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Abstract.

We describe two computational methods for the construction of cubic graphs with

given girth. These were used to produce two independent proofs that the (3, 9)-cages,

defined as the smallest cubic graphs of girth 9, have 58 vertices. There are exactly 18

such graphs. We also show that cubic graphs of girth 11 must have at least 106 vertices

and cubic graphs of girth 13 must have at least 196 vertices.

1. Introduction.

A cubic graph is a regular graph of degree 3, and its girth is the length of the shortest

cycle. For g ≥ 3, the smallest cubic graphs of girth g are called (3, g)-cages. Ever since

the existence of cages was proved by Erdős and Sachs in 1963 [6], their properties have

been intensively studied. However, the difficulty of the problem is such that not even

the order f(3, g) of such graphs is known for g = 11 or g ≥ 13.

For a survey of work on cages prior to 1982, see Wong [12]. In particular, Wong

gives references for the results f(3, 3) = 4, f(3, 4) = 6, f(3, 5) = 10, f(3, 6) = 14,

f(3, 7) = 24, f(3, 8) = 30, f(3, 10) = 70, and f(3, 12) = 126. The major result of this

paper is that f(3, 9) = 58.

The nonexistence of a cubic graph of girth 9 and order 46, the smallest feasible order,

was proved independently in 1973 by Bannai and Ito [2] and by Damerell [5]. The lower

bound was raised to 54 in the 1970’s by C. W. Evans (by hand) and confirmed by the

present second author in 1978 (by computer). Both results are unpublished.

The first small example of a cubic graph of girth 9 was one of order 60 found by

Foster about 1952 (see [8]). This record held for nearly 30 years, until Biggs and Hoare

[3] discovered an example of order 58. A second graph of order 58 was found by Evans

in 1984 [7].

The value f(3, 9) = 58 was established by the second author in 1984 using the

method that we will describe in the next section. Over the following few years, a total

of 18 (3, 9)-cages were found by the same program, but the completeness of this set

could not be established until a much faster method was developed by the first and

third authors. That method will be described in Section 3.
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Some of the 18 cages have been independently discovered by Geoff Exoo, Dan

Ashlock and Yuan Yang using various nonexhaustive searches (private communications).

Our second method is fast enough to allow us to improve the lower bounds on f(3, 11)

and f(3, 13) as well. A cubic graph of girth 11 and order 112 was found by Balaban

in 1973 [1]. Despite considerable effort, no smaller graph has been constructed even

though the lower bound stood at only 96 until now. As the result of our computations

we have improved this to f(3, 11) ≥ 106. Similarly, we have improved the lower bound

on f(3, 13) from 192 to 196.

2. The first method.

In this section we will describe the first method. As it is suitable only for girth 9

(or less), we will use the example of girth 9 throughout.

Let G be a cubic graph of girth 9, with n ≥ 48 vertices. Choose any vertex v of G,

and define Vi to be the set of vertices at distance i from v, for i ≥ 0. Clearly, |V1| = 3,

|V2| = 6, |V3| = 12, and |V4| = 24. The 45 edges incident with V0∪· · ·∪V3 are the edges

of a tree T .

It will be convenient to divide the vertices into three classes. The internal vertices

are those in V0 ∪ · · · ∪ V3. The vertices in V4 are leaves, as they are the leaves of

the tree T , and the n − 46 vertices V5 ∪ V6 ∪ · · · are external vertices. Similarly, the

edges of G can be divided into four classes. The tree edges are the edges of T . Those

edges between two leaves, from a leaf to an external vertex, and between two external

vertices, are lower, intermediate and upper edges, respectively. Let m1, m2, and m3

be the number of lower, intermediate and upper edges, respectively. Then we have

the equations 2m1 + m2 = 48 and 2m3 + m2 = 3n − 138, which have the solutions

max(0, 93−3

2
n) ≤ m1 ≤ 24, m2 = 48 − 2m1, m3 = m1 + 3

2
n − 93.

The general procedure is to find the lower edges, the upper edges, and the interme-

diate edges, in that order.

The lower edges.

In the case of the lower edges, we did complete isomorph reduction using, we believe,

the first application of the general method described in [10]. For m ≥ 0, let Lm denote

the family of valid choices of m lower edges. By “valid” we mean that no leaf is incident

with more than two lower edges, and that the tree edges and lower edges together induce

no cycle of length less than 9. The elements of Lm can be divided into equivalence classes

under the action of the automorphism group of T , a group of order 3 × 222. Suppose

that Lm is a set containing exactly one member from each equivalence class. We will

describe how we can construct a similar transversal of Lm+1.

Let X ∈ Lm, and define p(X) to be the class of all pairs {v, w} of leaves such

that v and w have at most degree one in X , and have distance at least 8 in T ∪ X .

That is, p(X) lists the places where a new lower edge e could be added to X to form

a member X + e of Lm+1. Some of these extensions X + e will be isomorphic due to

the symmetries of X , but these are easily eliminated by using the program nauty [9] to
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m |Lm| m |Lm|

1 1 13 11898246

2 8 14 8803803

3 39 15 4089034

4 283 16 1155988

5 1785 17 204192

6 11279 18 26392

7 60642 19 2329

8 278533 20 135

9 1033389 21 0

10 3014371 22 0

11 6639096 23 0

12 10655541 24 0

Table 1. Number of inequivalent choices of m lower edges.

find the automorphism group of T ∪X and hence the equivalence classes of p(X) under

that group. Suppose p′(X) contains exactly one member of each such equivalence class.

Suppose now that X ∈ Lm and e ∈ p′(X). Perhaps X + e is isomorphic to X ′ + e′

for some different X ′ ∈ Lm and e′ ∈ p′(X ′), so our next step is designed to reject

such isomorphisms. Suppose we have a function φ acting on Lm+1 such that φ(Y ) is

a nonempty subset of Y satisfying these two properties: (i) φ(Y ) is an orbit of lower

edges under the automorphism group of T ∪ Y ; (ii) for any automorphism γ of T ,

φ(Y γ) = φ(Y )γ . We implemented such a function φ by first computing a combinatorial

invariant of the elements of Y . If there was exactly one element for which the invariant

gave the greatest value, that became the sole member of φ(Y ). If not, the canonical

labelling feature of nauty was used to choose a value for φ(Y ), namely the orbit of edges

containing the edge whose canonical label was greatest amongst those with the greatest

invariant value.

Now define Lm+1 = {X + e |X ∈ Lm, e ∈ p′(X) ∩ φ(X + e)}. According to the

theory in [10], Lm+1 contains exactly one member of each equivalence class of Lm+1.

The number of equivalence classes in Lm for 1 ≤ m ≤ 24 appear in Table 1. The total

number is 47875087, including L0. When this computation was repeated in 1993 as

a check, it required 97 hours of cpu time on a Sun Microsystems SPARCstation SLC

computer.

The upper edges.

For the upper edges in isolation there are few possibilities. There must be n − 46

vertices, maximum degree 3 or less, and no cycles shorter than 9 vertices.

The fact that L21 = ∅ leaves no solution for m3 when n = 48, and eliminates the
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possibility m3 = 3 when n = 50. Taking this into account, the number of nonisomorphic

ways to choose the upper edges for n = 50, 52, . . . , 58 is 4, 17, 52, 173, 635, respectively.

The intermediate edges.

Given a particular possibility for the lower edges, a good strategy would be to

arrange the possibilities for the upper edges in some type of tree structure and then

to scan that structure while filling in the intermediate edges. However, we did not

adopt that strategy but rather considered each feasible pair of choices (upper edges,

lower edges) separately. The inadequacy of this approach for n = 58 is immediately

seen by counting the number of such pairs: there are about 2323 million. However,

a fairly straightforward backtrack program that used the automorphism group of the

upper edge graph was sufficient to complete the computations for n ≤ 56.

In the case of n = 58, we completed the search for m1 ≤ 8 and m1 ≥ 16. Many

examples of the remaining cases were also run, together with heuristic searches and

attempted modifications of existing cages. For example, for every known cage G and

choice of root vertex v, we removed all intermediate and upper edges, moved or deleted

up to two lower edges, then put back the upper and intermediate edges in every possible

way. The result of these computations after running for about four years on several

computers was that we had 18 cages each of which had been “discovered” many times

over. However, the clear implication that we had the full set of cages had to remain

conjectural until the method of the next section was developed.

3. The second method.

Our second method for generating cages arose out of ideas developed for the program

minibaum [4]. The most important improvement was a change in the definition of

canonicity that enabled more efficient processing in the case of high girth. However, we

will describe the new method without assuming the reader to be familiar with minibaum.

As before, we will describe the operation of the program for girth 9 except where

we specify otherwise.

The basic method of operation is as follows. We define a family of “representations”

of the cubic graph as a list of sublists, with one sublist for each non-internal vertex

constructed in a particular way. Amongst all the possible representations corresponding

to different labellings of the graph, the one that is lexicographically least is an invariant

of the isomorphism class and will be called the canonical representation. The program

systematically generates representations using a simple branch and bound technique,

looking for canonical representations. As usual for branch and bound programs, the

efficiency depends heavily on how early we can recognise and eliminate branches of the

search tree which cannot contain canonical representations.

The actual format of representations relies on names assigned to vertices during

the construction process. Recall the classification of vertices and edges defined in the

previous section. The interior vertices of the tree will not change during the whole

construction process, so there is no need to give names to them. All the other vertices
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get a name consisting of a pair of values called the first name and the second name. The

first name describes whether the vertex is an external vertex or a leaf. All the external

vertices get the first name “∞”. The leaves get the first names 1, 2, . . . , 24, assigned in

any order such that, for each m, vertex m as close in T to 1, . . . , m − 1 as are any of

m + 1, . . . , 24.

The second name of each vertex runs from “1” to “N”, with N = n − 22 being the

number of non-internal vertices, and is assigned in the order in which the first non-tree

edge is attached to the vertex during the construction process. It will be seen from the

definition of minimality that there must be an edge from the leaf with first name “1”

to the leaf with first name “9”. Hence, we have two complete names: “1, 1” and “9, 2”.

After this, the order of insertion of the edges is that the vertices are completed in order

of their second names. So, because “1, 1” has valence 2 at this stage, the next edge to

be inserted must start there. One possibility is to connect vertex “1, 1” to an external

vertex. That external vertex would get second name “3” and therefore its full name

would be “∞, 3”.

A strategy like this can be used to define a “representation” for an unlabelled graph.

First mark an arbitrary vertex as the root and form the tree T . Next, give first names to

the leaves in any legal order. Finally, assign second names as if the non-tree edges were

inserted one by one starting at the vertex with first (and therefore also second) name

“1”. At vertices where more than one non-tree edge starts, one of course has a choice

of which edge one wants to regard as the earlier one, possibly inducing interchanged

second names for the end vertices of these edges. Once all names have been assigned,

each vertex can be associated with a list consisting of its own name followed by the names

of its leaf or external neighbours in order of their second names. In our example above,

vertex “1, 1” would get the list 1, 1; 9, 2;∞, 3. Leaves and external vertices have lists of

different length. Finally, concatenate these lists in the order of their second components,

i.e. the second name of the vertex associated to each list. The resulting long list is a

representation of the graph. It is easy to see how the graph can be reconstructed from

any representation. Among all the possible representations of a graph, we will call the

one that is lexicographically least the canonical representation.

The bounding criteria.

As explained above, the overall structure is a branch and bound program that

constructs representations one edge at a time. For efficient operation, a number of

“bounding criteria” are employed to remove useless branches of the search.

Essentially there are two types of bounding criteria: One cuts off branches because

they cannot include canonical representations and one cuts off branches because they

cannot include representations of graphs of the required girth.

In considering the first type of bounding criterion, it is worth noting that we do not

have an “orderly” algorithm in the sense of Read [11], because it is not necessarily true

that our intermediate forms are minimal. That is, given a canonical representation,

it may not be true that leading portions of it are minimal representations of partly
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constructed graphs. This means that, unlike in Read’s approach, we cannot use a simple

local minimality test as a bounding criterion. Nevertheless, it is still often possible to

tell that a partial representation cannot possibly lead to a canonical representation.

Suppose we can choose a (possibly different) root and a numbering of the leaves and

external vertices that gives a partial representation which is smaller than the current

partial representation for some leading portion consisting of vertices of degree 3. Then

any complete representation in the current branch will be greater than some represen-

tation of the same graph in the other labelling, and so is not canonical. This bounding

criterion can be implemented very efficiently because the first names giving a smallest

possible representation with respect to the given second names can be computed in time

linear in the depth of T .

The most important example of the second type of bounding criterion uses a simple

look-ahead for the vertices which do not yet have degree 3. Each such vertex and each

pair of such vertices must be able to be joined to other such vertices without creating

short cycles. To make this test easy, we maintain the distance matrix for the set of

those vertices not yet completed and update it as each new edge is chosen.

There are two other bounding criteria which are not as important as the first two,

but which should be mentioned.

The first one deals with canonicity. It was not used for girth 9, since it improves the

program only in those cases where we have a lot of leaves compared to the number of

external vertices. The main idea is that the definition of canonicity favours long chains

of leaves at the beginning. This means in general that if x is the center of a chain of

length n1 ≤ 11 and y is the center of a chain of length n2 with n1 < n2 then taking y as

the vertex with second name “1” gives a smaller representation than taking x. At some

points during the computation it can be determined by a simple calculation based on

the valences of the vertices that some other leaf is (or will become) better than “1,1” in

this respect, and so that branch of the computation can be cut. This improvement had

significant effect for girth 11.

The other criterion has to do with the girth. As long as we have at least two external

vertices that are not yet connected to other vertices, the previous bounding criterion

will always say that it is useful to carry on. However, it might be that the current

valences of the vertices prevent completion of the graph without creating short cycles.

Using a separate program, we determined all valence sequences with up to 34 vertices of

maximum valence 3, but at most 12 exactly 3, that allow graphs with girth 9 or more.

During the execution of the nine-cage constructor it was then always observed whether

the set of valence deficiencies belonged to this set.

Concerning the effectiveness of the conditions it can be said that the first two are

much more effective than the second two.

The implementation.

For the implementation of the algorithm some techniques developed for minibaum

[4] were used.

6



So, for example, following the observation that canonicity checking is most effective

and cheap in the lower region of the generation tree and ineffective and expensive in the

upper region, we checked canonicity only until 2/3 of the edges were inserted. Unlike

in minibaum, the exact position of the boundary is not very critical, since most of the

time is spent in the lower regions of the generation tree.

We also adapted some techniques from minibaum that make implementation of the

first bounding criterion much faster. Suppose that we have two partial representations

r1 and r2, where r1 is for the current point in the search, and r2 corresponds to some

different labelling that we wish to compare r1 against. If r1 is greater than r2 in

some leading segment that includes only completed vertices, we can cut this branch as

described earlier. If r2 is greater than r1 in some leading segment that includes only

completed vertices, then relabellings beginning with that leading segment of r2 cannot

be less than successors of r1 so we do not need to compare against r2 anymore in this

branch of the search.

Finally, if those leading segments of r1 and r2 are the same, we need to continue

comparing successors of r1 against successors of r2 but we can save computation by

noting that the leading segment of r2 is the same for all its successors. These ideas can

be implemented very effectively using a forest of rooted trees; please see [4] for details.

The results.

For girth 9, the running times of the algorithm (corrected to Sun SPARCstation

SLC) were 0.6s, 10s, 5.3m, 3.3h, 6.5d, 259d for n = 48, . . . , 58, respectively. The results

were that the nonexistence of (3, 9)-cages below 58 vertices was confirmed, and that the

18 known graphs with 58 vertices were proved to constitute the full set.

We have also used the same method to search for cubic graphs of order 60 and

girth 9, but the search was not completed. We found 466 such graphs, of which seven

have diameter 5.

For girth 11, we searched as far as 104 vertices without finding any graphs. Repre-

sentative times were 70s for n = 98 and 2.5 years for n = 104. For girth 13, the cases

n ≤ 194 were completed in about 30 minutes.

At this point we wish to thank our universities for our intensive use of their com-

puting resources.

Note added in proof.

The results of this paper have recently been verified by a non-orderly program

developed by Wendy Myrvold and Brendan McKay. The same program has further

established that f(3, 11) = 112 and f(3, 13) ≥ 202. Details will appear elsewhere.

7



References.

[1] A. T. Balaban, Trivalent graphs of girth nine and eleven, and relationships among

cages, Rev. Roumaine Math. Pures Appl., 18 (1973) 1033–1043.

[2] E. Bannai and T. Ito, On Moore graphs, J. Fac. Sci. Uni. Tokyo Ser. A, 20 (1973)

191–208.

[3] N. L. Biggs and M. J. Hoare, A trivalent graph with 58 vertices and girth 9, Discrete

Math., 30 (1980) 299–301.

[4] G. Brinkmann, Fast generation of cubic graphs, J. Graph Theory, to appear.

[5] R. M. Damerell, On Moore graphs, Proc. Cambridge Philos. Soc., 74 (1973) 227–236.

[6] P. Erdős and H. Sachs, Reguläre Graphen gegebener Taillenweite mit minimaler

Knotenzahl, Wiss. Z. Uni. Halle (Math. Nat.), 12 (1963) 251–257.

[7] C. W. Evans, A second trivalent graph with 58 vertices and girth 9, J. Graph Theory,

8 (1984) 97–99.

[8] R. Frucht, Remarks on finite groups defined by generating relations, Canad. J.

Math., 7 (1955) 8–17.

[9] B. D. McKay, nauty Users Guide, Technical Report TR-CS-90-02, Computer Science

Department, Australian National University, 1990.

[10] B. D. McKay, Isomorph free exhaustive generation, preprint 1993.

[11] R. C. Read, Every one a winner, Annals Discrete Math., 2 (1978) 107–120.

[12] P. K. Wong, Cages—a survey, J. Graph Theory, 6 (1982) 1–22.

Appendix. The (3, 9)-cages.

We now present the 18 cubic graphs of order 58 and girth 9. They will be called

G1, . . . , G18, where G1 is the graph of Biggs and Hoare [3] and G2 is the graph of

Evans [7]. In each graph G, the labelling is chosen such that 1–2–· · · − −58–1 is a

Hamiltonian cycle H. For the automorphism group Aut(G) we give a set of generators,

the order, and the number of orbits. We also give some eigenvalues of the adjacency ma-

trix, namely the smallest, the second largest, and all integers except 3. The superscript

indicates multiplicity.

Statistics about 9-cycles are also given, namely the counts of 9-cycles using each

vertex, and the total number. Again, superscripts indicate multiplicities.

All the graphs have diameter 6. In the catalogue below we give the counts per vertex

of the number of vertices at distance 6.

As noted, all the graphs are Hamiltonian. In fact, every path of length 7 can be

extended to a Hamiltonian cycle. This is not true for length 8 except for G3 and G14,

though for paths of length 8 whose ends are adjacent it is true for all but G5 and G10.
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Cage G1.

E(G1) = E(H) ∪ {1-9, 2-27, 3-42, 4-13, 5-47, 6-55, 7-34, 8-20, 10-39, 11-52, 12-31, 14-22,

15-36, 16-54, 17-41, 18-48, 19-29, 21-44, 23-57, 24-40, 25-33, 26-53, 28-37, 30-56, 32-45,

35-50, 38-46, 43-51, 49-58}
Aut(G1) = 〈(3 27)(4 28)(5 29)(6 19)(7 20)(11 39)(12 38)(13 37)(14 36)(17 54)(18 55)

(21 34)(22 35)(23 50)(24 51)(25 43)(26 42)(30 47)(31 46)(32 45)(33 44)(40 52)

(41 53)(48 56)(49 57), (2 58)(3 49)(4 50)(5 51)(6 52)(7 11)(8 10)(12 34)(13 35)

(14 36)(18 41)(19 40)(20 39)(21 38)(22 37)(23 28)(24 29)(25 30)(26 56)(27 57)

(31 33)(42 48)(43 47)(44 46)(53 55)〉; order 4; 20 orbits

Interesting eigenvalues: −2.754684121,−11, 11, 2.388678251

Nine-cycles per vertex: 94, 104, 1112, 1212, 138, 1410, 154, 164; 80 altogether

Vertices at distance six: 022, 122, 210, 32, 42

Cage G2.

E(G2) = E(H) ∪ {1-9, 2-52, 3-30, 4-39, 5-48, 6-34, 7-15, 8-44, 10-27, 11-49, 12-32, 13-38,

14-56, 16-51, 17-26, 18-42, 19-58, 20-36, 21-29, 22-50, 23-40, 24-33, 25-46, 28-55, 31-43,

35-53, 37-45, 41-54, 47-57}
Aut(G2) = 〈(1 8)(2 44)(3 43)(4 42)(5 18)(6 19)(7 58)(11 27)(12 28)(13 55)(14 56)

(15 57)(16 47)(17 48)(20 34)(21 33)(22 24)(25 50)(26 49)(29 32)(30 31)(35 36)

(37 53)(38 54)(39 41)(45 52)(46 51)〉; order 2; 31 orbits

Interesting eigenvalues: −2.613007431, 2.441956881

Nine-cycles per vertex: 134, 1414, 1520, 1616, 173, 181; 97 altogether

Vertices at distance six: 012, 128, 214, 34

Cage G3.

E(G3) = E(H) ∪ {1-9, 2-16, 3-43, 4-50, 5-38, 6-55, 7-46, 8-27, 10-22, 11-32, 12-48, 13-37,

14-28, 15-54, 17-33, 18-39, 19-47, 20-29, 21-52, 23-44, 24-56, 25-49, 26-40, 30-57, 31-42,

34-51, 35-45, 36-58, 41-53}
Aut(G3) = 〈(3 16)(4 17)(5 33)(6 32)(7 11)(8 10)(12 46)(13 45)(14 44)(15 43)(18 50)

(19 49)(20 25)(21 26)(22 27)(23 28)(24 29)(30 56)(31 55)(34 38)(35 37)(39 51)

(40 52)(41 53)(42 54)(47 48), (2 9)(3 8 16 10)(4 27 17 22)(5 28 33 23)(6 14 32 44)

(7 15 11 43)(12 42 46 54)(13 31 45 55)(18 21 50 26)(19 52 49 40)(20 51 25 39)

(24 38 29 34)(30 35 56 37)(36 57)(41 47 53 48), (1 41 48)(2 40 12)(3 26 11)(4 27 32)

(5 28 33)(6 29 34)(7 30 51)(8 31 50)(9 42 49)(10 43 25)(13 16 39)(14 17 38)

(15 18 37)(19 36 54)(20 35 55)(21 45 56)(22 44 24)(46 57 52)(47 58 53)〉;
order 24; 5 orbits

Interesting eigenvalues: −2.559075663,−21,−13, 11, 2.408356353

Nine-cycles per vertex: 1536, 1618, 184; 100 altogether

Vertices at distance six: 018, 124, 212, 34

Cage G4.

E(G4) = E(H) ∪ {1-9, 2-44, 3-20, 4-37, 5-13, 6-47, 7-53, 8-23, 10-30, 11-50, 12-41, 14-26,

15-58, 16-32, 17-52, 18-40, 19-28, 21-49, 22-33, 24-39, 25-45, 27-35, 29-55, 31-46, 34-42,

36-51, 38-56, 43-54, 48-57}
Aut(G4) = 〈(1 9)(2 10)(3 11)(4 50)(5 49)(6 48)(7 57)(8 58)(12 20)(13 21)(14 22)
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(15 23)(16 24)(17 39)(18 40)(19 41)(25 32)(26 33)(27 34)(28 42)(29 43)(30 44)

(31 45)(37 51)(38 52)(53 56)(54 55), (1 18)(2 17)(3 16)(4 32)(5 33)(6 34)(7 42)(8 41)

(9 40)(10 39)(11 24)(12 23)(13 22)(14 21)(15 20)(19 58)(25 50)(26 49)(27 48)(28 57)

(29 56)(30 38)(31 37)(35 47)(36 46)(43 53)(44 52)(45 51)〉; order 4; 16 orbits

Interesting eigenvalues: −2.759872591,−11, 12, 2.459530311

Nine-cycles per vertex: 108, 114, 1214, 1316, 154, 1610, 182; 84 altogether

Vertices at distance six: 016, 118, 222, 32

Cage G5.

E(G5) = E(H) ∪ {1-9, 2-27, 3-17, 4-46, 5-38, 6-52, 7-33, 8-42, 10-22, 11-37, 12-54, 13-45,

14-32, 15-50, 16-41, 18-55, 19-34, 20-44, 21-51, 23-31, 24-47, 25-40, 26-53, 28-36, 29-43,

30-56, 35-48, 39-57, 49-58}
Aut(G5) = 〈(1 13)(2 14)(3 15)(4 50)(5 51)(6 52)(7 53)(8 54)(9 12)(10 11)(16 17)

(18 41)(19 40)(20 39)(21 38)(22 37)(23 36)(24 35)(25 34)(26 33)(27 32)(28 31)

(29 30)(42 55)(43 56)(44 57)(45 58)(46 49)(47 48), (1 26)(2 27)(3 28)(4 36)(5 37)

(6 11)(7 12)(8 54)(9 53)(10 52)(13 33)(14 32)(15 31)(16 30)(17 29)(18 43)(19 44)

(22 51)(23 50)(24 49)(25 58)(34 45)(35 46)(40 57)(41 56)(42 55)(47 48)〉;
order 4; 17 orbits

Interesting eigenvalues: −2.759907021,−12, 2.458065831

Nine-cycles per vertex: 104, 118, 1214, 1312, 148, 154, 166, 182; 84 altogether

Vertices at distance six: 016, 134, 28

Cage G6.

E(G6) = E(H) ∪ {1-9, 2-37, 3-48, 4-13, 5-28, 6-34, 7-19, 8-51, 10-30, 11-40, 12-22, 14-52,

15-43, 16-31, 17-25, 18-39, 20-46, 21-55, 23-35, 24-50, 26-58, 27-45, 29-54, 32-47, 33-57,

36-44, 38-53, 41-49, 42-56}
Aut(G6) = 〈(1 4)(2 3)(5 9)(6 8)(10 28)(11 27)(12 26)(13 58)(14 57)(15 56)(16 55)

(17 21)(18 20)(22 25)(23 24)(29 30)(31 54)(32 53)(33 52)(34 51)(35 50)(36 49)

(37 48)(38 47)(39 46)(40 45)(41 44)(42 43)〉; order 2; 30 orbits

Interesting eigenvalues: −2.730949061,−11, 2.457041091

Nine-cycles per vertex: 104, 116, 1212, 138, 1414, 156, 164, 172, 182; 86 altogether

Vertices at distance six: 011, 136, 211

Cage G7.

E(G7) = E(H) ∪ {1-9, 2-45, 3-38, 4-54, 5-13, 6-48, 7-25, 8-31, 10-19, 11-40, 12-34, 14-28,

15-51, 16-37, 17-43, 18-55, 20-47, 21-29, 22-36, 23-53, 24-44, 26-39, 27-56, 30-42, 32-52,

33-46, 35-57, 41-49, 50-58}
No nontrivial automorphisms

Interesting eigenvalues: −2.668443171, 2.453874381

Nine-cycles per vertex: 125, 136, 1419, 1518, 167, 173; 93 altogether

Vertices at distance six: 017, 120, 219, 32

Cage G8.

E(G8) = E(H) ∪ {1-9, 2-33, 3-39, 4-25, 5-53, 6-47, 7-19, 8-42, 10-51, 11-37, 12-46, 13-21,

14-41, 15-26, 16-32, 17-56, 18-38, 20-29, 22-34, 23-50, 24-44, 27-36, 28-58, 30-52, 31-45,

35-54, 40-49, 43-55, 48-57}
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Aut(G8) = 〈(1 58)(2 57)(3 56)(4 55)(5 54)(6 35)(7 36)(8 27)(9 28)(10 29)(11 20)

(12 21)(15 41)(16 40)(17 39)(18 38)(19 37)(22 46)(23 45)(24 44)(25 43)(26 42)

(30 51)(31 50)(32 49)(33 48)(34 47)〉; order 2; 31 orbits

Interesting eigenvalues: −2.634554511, 2.440904491

Nine-cycles per vertex: 132, 1425, 1519, 1611, 181; 95 altogether

Vertices at distance six: 032, 118, 28

Cage G9.

E(G9) = E(H) ∪ {1-9, 2-52, 3-23, 4-13, 5-34, 6-18, 7-46, 8-38, 10-29, 11-20, 12-55, 14-43,

15-37, 16-31, 17-25, 19-51, 21-36, 22-47, 24-40, 26-56, 27-35, 28-44, 30-49, 32-54, 33-41,

39-50, 42-58, 45-53, 48-57}
No nontrivial automorphisms

Interesting eigenvalues: −2.661078801,−11, 2.448292021

Nine-cycles per vertex: 136, 1415, 1519, 1615, 173; 96 altogether

Vertices at distance six: 05, 122, 226, 34, 41

Cage G10.

E(G10) = E(H) ∪ {1-9, 2-41, 3-34, 4-28, 5-17, 6-38, 7-45, 8-22, 10-53, 11-27, 12-37, 13-48,

14-42, 15-31, 16-24, 18-54, 19-47, 20-40, 21-29, 23-35, 25-50, 26-44, 30-57, 32-52, 33-46,

36-56, 39-51, 43-55, 49-58}
Aut(G10) = 〈(1 16)(2 24)(3 23)(4 22)(5 8)(6 7)(9 17)(10 18)(11 19)(12 47)(13 48)

(14 49)(15 58)(20 27)(21 28)(25 41)(26 40)(31 57)(32 56)(33 36)(34 35)(37 46)

(38 45)(39 44)(42 50)(43 51)(52 55)(53 54)〉; order 2; 30 orbits

Interesting eigenvalues: −2.735404271, 2.422556801

Nine-cycles per vertex: 82, 94, 1014, 1115, 129, 138, 144, 162; 73 altogether

Vertices at distance six: 044, 114

Cage G11.

E(G11) = E(H) ∪ {1-9, 2-15, 3-38, 4-49, 5-20, 6-55, 7-34, 8-41, 10-22, 11-48, 12-54, 13-28,

14-43, 16-33, 17-47, 18-40, 19-29, 21-44, 23-32, 24-39, 25-56, 26-50, 27-35, 30-58, 31-52,

36-45, 37-53, 42-51, 46-57}
No nontrivial automorphisms

Interesting eigenvalues: −2.746019661, 2.423655431

Nine-cycles per vertex: 81, 94, 1012, 1110, 1215, 137, 147, 162; 75 altogether

Vertices at distance six: 042, 116

Cage G12.

E(G12) = E(H) ∪ {1-9, 2-41, 3-14, 4-46, 5-33, 6-18, 7-38, 8-23, 10-28, 11-52, 12-20, 13-37,

15-24, 16-50, 17-57, 19-42, 21-47, 22-31, 25-54, 26-34, 27-48, 29-43, 30-56, 32-51, 35-58,

36-44, 39-55, 40-49, 45-53}
Aut(G12) = 〈(1 48)(2 27)(3 26)(4 34)(5 33)(6 32)(7 51)(8 50)(9 49)(10 40)(11 39)

(12 55)(13 54)(14 25)(15 24)(16 23)(17 22)(18 31)(19 30)(20 56)(21 57)(28 41)

(29 42)(35 46)(36 45)(37 53)(38 52)(47 58)〉; order 2; 30 orbits

Interesting eigenvalues: −2.642073411, 2.456943951

Nine-cycles per vertex: 136, 1420, 1521, 165, 176; 95 altogether

Vertices at distance six: 018, 120, 218, 32

11



Cage G13.

E(G13) = E(H) ∪ {1-9, 2-33, 3-41, 4-24, 5-17, 6-45, 7-30, 8-38, 10-19, 11-53, 12-27, 13-47,

14-22, 15-58, 16-36, 18-49, 20-43, 21-32, 23-51, 25-56, 26-37, 28-42, 29-50, 31-55, 34-46,

35-52, 39-48, 40-54, 44-57}
No nontrivial automorphisms

Interesting eigenvalues: −2.681203341,−11, 2.443754251

Nine-cycles per vertex: 124, 138, 1410, 1517, 1615, 174; 95 altogether

Vertices at distance six: 06, 126, 221, 34, 41

Cage G14.

E(G14) = E(H) ∪ {1-9, 2-27, 3-41, 4-50, 5-36, 6-55, 7-20, 8-47, 10-52, 11-35, 12-42, 13-29,

14-49, 15-58, 16-24, 17-40, 18-34, 19-28, 21-43, 22-51, 23-31, 25-46, 26-54, 30-38, 32-56,

33-48, 37-45, 39-53, 44-57}
Aut(G14) = 〈(1 2)(3 9)(4 10)(5 11)(6 12)(7 42)(8 41)(13 55)(14 54)(15 26)(16 25)

(17 46)(18 45)(19 44)(20 43)(27 58)(28 57)(29 56)(30 32)(33 38)(34 37)(35 36)

(39 48)(40 47)(49 53)(50 52), (1 14 33 36 39 26)(2 15 48 35 38 54)(3 16 47 11 30 55)

(4 17 46 10 29 56)(5 40 25 9 13 32)(6 41 24 8 12 31)(7 42 23)(18 45 52 28 57 50)

(19 44 51)(20 43 22)(27 58 49 34 37 53)〉; order 12; 10 orbits

Interesting eigenvalues: −2.596474081,−14, 21, 2.423046382

Nine-cycles per vertex: 124, 1421, 1512, 1615, 176; 96 altogether

Vertices at distance six: 028, 112, 218

Cage G15.

E(G15) = E(H) ∪ {1-9, 2-22, 3-51, 4-45, 5-17, 6-28, 7-54, 8-48, 10-42, 11-19, 12-27, 13-46,

14-53, 15-23, 16-39, 18-34, 20-55, 21-30, 24-43, 25-49, 26-57, 29-37, 31-47, 32-41, 33-52,

35-58, 36-44, 38-50, 40-56}
Aut(G15) = 〈(4 51)(5 52)(6 33)(7 34)(8 35)(9 58)(10 57)(11 56)(12 40)(13 39)

(14 16)(17 53)(18 54)(19 55)(25 43)(26 42)(27 41)(28 32)(29 31)(36 48)(37 47)

(38 46)(44 49)(45 50), (1 15)(2 23)(3 24)(4 25)(5 26)(6 27)(7 12)(8 13)(9 14)(10 53)

(11 54)(16 58)(17 57)(18 56)(19 55)(33 41)(34 40)(35 39)(36 38)(42 52)(43 51)

(44 50)(45 49)(46 48), (1 28 15 32)(2 29 23 31)(3 37 24 47)(4 38 43 48)(5 39 42 8)

(6 16 41 9)(7 17 40 10)(11 54 18 56)(12 53 34 57)(13 52 35 26)(14 33 58 27)(19 55)

(22 30)(25 46 51 36)(44 49 45 50)〉; order 8; 13 orbits

Interesting eigenvalues: −2.658668871,−12, 11, 21, 2.415732111

Nine-cycles per vertex: 81, 102, 124, 1416, 1532, 163; 92 altogether

Vertices at distance six: 031, 116, 22, 38, 41

Cage G16.

E(G16) = E(H) ∪ {1-9, 2-50, 3-38, 4-31, 5-23, 6-15, 7-45, 8-28, 10-33, 11-21, 12-39, 13-55,

14-49, 16-35, 17-41, 18-58, 19-30, 20-47, 22-52, 24-57, 25-34, 26-48, 27-40, 29-54, 32-43,

36-53, 37-46, 42-51, 44-56}
Aut(G16) = 〈(1 38)(2 3)(4 50)(5 51)(6 42)(7 41)(8 40)(9 39)(10 12)(13 33)(14 32)

(15 43)(16 44)(17 45)(18 46)(19 47)(23 52)(24 53)(25 54)(26 29)(27 28)(30 48)

(31 49)(34 55)(35 56)(36 57)(37 58)〉; order 2; 31 orbits

Interesting eigenvalues: −2.735148761,−11, 2.396718611
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Nine-cycles per vertex: 81, 92, 1018, 1122, 1213, 132; 70 altogether

Vertices at distance six: 056, 12

Cage G17.

E(G17) = E(H) ∪ {1-9, 2-26, 3-35, 4-21, 5-41, 6-16, 7-31, 8-52, 10-43, 11-19, 12-34, 13-50,

14-27, 15-45, 17-57, 18-38, 20-29, 22-51, 23-44, 24-32, 25-39, 28-54, 30-47, 33-56, 36-46,

37-53, 40-49, 42-55, 48-58}
Aut(G17) = 〈(1 4)(2 3)(5 9)(6 8)(10 41)(11 40)(12 39)(13 38)(14 37)(15 53)(16 52)

(17 51)(18 50)(19 49)(20 48)(21 58)(22 57)(23 56)(24 33)(25 34)(26 35)(27 36)

(28 46)(29 47)(42 43)(44 55)(45 54), (1 16 55)(2 15 54)(3 45 53)(4 44 52)(5 43 8)

(6 42 9)(7 41 10)(11 31 40)(12 30 39)(13 29 25)(14 28 26)(17 56 58)(18 33 48)

(19 32 49)(20 24 50)(21 23 51)(34 47 38)(35 46 37)〉; order 6; 13 orbits

Interesting eigenvalues: −2.695124751,−21, 11, 2.362339831

Nine-cycles per vertex: 92, 1018, 1124, 1214; 70 altogether

Vertices at distance six: 050, 18

Cage G18.

E(G18) = E(H) ∪ {1-9, 2-35, 3-49, 4-23, 5-13, 6-28, 7-42, 8-19, 10-46, 11-39, 12-33, 14-52,

15-58, 16-25, 17-48, 18-37, 20-53, 21-32, 22-45, 24-40, 26-34, 27-54, 29-38, 30-50, 31-57,

36-44, 41-56, 43-51, 47-55}
Aut(G18) = 〈(1 6 49 38 16 41)(2 28 48 39 15 42)(3 29 17 40 58 7)(4 30 18 24 57 8)

(5 50 37 25 56 9)(10 13 51 36 26 55)(11 14 43 35 27 47)(12 52 44 34 54 46)

(19 23 31)(20 22 32)(33 53 45)〉; order 6; 12 orbits

Interesting eigenvalues: −2.600859141, 2.399390372

Nine-cycles per vertex: 127, 1424, 1524, 163; 92 altogether

Vertices at distance six: 049, 16, 23
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