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Abstract

We (1) determine the number of Latin rectangles with 11 columns and each
possible number of rows, including the Latin squares of order 11, (2) answer some
questions of Alter by showing that the number of reduced Latin squares of order n
is divisible by f ! where f is a particular integer close to 1

2n, (3) provide a formula
for the number of Latin squares in terms of permanents of (+1,−1)-matrices, (4)
find the extremal values for the number of 1-factorisations of k-regular bipartite
graphs on 2n vertices whenever 1 ≤ k ≤ n ≤ 11, (5) show that the proportion of
Latin squares with a non-trivial symmetry group tends quickly to zero as the order
increases.

1 Introduction

For 1 ≤ k ≤ n, a k × n Latin rectangle is a k × n array L = (`ij) with entries from

{1, 2, . . . , n} such that the entries in each row and in each column are distinct. Of course,

L is a Latin square if k = n. We say that L is reduced if the first row is (1, 2, . . . , n) and

the first column is (1, 2, . . . , k)T . If Rk,n is the number of reduced k × n Latin rectangles

then Lk,n, the total number of k × n Latin rectangles, is n! (n−1)! Rk,n/(n−k)!. We will

sometimes write Rn,n as Rn and Ln,n as Ln.

The determination of Rk,n, especially in the case k = n, has been a popular pursuit

for a long time. The number of reduced squares up to order 5 was known to Euler [5]

and Cayley [4]. McMahon [8] used a different method to find the same numbers, but

obtained the wrong value for order 5. The number of reduced squares of order 6 was

found by Frolov [6] and later by Tarry [18]. Frolov [6] also gave an incorrect count of

reduced squares of order 7. Norton [14] enumerated the Latin squares of order 7 but

incompletely; this was completed by Sade [15] and Saxena [16]. The number of reduced

squares of order 8 was found by Wells [20], of order 9 by Bammel and Rothstein [2].

The value of R10 was found first in 1990 by the amateur mathematician Eric Rogoyski

working on his home computer and in the following year by the present first author. The
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resulting joint paper [12] also presented the number of Latin rectangles with up to 10

columns. Before he died in 2002, Rogoyski worked for several years on the squares of

order 11 but the computing power available to him was inadequate, despite his approach

being sound. Given the advance in computers since then, we can now complete the

computations moderately easily.

Several explicit formulas for general n are in the literature ([17], for example). Sax-

ena [16] succeeded in using such a formula to compute R7. We will give another very

simple formula in Section 5. At the time of writing, not even the asymptotic value of

Rn is known. In the case of rectangles, the best asymptotic result is for k = o(n6/7), by

Godsil and McKay [7].

2 Terminology

It can be useful to think of a Latin square of order n as a set of n2 triples of the form

(row, column, symbol). For each Latin square there are six conjugate squares obtained

by uniformly permuting the coordinates in each of its triples. For example, the transpose

of L is obtained by swapping the row and column coordinates in each triple.

An isotopism of a Latin square L is a permutation of its rows, permutation of its

columns and permutation of its symbols. The resulting square is said to be isotopic to

L and the set of all squares isotopic to L is called an isotopy class. In the special case

when the same permutation is applied to the rows, columns and symbols we say that the

isotopism is an isomorphism. An isotopism that maps L to itself is called an autotopism

of L and any autotopism that is an isomorphism is called an automorphism. The main

class of L is the set of squares which are isotopic to some conjugate of L. Latin squares

belonging to the same main class are said to be paratopic and a map which combines

an isotopism with conjugation is called a paratopism. A paratopism which maps a Latin

square to itself is called an autoparatopism of the square.

The number of isomorphism classes, isotopy classes and main classes has been de-

termined by McKay, Meynert and Myrvold [11] for n ≤ 10. Our computation does not

allow us to extract this information for n = 11. However, we do show in Section 7 that

Ln/(6n!3) provides an increasingly accurate estimate of the number of main classes as n

grows.

3 The Algorithm

Our approach is essentially that introduced by Sade [15], adapted to the computer by

Wells [20, 21], and slightly improved by Bammel and Rothstein [2]. It was also used by

McKay and Rogoyski [12]. Given a k × n Latin rectangle L, we can define a bipartite

graph B(L) with vertices C ∪ S, where C = {c1, c2, . . . , cn} represents the columns of L

and S = {s1, s2, . . . , sn} represents the symbols. There is an edge from ci to sj if and
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only if the symbol j appears in column i of L. Thus B(L) is regular of degree k. Clearly

B(L) does not determine L in general, since it does not record the order of the symbols

in each column. For us this is an advantage, since it means there are many fewer graphs

than there are Latin rectangles.

Given a regular bipartite graph B on C ∪ S of degree k, let m(B) be its number of

1-factorizations, counted without regard to the order of the factors. Obviously m(B) is an

invariant of the isomorphism class of B. In speaking of isomorphisms and automorphisms

of such bipartite graphs, we will admit the possibilities that C and S are preserved setwise

or that they are exchanged. (More complex mixings of C and S would, in principle, be

possible in the case of disconnected graphs, but we have chosen to disallow them.) Using

this convention, let Aut(B) be the automorphism group of B and let B(k, n) be a set

consisting of one representative of the isomorphism classes of bipartite graphs B on C ∪S

of degree k.

The theoretical basis of our approach is summarized in the following theorem. Parts 1

and 3 were proved in [12] and part 2 can be proved along similar lines.

Theorem 1

1. The number of reduced k × n Latin rectangles is given by

Rk,n = 2nk!(n−k)!
∑

B∈B(k,n)

m(B)|Aut(B)|−1.

2. The number of reduced Latin squares of order n is given by

Rn = 2nk!(n−k)!
∑

B∈B(k,n)

m(B)m(B̄)|Aut(B)|−1,

where B̄ is the bipartite complement (the complement in Kn,n) of B and k is any integer

in the range 0 ≤ k ≤ n.

3. Let B ∈ B(k, n) for k ≥ 1. Let e be an arbitrary edge of B. Then

m(B) =
∑

F

m(B − F ),

where the sum is over all 1-factors F of B that include e.

For each k = 1, 2, . . . , 11 in turn we found m(B) for all B(k, 11) using Theorem 1(3)

and were then able to deduce Rk,11 from Theorem 1(1). The number of graphs in B(k, 11)

is 1, 14, 4196, 2806508 and 78322916, for k = 1, . . . , 5, respectively. For k ≥ 6 the

graphs in B(k, 11) are the bipartite complements of those in B(11 − k, 11). The main

practical difficulty was the efficient management of the fairly large amount of data. Two

implementations were written in a way that made them independent in all substantial

aspects (except for their reliance on nauty [10] to recognise the isomorphism class of some
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graphs). For example, they used different edges e in applying Theorem 1(3), so that gen-

erally different subgraphs were encountered. The execution time of each implementation

was about 2 years (corrected to 1 GHz Pentium III), but they would have completed in

under 2 months if about 3 GB memory had been available on the machines used.

We also ran the computations for n ≤ 10 and obtained the same results as reported

in [12]. We repeat those results, and include the new results, in Table 1. It is unlikely that

R12 will be computable by the same method for some time, since the number of regular

bipartite graphs of order 24 and degree 6 is more than 1011.

Note that our value of R11 agrees precisely with the numerical estimate given in [12],

where estimates of Rn were given for 11 ≤ n ≤ 15.

4 Some divisibility properties of Rn

Despite obtaining the same value repeatedly for R11 by applying Theorem 1(2) for different

k in two independent computations, we sought to check our answer further by determining

its value modulo some small prime powers. By means of the algorithms described in [11],

we computed representatives L of all the isotopy classes of Latin squares of order 11 for

which the order of the autotopism group Is(L) is divisible by 5, 7, or 11. The numbers

of such isotopy classes are listed in Table 2. Since the number of reduced squares in the

isotopy class of L is n n!/|Is(L)|, these counts imply that R11 equals 8515 modulo 21175,

in agreement with our computations.

We also have the following simple divisibility properties.

Theorem 2 For each integer n ≥ 1,

1. R2n+1 is divisible by gcd(n! (n−1)! Rn, (n+1)!).

2. R2n is divisible by n! .

Proof. Consider R2n+1 first. We define an equivalence relation on reduced Latin squares

of order 2n + 1 such that each equivalence class has size either n! (n−1)! Rn or (n+1)! .

Let A be the leading principal minor of L = (`ij) of order n.

If A is a (reduced) Latin subsquare, then the squares equivalent to L are those ob-

tainable by possibly replacing A by another reduced subsquare, permuting the n par-

tial rows (`i,n+1, `i,n+2, . . . , `i,2n+1) for 1 ≤ i ≤ n, permuting the n − 1 partial columns

(`n+1,j, `n+2,j, . . . , `2n+1,j) for 2 ≤ j ≤ n then permuting columns n + 1, n + 2, . . . , 2n + 1

to put the first row into natural order. These n! (n−1)! Rn operations are closed under

composition and give different reduced Latin squares, so each equivalence class has size

n! (n−1)! Rn.

If A is not a Latin subsquare, the squares equivalent to L are those obtainable by

applying one of the (n+1)! isomorphisms in which the underlying permutation fixes each

of the points 1, 2, . . . , n. No isomorphism of this form can be an automorphism of a

4



n k Rk,n n k Rk,n

1 1 1 9 1 1
2 1 1 2 16687

2 1 3 1034 43808
3 1 1 4 20 76245 60256

2 1 5 11268 16430 83776
3 1 6 12 95260 54043 81184

4 1 1 7 224 38296 79166 91456
2 3 8 377 59757 09642 58816
3 4 9 377 59757 09642 58816
4 4 10 1 1

5 1 1 2 1 48329
2 11 3 81549 99232
3 46 4 14717 45210 59584
4 56 5 746 98838 30762 86464
5 56 6 8 70735 40559 10037 09440

6 1 1 7 1771 44296 98305 41859 22560
2 53 8 42920 39421 59185 42730 03520
3 1064 9 75807 21483 16013 28114 89280
4 6552 10 75807 21483 16013 28114 89280
5 9408 11 1 1
6 9408 2 14 68457

7 1 1 3 79 80304 83328
2 309 4 143 96888 00784 66048
3 35792 5 75 33492 32304 79020 93312
4 1293216 6 9 62995 52373 29250 51587 78880
5 11270400 7 24012 32164 75173 51550 21735 52640
6 16942080 8 86 10820 43577 87266 78085 83437 51680
7 16942080 9 2905 99031 00338 82693 11398 90275 94240

8 1 1 10 5363 93777 32773 71298 11967 35407 71840
2 2119 11 5363 93777 32773 71298 11967 35407 71840
3 1673792
4 4209 09504
5 27206 658048
6 33 53901 89568
7 53 52814 01856
8 53 52814 01856

Table 1: Reduced Latin rectangles

5



|Is(L)| isotopy classes
5 55621
7 8065
10 359
11 24
14 160
20 102
21 45
22 12
55 6
60 3

1210 1

Table 2: Isotopy classes with certain group sizes

square in which A is not a subsquare (see [11, Theorem 1]). Hence the squares obtained

are different and the equivalence class has (n+1)! elements.

The case of R2n is the same except the second argument gives n! instead of (n+1)! .

Corollary 1 If n = 2p − 1 for some prime p, then Rn is divisible by b(n − 1)/2c! .
Otherwise, Rn is divisible by b(n + 1)/2c! .

Proof. This follows from Table 1 for n ≤ 8. For n ≥ 9, note that m | (m−2)! for m > 4

unless m is prime.

Note that, for n ≥ 12, the corollary gives the best divisor that can be inferred from

Table 1 and Theorem 2, except that R13 is divisible by 7! and not merely by 6!.

Alter [1] (see also Mullen [9]) asked whether an increasing power of two divides Rn as

n increases and whether Rn is divisible by 3 for all n ≥ 6. Theorem 2 answers both these

questions in the affirmative. Indeed it shows much more — that for any integer m > 1

the power of m dividing Rn grows at least linearly in n. That is, for each m there exists

λ = λ(m) > 0 such that Rn is divisible by mbλnc for all n.

Alter also asked for the highest power of two dividing Rn, and here we must admit

our ignorance. It seems from the evidence in Table 3 that the power grows faster than

linearly, but we were unable to prove this.

5 A formula for Rn

The literature contains quite a few exact formulas for Rn, but none of them appear very

efficient for explicit computation (though Saxena [16] managed to compute R7 using such

a formula).
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n Prime factorisation of Rn

2 1
3 1
4 22

5 23 · 7
6 26 · 3 · 72

7 210 · 3 · 5 · 1103
8 217 · 3 · 1361291
9 221 · 32 · 5231 · 3824477
10 228 · 32 · 5 · 31 · 37 · 547135293937
11 235 · 34 · 5 · 2801 · 2206499 · 62368028479

Table 3: Prime factorisations of Rn for n ≤ 11.

Perhaps the simplest formulas are those in [17], which relate Rn to the permanents of

all 0-1 matrices of order n. Here we give one that is very similar but uses ±1 matrices

instead. Unlike the inclusion-exclusion proof of [17], we give a simple analytic proof.

Theorem 3 Let p(z) be any monic polynomial of degree n and let Mn be the family of

all n× n matrices over {−1, +1}. Then

Ln = 2−n2 ∑

X∈Mn

p(PerX) π(X),

where PerX is the permanent of X and π(X) is the product of the entries of X.

Proof. If X = (xij) is an n × n matrix of indeterminates, then by definition PerX =
∑

σ∈Sn
Tσ where Sn is the symmetric group and Tσ = x1σ(1)x2σ(2) · · ·xnσ(n). If the polyno-

mial p(PerX) is expanded in terms of monomials in the xij , then the only monomial in-

volving every xij comes from products Tσ1Tσ2 · · ·Tσn where the permutations σ1, σ2, . . . , σn

are the rows of a Latin square. That is, the coefficient of the only monomial with each

xij having odd degree is the number of Latin squares. Multiplying by π(X) turns the

required monomial into the only one that has even degree in each xij . Now summing

over X ∈ Mn causes this monomial to be multiplied by |Mn| = 2n2
while all the other

monomials cancel out.

6 Extremal graphs with respect to m(B)

In our computations we learned the values of m(B) for each graph B ∈ B(k, n) for n ≤ 11.

In Table 4 we record the maximum and minimum values, and the number of graphs (in

the column headed “#”) that achieve the minimum. The maximum is achieved uniquely
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in all cases. Of course, for k ≤ 1 the result is trivial and when k ≥ n−1 the unique graph

has m(B) = Rn, so we omit these cases.

In most cases, the graphs maximizing m(B) are the same as those with the maximum

number of perfect matchings, as listed in [13]. The only exceptions are as follows, where

the notation is that used in [13]:

• For n = 7, k = 5 the graph maximising m(B) is 2J2 ⊕D3;

• For n = 9, k = 6 the graph maximising m(B) is 3J3;

• For n = 10, k = 4 the graph maximising m(B) is J4 ⊕ 3J2;

• For n = 11, k = 4 the graph maximising m(B) is J4 ⊕ J3 ⊕D4.

In the first of these cases the cited graph does, according to [13], maximise the number

of perfect matchings, but does not do so uniquely.

7 Proportion of Latin squares with symmetry

In this section we prove that the proportion of order n Latin squares which have a non-

trivial symmetry tends very quickly to zero as n →∞.

Theorem 4 The proportion of Latin squares of order n which have a non-trivial au-

toparatopy group is no more than

n−3n2/8+o(n2). (1)

Proof. Suppose that a Latin square L = (`ij) of order n has a non-trivial autoparatopy

group. Then by Lemma 4 in [11], L has a autoparatopism α which fixes (pointwise) no

more than one quarter of the triples of L.

The number of possibilities for α is less than 6n!3 = o(n3n). Given α, we can construct

each possible L row by row. Each entry is determined either by α and a previous entry,

or can be chosen in at most n ways. The latter possibility occurs once per orbit of α, and

since α fixes at most 1
4

of the triples of L, the number of orbits is at most (1
4
+ 3

4
· 1
2
)n2 = 5

8
n2.

In total we find that there are most

o(n3n)n5n2/8

Latin squares with non-trivial autoparatopy group. Our result now follows immediately

from the well known lower bound for Ln (see, for example, Thm 17.2 in [19]) that says

that

Ln ≥ (n!)2nn−n2 ≥ nn2−o(n2).
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n k min m(B) # maxm(B)
4 2 1 1 2

5 2 1 1 2
3 4 1 6

6 2 1 1 4
3 8 4 24
4 168 1 224

7 2 1 1 4
3 8 3 48
4 456 2 576
5 54528 1 55296

8 2 1 1 8
3 16 18 96
4 1120 1 13824
5 3 06432 1 4 02432
6 2518 94784 1 2583 92064

9 2 1 1 8
3 16 7 288
4 2720 1 32256
5 17 18784 1 23 12192
6 35859 25120 1 37975 08096
7 2260 68542 91456 1 2271 05054 39232

10 2 1 1 16
3 24 2 576
4 6992 1 1 29024
5 94 57472 1 2167 60320
6 4 97127 34208 1 7 10221 82400
7 92007 32190 63808 1 96252 56413 10208
8 51072 82902 02843 87328 1 51411 31576 53646 54080

11 2 1 1 16
3 32 25 1152
4 17040 1 3 31776
5 494 49728 1 15173 22240
6 65 69929 07264 1 127 45506 81600
7 36 18408 76780 25728 1 41 31218 87443 35360
8 66 74288 35273 45400 70912 1 69 04895 67877 90499 02080
9 365 09897 56490 71060 26179 78880 1 366 51069 03315 59851 95097 12896

Table 4: Minimum and Maximum values of m(B)
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As a corollary to this last result, we see that the proportion of main classes or of

isotopy classes or of isomorphism classes whose members have a non-trivial autoparatopy

group is also bounded by (1). This is because each such class has somewhere between 1

and 6n!3 = o(n3n) members.

Another corollary is that the number of isomorphism classes, isotopy classes and main

classes of Latin squares of order n will be asymptotic to Ln/n!, Ln/n!3 and Ln/(6n!3),

respectively.
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