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Abstract

Let d(n, q) be the number of labeled graphs with n vertices, q ≤ N =
(n
2

)

edges,
and no isolated vertices. Let x = q/n and k = 2q−n. We determine functions wk ∼ 1,
a(x), and ϕ(x) such that d(n, q) ∼ wk

(N
q

)

enϕ(x)+a(x) uniformly for all n and q > n/2.
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1 Introduction and statement of results.

For integers n and q, an (n, q)-graph is a labeled graph having n vertices and q edges. In a
recent paper [1] we studied c(n, q), the number of connected (n, q)-graphs. We proved the
following asymptotic formula, with error bound uniform in q,

c(n, q) = uk

(

N

q

)

F (x)nA(x)(1 + o(1)), (1.1)

wherein k = q−n, N =
(

n
2

)

, x = q/n, and uk is a known function with uk = 1+O(1/k). The

functions F (x) and A(x) appearing in (1.1) may be obtained by substituting the expression
(

N
q

)

F (x)nA(x) for c(n, q) into an exact recursion for c(n, q), rearranging to obtain 1 on one
side of the equation, expanding the other side as an asymptotic series, and then “equating
coefficients.” The last step leads to differential equations involving F (x) and A(x) which turn
out to have exact solutions. One may say that (1.1) is the formal asymptotic solution of the
recursion satisfied by c(n, q). The proof that the formula so obtained provides a uniformly
good estimate of c(n, q) is long and messy.

It is of interest to see if this method of “formal solution” can succeed on other classes
of graphs, and also to see if the general form of (1.1) holds for other classes of labeled
graphs. The present paper begins this further study. The class of graphs singled out for
investigation are the (n, q)-graphs having no isolated vertices. The number of such graphs
will be denoted d(n, q), “d” being both the next letter after “c” and also the first letter
of the word “dumbbell,” which is the typical component for small q. (See Lemma 3.1.)
This class is interesting for two reasons. First, the recursion satisfied by d(n, q), (see (1.2)
below), is simpler than the nonlinear recursion satisfied by c(n, q), (see [1, (1.11)]). Hence,
it may be easier to gain insight into the method from the results on d(n, q) than from those
on c(n, q). Second, the functions F (x) and A(x) in (1.1) reduce when q = 1

2
n lnn + µn,

to an expression for c(n, q) equivalent to a famous theorem of Erdős and Rényi featured
in the classic paper [3]. As is well known in the study of random graphs, the proof of
the latter theorem begins by showing that, for the stated range of q, “connected” and “no
isolated vertices” are roughly equivalent properties. With a uniform estimate of d(n, q) we
can compare these two properties for the entire range of q.

Here is the recursion satisfied by d(n, q), the number of (n, q)-graphs having no isolated

vertices, with N =
(

n
2

)

qd(n, q) = (N − q + 1)d(n, q − 1) + n(n− 1)d(n− 1, q − 1) +Nd(n− 2, q − 1). (1.2)

With the boundary conditions d(0, q) = δq,0 and d(n, 0) = δn,0, the above determines d(n, q).
The proof of (1.2) is immediate: the removal of an edge from a graph counted by d(n, q)
creates either zero, one, or two isolated vertices, respectively.

In the remainder of this paper, we will use the following notation:

n = number of vertices

N =

(

n

2

)

= number of possible edges
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q = number of edges

k = 2q − n

x = q/n

y = y(x) =











the positive solution of 2xy = − ln(1− y), if x > 1
2
,

0, if x = 1
2
,
. (1.3)

Thus, associated with the pair (n, q) is a triple of values (k, x, y), and given n, any one of
q, k, x, or y determines the other three. If k and n are given rather than q and n, it is
always understood that q = (n+k)/2 is an integer, that is, we assume that k ≡ n (mod 2).
Similarly, if x or y is given rather than k or q, it is understood that they are such that q is an
integer. By expanding x = − ln(1− y)/2y as a power series in y, it is clear that x 7→ y(x) is
an increasing bijection from [1/2,∞) to [0, 1). We use the notation (n)s for n falling factorial
s), that is, the product n(n− 1) · · · (n− s+ 1).

For k > 0 we define

wk =
√
2πk (k/e)k/k!

d∗(n, q) = wk

(

N

q

)(

e−2xy1−2x

1− y

)n√
1− y

1− 2x(1− y)
ex+x2(1−y2).

Note that, by Stirling’s formula, wk = 1+O(1/k). The easily derived alternative expression

(

e−2xy1−2x

1− y

)n

= y−ke−2q(1−y)

may be useful, but is not used here. For even n, we define

d∗(n, n/2) =

(

N

n/2

)

e3/4−n
√
2πn,

which, in fact, is the limit of d∗(n, q) as y ↓ 0.
Our main goal is to prove

Theorem 1. Let ǫ > 0 be a real constant and let n/2 ≤ q ≤ N . Uniformly in q as n → ∞
we have

d(n, q) = d∗(n, q)
(

1 +O(1/n1/7−ǫ)
)

.

Remark. Experimental evidence suggests that the estimate in Theorem 1 has an actual
relative error of O(1/q) uniformly over n; by direct computation we have found

∣

∣

∣

∣

∣

d(n, q)

d∗(n, q)
− 1

∣

∣

∣

∣

∣

<
1.35

q
for n ≤ 160.

We obtain Theorem 1 from the following three theorems, which give better estimates for the
error in d(n, q)/d∗(n, q) for various ranges of x.
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Theorem 2. Let k ≥ 0 and k = o(n2/3). Then, uniformly in k as n → ∞,

d

(

n,
n+ k

2

)

=
√
2
(1/2)k

k!
n(n+3k)/2 exp

{

−n

2
+

5k2

12n
+O

(

k + 1

n

)

+O

(

k3

n2

)}

= d∗(n, q)

(

1 +O

(

k + 1

n

)

+O

(

k3

n2

))

.

Theorem 3. Let k ≥ 0. Then, uniformly in q as n → ∞,

d(n, q) =

(

N

q

)

(

1 +O(ne−2x)
)

.

Uniformly in x > 3 lnn as n → ∞,

d(n, q) = d∗(n, q) (1 +O(1/n)) .

Theorem 4. Let ǫ > 0 be a real constant and let n/2 < q ≤ N . Then, uniformly in q as
n → ∞

d(n, q) = d∗(n, q)
(

1 +O(1/k) +O(k1/7/n2/7−ǫ)
)

.

To obtain Theorem 1, use Theorem 2 for k ≤ n2/5−ǫ, Theorem 3 for k > 6n lnn, and
Theorem 4 for the remaining range.

Once isolated points are forbidden, there are only finitely many graphs with q edges. We
will prove the following two theorems. As for Theorem 1, the relative error in Theorem 5
appears to be (1/q).

Theorem 5. For q ≥ 1, denote the number of labeled graphs with q edges and no isolated
vertices by

d(q) =
∑

n

d(n, q),

where the sum is over all n such that n/2 ≤ q ≤ N . For any ǫ > 0,

d(q) = C0(C1q)
q(1 + q−1/7+ǫ),

where

C0 =
1

21+ln 2/4 ln 2
≈ 0.6397054049

C1 =
2

(ln 2)2e
≈ 1.5313857152.
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Theorem 6. The number of vertices in a random labeled graph with q edges and no isolated
vertices has an asymptotic distribution which is normal with mean q/ ln 2 and variance

1− ln 2

2(ln 2)2
q.

The rest of the paper is organized as follows. Section 2 develops a few facts about the
function y = y(x), and some other related functions. Sections 3, 4, and 5 are devoted to
Theorems 2, 3, and 4, respectively. We prove Theorem 2 by a combinatorial argument, The-
orem 3 by computing the expected number of isolated vertices, and Theorem 4 by induction
based on (1.2), using the results of Theorems 2 and 3 for extreme ranges of x. Theorems 5
and 6 are proved in Section 6. In Section 7 we discuss further avenues for exploration.

2 Some analytic facts.

We want our asymptotic estimate of d(n, q) to be in the form
(

N
q

)

exp{nϕ(x) + a(x)}, and
so we introduce the functions ϕ(x) and a(x), defined for x > 1/2 by

ϕ(x) = −2x+ (1− 2x) ln y − ln(1− y) (2.1)

and
a(x) = x2(1− y2) + x+ 1

2
ln(1− y)− 1

2
ln(1− 2x(1− y)). (2.2)

In this notation,

d∗(n, q) = wk

(

N

q

)

exp{nϕ(x) + a(x)}. (2.3)

It is clear that as x ↓ 1/2, ϕ(x) → −1 and a(x) → ∞. Our first two lemmas concern relations
satisfied by these functions.

Lemma 2.1. With ϕ(x) defined by (2.1), we have the two relations

y2 = e−ϕ′(x) (2.4)

y (1 + exp{−2x− ϕ(x) + xϕ′(x)}) = 1. (2.5)

Proof. We have

ϕ(x) = −2x+ (1− 2x) ln y − ln(1− y)

ϕ′(x) = −2 +
1− 2x

y

dy

dx
− 2 ln y +

1

1− y

dy

dx

=
1

y

(

−2y − 2x
dy

dx
+

1

1− y

dy

dx

)

− 2 ln y

= −2 ln y,
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because when we differentiate the relation (1.3) with respect to x, we find that

−2y − 2x
dy

dx
+

1

1− y

dy

dx
= 0.

We now introduce three functions g0(x), g1(x), and g2(x). How these three functions
arise is clarified later in Lemma 5.1. For now our purpose is to record the fact that the
function a(x) given in (2.2) satisfies a certain differential equation. We define

g0(x) =
(

1
2
ϕ′′(x)− a′(x)

)

y2 (2.6)

g1(x) =
(

2− 2x2 + 1
2
(x− 1)2ϕ′′(x) + (x− 1)a′(x)

)

2y(1− y) (2.7)

g2(x) =
(

4− 4x− 4x2 + 1
2
(2x− 1)2ϕ′′(x) + (2x− 1)a′(x)

)

(1− y)2. (2.8)

Lemma 2.2. With ϕ(x), a(x), and gi(x) defined as above, we have

g0(x) + g1(x) + g2(x) = 0.

Proof. We have, since e−ϕ′(x) = y2 by the previous lemma,

ϕ′′(x) =
−2 dy/dx

y
(2.9)

and, from (2.2),

a′(x) = 2x(1− y2)− 2x2y
dy

dx
+ 1− dy/dx

2(1− y)
+

1− y − x dy/dx

1− 2x(1− y)
. (2.10)

Substitution of these formulas, along with the fact from (1.3) that

dy

dx
=

2y(1− y)

1− 2x(1− y)
,

reduces the lemma to a calculation within the field of rational functions of x and y.

The next two lemmas obtain upper bounds which will be useful later.

Lemma 2.3. We have, uniformly for 0 ≤ y < 1,

1− y = O(e−2x)

Proof. Since y → 1 as x → ∞, the function x(1−y) = xe−2xy is uniformly bounded. Hence,

1− y = e−2xe2x(1−y) = O(e−2x).
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Lemma 2.4. With ϕ(x) and a(x) defined by (2.1) and (2.2), we have, uniformly for
0 ≤ y < 1,

ϕ′′(x) = O(1/y), ϕ′′′(x) = O(1/y2), a′(x) = O(1/y), and a′′(x) = O(1/y2).

Proof. During this proof let Z = 1− 2x(1− y). Because dy/dx = (1− y)2y/Z, we find that
the class R of all functions of the form

(1− y)
p(x, y)

Zm
,

in which p(x, y) is a polynomial and m is a nonnegative integer, is closed under d
dx
. From

(2.9) and (2.10) we see, since dy/dx and dZ/dx are in R, that a′′(x), ϕ′′(x), and all higher
derivatives of both functions belong to R. Any function h(x) belonging to the class R will
satisfy, in view of Lemma 2.3, h(x) → 0 as x → ∞. Although a′(x) does not qualify for
membership in R, it is clearly bounded for y ≥ 1/2. Hence, a′(x), a′′(x), ϕ′′(x), and ϕ′′′(x)
are all bounded for y ≥ 1

2
. Note that in the range y ≤ 1/2 each of ϕ′′(x) and a′(x) is

expressable as 1/y times a power series in y convergent for y < 1. The lemma follows.

The final lemma of this section will play an important role later. It is a bit different from
the other four lemmas in that the variables k and n are again involved.

Lemma 2.5. Let A and B be real constants with 1 ≥ A > B/2 ≥ 0. There is a constant
c1 such that, uniformly in A, B, and k ≥ 1,

Ay

k
− B(1− y)

n
≥



















c1(A−B/2)

n
, if y ≤ 1/2,

c1(A−B/2)

k
, if y ≥ 1/2.

Proof. Since 2x− 1 = k/n, the quantity in question may be written

Ay − B(1− y)(2x− 1)

k
,

which may be expanded as a power series in y:

1

k

(

(

A− B

2

)

y + B
∞
∑

m=2

ym

m(m+ 1)

)

.

This proves the lemma for the case y ≥ 1/2. For y ≤ 1/2 we observe from the expansion of
2x − 1 = k/n as a power series in y that y must be greater than some constant times k/n.
The lemma follows.

We remark, but will not use, that c1 in the previous lemma can be taken equal to 1/2.
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3 The proof of Theorem 2.

The proof of Theorem 2 appears after we state and prove five preliminary lemmas. Through-
out this section we let D(n, q) be the class of graphs with n vertices and q edges having no
isolated vertices; thus,

|D(n, q)| = d(n, q).

We shall see that when k = o(n2/3), most graphs in D(n, q) contain only four types of
components: a single edge, a path with three vertices and two edges, a star with a central
vertex joined to three others, and a path with four vertices and three edges. These are the four
possible trees with four or less vertices, and we shall refer to them by the names K2, P3, K1,3,
and P4, respectively. Lemmas 3.2 and 3.4 below are examples of “switching arguments.”
Switching has proven to be a useful enumerative tool, especially in asymptotic enumeration
where it eliminates hard to estimate sums with alternating signs from inclusion/exclusion.
No survey exposition has appeared yet; see however [4] and [5] for early examples.

Lemma 3.1. Any graph G belonging to the class D(n, q) has at least n − 3k vertices in
K2 components.

Proof. Letting N1 denote the number of vertices in question, and N2 the rest, we have

N1 +N2 = n.

Every component containing vertices of the second class has an edge/vertex ratio of 2/3 or
more; hence,

N1

2
+

2N2

3
≤ n+ k

2
.

The lemma follows easily.

The corank of a graph G = (V,E) having c components is |E| − |V | + c, which is the
dimension of the cycle space of G [2, p.36]. In particular, a graph is a forest if and only if its
corank is zero. We now write

D(n, q) = M0 ∪M1 ∪ · · · ,

Mh being the class of graphs in D(n, q) having corank equal to h.

Lemma 3.2. Let the classes M0,M1, . . . be defined as above, k = o(n2/3), and n → ∞.
Then, uniformly in h and k,

|Mh| = O(k3/(hn2)) |Mh−1|.

Consequently, all but O(k3/n2) of the graphs in D(n, q) are cycle-free.
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Proof. Given a graph in Mh, remove an edge which belongs to a cycle and use it to join
two K2’s into a P4. The resulting graph belongs to Mh−1. Since the corank is the dimension
of the cycle space, there are at least h edges which belong to a cycle. Thus the operation of
removing an edge from a cycle and joining two K2’s may be done in at least

1
2
h · (n− 3k)(n− 3k − 2)

ways. A given graph in Mh−1 is obtained by such an operation in at most (3k/4)
(

3k
2

)

ways.
In the latter estimate, the first factor bounds the number of P4 components and the second
factor bounds the choices of two vertices in the same component which are not joined by
an edge. The first assertion of the lemma now follows easily, and the second assertion is
obtained by summing.

The next lemma is an easy consequence of the Prüffer algorithm [6, p. 229].

Lemma 3.3. Let L be an ordered set of labels with L = |L| ≥ 5. Then there is an injection
from R1 to R2, where

R1 = {T : T is a tree on the set L},

R2 =
{

(T,X1, X2, . . . , XL−4) : T is a rooted tree with three vertices from the set L, and
each Xi ∈ L

}

.

Proof. As in the usual Prüfer algorithm, prune the given tree T of one leaf at a time, always
pruning the leaf with the smallest label. Each time a leaf is removed, write down in sequence
the vertex to which it was attached, except for the (L− 3)-rd, which is the last. When the
(L−3)-rd vertex is removed, let the point of its attachment become the root of the remaining
tree of size 3. That this process is injective follows from the usual Prüfer bijection.

The algorithm for realizing the injection of Lemma 3.3 will be referred to as the “partial
Prüfer algorithm,” since it amounts to applying the usual algorithm and stopping just a few
steps early.

We now write
M0 = N0 ∪ N1 ∪ · · · ,

Nh being those cycle-free graphs in the class D(n, q) having h components of size 5 or greater.

Lemma 3.4. Let N0,N1, . . . be the class of graphs defined above, k = o(n2/3), and n → ∞.
Then, uniformly in k and h,

|Nh| = O
(

k3/(hn2)
)

|Nh−1|.

Consequently, all but O(k3/n2) of the graphs in D(n, q) are forests whose components belong
to the set {K2, P3, K1,3, P4}.
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Proof. First, we claim there is a injection from S1 to S2 where

S1 =
{

(G,C,X1, X2, . . . , XL−3) : G is a graph in Nh, C is a component of G having L ≥ 5
vertices, each Xi is an endpoint of a K2 component of G, and no two Xi belong to the
same K2 component

}

S2 =
{

(G, T, {Y1, Y2, . . . , YL−3}, Z1, Z2, . . . ZL−4) : G is a graph in Nh−1, T is a component of

G which is a tree of size 3, T has been rooted, the set {Yi} is an unordered collection
of endpoints of P3 components of G, no two Yi belonging to the same P3 component,
each Zj is either a vertex of T or one of the Yi, and repitition is allowed among the

Zj

}

.

Although the sets S1 and S2 are lengthy in description, the bijection is not: Given
(G,C, . . .) in S1, apply the partial Prüfer algorithm to the tree C, obtaining a rooted tree T of
size 3 and an (L−4)-tuple (Z1, Z2, . . . , ZL−4) of points of attachment; the set Y1, Y2, . . . , YL−3

is the set of leaves removed from C; each is attached, in turn, to the corresponding ordered
Xi yielding a P3 component of which Yi is an endpoint; the order of removal is then forgotten.

As a consequence of this injection we have, with N (L)
h denoting the class of graphs in Nh

having a component of size L ≥ 5 distinguished,

∣

∣

∣N (L)
h

∣

∣

∣

L−4
∏

i=0

(n− 3k − 2i) ≤ |S1| ≤ |S2|

≤ 1

(L− 3)!

(L−4
∏

i=0

(2k − 2i)
)

(3k) · LL−4 · |Nh−1|

The leftmost inequality follows from the fact that, given (G,C) ∈ N (L)
h , we have by Lemma 3.1

at least n − 3k vertices from which the X1, X2, . . . , XL−3 may be selected. The rightmost
inequality follows from the fact that, given G ∈ Nh−1, we have by Lemma 3.1 at most 2k
endpoints of P3’s from which to choose Yi, at most 3k choices for a root of a tree of size 3,
and of course LL−4 choices for the Zj. In all of the above, L can be at most 3k. Hence,
uniformly in k, h, and L,

∣

∣

∣N (L)
h

∣

∣

∣ = O





LL−4

(L− 3)!

(

2k

n− 3k

)L−3

3k



 |Nh−1|. = O

(

LL−4

(L− 3)!

(3k)L−2

nL−3

)

|Nh−1|.

When we sum the above for L ≥ 5 we obtain

h |Nh| = O(k3/n2) |Nh−1|.
This is equivalent to the first assertion of the lemma. The second follows by summing on h,
and using Lemma 3.2.

Lemma 3.5. Let k ≥ 1, k = o(n2/3), and n → ∞. Then, uniformly in k,

∑

s>4k1/2

(8k2/3n)s

s!
= O(k3/n2).
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Proof. Considering ratios of consecutive terms, the sum is O(1) times the first term. Using
s! > (s/e)s and 4k1/2 ≥ 2 completes the proof of the lemma.

We are now ready for the proof of Theorem 2.

Proof. (of Theorem 2) When k = 0, and n is even, we have

d(n, n/2) =
n!

(n/2)! 2n/2
=

√
2nn/2e−n/2(1 +O(1/n)),

which is consistent with the first equality in the theorem. The second equality follows easily.
Henceforth in the proof we assume k ≥ 1, and note, uniformly in k,

n!
(

n−3k
2

)

! k! 2(n−k)/2
=

√
2
(1/2)k

k!
n(n+3k)/2 exp{−n/2− 9k2/4n}

×
(

1 +O(k/n) +O(k3/n2)
)

, (3.1)

where we have used k = o(n2/3). Consider a graph G whose every component is one of K2,
P3, K1,3, or P4. If the graph G contains s components of size 4, then it must contain k − 2s
of size 3 and s+(n− 3k)/2 of size 2. In view of Lemma 3.4 and the fact that there are nn−2

unrooted, labeled n-vertex trees, we have

d(n, q) =
∑

0≤s≤k/2

n! (33−2)k−2s(44−2)s (1 +O(k3/n2))

(2!)s+(n−3k)/2
(

s+ n−3k
2

)

! (3!)k−2s (k − 2s)! (4!)s s!

=
n! (1 +O(k3/n2))
(

n−3k
2

)

! k! 2(n−k)/2

∑

0≤s≤k/2

ts, (3.2)

where

ts =
(k)2s(4/3)

s

(s+ (n− 3k)/2)s s!
.

Since
ts
ts−1

≤ 8k2

3s(n− 3k)
,

it is readily seen that ts ≤ (8k2/3(n− 3k))s/s! and so

∑

k/2≥s>4k1/2

ts = O(1)

(

2ek3/2

3(n− 3k)

)4k1/2

= O(k3/n2),

the first bound following from the facts that the sum is O(1) times its first term (k = o(n2/3))
and that s! ≥ (s/e)s, and the second bound from the fact that 4k1/2 > 2. Because t0 = 1,

∑

0≤s≤k/2

ts =
(

∑

0≤s≤4k1/2

ts

)

(

1 +O(k3/n2)
)

. (3.3)

12



Uniformly for 0 ≤ s ≤ 4k1/2, we have

(k)2s = k2s
(

1 +O(s2/k)
)

,

(s+ (n− 3k)/2)s = ((n− 3k)/2)s
(

1 +O(s2/n)
)

= (n/2)s (1 +O(ks/n)) ,

and
ts = (8k2/3n)s(s!)−1

(

1 +O(s2/k) +O(ks/n)
)

.

The sum of the right side over s ≥ 0 is exp{8k2/3n} (1 +O(k3/n2)). Invoking Lemma 3.5,
we find

∑

0≤s≤4k1/2

ts = exp{8k2/3n}
(

1 +O(k3/n2)
)

. (3.4)

The first equality of the theorem, for k ≥ 1, now follows by combining (3.1), (3.2), (3.3),
and (3.4), noting −9

4
+ 8

3
= 5

12
. We have the following uniform estimates, which follow from

Stirling’s formula and the definition of y:
(

N
n+k
2

)

=
n(n+k)/2

√
πn

exp{n/2− 3/4− k2/4n+O(k/n) +O(k3/n2)},

y = (2k/n)(1− 4k/3n)
(

1 +O(k2/n2)
)

,

y(1−2x)n = y−k = (n/2k)k exp
{

4k2/3n+O(k3/n2)
}

,

(1− y)−n = exp
{

2k − 2k2/3n+O(k3/n2)
}

,

1− 2x(1− y) = (k/n) (1 +O(k/n)) ,

and
x2(1− y2) + x = 3/4 +O(k/n).

Putting the above together yields the second equality in Theorem 2.

4 The proof of Theorem 3.

The probability that there is an isolated vertex in a randomly chosen (n, q)-graph is no greater
than the expected number of isolated vertices. With X denoting the random variable which
counts isolated vertices, we calculate

E(X) =
n
(

(n−1

2 )
q

)

(

N
q

) = n

(

n−1
2

)

q

(N)q

≤ n

(

n−1
2

)q

N q
= n

(

1− 2

n

)q

≤ ne−2x,

and the first part of Theorem 3 follows. The following lemma completes the proof of the
theorem and provides a tighter error bound.

13



Lemma 4.1. Let x > 3 lnn, and n → ∞. Then, uniformly in q,

d(n, q) =

(

N

q

)

exp{nϕ(x) + a(x)}
(

1 +O(1/n4)
)

.

Proof. For large x we have the following, using Lemma 2.3 and (1.3),

y = 1 +O(e−2x),

y(1−2x)n = y−k = 1 +O(ke−2x),

1− y = e−2xy = e−2xe2x(1−y) = e−2x
(

1 +O(xe−2x)
)

,
(

e−2x

1− y

)n

= 1 +O(nxe−2x),

√

1− y = e−x
(

1 +O(xe−2x)
)

,

and

ex
2(1−y2)+x

√

1− y

1− 2x(1− y)
= 1 +O(x2e−2x),

leading to
exp{nϕ(x) + a(x)} = 1 +O(qe−2x).

Comparing with the first part of Theorem 3, the lemma follows.

5 The proof of Theorem 4.

Let the two dimensional array b(n, k) be defined by the equation

d(n, q) =

(

N

q

)

enϕ(x)+a(x) (1 + b(n, k)) , (5.1)

where ϕ(x) and a(x) are given by (2.1) and (2.2). Our object is to establish an upper bound
on b(n, k). Throughout this section we shall use the three inequalities

y ≤ 1/2, x ≤ ln 2, and k ≤ (2 ln 2− 1)n

interchangeably, without repeatedly remarking on the equivalence. We define the function
Λ = Λ(n, q) by

Λ =
{

1/k, if y ≤ 1/2,
1/n, if y > 1/2.

Substituting (5.1) into the recurrence (1.2) and dividing through by q
(

N
q

)

exp{nϕ(x)+a(x)},
we find

1 + b(n, k) = W0(1 + b(n, k − 2))

+W1(1 + b(n− 1, k − 1)) (5.2)

+W2(1 + b(n− 2, k)),

14



where, for example,

W1 =
n(n− 1)

(

(n−1

2 )
q−1

)

q
(

N
q

) exp
{

(n− 1)ϕ
(

q−1
n−1

)

+ a
(

q−1
n−1

)

− nϕ(x)− a(x)
}

,

and similar quotients may be written for W0 and W2. The object of the next lemma is to
estimate each quotient Wi.

Lemma 5.1. Let the three quotients W0, W1, and W2 be defined as above in (5.2), let the
functions gi(x) be as introduced in (2.6) – (2.8), and let the “error terms” ei = ei(n, q) be
defined so that

W0 = y2 +
g0(x)

n
+ e0(n, q)

W1 = 2y(1− y) +
g1(x)

n
+ e1(n, q)

W2 = (1− y)2 +
g2(x)

n
+ e2(n, q).

Finally, let n2/5 ≤ k = o(n3/2), and n → ∞. Then, uniformly in k, the error terms ei satisfy

ei = O(x4Λ2).

Proof. We shall write down details for W1. The proofs for W0 and W2 are very similar.
Starting from the identity q

(

N
q

)

= N
(

N−1
q−1

)

, it follows that

n(n− 1)
(

(n−1

2 )
q−1

)

q
(

N
q

) = 2

(

(n− 1)(n− 2)

n(n− 1)− 2

)q−1 q−2
∏

i=0

1− i
/(

n−1
2

)

1− i/(N − 1)

= 2 exp
{

−2x+ 2−2x2

n
+O(q4/n6)

}

. (5.3)

Since (q − 1)/(n− 1) = x+ (x− 1)/(n− 1), we have, by Taylor’s formula with remainder,

exp
{

(n− 1)ϕ
(

q−1
n−1

)

+ a
(

q−1
n−1

)

− nϕ(x)− a(x)
}

= exp
{

−ϕ(x) + (x− 1)ϕ′(x) + (x−1)2ϕ′′(x)
2n

+ (x−1)a′(x)
n

+ E1

}

, (5.4)

where

E1 =
1
2
(x− 1)2ϕ′′(x) + (x− 1)a′(x)

n(n− 1)

+
(x− 1)3ϕ′′′(ξ)

6(n− 1)2
+

(x− 1)2a′′(ζ)

2(n− 1)2
,

with ξ and ζ known to be between x and x+ (x− 1)/(n− 1). From

(2x− 1) =
y

2
+

y2

3
+ · · · < y/2

1− y

15



we see that
y ≥ (2x− 1) = k/n for y ≤ 1/2. (5.5)

If y is divided by 2 the effect on the corresponding x is to reduce it by more than y/4. Using
this, (5.5), and k ≥ n2/5 when y ≤ 1/2, and easier reasoning when y ≥ 1/2, we see that the
y values associated with ξ and ζ are at least y/2; by Lemma 2.4 then

ϕ′′′(ξ) = O(1/y2), a′′(ζ) = O(1/y2).

Applying Lemma 2.4 to the other two terms in E1 we conclude

E1 = O(x3Λ2).

Again by Lemma 2.4,
(

1
2
(x− 1)2ϕ′′(x) + (x− 1)a′(x)

)/

n = O(x2Λ). We may thus expand

the “exp{· · ·}” term in (5.4). Recalling that y2 = e−ϕ′(x), we find

exp
{

(n− 1)ϕ
(

q−1
n−1

)

+ a
(

q−1
n−1

)

− nϕ(x)− a(x)
}

(5.6)

= y2 exp {−ϕ(x) + xϕ′(x)}
(

1 +
(x− 1)2ϕ′′(x)

2n
+

(x− 1)a′(x)

n
+O(x4Λ2)

)

.

Combining (5.3) and (5.6) yields the desired estimate of W1. The quotients W0 and W2 may
be handled similarly, and the lemma is complete.

The next lemma defines and bounds five additional error terms which are needed in the
proof of Theorem 4.

Lemma 5.2. Let A and B be real constants with 0 < A,B < 1 and let W0, W1 and W2

be as in (5.2). Let ei = ei(n, q, A,B), 3 ≤ i ≤ 7, be defined by the equations

(k − 2)A

nB
=

kA

nB

(

1− 2A

k
+ e3

)

(k − 1)A

(n− 1)B
=

kA

nB

(

1− A

k
+

B

n
+ e4

)

kA

(n− 2)B
=

kA

nB

(

1 +
2B

n
+ e5

)

W0 +W1 +W2 = 1 + e6

W0

(

1− 2A

k
+ e3

)

+ W1

(

1− A

k
+

B

n
+ e4

)

+W2

(

1 +
2B

n
+ e5

)

= 1− 2Ay

k
+

2B(1− y)

n
+ e7.

Finally, let n2/5 ≤ k = o
(

n3/2
)

and n → ∞. Then, uniformly in A,B, and q,

ei = O
(

x4Λ2
)

, for 3 ≤ i ≤ 7.

16



Proof. The assertions about e3, e4, and e5 are very simple, and that about e6 follows from the
preceding lemma and the fact (Lemma 2.2) that g0(x)+g1(x)+g2(x) = 0. There remains e7.
Expand the left side of the equation which defines e7 to obtain the four quantities displayed
here:

W0

(

1− 2A

k
+ e3

)

+ W1

(

1− A

k
+

B

n
+ e4

)

+W2

(

1 +
2B

n
+ e5

)

= (W0 +W1 +W2) − A

k
(2W0 +W1)

+
B

n
(W1 + 2W2) + (W0e3 +W1e4 +W2e5).

The first term on the right is 1+e6. For the second and third terms, we note first by Lemma
5.1

2W0 +W1 = 2y +
2g0(x) + g1(x)

n
+ 2e0(n, q) + e1(n, q)

W1 + 2W2 = 2(1− y) +
g1(x) + 2g2(x)

n
+ e1(n, q) + 2e2(n, q).

Using Lemma 2.4 we check that all three of gi(x) are uniformly bounded, as are the Wi by
Lemma 5.1. Since both 1/k and 1/n are O(Λ), we obtain the desired bound on e7 from the
known bounds on e0, . . . e6. This concludes the proof of Lemma 5.2.

Proof of Theorem 4. Let 0 < ǫ < 2/7 be given. Define A = 1/7 and B = 2/7− ǫ. Since
1/k ≤ kA/nB for k ≥ n2/5, it suffices to exhibit a constant C sufficiently large that

|b(n, k)| ≤ C

(

1

k + 1
+

kA

nB

)

for k ≤ n2/5 (5.7)

|b(n, k)| ≤ C
kA

nB
for n2/5 ≤ k ≤ n2 − 2n. (5.8)

Let c1 be the constant given in Lemma 2.5. By Lemmas 5.1 and 5.2, there is a sufficiently
large c2 such that |ei| ≤ c2x

4Λ2 for 0 ≤ i ≤ 7 and n2/5 ≤ k = o(n3/2). With these two
constants and ǫ known in advance, we claim that C may be chosen as follows:

C1. Choose n0 sufficiently large that, for all n ≥ n0,

(a) n3/5 ≥ n2/5 + 2,

(b) (324c2/c1ǫ)(lnn)
4 ≤ n1/5, and

(c) (1944c2/c1ǫ)(lnn)
5 ≤ n.

C2. Choose C sufficiently large that (5.7) and (5.8) hold for the finitely many pairs (n, q)
with n < n0.

C3. Choose C sufficiently large, by Theorem 2, that (5.7) and (5.8) hold provided k ≤ n3/5.

C4. Choose C sufficiently large, by Lemma 4.1, that (5.8) holds provided x ≥ 3 lnn.
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C5. Choose C sufficiently large that

(a) (324c2/c1ǫ)((lnn)
4/nǫ) ≤ C for n ≥ n0.

(b) (1944c2/c1ǫ)((lnn)
5/n4/5+ǫ) ≤ C for n ≥ n0.

We now prove that (5.7) and (5.8) hold for this choice of C, using proof by contradiction.
Assume that the set of pairs (n, q) for which one of (5.7) or (5.8) fails is nonempty, and
choose one such pair which is minimal with respect to the product partial order on N × N.
By Conditions C2, C3, and C4 we must have n ≥ n0, k > n3/5, and x ≤ 3 lnn. Because
(n, q−1), (n−1, q−1), and (n−2, q−1) are all smaller than (n, q) in the product partial order,
and because Condition C1(a) implies k − 2 ≥ n2/5, k − 1 ≥ (n − 1)2/5, and k ≥ (n − 2)2/5,
we will have, by minimality of our counterexample,

b(n, k − 2) ≤ C
(k − 2)A

nB

b(n− 1, k − 1) ≤ C
(k − 1)A

(n− 1)B

b(n− 2, k) ≤ C
kA

(n− 2)B
.

Denoting the three quantities b(n, k − 2), b(n − 1, k − 1), and b(n − 2, k) by b0, b1, and b2
respectively, we have from (5.2)

|b(n, k)| ≤
∣

∣

∣

∑

Wi − 1
∣

∣

∣+
∣

∣

∣

∑

Wibi
∣

∣

∣ ≤
∣

∣

∣

∑

Wi − 1
∣

∣

∣+
∑

Wi |bi| ,

since Wi ≥ 0. By the definitions of ei in Lemma 5.2,
∑

Wi − 1 = e6(n, q) and

∑

Wi|bi| ≤ W0 · C
kA

nB

(

1− 2A

k
+ e3

)

+W1 · C
kA

nB

(

1− A

k
+

B

n
+ e4

)

+W2 · C
kA

nB

(

1 +
2B

n
+ e5

)

= C
kA

nB

(

1− 2Ay

k
+

2B(1− y)

n
+ e7(n, q)

)

,

and so, by Lemma 5.2,

|b(n, k)| ≤ c2x
4Λ2 + C

kA

nB

(

1− 2Ay

k
+

2B(1− y)

n
+ c2x

4Λ2

)

. (5.9)

In terms of Λ and ǫ the conclusion of Lemma 2.5 may be expressed

2Ay

k
− 2B(1− y)

n
≥ c1ǫ

Λnk
.

When y ≤ 1
2
, Λ = 1/k, and k ≥ n3/5, Condition C1(b) implies

c2x
4Λ2 ≤ c1ǫ

4Λnk
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and Condition C5(a) implies

c2x
4Λ2 ≤ C

kA

nB

c1ǫ

4Λnk
.

When y > 1/2, Λ = 1/n, and x ≤ 3 lnn, Condition C1(c) implies

c2x
4Λ2 ≤ c1ǫ

4Λnk
,

and Condition C5(b) implies

c2x
4Λ2 ≤ C

kA

nB

c1ǫ

4Λnk
.

Thus, from (5.9),

|b(n, k)| ≤ C
kA

nB

c1ǫ

4Λnk
+ C

kA

nB

(

1− c1ǫ

Λnk
+

c1ǫ

4Λnk

)

= C
kA

nB

(

1− c1ǫ

2Λnk

)

,

contradicting the assumption that |b(n, k)| > CkA/nB. This completes the proof.

6 The proof of Theorems 5 and 6.

We require the following estimate for d(n+ t, q).

Lemma 6.1. Fix ǫ > 0. Then uniformly for 1
2
+ ǫ ≤ x = O(1) and |t| ≤ q2/3, we have

ln
d(n+ t, q)

(

N
q

)

enϕ(x)+a(x)
= t(2x+ ϕ(x)− xϕ′(x)) + t2x2q−1(−1 + 1

2
xϕ′′(x)) +O(q−1/7+ǫ + |t|3q−2).

Proof. By writing

(K)q =
r
∏

i=−r

(K − r + i) =
r
∏

i=−r

((K − r)2 − i2)1/2

with r = (q − 1)/2 and routine expansion, we find that

ln

(

(n+t
2 )
q

)

(

(n2)
q

) = 2tx− tx2(t− 2x− 1)

q
+O

(

|t|3 + 1

q2

)

.

From Theorem 1, (2.4), (2.9) and the fact that ea(x) and its derivative are bounded for
x ∈ [1

2
+ ǫ,∞], we have

ln
d(n+ t, q)

(

N
q

)

enϕ(x)+a(x)
= 2tx− t2x2/q + u(n+ t)ϕ′(x) + 1

2
u2(n+ t)ϕ′′(x) + tϕ(x)

+O(q−1/7+ǫ + n|u|3 + (1 + |t|)q−1 + |t|3q−2),

where u = q/(n + t) − q/n. Substituting u = −tx2/q + O(t2x3q−2), we have the required
expansion.
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We now prove Theorems 5 and 6.
Note first that x0 = ln 2 is a solution to the equation 2x + ϕ(x) − xϕ′(x) = 0. Define

n0 = q/x0. Substituting into Lemma 6.1, we find that for |t| ≤ q2/3 and integer n0 + t, we
have

d(n0 + t, q) =

(

(

n0

2

)

q

)

(6.1)

en0ϕ(x0)+a(x0) exp

(

− (ln 2)2t2

(1− ln 2)q

)

(1 +O(q−1/7+ǫ + |t|3q−2)).

Applying Euler-Maclaurin summation, we find that

∑

|t|≤q2/3

d(n0 + t, q) =

(

(

n0

2

)

q

)

en0ϕ(x0)+a(x0)

√

π(1− ln 2)q

ln 2
(1 +O(q−1/7+ǫ)).

Finally, we substitute the values of x0 and n0 with the aid of the expansion

(

(

n0

2

)

q

)

=

(

eq

2x2
0

)q

(2πq)−1/2e−x0−x2
0(1 +O(q−1))

to obtain
∑

|t|≤q2/3

d(n0 + t, q) = C0(C1q)
q(1 +O(q−1/7+ǫ)). (6.2)

It remains to be shown that larger values of t do not significantly contribute. We begin
by establishing a log-concavity result. For any q > 0 and all n, define

α(n, q) =







(

N
q

)

enϕ(q/n), q/n > 1
2
;

0, otherwise.

Note that α(2q, q) = 0. Since

((

n

2

)

− i

)2

≥
((

n− 1

2

)

− i

)((

n+ 1

2

)

− i

)

,

we have
(

(

n
2

)

q

)2

≥
(

(

n−1
2

)

q

)(

(

n+1
2

)

q

)

.

Also, if g(z) = zϕ(1/z) then g′′(z) = ϕ′′(1/z)/z3, which is negative for z < 2. Hence,

e2nϕ(q/n) ≥ e(n−1)ϕ(q/(n−1))e(n+1)ϕ(q/(n+1))

for 2q > n+ 1. If α(n, q) = 0, then α(n+ 1, q) = 0 and so we have

α(n, q)2 ≥ α(n− 1, q)α(n+ 1, q) (6.3)

for all n.
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When t < −q2/3, the ratio q/(n0 + t) is strictly larger than q/n0 = log 2 > 1
2
, and so

a(q/(n0 + t)) is bounded. By Theorem 1 we have

∑

t<−q2/3

d(n0 + t, q) = O(1)
∑

t<−q2/3

α(n0 + t, q). (6.4)

Define n1 = ⌊n0⌋, n2 = ⌊n0 − q2/3⌋. Using Lemma 6.1 we find that for sufficiently large q
and some c > 0,

α(n2, q)

α(n1, q)
≤ e−cq1/3 .

By (6.3), this implies that for i ≥ 0,

α(n2 − i, q) ≤ α(n2, q) exp(−cq1/3i/(n1 − n2))

and so, summing a geometric series,

∑

i≥0

α(n2 + i, q) = O(q1/3)α(n2, q) = O(q1/3e−cq1/3)α(n1, q) = O(q1/3e−cq1/3)d(n1, q).

Since d(n1, q) is a term of the sum (6.2), we see that the terms for t < −q2/3 contribute to
d(q) less than the error terms of (6.2).

For the upper tail (the sum over t > q2/3), almost the same argument applies. The range
of the sum is 2q−n0 ≥ t > q2/3. Since α(2q, q) had been defined to be 0, it is necessary (and
easy) to account for d(2q, q) separately. In the remaining range, namely 2q−n0−1 ≥ t > q2/3,
we have

q

n0 + t
≥ q

2q − 1
≥ 1

2
+

1

4q
.

Noting that a(x) is decreasing, that

2x(1− y) =
− ln(1− y)

y
(1− y) = 1−

(

y

2
+

y2

6
+ · · ·

)

,

and that y ≥ c1(2x− 1) for some c1 > 0, we find that for x = q/(n0 + t) and 2q − n0 − 1 ≥
t > q2/3, we have

ea(x) =

√

1− y

1− 2x(1− y)
ex+x2(1−y2) >

c2
y1/2

= O(q1/2)

for some c2 > 0. Replacing the O(1) term in (6.4) by O(q1/2), we may now follow the same
argument used for t < q−2/3.

Theorem 6 follows from Equation (6.1) and the tail bounds established above.
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7 Some unexplored trails.

The above results leave a lot of unanswered questions. Here are a few in what may be an
increasing order of difficulty.

1. The probability that a random graph with n vertices, q edges has exactly t isolated
vertices is

(

n

t

)

d(n− t, q)

/(

N

q

)

.

When q = 1
2
n log n + µn, routine analysis shows that this is asymptotically a Poisson

distribution with parameter e−2µ, as noted by Erdős and Rényi [3]. One might explore
the entire range from this Poisson to the normal distribution that occurs when q is
small.

2. Let G be a connected labeled graph with s vertices and t edges, and define X =
X(G, n, q) to be the expected number of components isomorphic to G in a random
labeled graph with n vertices, q edges, and no isolated vertices. Then,

E(X) =
(n)s

|Aut(G)|d(n− s, q − t)/d(n, q).

In this equation Aut(G) is the graph G’s automorphism group. Using Theorem 1, we
can estimate E(X) uniformly. Similarly, any moment of the distribution of X can be
estimated. In many cases, this would allow us to infer a Poisson or normal asymptotic
distribution for X. A more challenging project would be to consider deeper questions
such as the point at which a large component appears when q increases.

3. For what range of q is it true that almost all (n, q) graphs without isolated vertices
have only tree and unicyclic connected components ? Preliminary calculations indicate
that the boundary is near the point x = 1

2
e/(e− 1).

4. Having no isolated vertices is the same as requiring that the minimum degree be at
least 1. Can one obtain similar results when the minimum degree is 2? (Requiring the
minimum degree to be at least t > 2 may bring in new difficulties.)

5. It might be possible to prove the stronger relative error estimate O(1/q) mentioned in
the Remark after Theorem 1 by applying our method to

(

N

q

)

exp{nϕ(x) + a(x) +
β1(x)

n
}.

Presumably formal expansion yields a differential equation for β1(x). Theorem 3 prob-
ably suffices for large x, but Theorem 2 may need to be extended to a larger range
of k with an explicit term of the form ck3/n2 in the exponential. On the other hand
perhaps there is a different and better method awaiting discovery.

6. Can our results be generalized to the case in which each component has at least t
vertices? If so, do the functions corresponding to ϕ(x) and a(x) converge to those
found in [1] for connected graphs as t → ∞? It seems likely that ϕ(x) will converge
but it may be too much to ask the same of a(x).

22



References

[1] Bender, E. A., E. R. Canfield, and B. D. McKay, The asymptotic number of labeled
connected graphs with a given number of vertices and edges, Random Structures and

Algorithms 1 (1990) 127–169.

[2] Bollobás, B. Graph Theory. An Introductory Course, Springer-Verlag (1979).
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