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Subgraphs of random graphs with speci-
fied degrees

Brendan D. McKay*

Abstract. If a graph is chosen uniformly at random from all the graphs with a given
degree sequence, what can be said about its subgraphs? The same can be asked of
bipartite graphs, equivalently 0-1 matrices. These questions have been studied by many
people. In this paper we provide a partial survey of the field, with emphasis on two general
techniques: the method of switchings and the multidimensional saddle-point method.
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1. Introduction

In this paper we will be concerned with simple graphs: those having no loops or
parallel edges. Two classes of simple graphs will be considered, generic graphs,
and bipartite graphs. In the former case, there are n vertices any two of which
may be adjacent. In the latter case, there are two disjoint classes of respectively
m and n vertices, and all edges must have one vertex from each set. The phrase
“generic graph” is not standard, but we adopt it here for the sake of clarity. If we
refer merely to “graph”, we might mean either type.

The degree of a vertex is the number of edges incident to it, and the degree
sequence of a graph is a list of the degrees of the vertices. In the case of generic
graphs, we will denote the degree sequence by d = (dy,ds,...,d,). It satisfies the
conditions that 0 < d; < mn — 1 for each i, and ), d; is even. Let G(d) be the set
of all generic graphs with degree sequence d.

In the case of bipartite graphs, we will denote the degree sequence by (s,t),
where s = (s1, $2,...,5m,) are the degrees in one class and t = (t,¢2,...,t,) are
the degrees in the other class. We have the conditions 0 < s; < n for each j,
0 <ty <mforeach k, and ), s; = >, tx. Let B(s,t) be the set of all bipartite
graphs with degree sequence (s, t). Examples appear in Figure 1.

In each case, stronger conditions on the degree sequence are needed before a
graph with that degree sequence can be guaranteed to exist, but we will not require
those conditions here.
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Figure 1. Members of G((1,2,2,4,3)) and B((2,3),(1,1,1,2))

If G(d) # 0, which we will assume from now on, we can promote it to a
probability space by assigning each element the same probability. It is this space
that we refer to when we discuss a “random generic graph with degree sequence d”.
Similarly, for a “random bipartite graph with degree sequence (s,t)”.

There is a fair amount of literature on random graphs of these types, some of
which we will cite as we go. In this incomplete survey we will focus on a particular
issue: what is the probability that a specified subgraph occurs? More generally
we can ask for the distribution of the number of subgraphs of a given type. Our
asymptotics will be with respect to n — oo for generic graphs, or m,n — oo for
bipartite graphs, with other parameters such as d being functions of n, or (m,n),
unless otherwise specified.

Since we are dealing with uniform discrete distributions, our probability ques-
tions are just counting questions in disguise. If X is a generic graph, let G(d, X)
denote the set of generic graphs with degree sequence d and no edge in common
with X. Then, if  is the degree sequence of X, the probability that a random
generic graph with degree sequence d has X as a subgraph is

gld—z, X)|

Po(X) = 50, W

Similarly, if X is a bipartite graph with classes of size m and n, let B(s, t, X)) denote
the set of bipartite graphs with degree sequence (s,t) and no edge in common
with X. Then, if (x, y) is the degree sequence of X, the probability that a random
bipartite graph with degree sequence (s,t) has X as a subgraph is

|B(s—zx, t—y, X)|
|B(s, )]

PB(s,t) (X) = (2)

Largely due to the different techniques that have been fruitful, we divide the
discussion into two parts. In Section 2, we consider the case where the degrees
are low, such as when they are bounded. By complementation, this also applies
when the degrees are almost as large as possible. In Section 3, we consider the case
where the degrees are something like a constant fraction of the number of vertices.
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2. Sparse graphs

For this section we consider random generic or bipartite graphs whose degrees do
not grow very quickly with the size of the graph.

Define dyax = max{ds,...,d,}, and similarly S$max, tmax; Tmax and Ymax. For
integer k > 0, we write (a)y =ala—1)---(a —k+1).

The most celebrated technique is called the configuration model or pairing
model. The popular version of it was introduced by Bollobés [2], though the con-
cept has an older history, see [33]. We describe it for generic graphs of degree
sequence d; an obvious variant works the same for bipartite graphs.

Consider n disjoint cells vy, . .., v,, where cell v; is a set of d; points. This makes
2FE = ), d; points in total (recall that ) . d; must be even). Choose a random
pairing (partition of the points into E pairs), where each of the (2E)!/(E!2%)
possible pairings are equally likely. A pairing P is simple if each pair involves two
different cells, and no two pairs involve the same two cells. In that case we can
make a graph G(P) whose vertices are v1,...,v, and whose edges are those v;vy
such that there is a pair involving v; and vi. Clearly G(P) € G(d).

The key feature of pairings is that each graph in G(d) corresponds to exactly
11 j d;! simple pairings. Therefore, a random simple pairing yields a random graph
in G(d) (i.e., with the uniform distribution). If Py(d, X) is the probability that a
random pairing is simple and avoids the graph X, then

(2E)!

IG(d, X)| = E'2E7H]d]' Py(d, X).

The other value |G(d)| required by (1) is just the special case of X = @, where @
is the graph with no edges. So the subgraph probability problem reduces to the
sometimes easier calculation of the probabilities Py (d, X).

If dpay is at most slowly increasing, for example if dpa = O((logn)'/?), then
Py(d, X) can be estimated under mild additional conditions on d and X using
inclusion-exclusion or the method of moments, see Bollobds and McKay [3]. For
dmax = O(1) (refer to Janson [14] for necessary and sufficient conditions), P»(d, @)
is bounded above 0, which has an immediate dramatic consequence: every event
that is asymptotically unlikely or certain for random pairings is also asymptot-
ically unlikely or certain (respectively!) for random generic graphs with degree
sequence d. A great many theorems are based on this observation, and the equiv-
alent observation for bipartite graphs, see Wormald [33] and Janson et al. [15] for
summaries.

When dp,.x increases more quickly with n, the same methods do not suffice to
estimate Py(d, X). For example, the terms of the inclusion-exclusion expansion
cancel too precisely to allow estimation of their sum. An alternative method is
required, which is where the method of switchings comes in.

The basic idea behind the method of switchings is the following: given two
finite sets A, B and a relation R (in this context called a switching operation)
between them, then the ratio of the average number of elements of B related to
each element of A to the average number of elements of A related to each element



4 B. D. McKay

of B is the same as the ratio of | B| to |A|. This idea can be applied to the problem
of subgraph probabilities in two different ways. In the first approach graphs with a
given degree sequence are manipulated directly. In the second approach, switchings
are used to analyse pairings.

We first consider the direct application of switching to subgraph probabilities.
Following [20], we generalise the notation G(d, X) to G(d, X,Y), where Y is a
subgraph of X: G(d, X,Y) is the set of all generic graphs G € G(d) such that
the intersection of G and X (considered as sets of edges) is exactly Y. We can
see that G(d) = Uycx 6(d, X,Y), G(d, X) = G(d, X,0), and |G(d—z, X)| =
|G(d, X, X)|. Therefore,

(d,X,Y)
Po(a)(X ( 2 ||g d. X, X |> (3)
YCX

Let e = ab be an edge of X that is not an edge of Y. We can define a relation
between G(d, X,Y Uab) and G(d, X,Y") using the switching operation shown in
Figure 2. If the left diagram appears in a graph G € G(d, X,Y Uab), ac,bd ¢ G,
and ac,cd,bd ¢ X, then replacing it by the right diagram produces a graph in
Gd,X,)Y).

a c aO——Oc¢

b d bO——Od

Figure 2. A simple switching operation

By bounding the number of switching operations that can apply to G, and
similarly bounding the number of ways of coming back from G(d, X,Y"), we obtain
bounds on the ratio of |G(d, X,Y Uab)| to |G(d, X,Y)|. Combining all such ratios
to obtain the relative sizes of G(d, X,Y) for all Y C X, we can finally apply (3)
to get Pg(d) (X)

The following is a consequence of Theorems 2.9 and 2.10 of McKay [20]. Define
A= dmax(dmax + Zmax) and X = % Zz s

Theorem 2.1 ([20]). If AX = o(E) then
H?:l(dj)wj
2X(E)x

In the bipartite case, we can use the same switching operation provided a and ¢
are in opposite vertex classes. Define A’ = (Smax 4 tmax ) (Smax + tmax T Lmax + Ymax )

and X =3 .z = > Y-

Theorem 2.2 ([20]). If A’X = o(E) then

H;n:1<5j)xj IT—1 (tk) g
(E)x

Pga)(X) = (1+O(AX/E)).

Psto(X) = (1+0(4'X/B).
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For both Theorems 2.1 and 2.2, the exact bounds given in [20] can be useful even
when the error term is not vanishing.

Since [20], two improvements to this method have been found. As first shown
by McKay and Wormald [26] in a slightly different context, the counting is sub-
stantially easier if the more complex switching operation of Figure 3 is used.

o—o O0—20

o—o O0—20

Figure 3. A better switching operation

The other improvement, introduced by Lieby, McKay, McLeod and Wanless [18],
is a rearrangement of the calculation. Let the edges of X be ey, es,...,ex and
define X ; to be the graph with edges {e1,...,e;}, 0 < j < X. For j > 1, we have
g(d, Xj,l,Xjfl) = g(d, Xj,Xjfl) U Q(d, Xj,Xj), and so

X -1
Py (X) = G(d, X, X)| H<1+ |Q(d,Xj,Xj1|)|> |

- 16(d.0.0) G(d, X, X ;)

Jj=1

assuming all the denominators are nonzero. The ratio of |G(d, X, X ;_1)| to
|G(d, X j, X ;)| can be obtained by analysing a switching, as before. This method
avoids the problematic sum in (3), and also allows the ordering of the edges of X
to be tuned to optimise the precision of the answer.

As we mentioned, the other way to apply switchings is to use them to analyse
the pairing model. Recall that the task is to estimate the probability P»(d, X)
that a random pairing is simple and avoids X. The basic idea is to classify pairings
according to their non-simple parts (such as double pairs or pairs hitting X). Then
switching operations are used to estimate the relative sizes of these classes. This
was first done by McKay [22] for generic graphs and McKay [21] for bipartite
graphs; we summarise the main theorems below. Define E, A and A’ as before.

Theorem 2.3 ([21, 22]).

(a) Suppose dmayx > 1 and A = o(E'Y?). Then, as n — oo,

2

_ (2B) 2o di(di =) (o dildi-1)
g(d’X)l_E!QEH?_ldj!eXp(_ 1E - 16E2

Z]’kex djdk‘ 2
- =R +o(a /E)).
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(b) Suppose smax > 1 and A = o(EY/?). Then, as m,n — oo,

|B(s,t, X)| = El 21 55(85=1) Xjmy te(tk—1)
s, T, AT f !exp SE?
H]:l J Hk::l k
> st
J’CET X 257k O(j/z/E))

In the above, the notion > jrex means a sum over unordered pairs {j, k} such
that jk is an edge of X, with 7 being in the first class for the bipartite case.

The special case Py(d, D), needed for estimating |G(d)| was improved McKay
and Wormald [27] to cover generic graphs with dpyax = o(E/3), and by Greenhill,
McKay and Wang [12] to cover bipartite graphs with spaxtmax = o(E*/3). An
example of a switching operation used by these papers is shown in Figure 4, where
the shaded ovals represent the cells of the pairing.

o LoD (o=—0C—0>

o O (O=+0 0>
Figure 4. Removing a double pair from a pairing

The distribution of cycle counts in random regular graphs has been studied
quite a lot. For fixed or very slowly increasing degree, the counts of fixed length
cycles are asymptotically Poisson and independent, as shown by Bollobés [2] and
Wormald [32]. Counts of longer cycles were studied by Garmo [9]. By using
switching operations specifically tailored for the purpose, McKay, Wormald and
Wysocka [28] found the joint distribution of the counts of cycles up to length ¢
in a random regular graph of order n and degree d, whenever (d — 1)29~! = o(n).
Gao and Wormald [8] found the central part of the distribution of the number of
cycles of length g under the weaker condition d = 0(712/(39_2))7 as a special case of
a theory (developed in [7]) that allows asymptotic normality of the counts of many
small subgraphs to be inferred from certain higher moments.

Perhaps the deepest result of this nature was that of Robinson and Wormald [30,
31] who showed that almost all regular graphs of fixed degree d > 3 are hamilto-
nian. The somewhat easier problem of extending this to all d > 3 was achieved
later in [5, 17].

Counts of perfect matchings in the regular cases of G(d) and B(s,t) for small
degree were studied by Bollobas and McKay [3]. The expectation is also found in [3]
in the bipartite case for extreme degrees (m = n and degree at least n—n'~¢) using
enumeration results for Latin rectangles [10]. A similar calculation for extreme-
degree generic graphs could easily be done starting with the results in [29].

The furthest reach of the switching method to higher vertex degrees was achieved
by Krivelevich, Sudakov, Vu and Wormald [17], who determined several almost-
sure properties of random regular graphs of degree o(n).
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Ben-Shimon and Krivelevich [1] used switchings to study the number of edges
spanned by a set of vertices, or between two sets of vertices, in regular graphs of
degree o(n'/?).

3. Dense graphs

The methods of the previous section are most suitable when the graph degrees
are relatively small. The exception is that Theorems 2.1 and 2.2 can provide the
probability of very small subgraphs for higher degrees in some cases.

Define a new parameter A € [0, 1], which we call the density. For generic graphs,
A= E/(}). For bipartite graphs, A = E/(mn).

It will be worth comparing the subgraph probabilities in G(d) and B(s, t) to the
probabilities in similar binomial random graph models. Let G, ; be the probability
space of random generic graphs with n vertices and edge probability p (i.e., each
possible edge is present with independent probability p), and let B, ,, ,, be the sim-
ilar space of random bipartite graphs with vertex classes of size m and n. Intuition
suggests that subgraph probability Pg, ,(X) = XX may be a rough approximation
to those in Pg(q)(X), and similarly for P, (X) = A versus Pp(s ) (X).

The strongest results of this type were proved by Greenhill and McKay [11] and
McKay [24]. We will start with generic graphs and need the following additional
parameters, for £,m > 1.

SI'—'

i A(n—1)=2E/n

5j:dj767+)\$j (lgjgn), Xg:Zxﬁ,

n

L= Y (6 — ;)0 — xx), Com =Y 85a]".

jkeX j=1

Theorem 3.1 ([24]). Let a,b > 0 be constants such that a +b < % For some
€ > 0, suppose that d; — d and x; are uniformly O(n1/2+€) for1 < j <n, and that
X = O(n'*t2). For sufficient large n, suppose that

min{d,n —d — 1} >

3a 1og n’
Then, provided € is small enough, we have

Py (X) = A exp<(1—A)X L HNX: | (HN0F20X | (120X

An 2 \n 6\2n2 An?
L C 14+2X)C C:
B 1,1 (142X) 12 Coa +om").
A(1=X)n? An 222n2 2\2n2
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A corollary of Theorem 3.1 is that Pg(g)(X) ~ Pg, ,(X) when
X max; |d; —d| + (1 = \) X2 = o(An).

This sufficient condition holds, for example, if X = O(nl/z’zs), or if djfcz and x;
are uniformly O(n?) for 1 < j <n and X = O(n'=2%).

A special case of this result was proved by Krivelevich, Sudakov and Wor-
mald [16], who determined the probability of induced subgraphs of o(n'/?) vertices
in random regular graphs of degree (n —1)/2 under some conditions on the degree
sequence of the subgraph.

For bipartite graphs, a similar result holds. Define the following parameters for
integers h,{ > 0.

§:%Zsj:E/m:/\n, f:%Ztk:E/n:)mL
k=1
gj:Sj—g'f‘)\xj (1§]§m), nk:tk—t_—i—)\yk (1§k§n)

m n
= Z (xj — &)Yk — k) Qne=n'"""" Z@hﬂf +m! e Z’?Zyﬁ
=1 k=1

Theorem 3.2 ([11]). Let a,b > 0 be constants such that a +b < %. For some
e > 0, suppose that m, n — oo with n = o(m'*°) and m = o(n**¢), and further
that s;—35, xj, ty—t and yy are uniformly O(n'/?>+¢) for1 < j<m and1 <k <n,
and X = O(n'*2%). Assume

(1—2))2 ( 5m bn

A 2 R I .
-yt t Gm) < alogn

Then, provided € > 0 is small enough, we have

(1—)\)X(l+ 1>+(1—)\)X2+Q1’1

Pp(se)(X) =21 exp(

2\ n m 2 mn A
(I +MN)Qo2 Q21 (1+20)Qu
2\ 2)\2 2)\2
1+ X)(14+2M)Qo3 Z b
62 N1 =y 7O )

A corollary of Theorem 3.2 is that Pp(s4)(X) ~ P (X) when

m,n,A
Xmax|s; —s|+(1—AX 2 — o(Mn), and
pelsg ol (1= 0 3 = o)

_ _ 2 _

X max |ty — ] + (1 /\)gyk o(Am).

These extra requirements are met, for example, if X = O(n'/?~2%). Another
interesting case is when s; — s, z;, tx —t and y; are uniformly O(n®) and X =
O(n172s).
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In [11] and [24] we also give the probability that X is avoided, and the prob-
ability of occurrence of a specified induced subgraph. We also record the simpler
formulae that are implied if the whole graph or the subgraph is regular.

We mention a sample application of Theorem 3.2. In the binomial model B,, , »,
corresponding to square 0-1 matrices with each entry independently being 1 with
probability A, the expected permanent is exactly n! A™. It is interesting to see what
the effect of specifying s and ¢ (the row and column sums) is.

Corollary ([11]). Suppose that m = n and s,t, \ satisfy the requirements of The-
orem 3.2. Then the expected permanent of a random n x n matriz over {0,1} with
row sums 8 and column sums t is

La Do R o o),

nl A" exp< o o\22

Theorems 3.1 and 3.2 are proved by complex analysis, namely a multidimen-
sional saddle-point calculation first demonstrated by McKay and Wormald [23]
and McKay [25].

We will sketch the proof method for Theorem 3.1, based on [24]. Consider the
n-variable generating function

F(z)= [T 1+ 220,

jkeX

where X is the set of all unordered distinct pairs {j, k} that are not edges of X.
This function counts n-vertex graphs disjoint from X according to the degrees of
their vertices. Specifically,

G(d. X)| = 21" - 23" | F (=),

where the square bracket notation indicates coefficient extraction. By Cauchy’s
theorem this implies

[Lirex 1+ zjz)
G(d, X)| (2mi)™ j{ 7{ Jd1+1 o1 4z dan,

Z’IL

where each integral is along a simple closed contour enclosing the origin anticlock-
wise. Taking these contours to be circles, namely z; = r;e?% for each j, and
changing variables gives

6(d, X)| = ijex (1 +rjrk / ™ inex (1+ Au(el@t00 — 1)) i, (1)
7 (2m)™ " exp(i Zj:l d;0;) ’
where 0 = (604,...,0,) and
Ap = —2F (1< k<n). (5)

1+ rrg -
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Equation (4) is valid for any positive radii {r;}, but to facilitate estimation of the
integral we choose {r;} so that the linear terms vanish when the logarithm of the
integrand is expanded around the origin (in € space). This happens when

Y o dk=d; (1<j<n). (6)
k:jkeX
Equations 5 and 6 have a unique solution which appears to have no closed form.
Under the conditions of Theorem 3.1, the solution can be expanded to sufficient
accuracy in terms of A, d and X. This involves summation over small subgraphs
of X and the expression is rather complex.
The integrand of (4) achieves its maximum modulus 1 at = (0,0,...,0) and
6 = (m,7,...,m), which two points are equivalent under the symmetries of the
integrand. We now define two small cubes:

Ro={0:10;] <n '*51<j<n}, Re={0:0; — 7| <n /P51 <j <,

where absolute value is taken modulo 27. Within RgUR  we expand the logarithm
of the integrand up to terms of order 4 and evaluate the integral by first diago-
nalising the quadratic part (recall that we chose the radii to eliminate the linear
part) then integrating term by term. Outside Ro U R, we split the region up into
many pieces and show that in total the contribution to the integral is negligible.

In the case of empty X, Barvinok and Hartigan [13] have identified the matrix
(Ajk), with zero diagonal, as the unique symmetric matrix which satisfies (6) and
maximises the entropy function

=3 (Ajrlog Ajk + (1= Ajr) log(1 = Aji)).
ik

For the case of d = ©(n), they then show that an asymptotic approximation of
|G(d)| can be expressed as a computable function of (\;;) whenever the values
of Aj; are uniformly bounded away from 0 and 1. This allows for a much larger
variation amongst the degrees than Theorem 3.1 allows, but at the expense of
more restricted d and loss of explicitness. It is also shown in [13] under the same
conditions that for a set S of ©(n?) edge-positions, a random graph in G(d) has
close to } ;oo Ajk edges within S, with high probability.

A result similar to Theorem 3.2 for tournaments was proved by Gao, McKay
and Wang [6].

4. Concluding remarks

It is clear that many gaps still remain in our understanding of this problem. For
example, there is almost nothing known about the distribution of subgraph counts
in G(d) or B(s,t) when the degrees are ©(n). In the intermediate range of degrees
between n'/2 and n/logn, not even the precise value of |G(d)| is known, though
there is a well-tested conjecture [27]. The same is true in the bipartite case [4].
Another missing story is that of B(s,t) when m and n are very different.
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