05-04
COMPUTING AUTOMORPHISMS AND CANONICAL LABELLINGS OF GRAPHS

Brendan D. McKay
Department of Mathematics,
University of Melbourne,
Parkville, Victoria, 3052
Australia

ABSTRACT |

A new algorithm is presented for the related problems of canonically labelling
a graph or digraph and of finding its automorphism group. The automorphism group
is found in the form of a set of less than n generators, where n is the number of
vertices. An implementation is reported which is sufficiently conserving of time

and space for it to be useful for graphs with over a thousand vertices.

1. INTRODUCTION
Let V be the finite set {l, 2y ceey n}. Define Q(V) to be the set of all

(labelled) graphs with vertex set V. Let Sn be the symmetric group acting on V.

€ and wg

For G e G(V) and g € S, define c8 e G(V) to be the graph in which vertices v
are adjacent exactly when v and w are adjacent in G. The automorphism group of G,

Aut(G), is the group {g € Snl c8 = c}.

The canonical label problem is to find a map eanon: G(V) =+ G(V) such that for
Ge G(V) and g € S,

(1) canon (G) is isomorphic to G, and (2) canon (Gg) = canon (G).
Note that there may be many functions canon satisfying (1) and(2).

If G,H € G(V), we see that G and H are isomorphic if and only if canon (G) = canon (H).

In this paper we present a new algorithm for computing eanon (G) which will also
find a set of fewer than n automorphisms which generate Aut(G). With only minor
modifications which we will indicate, the algorithm is equally applicable to digraphs.
Undefined graph theoretic or group theoretic concepts can be found in [1] or [T]

respectively.

2. EQUITABLE PARTITIONS

Let V= {1, 2, ..., n}. A partition of V is a collection m of disjoint non-empty
subsets of V whose union is V. The elements of m are called its cells. An ordered
partition of V is a sequence (C;, Cy, ..., Cp) for which {Cl’ Cps =ves Ck} is a
partition. The sets of all partitions of V, and of all ordered partitions. of V will
be denoted by IN(V) and E(V) respectively.

224

Define M*(V) = M(V) v I(V). Let m,,m, ¢ I¥(V). We write m; < m, (m; is finer
than Tys Ty is coarser than nl) if every cell of m is contained in some cell of L
If both m; < 7, and T, £ m;, we write ™ = T, If 1 e N*(V), the number of cells

of 7 is denoted by |7|. m is called discrete if |w| = n.

let m e T*¥(V) and g € S,- Then 78 ¢ 1*(V) is formed by replacing each cell
C e mby ce. If = ng, g is said to fix w. Denote by m v g the finest partition
of V which is coarser than 7 but fixed by g. The existence of m v g follows from
the fact that (I(V), <) is a lattice [3].

Choose a fixed G ¢ Q(V). If W Vand v € V, the number of vertices in W which
are adjacent to v will be denoted by d(v, W). Let w e I¥(V). m is said to be
equitable (for G) if for any C,»C, € m and v;,v, € C; we have d(vl, CZ) = d(vz, C2).
For an arbitrary m, the coarsest equitable partition which is finer than m will be
denoted by £(m). Similarly, 6(w) denotes the partition whose cells are the orbits
of the subgroup of Aut(G) which fixes m. The proof of the following lemma can be
found in [3].

IEMMA 1. Let w e (V). Then

(1) o(m) < g(m),
(ii) 6(m) is equitable, and
(iii) if 7™ is equitable, and n - |m| < 5, the smallest cells of T of
size = 2 are cells of 6(n). (Not true if G is a digraph.) 0

Corneil proved in [2] that for any m, 6(w) = g(n) if G is a tree. This can be

generalised to uni-cyclic graphs and many others. See [3] for further details.

Algorithms for computing £(w) have been used many times in graph isomorphism
programs ([2], [5], [6]1). TFor our own purposes, however, the following system appears

to be more efficient. Let m € (V) and let o be a subset of .

ALGORITHM 1: Compute 7 = R(G, m, a)
(1) T+

» (2) If o =@ or ¥ is discrete, stop.
Choose any non-null subset B of a.
o<« a\B, 1 « 1
(Suppose T = {Cl, Chs vves Ck} and B = {Wl’ Wos cnes vi.}.)
(3) Partition C; into subsets D5 Dys eee
(a(v, Wi, d(v, wz), <ees &v, W.)) for v e Cj.
%<« %u{D, Dy, ..., DgN{[Cs}

» Dg according to the vectors

225

a<au {DZ’ cees DS} (if s =2 2)

i«i+1l

If i <k go to (3); otherwise go to (2).
THEOREM 1. For any m e I(V), R(G, m, 7) = £(m).

Proof: (a) In step (3) of the algorithm, |a| is not increased unless ¥ is made

finer. Since |a| is reduced in step (2), the algorithm is sure to terminate.
(b) By definition, &(m) < m. Suppose that before some execution of step
(3) we have g(n) < %. Since B ¢ ¥, each element of B is a union of cells of

g(m). Hence we will also have £(m) < ¥ after execution of step (3).
Therefore &(m) < R(G, m, w) < 7.

(c) Suppose that R(G, m, m) is not equitable. Then for some
Cy,C, € AR(G, ™, m) there are v,w € C, such that d(v, C2) # d(w, Cz). Since
T is made successively finer by the algorithm, v and w must always be in the
same cell of .
At step (1), C, is contained in some cell of a. Hence C, must some-

time be contained in an element W of B.

(d) Since v and w are never separated, d(v, W) = d(w, W). Hence there
is a cell C4 of R(G, m, m) other than C, for which d(v, C3) # d(w, C3).
Since C, and 03 are different cells of R(G, m, m) they must be separated
sometime in step (3). At least one of them, say Cz, will then be contained

in a new element of o.

(e) Since the argument in (d) can be repeated indefinitely, the algorithm
never terminates, contradicting (a). Hence R(G, 7, m) is equitable, and so

R(G, m, m) = g(m). o

A considerable advantage which Algorithm 1 has over previous algorithms is that
in some important situations, a can be a proper subset of w. Suppose LY is an
equitable partition of V coarser than m. Let a < m be such that for any D € L CeD
for at most one C € m\a. Then it can be proved (see [3]) that R(G, m, a) = &(m).

When implemented’ on a computer, Algorithm 1 becomes an operation on ordered
partitions, and produces an ordered result. We will presume an implementation such
that for any g € Sy, A(G8, ng, o8 = R(G, 7, o)b.

3. THE BASIC STRUCTURE OF THE ALGORITHM
Our algorithm for computing canon (G) and generators for Aut (G) is based on a

depth-first search through a tree whose nodes are equitable ordered partitions of V.

226

The first node, or root, is the equitable partition A.(G, (V), (V)), where (V) is the
ordered partition with one cell. Suppose that m = (C;, C,, ..., Cy) is an arbitrary
node of the search tree. If m is discrete, it is an end-node of the tree and we

will call it a terminal partition. If m is not discrete, let C; be the first cell

of m with the smallest size 2 2. For ve C; define mov = (Cl,...,Ci\{v},...,Cr,{V}). The
successors of T in the search tree are the partitions R(G, me v, {v}), for v e Ci’

which are equitable by the remark following Theorem 1.

Let X be the set of terminal partitions in the search tree. Given any T € X,
we can form the graph Gt by labelling the vertices of G in the order they appear in T.
, if and only if G'1 = G'2. It is
easy to show ([3] or [4]) that for any fixed € € X, Aut(G) = {glr = sg, TeX, T~ e}.

Define the equivalence relation ~ on X by T~ T

Furthermore, by comparing the adjacency matrices lexicographically we can define an

order on G(V) and define canon (G) = max{GT [t e x}.

Since |X| is a multiple of |Aut(G)| it is usually not feasible to generate the
entire search tree. This problem is largely overcome by the methods described in
[3] or [4] which use discovered automorphisms of G to eliminate sections of the search
tree from consideration. However, while these methods will reduce the size of each
equivalence class of terminal partitions to a manageable size (usually n or less),
they will not reduce the number of classes. One way of doing this is to define a
function A(G, m) for each G e G(V) and m e NI(V) such that A(Gg, 7®) = A(G,) for any
g € Sy. An example of such a function would be the number of edges of G whose end-
points are both in the same cell of w. Now suppose that T € X and that
™ > T, 2 eee > me =T is the sequence of equitable partitions from the root of the
search tree to T. Then T can be associated with the sequence
Alt) = (A(G, nl), A(G, ﬂz), ..o, MG, nk)). Clearly 7, and T, cannot be equivalent
unless A(Tl) = 5(12). Further efficiency can be achieved by ordering the vectors
A(t) lexicographically and redefining canon (G) to be max {G'|t € X, A(t) = A¥},
where A¥ = max {A(T)l T € X}. By this means we can eliminate sections of the search

tree which cannot contain either new automorphisms or canon (a).

T'n some cases, additional means of acceleration is provided by Lemma 1 (iii).
If m is an equitable partition in the search tree and n - |m| < 5, all the terminal

partitions descended from m are equivalent.

4. THE ALGORITHM

ALGORITHM 2: Compute generators for Aut(G), where G is a graph or digraph, and

optionally compute canon (G) = 8.

227

Notes: (i) Lower case Greek letters represent partitions. The variables

(1)

(2)

(3)

(&)

Cl’ C,, ... represent sets.

(ii) The minimum of an empty set is defined to be =, where = is a
number larger than any number it is compared to.

(iii) If x is a permutation (or partition), Q(x) denotes the set
consisting of the smallest element of each cycle (or cell)
of x, and ®(x) is the set of elements in trivial cycles (or
cells of size 1) of x.

(iv) lab and dg are boolean variables. lab = true if canon (G) is

required. dig = true if G is a digraph, or a graph with loops.

k <« 1, size « 1, h « 0, index « O

6 <« discrete partition of V

T AlG, (V), (V)

If dig or n - [m | = 6, g « 2, else q < 1.
If m, is discrete go to (20).

C, « first cell of m, with smallest size 2 2

e, « 0, v, € min Cl, w, vy

1

k<«k+1

me € R(G, m_q e V1> {Ve_q})

z + MG, wk)

If m is not discrete, e * 0 and Ck <« first cell of e with
smallest size 2 2.

If h = 0, go to (6).

If hx =k-1land z = 3, hx < k

If not Zab, go to (k).

If hy # k-1, go to (3).

Y+ z - ¥

If gy = 0, hy « k.

If qy > O, Vg € 2.

If hx = k or (Zab and qy = 0), go to (5).
k<q-1
Go to (9).

228

(5) 1If m is discrete, go to (7).
Vi = min Ck
If h =0, Wy € V.
If dig or n - Ime | 2 6, ¢« k+1.
Go to (2).

(6) If lab, Vg ¢ 2.
X * z
Go to (5).

(7) If h<gq, go to (15).
Compute the permutation g such that ef = Ty -

(8) (g e Aut(G) : Write g if desired, and store (&(g), Q(g)) if room is
available.)
6«6Vveg,k<«h

(9) Ifk =0, stop.
If k >h, go to (13).
h = min {k, h}

(10) If Vi = W are in the same cell of 8, index < index + 1.
Vi € min {v € Cklv > vk}
If v =®, go to (12).
If v # 2(6), go to (10).

(11) q < min {g, k+ 1}, hx < min {hx, k}
If not lab, go to (12).
hb <« min {hb, k}
If hy < k, go to (2).
hy « k, gy « O
Go to (2).

(12) size <« size x index
index « 0, k «+ k-1
Go to (9).

(13) 1f e =0, go to (1k4).
e * 1
For any stored pairs (#(g), Q(g)) such that {vl, Vys eees vk—l} c o(g),

set Cp « € n a(g).

229

(14) v +min{v e Cp|v > w}
If v ==, set k « k-1 and go to (9).
Go to (11).

(15) If h =0, go to (20).
If hx # k, go to (16).
Compute the permutation g such that ef = M-

If g € Aut(G), go to (8).

(16) If qy < O or not Zab, go to (18).
If qy > 0, go to (17).

1 6% = 6", go to (19).

-
If GB > G K, go to (18).

(17) B*ﬂk,hY“k,hb*k,ka*""’,q}’<‘0

(18) k<« qg-1
Go to (9).

(19) k « b
If k # h, go to (9).
Compute the permutation g such that Bg = My
Go to (8).

(20) h + k, hx < k,
k«k+1
If not lab, go to (9).
B«my 1o by «k+1, hb « k+1, yp 1, € ©, @y « 0
Go to (9).

Xk+1 * o, € “1Tk

Let G be a graph or a digraph and let A = Aut(G). IfWegV, Aw denotes the

point-wise stabiliser of W in A. Consider the instant when the first line of step
’(12) has been executed for a particular value of k. Define e(k'i), index(k‘l),
(k-1) (k-

size to be the current values of 6, index and size, and let %

all elements of Aut(G) found by this stage.

THEOREM 2. (1) ILet K be the value of k -1 at the start of step (20). Define
A0 = 4 anga a®) - Mg, } for 1 sk <K. Then for 0 < k < K,
E]

eV
(1) size(k) = IA(k)I
(i1) index'®) = |a(K)/1a(¥) (< g)
(111) the cells of 6'%) are the orbits of A(K)
(iv) (k) generates 2k

(v) |Z(k)| <n - 2, wvhere A% nhasg %, orbits.

k,

) be the set of

230

(2) If lab is true, GB is a canonical labelling of G when the algorithm

terminates.

Proof: Apart from minor complications, the theorem follows from the results in [3]
and [L4].]
(0)

A simple method for generating Aut(G) from 3 is given in [4], as are a few

other facts about Z(O), for example the following lemma.

LEMMA 2. Suppose that for some W ¢ V, AW has exactly one non-trivial orbit. Then
2(0) has a subset which generates a conjugate of Ay in A.]
5. EXPERIMENTAL PERFORMANCE

The algorithm has been implemented in (partly non-standard) Fortran on a CDC
Cyber TO Model T3 computer. The graph G is represented by its adjacency matrix,
stored one bit per entry. The storage of the partitions my is facilitated by the
easily verified fact that in any sequence of partitions Ty 2Ty 2 e, the total
number of different cells is less than 2n. Suppose that n bits occupy m machine
words, and that £ is the maximum value of k for which e is ever computed (obviously,
2 < n). Then at most n(2m + 8) + 2¢m words of storage are required by the program,
plus an extra n(m + 2) words if canon (G) is required, and an optional 2m(n - 1) words
to ensure that (®(g), 2(g)) can always be stored at step (8). The function A(G, m)
used in the implementation has an integer value formed from the cell-sizes of w and

from various items remaining from the computation of m by Algorithm 1.

The execution times for various common families of graphs are shown in Figure 1.
For all cases except for the random graphs, the times are for computing canon (G) as
well as Aut (G). We believe that both the execution times and their rate of increase

with n are considerably superior to that of any previously published algorithm.

Eﬁ empty graph.
RD randomly selected digraph with constant out-degree = %n.
RC randomly selected circulant graph with degree = %n.
Qp m-dimensional cube; n = om,
RG randomly selected graph with edge-density = %
(1): ecanon (G) found, (2): ecanon (G) not found.
SR25 : strongly regular graphs on 25 vertices (average time).
SR35 : strongly regular block intersection graphs of Steiner triple

systems with 15 points and 35 blocks (average time).

The dashed line marked P in Figure 1 gives the time required to perform a single

permutation of an adjacency matrix with edge-density %. Since this is an essential

231

execution
time in
seconds

—r —

10 50 100 500 1000

number of vertices

Figure 1

step in any program which computes canon (G) using an adjacency matrix representation,
it can be seen that the algorithm is close to optimal for large random graphs. If
d(v, W) can be computed in time proportional to In|, it can be shown that the
algorithm requires time of at worst order n*, provided that &(w) = 6(w) for any

partition m. However, no useful upper bound has been proved in general.

A 1listing of the program, plus suggestions for implementation, can be obtained
from the author.

6. EXAMPLE
Let G be the graph C5 x C5 labelled as shown in Figure 2.

The generators of Aut(G) found by the algorithm were

(6 21)(7 22)(8 23)(9 2L)(10 25)(11 16)(12 17)(13 18)(1Lk 19)(15 20),

(2 5)(3 4)(7 10)(8 9)(12 15)(13 14)(17 20)(18 19)(22 25)(23 24),

(2 6)(3 11)(k 16)(5 21)(8 12)(9 17)(10 22)(14 18)(15 23)(20 24) and
(1 2)(3 5)(6 7)(8 10)(11 12)(13 15)(16 17)(18 20)(21 22)(23 25),

232

of which the first generates the stabiliser of {l, 2} and the first three generate

the stabiliser of 1. Aut (G) is transitive and has order 200. The time taken was

0+16 seconds.

1 2 3 L3 5
6 7 8 9 10
11 12 13 14 15

16 17 18 19 20

21 22 23 .24 25

Figure 2

REFERENCES

[1] M. Behzad and G. Chartrand, Introduction to the theory of graphs, Allyn and
Bacon, Boston (1971).

[2] D.G. Corneil, Graph Isomorphism, Ph.D. Thesis, Univ. of Toronto (1968).

[3]1 B.D. McKay, Backtrack programming and the graph isomorphism problem, M.Sc.
Thesis, Univ. of Melbourne (1976).

[4] B.D. McKay, "Backtrack programming and isomorph rejection on ordered subsets",
to appear in Proc. 5th Australian Conf. on Combin. Math. (1976).

[51 R. Parris, The coding problem for graphs, M.Sc. Thesis, Univ. of West Indies
(1968).

[6]1 J.P. Steen, '"Principle d'un algorithme de recherche d'un isomorphisme entre
deux graphes", RIRO, R-3, 3 (1969), 51-69.

[7] H. Wielandt, Finite permutation groups, Academic Press, New York and London

(196L4).

