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Abstract

In this article we describe a method of constructing all simple triangulations of the sphere
with minimum degree 5; equivalently, 3-connected planar cubic graphs with girth 5. We
also present the results of a computer program based on this algorithm, including counts
of convex polytopes of minimum degree 5.

Introduction

A set of operations is said to generate a class of graphs from a set of starting graphs
in the class if every graph in the class can be constructed (up to isomorphism, however
defined) by a sequence of these operations from one of the starting graphs and the class
is closed under the construction operations.

There are two main reasons why methods to construct an infinite class from a finite set
of starting graphs are of interest: on one hand they provide a basis for inductive proofs,
and on the other they can be used to develop efficient algorithms for the constructive
enumeration of the structures. Classes of polyhedra were among the first graph classes
for which construction methods were published (see [7] and [11]) and also among the
first classes for which a computer was used for their enumeration (see [9]). Today, the
most extensive tables for various classes of polyhedra are given by Dillencourt in [6].
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We will restrict our attention to a subclass of all polyhedra. Isomorphisms must pre-
serve the embedding, but since we will deal only with 3-connected graphs there is a
one-to-one correspondence between embedding-preserving isomorphisms and abstract
graph isomorphisms. D. Barnette [2] and J. W. Butler [5] independently described a
method for constructing all planar cyclically 5-connected cubic graphs. In the language
of the dual graph this class is the set of all 5-connected planar triangulations. We call
such triangulations C)-5-triangulations. More generally, Ck-5-triangulations are the
k-connected planar triangulations with minimum degree 5.

A separating k-cycle in a graph embedded on the plane is a k-cycle such that both the
interior and the exterior contain one or more vertices. For a simple planar triangulation,
3-cuts correspond to separating 3-cycles, while 4-cuts correspond to separating 4-cycles.
Thus a planar triangulation with minimum degree 5 is a C3-5-triangulation always, a
C4-5-triangulation if there are no separating 3-cycles, and a C5-5-triangulation if there
are no separating 3-cycles or separating 4-cycles.

Barnette and Butler’'s method starts with the icosahedron graph and uses the opera-
tions given in the following figure. In all our figures, edges and half edges drawn are
always required to be present, while black triangles correspond to any number—zero
or nonzero—of outgoing edges. No edges are incident with the depicted vertices except
those indicated by the depicted edges or black triangles.
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Figure 1: Barnette and Butler’s operations



Theorem 1 (Barnette [2], Butler [5]) All C5-5-triangulations can be generated from
the icosahedron graph by using operations A, B and C.

Batagelj [3] has described a method for constructing all C3-5-triangulations.

He uses the operations A and B also used by Barnette and Butler and in addition a
switching operation D as depicted in Figure 2. This operation assumes that the top and
bottom vertices do not share an edge.

Figure 2: Switching operation

Theorem 2 (Batagelj [3]) All C3-5-triangulations can be generated from the icosahe-
dron graph by using operations A, B, and D.

Unfortunately Batagelj’s proof contains an error, as he acknowledges (private communi-
cation), but nevertheless his theorem is correct as we will prove. However, we will focus
on an approach that uses all four operations A-D and thereby also allows construction
of the intermediate class of C4-5-triangulations. In fact it enables a computer program
to efficiently restrict its output to C4-5-triangulations or Cbh-5-triangulations only in
addition to generating all C3-5-triangulations.

For k € {4,5} let us denote a D operation such that the central edge does not belong
to a separating cycle of length k—1 or less after the operation as a Dj, operation.

Theorem 3

(a) All C3-5-triangulations on n vertices with at least one separating 3-cycle can be
constructed from C3-5-triangulations of the same size with fewer separating 3-
cycles by applying operation D.

(b) All C4-5-triangulations on n vertices with at least one separating 4-cycle can be
constructed from C4-5-triangulations of the same size with fewer separating 4-
cycles by applying operation Dy or from CJ-5-triangulations with fewer vertices by
applying operation A.



Recall that C4-5-triangulations without separating 4-cycles are just C5-5-triangulations
and C3-5-triangulations without separating 3-cycles are C4-5-triangulations. So a com-
puter program can first list all C5-5-triangulations using Theorem 1, then construct all
additional C4-5-triangulations using Theorem 3(a), then finally all construct all addi-
tional C3-5-triangulations using Theorem 3(b). Restricting the generation to a subclass
(C4-5-triangulations or C5-5-triangulations) is simply a matter of stopping the genera-
tion process at the correct point.

We will infer from our proof that Theorem 2 is correct, and also show that the op-
erations given by Batagelj are able to generate just the C5-5-triangulations or C4-5-
triangulations.

Theorem 4

(a) The set of all C5-5-triangulations can be generated from the icosahedron graph by
operations A, B, and Ds.

(b) The set of all C4-5-triangulations can be generated from the icosahedron graph by
operations A, B, and Dy.

An importand subclass of C5-5-triangulations, with many practical applications, are
those with maximum degree 6, best known via their duals, the fullerenes. A very
efficient generator of fullerenes has been given by Brinkmann and Dress [4].

Proofs of the Theorems

For k € {3,4} an innermost separating k-cycle is a separating k-cycle such that either
the interior or exterior does not contain any edges of another separating k-cycle. It
can be easily seen that if a separating 3-cycle exists there is an innermost one and if
a separating 4-cycle exists and no separating 3-cycle exists, then there is an innermost
separating 4-cycle.

We will always draw innermost separating k-cycles in such a way that the interior does
not contain edges of another separating k-cycle.

Proof of Theorem 3: In order to prove the theorem, we consider an arbitrary graph
satisfying the conditions of the theorem and show how to apply the inverse of operation
D (in case (a)), or either Dy or A (in case (b)), to produce a parent in the specified
class.



Proof of part (a):

Let G be a (C3-5-triangulation with an innermost separating 3-cycle C. First note
that at each vertex of C' at least two edges must lead into the interior, since otherwise
the endpoint v of the single edge would be adjacent to the two remaining vertices on
C, forming three 3-cycles in the interior, which—due to C being innermost—must be
faces. But in this case v can not have additional edges, so it would have degree 3
(a contradiction). So C' includes three internal faces as in part (a) of Figure 3.

(a) (b)

Figure 3: Possibilities for a separating 3-cycle

Since the exterior of C' is not a face, each vertex has at least one edge sticking out. If
two vertices on C' had exactly one edge sticking out (w.l.o.g. the lower two in the pic-
ture), the situation of Figure 3(b) would occur—again introducing a vertex of valency 3
(a contradiction). So at least two vertices v, w on C' must have at least two edges stick-
ing out—giving a total degree of at least 6 for v,w and therefore the conditions for
applying the inverse of operation D to (v, w) without violating the minimal valency are
fulfilled. In the resulting graph G’ the separating 3-cycle C' has been destroyed, and the
new edge cannot have created a new separating 3-cycle due to the minimality of C. So
there is a smaller number of separating 3-cycles in G’ and G can be constructed from
G' by applying D.

Proof of part (b):

Suppose we have no separating 3-cycles, but at least one separating 4-cycle. Let C be
an innermost separating 4-cycle.

Again the property of being innermost implies that each vertex on an innermost sepa-
rating 4-cycle C' of a graph G has at least two edges sticking in. So the situation is as
depicted in Figure 4(a). Vertices opposite on C' cannot be adjacent, since this would
either introduce a separating 3-cycle or the exterior would not contain vertices at all
(contradicting C' being a separating 4-cycle). This fact implies that each vertex on C'
must have at least one edge sticking out. Two consecutive vertices on C' with each just
one edge sticking out can be easily seen to imply either a vertex of degree 4 in the



exterior or a separating 3-cycle—both contradictions. So we have at least two vertices
v,w on C' with at least two edges sticking outwards from each of them.
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Figure 4: Possibilities for a separating 4-cycle

First suppose v and w are neighbours on C. The vertices neigbouring the edge (v, w),
x on the outside of C' and y on the inside of C' (see Figure 4(b)), cannot be adjacent to
either of the two remaining vertices on C', since this would imply a separating 3-cycle in
the graph. Therefore, if we apply operation D to replace (v, w) by edge (x,y), the only
possibility for (z,y) to lie on a new separating 4-cycle would be that the cycle passes
through C' at v or w—again implying a separating 3-cycle in the original graph. So in
this case this D operation reduces the number of separating 4-cycles while obeying the
degree constraints.

The only remaining case is that we have two vertices opposite to each other on C' with
each having exactly one edge sticking out and the others having at least two edges
sticking out. So the situation is as in Figure 4(c).

In this case the inverse of operation A can be applied by contracting edge e with the
result a graph of smaller order. A separating 3-cycle in the new graph that wasn’t
there before would have to cross the interior of C' and can easily be seen not to exist by
checking the various possibilities how this is possible. [ |

In fact it can even be shown that in the last case the inverse of operation A need only
be applied if the endpoint of e on the cycle C' has valency 5. Otherwise we can again
apply operation D, but since it is not needed for the proof, we will not discuss it in
detail here.



Proof of Theorem 4: Theorem 1 implies that every graph that can not be reduced
by the inverse of operation A or B can be reduced by the inverse of operation C, so it
must contain the configuration on the right hand side of operation C in Figure 1. So for
part (a) it is enough to show that a graph containing this configuration can be reduced
by the inverse of operation A, B, or Ds.
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Figure 5: Replacing a C operation by B followed by D

In Figure 5 it is shown that a reverse Ds (which is easily seen not to produce separating
4-cycles, so the resulting graph is in the same class) paves the ground for the inverse of
operation B to be applied.

So every C5-5-triangulation containing this configuration can be constructed from a
smaller C5-5-triangulation by applying a B operation followed by a Ds; operation. This
proves part (a). Of course these operations could also be combined to form a single new
operation.

Part (b) now follows easily from (a) and part (b) of Theorem 3. ]

Proof of Theorem 2: Theorem 4 shows that all C4-5-triangulations (which include
the Cb5-5-triangulations) can be generated using A, B and D. The remaining C3-5-
triangulations, which are those having separating 3-cycles, can be made from the C4-5-
triangulations using only D, as is shown in Theorem 3(a). [ |

Computer implementation

The aim of a computer program for the construction of triangulations with minimum
degree 5 is to list exactly one member of every isomorphism class. Ideally, such a
program should have modest space requirements even when a vast number of graphs
are produced, and should be fast enough that generation will not be the bottleneck in
most computations where all the outputs are tested for conformance to some non-trivial
conjecture.



The first objective, and possibly also the second, is not met by the previously best
implementation for the present class of graphs, namely that of Dillencourt [6].

In order to avoid the generation of isomorphic copies, we used the canonical construction
path method described in [10]. This method considers a sequence of graphs known
to include at least one from each isomorphism class, then rejects all but one in each
class without explicit isomorphism testing. This is not the place to discuss the exact
implementation of the method, but the reader is referred to the source code which can
be obtained from http://cs.anu.edu.au/ bdm/plantri.

The following lemma is useful in speeding the overall computation, since it reduces the
number of graphs which are generated only to be be rejected.

Lemma 5 Let G be a C5-5-triangulation which can be constructed by a B operation
from the C5-5-triangulation G' which can be constructed by an A operation. Then there
is a CH-5-triangulation G" from which G can be constructed by an A operation.

The main impact of this lemma is that if we never apply a B operation immediately
after an A operation, we still get a member of each isomorphism class.

Proof: There are two requirements an edge has to fulfill in order to be a possible
center edge for an inverse 4 operation: It may not lie on a separating 5-cycle (otherwise
there would be a separating 4-cycle after the reduction), and both the opposite vertices
on the faces incident with the edge must have valency at least 6.

Clearly such an edge exists in G’, since G’ was formed using an A operation. We have
to show that such an edge exists in G after G is formed from G’ using a B operation.

First suppose that e, the edge in G’ which is the central edge created by the A operation
used to form G, is none of the 3 edges depicted vertically on the left hand side of the
B operation in Figure 1. In this case, the opposite vertices on the faces incident with e
still have degree at least 6 after the B operation, since B does not decrease any vertex
degrees. Furthermore it can be seen that any possible separating 5-cycle in G' through
e would correspond to a separating 5-cycle or even a separating 4-cycle through e in G’,
which is not possible as G’ is a C5-5-triangulation.

Suppose instead that e be one of the 3 initial edges of the B operation (those drawn
vertically in Figure 1), w.l.o.g. the central one or the upper one. Figure 6 shows the B
operation forming G from G’ and part of its neighbourhood. A square surrounding a
vertex on the right side shows that the vertex must have degree at least 6, either because
the B operation forces it or because the preceding A operation forces it. Some edges
are drawn bold or dashed for reference.

We see that the two opposite vertices on the faces incident with the bold edge have
valency at least 6, so this edge is a candidate for an inverse A operation. So suppose
this edge is on a separating 5-cycle. If this cycle uses one of the dashed edges, there would



Figure 6: Following an 4 operation by a B operation

be a separating 4-cycle in G’. If the cycle does not use any of the dashed edges then
the fact that without separating 4-cycles present every separating 5-cycle has to have
edges sticking in and out at every vertex implies that it has to pass through vertex v.
But then a shortcut through x would give a separating 4-cycle, since x can not be the
only vertex inside the separating 5-cycle. None of these possibilities can happen, since
G’ is a Ch-5-triangulation. Therefore, the bold edge is the center of a valid inverse A
operation, proving the lemma. |

Results

We now present some counts obtained by our program. Two types of equivalence classes
are recognised. “Isomorphism classes” permit orientation-reversing (reflectional) isomor-
phisms, whereas “orientation-preserving (O-P) isomorphism classes” do not.

In addition, we give some counts of convex polytopes (equivalent to 3-connected planar
graphs) with minimum degree 5. These can be generated by successively removing edges
from C3-5-triangulations without violating the degree and connectivity conditions. In
the tables, n, e and f are the numbers of vertices, edges and faces, respectively.

Some checks on the results are available. Aldred et al. [1] found the numbers of C3-5-
trianguations and C4-5-triangulations up to 25 vertices, and C5-5-triangulations up to
27 vertices. An unpublished program of ours, using quite a different method, gave the
same results up to 34 vertices.

Gao, Wanless and Wormald [8] theoretically determined the number of 5-connected
planar triangulations which are rooted at a flag. By finding the automorphism group of
each of the generated graphs, we have matched their values up to 38 vertices.



We can incidentally tidy up a loose end from [1]. The smallest nonhamiltonian cubic
simple planar graphs of girth 5 with cyclic 3-cuts have 48 vertices. There are two such
graphs formed by joining together the two fragments shown in Figure 7. FEither join
a—A, b-B, ¢—C, d-D, or join a—C, b-D, ¢-A, d-B.

Figure 7: Nonhamiltonian planar cubic graphs of girth 5 with cyclic 3-cuts

Final note

The main theorem from Batagelj’s paper [3] was independently proven in this article.
Another proof is to use the method of our Lemma 3(a) to remove all separating 3-cycles
at the beginning, after which the remainder of Batagelj’s argument applies correctly.
However, neither of these two ways to prove the theorem also gives a proof of the
additional remark at the end of Batagelj’s article that operation D, which does not
increase the number of vertices, can be replaced by two other operations which do. The
difficulty is that both the correct proofs use D in ways that it was not used by the
original incorrect proof. It would be interesting to know whether Batagelj’s remark is
nevertheless true.
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n C3-5-triangulations C4-5-triangulations C5-5-triangulations
12 1 1 1

13 0 0 0

14 1 1 1

15 1 1 1

16 3 3 3

17 4 4 4

18 12 12 12

19 23 23 23

20 73 73 71

21 192 191 187

22 651 649 627

23 2070 2054 1970

24 7290 7209 6833

25 25381 24963 23384

26 91441 89376 82625

27 329824 320133 292164

28 1204737 1160752 1045329

29 4412031 4218225 3750277

30 16248772 15414908 13532724
31 59995535 56474453 48977625
32 222231424 207586410 177919099
33 825028656 764855802 648145255
34 3069993552 2825168619 2368046117
35 11446245342 10458049611 8674199554
36 42758608761 38795658003 31854078139
37 160012226334 144203518881 117252592450
38 599822851579 537031911877 432576302286
39 2252137171764 2003618333624 1599320144703
40 8469193859271 7488436558647 5925181102878

Table 1: Isomorphism classes of triangulations with minimum degree 5
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n C3-5-triangulations C4-5-triangulations C5-5-triangulations
12 1 1 1

13 0 0 0

14 1 1 1

15 1 1 1

16 4 4 4

17 4 4 4

18 17 17 17

19 33 33 33

20 117 117 115

21 331 330 325

22 1180 1177 1144

23 3899 3874 3736

24 14052 13910 13225

25 49667 48878 45904

26 180502 176538 163456

27 654674 635653 580704

28 2398527 2311572 2083116

29 8800984 8415829 7485349

30 32447008 30785420 27033550
31 119883207 112855620 97890740
32 444226539 414972649 355702718
33 1649550311 1529287903 1296014495
34 6138874486 5649427132 4735513531
35 22890091062 20914166059 17347212127
36 85511947468 77587152924 63705666521
37 320013030067 288398164702 234500056176
38 1199620598580 1074044692104 865141832437
39 4504219709753 4007195731866 3198618016486
40 16938267502048 14976784750710 11850315368675

Table 2: O-P isomorphism classes of triangulations with minimum degree 5
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n e ‘ f all classes O-P classes
12 | 30 | 20 1 1
12 total 1 1
13 total 0 0
14 | 36 | 24 1 1
14 total 1 1
15 [ 39 | 26 1 1
15 total 1 1
16 40 26 1 1
16 41 27 1 1
16 42 28 4 3
16 total D 6
17 43 28 1 1
17 44 29 3 3
17 45 30 4 4
17 total 8 8
18 45 29 2 1
18 46 30 12 7
18 47 31 15 10
18 48 32 17 12
18 total 30 46
19 48 31 4 3
19 49 32 40 24
19 50 33 58 35
19 51 34 33 23
19 total 85 135
20 50 32 9 6
20 51 33 63 37
20 52 34 244 136
20 53 35 253 140
20 54 36 117 73
20 total 392 686
21 53 34 45 26
21 54 35 433 231
21 55 36 1135 598
21 56 37 1017 540
21 57 38 331 192
21 total 1587 2961

Table 3: Polytopes with minimum degree 5
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n e f all classes O-P classes
22 55 35 24 14
22 56 36 616 325
22 57 37 3005 1550
22 58 38 5734 2955
22 59 39 4185 2162
22 60 40 1180 651
22 total 7657 14744
23 58 37 365 196
23 59 38 5058 2591
23 60 39 18274 9270
23 61 40 26814 13615
23 62 41 16797 8549
23 63 42 3899 2070
23 total 36291 71207
24 60 38 173 96
24 61 39 5497 2810
24 62 40 39974 20206
24 63 41 104898 52823
24 64 42 125146 63095
24 65 43 67568 34124
24 66 44 14052 7290
24 total 180444 357308
25 63 40 3307 1694
25 64 41 56820 28649
25 65 42 275764 138525
25 66 43 567010 284520
25 67 44 565701 284102
25 68 45 269342 135439
25 69 46 49667 25381
25 total 898310 1787611

Table 4: Polytopes with minimum degree 5 (continued)
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n e f all classes O-P classes
26 65 41 990 518

26 66 42 54028 27247
26 67 43 501717 251687
26 68 44 1764979 884431
26 69 45 2943645 1474446
26 70 46 2524800 1265456
26 71 47 1071577 537493
26 72 48 180502 91441
26 total 4532719 9042238
27 68 43 29075 14674
27 69 44 628215 315002
27 70 45 3880657 1943074
27 71 46 10560455 5285560
27 72 47 14761187 7387374
27 73 48 11080030 5547143
27 74 49 4245308 2126514
27 75 50 654674 329824
27 total 22949165 45839601
28 70 44 7689 3917
28 71 45 522777 262170
28 72 46 6121002 3064076
28 73 47 27332100 13674643
28 74 48 60132817 30081720
28 75 49 72069944 36052160
28 76 50 48089612 24062148
28 7 o1 16782891 8400155
28 78 52 2398527 1204737
28 total 116805726 233457359
29 73 46 258217 129558
29 74 47 6784218 3395462
29 75 48 51937427 25980495
29 76 49 178953032 89502100
29 7 50 328554612 164317521
29 78 51 344079630 172082986
29 79 52 206511268 103295735
29 80 53 66186792 33113060
29 81 o4 8800984 4412031
29 total 596228948 1192066180

Table 5: Polytopes with minimum degree 5 (continued)
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n e f all classes O-P classes
30 75 47 59206 29821

30 76 48 5075116 2540458
30 7 49 72280336 36153637
30 78 50 398489524 199284603
30 79 o1 1106343494 553245996
30 80 52 1736780076 868499404
30 81 53 1612816382 806515573
30 82 54 879491006 439841613
30 83 55 260584336 130336575
30 84 56 32447008 16248772
30 total 3052696452 6104366484
31 78 49 2287156 1145111
31 79 50 72031083 36028132
31 80 51 667247944 333673154
31 81 52 2825865636 1413054897
31 82 53 6528731430 3264576190
31 83 o4 8930094363 4465329366
31 84 55 7443174579 3721853265
31 85 56 3718075225 1859260375
31 86 o7 1024362305 512281901
31 87 58 119883207 59995535
31 total 15667197926 31331752928
32 80 50 479446 240430
32 81 51 48918024 24468620
32 82 52 832689068 416399311
32 83 53 5534305556 2767321897
32 84 54 18823569658 9412162103
32 85 55 37081796296 18541480725
32 86 56 44865765346 22433623830
32 87 o7 33900894153 16951098902
32 88 58 15621888283 7811471882
32 89 59 4021998166 2011226628
32 90 60 444226539 222231424
32 total 80591725752 161176530535

Table 6: Polytopes with minimum degree 5 (continued)
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n e f all classes O-P classes
33 83 52 20295368 10152741
33 84 53 753810321 376951752
33 85 54 8298153553 4149278837
33 86 55 42221707361 21111408725
33 87 56 119140021626 59571105445
33 88 o7 203983308997 101993247858
33 89 58 221009334051 110506546904
33 90 59 152667508151 76335350545
33 91 60 65285438093 32643939837
33 92 61 15775800762 7888416533
33 93 62 1649550311 825028656
33 total 415411427833 830804928594
34 85 53 3910515 1957382

34 86 o4 469623164 234846981
34 87 55 9395720509 4698066344
34 88 56 73945022947 36973254903
34 89 57 301216777356 150610142121
34 90 58 722797642328 361402022519
34 91 59 1092105078640 546056821115
34 92 60 1070446321676 535227995999
34 93 61 680819405952 340413582639
34 94 62 271578632193 135792191605
34 95 63 61829568488 30915951931
34 96 64 6138874486 3069993552
34 total 2145396827091 4290746578254
35 88 55 180309786 90171828
35 89 56 7799068373 3899705466
35 90 o7 100504272959 50252955201
35 91 58 603515614576 301760294018
35 92 59 2033897372915 1016954066033
35 93 60 4231358798972 2115688345019
35 94 61 5712927114015 2856474952904
35 95 62 5109255971021 2554640081343
35 96 63 3010312797687 1505165810142
35 97 64 1125185937779 562599608075
35 98 65 242171956724 121088625406
35 99 66 22890091062 11446245342
35 total 11100060860777 22199999305869

Table 7: Polytopes with minimum degree 5 (continued)
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