabelled object of order at most n

which is descended from S
0
.

Proof. Let us say that a descendant S of S
0

belongs to generation i if S has i + 1

ancestors. Recall that an unlabelled object is an ancestor of itself, so generation 0 is

the set {S0}.

Suppose as an induction hypothesis that the theorem is true for all objects of order

at most n and generation at most i. This statement is clearly true for i = 0.

Now suppose S is an arbitrary descendant of S
0

which has order at most n and

belongs to generation i + 1. Let T = p(S).
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Take an arbitrary Y ′ ∈ S, choose Y̌ ′ ∈ m(Y ′), and X̂ ′ ∈ f(Y̌ ′). By the induction

hypothesis and the nature of the for condition, there is some X ∈ T and some X̂ ∈ U(X)

such that there is a call scan(X, n), X̂ is ‘selected’ inside the for, and X̂g = X̂ ′ for

some g ∈ G. Hence, by condition C5, Y̌ h = Y̌ ′ for some h ∈ G and so Y h = Y ′ by

condition C2, implying that Y ∈ S. Furthermore, since Y̌ ′ ∈ m(Y ′), by assumption,

we have Y̌ ∈ m(Y ) by condition M3. Therefore, the call scan(Y, n) is made and Y is

output.

We are left with the question of whether the unlabelled object S can be represented

more than once in the output. Suppose that distinct Y1, Y2 ∈ S are both output, and

choose g ∈ G such that Y2 = Y g
1

. Let Y̌1 ∈ m(Y1) and Y̌2 ∈ m(Y2) be the lower objects

presented to the if preceding the calls scan(Y1, n) and scan(Y2, n), respectively. Now,

Y̌2 ∈ m(Y2) = m(Y g
1

) = m(Y1)
g by condition M3, and so Y̌2 = Y̌ h

1
for some h ∈ G, by

condition M2. Suppose X̂
1
∈ f(Y̌

1
) and X̂

2
∈ f(Y̌

2
). Then X̂

2
= X̂k

1
for some k ∈ G,

by condition C4, and if X̂
1
∈ U(X

1
) and X̂

2
∈ U(X

2
) we have X

2
= Xk

1
by condition

C2. By the induction hypothesis, since both X
1

and X
2

are output, we must have

X
1

= X
2

and so k ∈ Aut(X
1
). But this shows X̂

1
and X̂

2
to be in the same orbit of

Aut(X
1
), implying that X̂

1
= X̂

2
by the for condition, and hence that Y

1
= Y

2
contrary

to assumption.

TFG: In informal terms, given an isomorphism class of TFGs (represented by any

labelling), we make a set of potential children by applying f ′. These are tested using

m to see which are real children and which are not. The former are accepted, the

latter rejected. Theorem 1 states that exactly one member of each isomorphism class is

accepted.

General: For some practical purposes, it is convenient to have use a modified version

of procedure scan which replaces an orbit computation by explicit isomorph testing. It

has the same external properties as procedure scan, as can proved by similar means.

procedure scan2(X : labelled object, n : integer)

output X

C := ∅

for each X̂ ∈ U(X) such that f ′(X̂) 6= ∅ do

select any Y̌ ∈ f ′(X̂), and suppose Y̌ ∈ L(Y )

if o(Y ) ≤ n and Y̌ ∈ m(Y ) then C := C ∪ {Y } endif

endfor

remove isomorphs from the set C

for each Y ∈ C do scan2(Y, n) endif

endprocedure
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Theorem 2. Suppose X0 ∈ S0 ∈ U with o(X0) ≤ n. Then the call scan2(X0, n) will

output exactly one labelled object belonging to each unlabelled object of order at most n

which is descended from S0.

It is clear from Theorems 1 and 2 that, if we make either the call scan(X
0
, n) or the

call scan2(X
0
, n) for exactly one representative of each irreducible unlabelled object of

order at most n, we will obtain exactly one representative of every unlabelled object of

order at most n.

One way to quantify the efficiency of algorithm scan is to compare the number of

executions of the body of the for loop to the number of objects output. Since we cannot

make general precise statements about how o(Y ) compares to o(X) (in the notation of

the procedure), we concentrate our attention on the test “ Y̌ ∈ m(Y )”.

Theorem 3. Consider the computations initiated by calling scan(X
0
, n) for exactly

one representative of each irreducible unlabelled object of order at most n. Let N
1

be

the number of times the test “ Y̌ ∈ m(Y )” is made, and let N
2

be the number of times it

is passed. Then N
1
≤ cN

2
, where c is the average number of orbits of Aut(X) on L(X),

with the average taken over one representative from each reducible unlabelled object of

order at most n.

Proof. Suppose S ∈ U1 and o(S) ≤ n. Let Y1, Y2 ∈ S, Y̌1 ∈ L(Y1) and Y̌2 ∈ L(Y2).

Suppose X̂1 ∈ f(Y̌1) and X̂2 ∈ f(Y̌2). If Y̌ g
1

= Y̌2 for some g ∈ G, then X̂h
1

= X̂2 for

some h ∈ G, by condition C4. As in the proof of Theorem 1, this implies that X̂
1

= X̂
2

if X̂
1

and X̂
2

both occur as the value of X̂ during some invocation of scan. Therefore,

at most one of the pairs (Y̌
1
, Y

1
) and (Y̌

2
, Y

2
) is passed to the test “ Y̌ ∈ m(Y )”. Hence,

the number of times the test “ Y̌ ∈ m(Y )” is performed for any Y ∈ S is at most the

number of orbits of the action of G on
⋃

Y ∈S L(Y ), which is the same as the number of

orbits of the action of Aut(Y ) on L(Y ) for any given L ∈ S.

TFG: Theorem 3 is usually very easy to apply. In our TFG example, it is clear that

each class L(X) of lower objects except L(K
1
) contains exactly n = |V (X)| members,

and thus at most n orbits. Thus, generating all the TFGs up to order n (supposing

there are N of them) requires less than N automorphism group computations and at

most nN computations of the function m.

Generally speaking, objects for which the isomorphism and automorphism problems

have polynomial-time algorithms (such as many types of planar graphs) will have gen-

eration schemes with polynomial amortised time per output. More precise statements

are hard to make in this generality.

8



3. Graphs and nauty.

A large number of applications of our methods can be found in the fields of graphs

and hypergraphs. Efficient implementation of the function m and the computation of

orbits are nontrivial tasks, but they can be accomplished with existing tools. In our

applications, we have used the program nauty described in [24]. Most of the mathe-

matical foundations of nauty can be found in [23]. For our purposes here, it will suffice

to give a functional overview.

Let X be a graph with vertex-set V = V (X) = {1, 2, . . . , n}. A partition of V is

a sequence π = (V
1
, V

2
, . . . , Vk) of non-empty disjoint subsets (called cells) of V whose

union is V . A permutation g of V acts on π cell-wise; i.e., πg = (V g
1

, V g
2

, . . . , V g
k ).

Similarly, g acts on X by permuting the names of the vertices, so that v and w are

adjacent in X if and only if vg and wg are adjacent in Xg. The automorphism group of

(X, π) is Autπ(X) = {g ∈ Sn |Xg = X and πg = π}. For the special partition π0 = (V ),

we will abbreviate Autπ0
(X) as Aut(X). If π = (V1, V2, . . . , Vk) is a partition of V , then

c(π) is the partition ({1, 2, . . . , |V1|}, {|V1|+1, . . . , |V1|+ |V2|}, . . . , {n−|Vk|+1, . . . , n}).

Thus, c(π) depends only on the sizes of the cells of π and their order. A canonical

labelling map is a function C such that for any graph X with vertex set V , and partition

π of V , we have

N1. C(X, π) = Xg for some g ∈ Sn such that πg = c(π).

N2. C(Xh, πh) = C(X, π) for every h ∈ Sn.

The behaviour of nauty can now be described. For input (X, π), there are three

outputs. One is the value of C(X, π) for some fixed canonical labelling map C, the

second is a permutation g ∈ Sn such that Xg = C(X, π) and πg = c(π), and the third

is a set of generators for Autπ(X). The map C computed by nauty is designed to be

efficiently computed rather than easily described. Fortunately, we will only need to

know that it satisfies properties N1 and N2.

4. Graphs with a vertex-hereditary property.

In Section 2, we used the example of generating triangle-free graphs. It is clear

that the same idea works for generation of graphs that possess some arbitrary vertex-

hereditary property P. Here, the adjective vertex-hereditary indicates that, for any

graph X with property P, every induced subgraph of X also has property P. It will

easily be seen that the requirement that P be vertex-hereditary can be relaxed to the

requirement that P is held by at least one vertex-deleted subgraph of any non-trivial

graph which holds it. In all cases, we will assume that P is invariant under isomorphisms.

In this section we will look a little harder at this problem.
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Let X be any labelled graph with property P. The order of X is o(X) = |V (X)|, as

usual. We will assume for definiteness that V (X) = {1, 2, . . . , o(X)} as in the previous

section. If o(X) > 1, then the lower objects L(X) are the pairs 〈X, v〉 for v ∈ V (X). The

trivial graph K
1

has L(K
1
) = ∅; its isomorphism class is the only irreducible unlabelled

object. The upper objects U(X) are the pairs 〈X, W 〉, where W ⊆ V (X) is such that

the graph XW formed by appending a new vertex to X and joining it to the elements

of W has property P.

The function f is defined as follows. Suppose 〈X, W 〉 ∈ U(X) and 〈Y, v〉 ∈ L(Y ).

Then f(〈Y, v〉) = {〈X, W 〉g | g ∈ G}, where W is such that Y = XW .

Since we are dealing with standard graph isomorphisms, we can take the group G to

be any group which acts on the graphs of each order n as the symmetric group of degree

n, represented as the set of all possible permutations of the vertex set. The manner in

which the actions on graphs of different orders are related in G is immaterial; in practice

there is little need to even define it.

We can now define a function m satisfying conditions M1–M3. For purposes of

computational efficiency, of which more in a moment, we begin with a function λ defined

on labelled graphs X with property P, such that

L1. ∅ 6= λ(X) ⊆ V (X);

L2. for any g ∈ Sn, we have λ(Xg) = λ(X)g.

These conditions imply that λ(X) is a nonempty union of orbits of Aut(X). We

could in fact take λ(X) = V (X) for all X , but it will be more efficient to choose a smaller

value—for example, the set of vertices of X of maximum degree, or a set defined by

some more stringent invariant property. In practice there is a trade-off between the time

required to compute λ(X) and the size of it.

Now define the function m as follows.

Let X be a labelled graph with property P. If X has only one vertex, define

m(X) = ∅. Otherwise, let π = (λ(X), V (X) − λ(X)) where the second cell is omitted

if it is empty. Let g ∈ Sn be such that Xg = C(X, π) and πg = c(π), and let W be the

orbit of Aut(X) which contains the vertex 1g−1

. Then define m(X) = {(X, v) | v ∈ W}.

Lemma 2. Under the conditions just described, m(X) is well-defined and satisfies re-

quirements M1–M3.

Proof. It is obvious that M1 and M2 are satisfied. To see that m(X) is well-defined,

suppose that h is another permutation such that Xh = C(X, π) and πh = c(π). Then

g−1h is an automorphism of X and so 1g−1

and 1h−1

lie in the same orbit of X . Finally,

condition M3 follows from N2 and L2.

With some tuning, this method can be made quite fast. In Tables 1 and 2, we give
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n general C3-free C4-free

1 1 1 1

2 2 2 2

3 4 3 4

4 11 7 8

5 34 14 18

6 156 38 44

7 1044 107 117

8 12346 410 351

9 274668 1897 1230

10 12005168 12172 5069

11 1018997864 105071 25181

12 165091172592 1262180 152045

13 20797002 1116403

14 467871369 9899865

15 14232552452 104980369

16 1318017549

17 19427531763

speed 42000/sec 21000/sec 18000/sec

Table 1. Counts of general, C3-free and C4-free graphs

some examples of graph types generated by the author’s program geng. In each case,

the number of graphs produced per second on a Sun SPARCstation 20/71 computer at

75MHz is given. This number is approximately independent of the order of the graph for

the practical range, though for much larger orders a linear time per graph is expected.

geng is many times faster than earlier published methods [10, 20], and somewhat faster

than other recent graph generators [17, 18].

Other published examples of this approach to graphs have included several types of

Ramsey graph [14, 26, 32, 36].

5. Other examples for graphs and hypergraphs.

Instead of constructing graphs one vertex at a time, we could do it one edge at a time.

The details are very similar: the upper objects consist of a graph and a distinguished pair

of non-adjacent vertices, while the lower objects consist of a graph with a distinguished
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n (C3, C4)-free bipartite C4-free bipartite

1 1 1 1

2 2 2 2

3 3 3 3

4 6 7 6

5 11 13 10

6 23 35 21

7 48 88 39

8 114 303 86

9 293 1119 182

10 869 5479 440

11 2963 32303 1074

12 12066 251135 2941

13 58933 2527712 8424

14 347498 33985853 26720

15 2455693 611846940 90883

16 20592932 14864650924 340253

17 202724920 1384567

18 2322206466 6186907

19 30743624324 30219769

20 161763233

21 946742190

22 6054606722

speed 13000/sec 19000/sec 5500/sec

Table 2. Counts of (C3, C4)-free, bipartite, and C4-free bipartite graphs

edge. An example from 1984 (but not published until 1995, see [9]) was a step in the

generation of all cubic cages of girth 9.

More complicated operations than simple addition of elements can be used too. For

example, the first construction of the cubic graphs on 20 vertices [33] used the operations

of adding a path of arbitrary length between two vertices of degree 2, and of attaching a

path of arbitrary length to one vertex of degree two with an arbitrary cycle fixed onto the

other end of the path. This complicated process worked but was not very efficient. The

main reason for the inefficiency was that the operation did not keep us within the class
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of cubic graphs. We needed to also consider some graphs with degrees 2 and 3, which

greatly expanded the search space. A much better approach [34] uses the operation of

subdividing two edges and joining the two new vertices. The resulting algorithm is more

than competitive with Brinkmann’s totally different approach to cubic graph generation

[5].

In some cases, careful choice of the function m can have importance beyond mere

efficiency. In [25], we show that no two graphs on 11 vertices have the same set of 11

vertex-deleted subgraphs. Since there are more than 109 graphs to compare to each

other, simply being able to generate them quickly is not enough. However, defining m

according to the isomorphism types of the vertex-deleted subgraphs, we can arrange

that any pair of graphs forming a counterexample must appear as children of the same

10-vertex graph. This enables the comparisons to be done in small groups.

An example of hypergraph generation appeared in [27], and an example of digraph

generation in [19].

A number of applications to graph generation, some with chemical motivation, have

been implemented by Brinkmann and others [4, 6, 15].

Avis [1] states as a problem the generation of unrooted triangulations of the plane.

It is clear (see [3]) that one can use the operation of deleting a vertex and triangulating

the resulting face to reduce any triangulation to the smallest one (K4). With the help

of linear-time isomorphism and automorphism algorithms, an amortised complexity of

O(n2) per triangulation (or better) can be achieved. This process is ideal for our method,

and results in a very fast generator (more than 70,000 graphs per second) [8].

6. Examples for non-graph objects.

A number of other applications of this method have been implemented. For example,

[28] describes a method for generating block designs. The intermediate objects are the

partial designs induced by a subset of the vertices. If 〈W 〉 is that object defined by

W ⊆ V , where V is the set of all the points, then the lower objects have the form

(〈W ∪ {v}〉, v, 0) for v ∈ V − W and the upper objects have the form (〈W 〉, v, 1) for

v ∈ W . The mapping f merely takes (〈W ∪ {v}〉, v, 0) to (〈W ∪ {v}〉, v, 1). In plain

terms, we proceed by adding one point at a time until we have them all. We have an

implementation that will generate small designs efficiently. For example, the set of all

1508 2-(7, 3, 7) designs is made in about 2.5 minutes.

A much more extensive computation, using a similar method for some steps, suc-

ceeded in eliminating some classes of 2-(22, 8, 4) designs [29, 30]. (These are the smallest

design parameters for which the question of existence remains unsettled.)

A similar approach makes Latin rectangles by augmenting with one row at a time.
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The upper objects consist of pairs 〈R, x〉, where R is a Latin rectangle and x is a

permutation disjoint from R (i.e. a potential new row). The lower objects consist

of Latin rectangles with a distinguished row. This was used in 1991 (unpublished) to

verify all the tables presented in [22] as well as some additional results. More recently, to

support the theoretical investigation in [35], the same method was used to generate Latin

rectangles without intercalates (Latin subsquares of order 2). In Table 3, we give the

numbers L(k, n) and L
0
(k, n) for n ≤ 9, with a few exceptions. These are, respectively,

the number of isotopy classes of k × n Latin rectangles and k × n intercalate-free Latin

rectangles. An isotopy is an isomorphism induced by independent permutation of row,

column and symbol names. Typical computation speeds were 700/second for L(4, 9)

and 60/second for L0(6, 9) (corrected to the same machine as before). Values of L(k, n)

for n = 8, k ≤ 5 were computed before (see [22]) but not published.

A special case of our method is described in [40], with examples as diverse as finding

non-equivalent cliques in a graph and arcs, caps and flocks in finite geometries.

7. Estimation and Random Generation.

As described above, our method defined a set of rooted trees whose nodes are the

unlabelled objects. Using standard methods we can estimate the sizes of the trees

without generating them completely. One such method is the celebrated algorithm of

Knuth [21] using random paths through the tree.

Another one involves assigning a probability p
0
, p

1
, . . . to each generation in the

trees (p
0

for the roots, p
1

for the children of roots, etc.). Then we can add a stochastic

filter to our generation: as each object of generation i is made, reject it with probability

1−pi. It is easily seen that each object of generation i is constructed and accepted with

probability exactly p0p1 · · · pi, so the number of objects accepted divided by p0p1 · · · pi

is an unbiased estimator of the total number of that generation.

For example, by this means the number of Steiner systems 2-(19,3,1) was estimated

to be probably between 1.1×1010 and 1.2×1010, about 10 times larger than previously

believed [41]. Another example was the estimation of the numbers of (4, 5)−Ramsey

graphs in [29].

If it is not true that all the objects of a given order appear at the same generation,

this process needs to be extended before it is useful. We will leave out the details, but it

is not hard to assign rejection probabilities based on the difference in order of an object

and its parent, in such a way that the overall probability of appearance is an invariant

of the order. In principle this covers all cases where the orders of the irreducible objects

do not differ too much. Practical issues such as efficiency need to be considered for each

application.
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k n L(k, n) L0(k, n) k n L(k, n) L0(k, n)

2 2 1 0 5 7 6941 129

2 3 1 1 6 7 3479 14

3 3 1 1 7 7 564 4

2 4 2 1 2 8 7 3

3 4 2 0 3 8 370 95

4 4 2 0 4 8 93561 5378

2 5 2 1 5 8 4735238 43011

3 5 3 2 6 8 29163047 28968

4 5 3 2 7 8 13302311 1194

5 5 2 1 8 8 1676267 14

2 6 4 2 2 9 8 4

3 6 16 6 3 9 2877 692

4 6 56 7 4 9 8024046 440310

5 6 40 5 5 9 - 36922345

6 6 22 1 6 9 - 288988221

2 7 4 2 7 9 - 145462959

3 7 56 18 8 9 - 2807766

4 7 1398 112 9 9 - 9802

Table 3. Counts of Latin rectangles and intercalate-free Latin rectangles

Beyond approximate counting, we can make an unbiased estimate of the expectation

of any random variable defined on a class of unlabelled objects suitable for our method.

If we have arranged that every object of a given order has the same probability of

appearing, it is also true that the expectation over accepted objects is the same as the

expectation over all unlabelled objects of that order.

More formally, suppose that X is the set of all possible output objects, but that

we have installed a stochastic filter such that each member of X has probability p

of appearing in the output. Suppose f(X) is some numerical property we wish to

investigate. Applying the filtered generation process, we obtain a set of output objects,

say X1. It is easy to see that |X1|/p is an unbiased estimator of |X |, and that
∑

X∈X1

f(X)/|X
1
|

is an unbiased estimator of the expectation E(f) if X
1
6= ∅. Estimation of the variance
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of f is not so easy, as the elements of X do not have pairwise independent probability

of appearing in X1. We can solve this problem by running the generation process again,

to obtain a second set X2. Since X1 and X2 were obtained independently, we have that

∑

X1∈X1

∑

X2∈X2

(

f(X
1
) − f(X

2
)
)2

2|X
1
||X

2
|

is an unbiased estimator of var(f), provided X
1
,X

2
6= ∅. Obviously these estimates can

be sharpened by repetition. No analysis of the quality of this method of estimation has

been done in a general setting, though it should be possible.

ERRATUM: The two claims just above (given by the displayed equations) are not

correct. What is true is that
∑

X∈X1
f(X)/p is an unbiased estimator of E(f)|X |.

Dividing this by an unbiased estimator of |X | (the case of f(X) = 1 always) does not

give an unbiased estimator of E(f). However, if we have a sequence of estimates of

E(f)|X | and a sequence of estimates of |X |, their ratio converges to E(f) almost surely.

So the claims are true in a certain asymptotic sense.

This approach does not immediately lead to an algorithm for random generation of

unlabelled objects in the usual sense (one at a time). Techniques exist which can do this

in principle [39], but efficiency is likely to be a severe drawback for the type of problem

we are considering.

8. Parallelization.

Since our method divides the computation into a clean forest structure, paralleliza-

tion on a MIMD computer is easy. Non-intersecting subtrees are completely indepen-

dent, and so can be generated on separate processors if desired.

In most practical applications, adequate partitioning can be obtained by drawing a

line across the search forest at some level such that the number of objects at that level

is significantly larger than the number of processors, but small enough for them to be

computed quickly. For example, if we are generating all 11-vertex graphs, we can draw a

line at 8 vertices. It takes less than one second to generate all 12346 8-vertex graphs, so

this can be done independently by each processor. Each processor counts the 8-vertex

graphs 0, 1, 2, . . . as they are made, and proceeds to generate all the descendants of

those whose ordinals are congruent to i mod p, where i is the index of the processor

and p is the number of processors. In the 11-vertex example, the wastage from repeated

computations is much less than one percent, and the elapsed time for 20 processors is

about 18 times less than for one processor.

In some rare cases, there may be no “line” satisfying the above criteria. Those cases

can usually be handled by using two lines several levels apart. It is also possible to
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devise a strategy where the line dynamically adjusts its own level, but we shall leave

such topics for another time.

9. Closing remarks.

The current version of nauty, as well as the program geng and similar utilities will

always be available via the author’s home page: http://cs.anu.edu.au/~bdm .

I wish to thank Gunnar Brinkmann, Mark Ellingham, Reinhard Laue and Gordon

Royle for very helpful discussions.
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