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Abstract.

We show that the joint distribution of the degrees of a random graph can be accurately
approximated by several simpler models derived from a set of independent binomial distributions.
On the one hand we consider the distribution of degree sequences of random graphs with n

vertices and 1
2
m edges. For a wide range of values of m, this distribution is almost everywhere

in close correspondence with the conditional distribution {(X1, . . . ,Xn) | ∑
Xi = m} where

X1, . . . ,Xn are independent random variables, each having the same binomial distribution as the
degree of one vertex. We also consider random graphs with n vertices and edge probability p. For
a wide range of functions p = p(n), the distribution of the degree sequence can be approximated
by {(X1, . . . ,Xn) | ∑

Xi is even}, where X1, . . . ,Xn are independent random variables each
having the distribution Binom(n − 1, p′), where p′ is itself a random variable with a particular
truncated normal distribution. To facilitate computations, we demonstrate techniques by which
statistics in this model can be inferred from those in a simple model of independent binomial
random variables. Where they apply, the accuracy of our method is sufficient to determine
asymptotically all probabilities greater than n−k for any fixed k. In this first paper, we use the
geometric mean of the degrees as a tutorial example. In the second paper, we will determine
the asymptotic distribution of the t-th largest degree for all functions t = t(n) as n →∞.

1. Introduction.

The distribution of the degrees of the vertices in a random graph on n vertices is one of
the fundamental objects of study in random graph theory. In the commonly studied random
graph model G(n, p), where edges occur independently and each with probability p, then the
degree of a vertex is distributed binomially with mean p(n− 1). But the degrees of the vertices
are not independent of each other, and it is this which makes the joint distribution of degrees
interesting. Bollobás [2] and Palka [7] devote chapters to this topic.

Many results obtained so far on the degree sequence of a random graph concern the distri-
bution of the t’th largest degree occurring in G ∈ G(n, p). In most results so far t is bounded;
only quite weak bounds have been obtained for more general t. The main tool used for these
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results is the method of moments. There are some exceptions; for instance, Barbour et al. [1]
use a more sophisticated approach to find the distribution of the number of vertices of degree
exactly k or at least k. In this paper we give a model of the degree sequence of a random graph
in G(n, p) which gives an entirely new access to this topic and permits computations for a vastly
wider range of results, such as the distribution of the t-th largest degree for all t. As an example
of such results, to appear in a subsequent paper, consider the distribution of the median of the
degrees of the vertices in G(n, p) for constant p (0 < p < 1). In the case of odd n, we will show
that this is distributed asymptotically as a discretised normal with constant variance. That is,
the probability that it equals j is√

k

π

∫ j+1

j

e−k(x−pn−c)2 dx + o(1)

for functions k = k(p) and c = c(p) which we determine. Comparison with a sequence of
independent binomial variables is interesting: if we assume each vertex degree has its true
binomial distribution, but they are distributed independently of each other, then the median
has a similar distribution but with different variance (i.e. different k).

Let the probability p = p(n) satisfy 0 < p < 1 for all n. Define q = q(n) by q = 1 − p.
The notation ω(n) refers to any function which tends to ∞ as n →∞, possibly a different such
function at each appearance.

Our method rests on our earlier asymptotic enumeration results concerning graphs with
a given degree sequence. These are incomplete in the sense that they do not translate to all
values of p, but they do suffice for p = o(1/

√
n) and also for p approximately constant. For

this reason we present our results for what we call acceptable values of p. These are values of p

for which a certain asymptotic formula is valid. Whenever p is acceptable, our method will be
valid. Our earlier results show that p is acceptable if either ω(n) log n/n2 ≤ pq ≤ o(n−1/2), or if
pq ≥ c/ log n for some c > 2

3 . We conjecture that in fact only the condition pq = ω(n) log n/n2

is needed.
In presenting our results, we define several probability spaces of integer vectors, to be used

as stepping stones in calculating probabilities in the probability space of degree sequences. We
call these spaces models since they are all approximations, of varying degrees of accuracy, to the
space of degree sequences. Much of the present paper gives general relationships between these
models. One of the models is a set of independent identically distributed binomial variables
restricted to having even sum. Properties of such a distribution do not seem to have been
studied before, and we do not have a very general result which gives a transparent relationship
between this model and the others we consider. Thus, in order to demonstrate that our general
theory is useful, a substantial part of the present paper is devoted to developing a technique for
translating results concerning variables in a space of independent binomials to the corresponding
variables in the restricted even-sum space.

In Section 2 we define the various models under consideration, and state the result (Theo-
rem 2.5) which quantifies the relationship between our main model and the degree sequence of
a random graph in G(n, p). The proof of this depends upon information about the relationship
between our models, which we give in Section 3. Up to this point, all models are based on
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sequences with even sum. To complete any actual applications, we need to translate to a model
without the even sum restriction, which we do in Section 4. Apart from the simple example
presented in the final section, we defer detailed applications of our method to the second paper
in this series [6].

2. Description of the models

In this section we will define our models and state their elementary properties. We will also
give our main theorems.

For integer n ≥ 1, define N =
(
n
2

)
and In = {0, 1, . . . , n − 1}n. A vector d ∈ In has

components d1, . . . , dn. Define m = m(d) =
∑n

i=1 di, d̄ = m/n, λ = d̄/(n− 1) and
γ2 = (n − 1)−2

∑n
i=1(di − d̄)2. Define En = {d ∈ In |m(d) is even} and, for 0 ≤ m ≤ 2N ,

In,m = {d ∈ In |m(d) = m}.
If M is one of our models, PM(A) is the probability of event A in model M, and EM(X)

are VarM(X) are the expectation and variance of random variable X in model M.

Binomial models Bp and Bm.
The models Bp = Bp(n) and Bm = Bm(n) have domains In and In,m, respectively. For Bp, the
components di are independently distributed according to the binomial distribution
Binom(n− 1, p). Model Bm is the restriction of Bp to In,m. Note that Bm is independent of p.

Lemma 2.1.

PBp
(d) = pmq2N−m

n∏
i=1

(
n− 1

di

)

and

PBm
(d) =

(
2N
m

)−1 n∏
i=1

(
n− 1

di

)

for d ∈ In and d ∈ In,m, respectively.

Even-sum binomial models Ep and E ′p.
Models Ep = Ep(n) and E ′p = E ′p(n) both have domain En. Ep is just the restriction of Bp to
En. E ′p is constructed from Ep by weighting each d ∈ En with a weight depending only on m,
such that the value 1

2m has the distribution Binom(N, p).

Lemma 2.2. For d ∈ En,

PEp
(d) =

(
1
2 + 1

2 (q − p)2N
)−1PBp

(d)

and

PE′p(d) =
(

2N
m

)−1(
N

m/2

)
pm/2qN−m/2

n∏
i=1

(
n− 1

di

)
.

Proof. The first claim follows from the fact that EBp
(ξm) = (pξ + q)2N , and so PBp

(En) =
1
2 (EBp

(1m) + EBp
(−1)m) = 1

2 + 1
2 (q − p)2N . The second claim follows from

PEp
(m(d) = m) =

(
1
2

+ 1
2
(q − p)2N

)−1
(

2N
m

)
pmq2N−m.
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Integrated model Ip.
The model Ip = Ip(n) has domain En. To generate a variate d in this model, first choose a
value p′ from the normal distribution with mean p and variance pq/(2N), truncated to the unit
interval (0, 1). Then generate a variate with the distribution of Ep′ .

Lemma 2.3. Define

Kp(p
′) =

√
N

πpq
exp

(
− (p− p′)2N

pq

)
and

V (p) =
∫ 1

0

Kp(p
′) dp′.

Then

PIp
(d) =

2
V (p)

(
1− (q − p)2N

) n∏
i=1

(
n− 1

di

)∫ 1

0

Kp(p
′)(p′)m(1− p′)2N−m dp′

for each d ∈ En.

We will show that Ip and E ′p are almost the same. The advantage of Ip is that, despite
its apparent complexity, it allows easy transfer of computations from Ep. In most cases we will
have V (p) ∼ 1, as will be shown later.

Lemma 2.4. Let X be a random variable defined on En. Then

EIp
(X) = V (p)−1

∫ 1

0

Kp(x)EEx
(X) dx

and

VarIp
(X) = V (p)−1

∫ 1

0

Kp(x)
(
VarEx

(X) + (EEx
(X)− EIp

(X))2
)
dx.

Graph models Dp and Dm.
The models Dp = Dp(n) and Dm = Dm(n) have domains En and In,m, respectively, where m

is even. A variate in Dp is the sequence of degrees of a random graph with n vertices, generated
by selecting each edge independently with probability p. Dm is the restriction of Dp to In,m (but
is independent of p); it corresponds to the degree sequences of random graphs with n vertices
and 1

2m edges, with each such graph being equally likely.

We will call the probability p = p(n) acceptable if there is a set-valued function Rp(n) ⊆ En

and a real function δ(n) → 0 such that the following conditions are satisfied. Recall that ω(n)
can be any function with ω(n) →∞.
A0. pqN = ω(n) log n.
A1. For each d ∈ Rp(n) there is a number δd such that |δd| ≤ δ(n) and

PDp
(d) = PE′p(d) exp

(1
4
− γ2

2

4λ2(1− λ)2
+ δd

)
.

A2. In each of the models Ep and Dp, we have P
(
Rp(n)

)
= 1− n−ω(n).

Note that condition A0 is just that VarBp
(m) →∞.

At the expense of a slight abuse of notation, we will also call a function m = m(n) acceptable
if p = m/(2N) is acceptable and m is always an even integer.
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Theorem 2.5. The function p(n) is acceptable if one of the following conditions holds.
(i) ω(n) log n/n2 ≤ pq ≤ o(n−1/2);
(ii) pq ≥ c/ log n for some c > 2

3 .

Proof. For case (i) with p ≤ q, take Rp(n) to consist of all d ∈ En such that 1
2
pn ≤ d̄ ≤ 3

2
pn

and maxi di −mini di ≤ p1/2n1/2+ε (where ε > 0 is sufficiently small). The validity of condition
A1 follows from [5], while condition A2 follows by applying Lemma 3.3 (following) to d̄ and to
each di.

For case (i) with p > q, simply interchange p with q and di with n− 1− di for all i.
For case (ii), take Rp(n) to consist of all d ∈ En such that |di − np| ≤ n1/2+ε, for sufficiently

small ε > 0 and all i. Condition A1 is proved in [4], and condition A2 follows by applying
Lemma 3.3 to each di.

We conjectured in [5] that Theorem 2.5 can be considerably strengthened. A corollary of
our conjecture is the following.

Conjecture. p(n) is acceptable whenever condition A0 holds.

Our principal result is that Dm and Bm are closely related for acceptable m, as are Dp, E ′p
and Ip, for acceptable p.

Theorem 2.6. For n ≥ 1, let Xn : En → S be a random variable, where S is a linear space
with a norm.
(a) If p = p(n) is acceptable, then

‖EDp
(Xn)− EE′p(Xn)‖ = o(1)EE′p(‖Xn‖) + n−ω(n) max

d∈En

‖Xn(d)‖
and

‖EDp
(Xn)− EIp

(Xn)‖ = o(1)EIp
(‖Xn‖)

+ O
(
n−ω(n) + exp(−ε(n)(pqN)1/3)

)
max
d∈En

‖Xn(d)‖,

where ε(n) is any function with ε(n) → 0.
(b) If m = m(n) is acceptable, then

‖EDm
(Xn)− EBm

(Xn)‖ = o(1)EBm
(‖Xn‖) + n−ω(n) max

d∈In,m

‖Xn(d)‖.

Proof. The proof depends on results that we will not prove until the next section, but we give
it here for convenience.

Suppose that p = p(n) is acceptable. By conditions A1 and A2, and Corollary 3.5, Dp and
E ′p agree within ratio 1 + o(1) except on an event of probability n−ω(n) in both models. This
gives the first equation of part (a); Theorem 3.6 then gives the second equation.

Part (b) follows in the same manner.

Note that Theorem 2.6 can be applied immediately to probabilities of events, simply by
considering the indicator functions of those events. In particular, applying the theorem to the
indicator function the event Xn ≤ x directly yields estimates for the distribution of Xn.

Theorem 2.6 can be applied to estimating variances, but a different approach gives good
error terms more easily.
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Theorem 2.7. For n ≥ 1, let Xn : En → R be a random variable.
(a) If p = p(n) is acceptable, then

VarDp
(Xn) = VarE′p(Xn)

(
1 + o(1)

)
+ n−ω(n) max

d∈En

Xn(d)2

and

VarDp
(Xn) = VarIp

(Xn)
(
1 + o(1)

)
+ O

(
n−ω(n) + exp(−ε(n)(pqN)1/3)

)
max
d∈En

Xn(d)2,

where ε(n) is any function with ε(n) → 0.
(b) If m = m(n) is acceptable, then

VarDm
(Xn) = VarBm

(Xn)
(
1 + o(1)

)
+ n−ω(n) max

d∈In,m

Xn(d)2.

Proof. Let Yn be an independent copy of Xn. Then Var(Xn) = 1
2
E

(
(Xn − Yn)2

)
. Now apply

the same method as for Theorem 2.6.

In the following sections, we show how, in many cases of practical interest, statistics in E ′p
can be derived from those in Ep, which in turn can be derived from those in Bp. Meanwhile, the
following weaker but more general theorem can be useful.

Theorem 2.8. Let p = p(n) be acceptable and, for each n, let An ⊆ En. If PBp
(An) → 0,

then PDp
(An) → 0.

Proof. In view of Theorem 2.6, it suffices to prove that PBp
(An) → 0 implies that PE′p(An) → 0.

Define y = y(n) = min{
√
− log PBp

(An), (pqN)1/7} and Cn =
{
d ∈ En

∣∣ |m− 2pN | ≤
y
√

pqN
}
. In E ′p, 1

2m has the distribution Binom(N, p), so PE′p(En − Cn) → 0. Also, by

Lemmas 2.1 and 2.2, PE′p(d)/PBp
(d) ≤ (

N
m/2

)−1
p−m/2q−N+m/2 since

(
N

m/2

)2 ≤ (
2N
m

)
, and so

PE′p(d) = O(ey2/4)PBp
(d) uniformly for d ∈ Cn, by the local normal approximation to the

binomial distribution. Hence

PE′p(d) ≤ PE′p(En − Cn) + O(ey2/4)PBp
(An ∩ Cn) → 0.

If An is restricted to a limited number of In,m’s for each n, a more explicit form of Theo-
rem 2.8 can be obtained using the inequality

PE′p(An ∩ In,m) ≤
√

PBp
(An ∩ In,m) .

3. Relationship between the models.

In this section we will analyse the relationships between most of our models. Corollary 3.5
relates Dp to E ′p and Theorem 3.6 relates E ′p to Ip. Theorems 3.7 and 3.8 permit evaluation
of the difference between Ip and Ep. We leave the relationship between Ep and Bp to the next
section. We begin with a few general bounds. The first has the same proof as Lemma 7 of [9].
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Lemma 3.1. Let X0,X1, . . . be a martingale such that, for all i, |Xi+1 −Xi| ≤ c with proba-
bility at least 1 − r, and |Xi+1 −Xi| ≤ K always. Then, for any λ ≥ 0, n ≥ 0 and 0 < p < 1
we have

P
(|Xn −X0| > λ(c + Kp)n1/2 + nKp

)
< nr(1 + 1/p) + 2e−λ2/2.

Corollary 3.2. Under the conditions of Lemma 3.1, suppose K ≤ cnO(1) and
r = n−ω(n). Then

P
(|Xn −X0| > ω(n)c

√
n log n

)
= n−ω(n).

Proof. Put p = r1/2 and λ = ω(n)
√

log n.

Lemma 3.3. Let B be a random variable with distribution Binom(t, p), where p = p(t) is an
arbitrary function such that 0 < p < 1. Suppose

δ = ω(t)
( log t

tpq
+

√
log t

tpq

)
.

Then as t →∞,

P
(|B − tp| ≥ δtpq

)
= t−ω(t),

where the two functions ω are different.

Proof. By Chernoff’s bound,

P(B − pt ≥ εtpq) ≤ exp
(−tp(1 + qε) log(1 + qε)− tq(1− pε) log(1− pε)

)
. (3.1)

We now show that (3.1) is t−ω(t) for some ε ≤ δ.
For this proof, we distinguish between various functions ω by using subscripts. Suppose

firstly that pq = ω1(t) log t/t. Then we can choose ε such that ε = o(1), ε ≤ δ and ε =
ω2(t)

√
log t/(tpq). Now (3.1) becomes

exp
(− 1

2
tpqε2 + O(tpqε3)

)
= t−ω(t).

Suppose on the other hand that pq = O(log t/t). Then δ →∞, and so we are done if p ≥ 1
2
.

For p < 1
2
, we can choose ε so that ε ≤ δ, pε = o(1), and ε = ω3(t) log t/(pqt). Since ε → ∞,

(3.1) is

exp
(−tpε(log ε + o(1))

)
= t−ω(t).

By symmetry, P(B − pt ≤ pqt) = t−ω(t) as well.

Now we will show that the random variable γ2 is sharply concentrated near just that value
needed to make the argument of the exponential in condition A1 zero.

Theorem 3.4. In the model Bp, γ2 = λ(1− λ)(1 + o(1)) with probability
(i) 1− n−ω(n), for pqN = ω(n) log n;
(ii) 1−O(p2q2n3), for all p.
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Proof. Note that d = (d1, . . . , dn) ∈ In, λ and γ2 are defined at the start of Section 2. By
symmetry, we can assume that p ≤ 1

2 . Put t = n− 1. We have

λ(1− λ)− γ2

λ(1− λ)
=

Y (d)
d̄(t− d̄)

, (3.2)

where Y (d) = d̄2t− d̄−∑
i(di − d2

i ). Define the martingale X0,X1, . . . by X0 = E
(
Y (d)

)
and

Xi = E
(
Y (d)

∣∣ d1, . . . , di

)
for i ≥ 1. It is clear that |Xi+1 −Xi| ≤ 2n2 always. Suppose that

δ =
(log t)3/2

tpq
+

log t√
tpq

.

Then by Lemma 3.3 we have that |di − tp| ≤ δtpq for 1 ≤ i ≤ n with probability 1 − n−ω(n).
So assume that these inequalities hold and let ε = (di+1 − tp)/(tpq). Given d1, . . . , di, we have
Xi+1−Xi = F (D + tp + εtpq, n− i− 1)−F (D,n− i)+ εtpq(1− 1/n)+ tpq− 2εp2qt2− ε2p2q2t2,
where D =

∑i
j=1 dj and F (x, k) = tn−2E

(
(x +

∑k
j=1 Bj)2

)
with B1, . . . , Bk being independent

binomials distributed Binom(t, p). Since
∑k

j=1 Bj is distributed Binom(tk, p), we find that
F (x, k) = tn−2(x2 + 2xktp + ktpq + k2t2p2). This gives

Xi+1 −Xi = 2εpqt2(D − ipt)/n + tpq(1− t/n2) + εt2pq(q − p)/n− ε2p2q2t2.

By assumption, D = itp + O(δpqt2). Furthermore, δpqt →∞ and δ2pqt →∞ by the definition
of δ, and |ε| ≤ δ. Thus, Xi+1 −Xi = O

(
(log t)3 + (log t)2tpq

)
, and so, by Corollary 3.2,

P
(|Xi+1 −Xi| > (log n)4n1/2 + (log n)3n3/2pq

)
= n−ω(n).

Note also that X0 = O(pq). Hence, for pq > (log n)9/2/n3/2, Y (d) = o(pqn2) with probability
1−n−ω(n). For the same range of p, since nd̄ is distributed Binom(nt, p), Lemma 3.3 shows that
d̄(t− d̄) > 1

3pqn2 with probability 1− n−ω(n). This gives part (i) of the theorem for such p.
Now suppose that p ≤ n−3/2+ε for 0 < ε < 1

3 and pN →∞. It is easy to see that d̄ = o(t)
with probability 1−n−ω(n), in which case (3.2) is o(1) provided

∑
di≥2 di = o(nd̄). Let S be the

value of this sum, and let n2 be its number of terms. Suppose that K = K(n) is some positive
integer function. Then

P(di ≥ K) =
t∑

j=K

(
t

j

)
pjqt−j ≤ 2

(enp

K

)K

for sufficiently large n. For K = 2 we have more precisely P(di ≥ 2) ≤ n2p2/2, so

P(n2 ≥ K) ≤
(

n

K

)(
n2p2/2

)K ≤
(en3p2

2K

)K

.

Combining these two bounds, we have

P(S ≥ K3) ≤ 2
(enp

K

)K

+
(en3p2

2K

)K

(3.3)

for sufficiently large n.
If ω(n)n−2 log n ≤ p ≤ n−3/2+ε, then P(nd̄ ≤ 1

2pn2) = n−ω(n) by Lemma 3.3. Putting
K = (pn2)1/4, we find from (3.3) that P

(
S = o(nd̄)

)
= 1− n−ω(n) as required.

The general bound in part (ii) is obtained by noting that γ2 = λ(1−λ)
(
1 + o(1)

)
if n2 = 0.

This occurs with probability 1−O(p2n3).

8



Corollary 3.5. If m = m(n) is acceptable, then γ2 = λ(1 − λ)(1 + o(1)) with probability
1− n−ω(n) in model Dm. Similarly in model Dp if p = p(n) is acceptable.

Proof. Since the coefficient of γ2
2 in condition A1 is negative, any event which has probability

n−ω(n) in model E ′p also has probability n−ω(n) in model Dp. This gives the claim about Dp.
For Dm, note that PBp

(In,m) = n−O(1) for p = m/(2N).

Next, we show the close relationship between models Ip and E ′p.
Theorem 3.6. Suppose pqN →∞ and y = o

(
(pqN)1/6

)
. Then

PIp
(d) = PE′p(d)

(
1 + O

(1 + |y|3√
pqN

))

uniformly over all d ∈ En such that |12m− pN | ≤ y
√

pqN .

Proof. Since PIp
and PE′p are exactly proportional for each fixed m, it will suffice to find condi-

tions on m under which PIp
(In,m) ≈ PE′p(In,m), of which the exact value is

(
N

m/2

)
pm/2qN−m/2.

Since V (p) = 1+ o(e−2pqN ) (from the standard bound 1−Φ(x) = o(e−x2/2) as x →∞) and
1 + (q − p)2N = 1 + O(e−2pqN ), we have from Lemma 2.3 that

PIp
(In,m) = 2

(
2N
m

)(
1 + O(e−2pqN )

)
T (p,m),

where

T (p,m) =
∫ 1

0

Kp(p
′)(p′)m(1− p′)2N−m dp′.

Suppose that m = 2pN + 2y
√

pqN , where y = o
(
(pqN)1/6

)
. Change variable in the integral

from p′ to x, where p′ = p + (1
2y + x)

√
pq/N . Define z = 1

2y + x, x0 = −√
Np/q − 1

2y and
x1 =

√
Nq/p− 1

2y. Then

T (p,m) =
1√
π

∫ x1

x0

t(p, y, x) dx

where

t(p, y, x) = exp
(−z2 + 2(pN + y

√
pqN ) log(p + z

√
pq/N )

+ 2(qN − y
√

pqN ) log(q − z
√

pq/N )
)
.

Suppose further that x = o
(
(pqN)1/2

)
. Then, by Taylor expansion,

t(p, y, x) = pmq2N−m exp
(

1
2
y2 − 2x2 + O

( |y|3 + |x|3√
pqN

))
. (3.4)

To bound t(p, y, x) for larger x, note that the function (pN +y
√

pqN) log(p+z
√

pq/N)+(qN −
y
√

pqN) log(q − z
√

pq/N) has its maximum with respect to z when z = y. Thus, using the
calculation above,

t(p, y, x) ≤ pmq2N−m exp
(
y2 − (1

2y + x)2 + o(1)
)

(3.5)

9



for x0 ≤ x ≤ x1. Using (3.4) for |x| ≤ (pqN)1/3 and (3.5) for |x| > (pqN)1/3, we find

T (p,m) = ey2/2pmq2N−m
( 1√

2
+ O

(1 + |y|3√
pqN

))
.

By Stirling’s formula,(
2N
m

)
=

1√
2

(
N

m/2

)( m

2N

)−m/2(2N −m

N

)−(N−m/2)(
1 + O

( N

m(2N −m)

))
.

Application of the same argument that gave (3.4) now gives the theorem.

As illustrated by Lemma 2.4, calculations in Ep can be carried into Ip by means of an
integration. Usually the integrals can be approximated easily, because Kp(x) is rather sharply
concentrated near x = p. In the case where the integrands vary smoothly with x, the following
may be useful. Recall from the proof of Theorem 3.6 that V (p) ∼ 1 if pqN →∞.

Theorem 3.7. Suppose pqN → ∞. Let y = y(n) be such that y(n) → ∞ and
0 < y < min

(√
pN/q,

√
qN/p

)
. Let t ≥ 1 be a fixed integer. Define the interval I =

[p − y
√

pq/N, p + y
√

pq/N ], and the function Kp(x) as in Lemma 2.3. Let f(x) = fn(x)
be an integrable function from (0, 1) to R satisfying
(i) |f(x)| ≤ B1(n) for x ∈ (0, 1),
(ii) f(x), f ′(x), . . . , f (2t)(x) exist and are continuous for x ∈ I,
(iii) |f (2t)(x)| ≤ B2(n) for x ∈ I.
Define

f̄(p) =
∫ 1

0

Kp(x)f(x) dx.

Then

f̄(p) =
t−1∑
k=0

1
k!

f (2k)(p)
( pq

4N

)k(
1 + O(y2k−1e−y2/2)

)
+ O

(
B2(n)

( pq

4N

)t

+ B1(n)y−1e−y2/2
)
,

where the error terms are uniform over p and y for fixed t.

Proof. By Taylor’s theorem we have, for x ∈ I,

f(x) =
2t−1∑
k=0

1
k!

(x− p)kf (k)(p) + O
(
(x− p)2tB2(n)

)
,

and so

f̄(p) =
2t−1∑
k=0

1
k!

f (k)(p)
∫

I

Kp(x)(x− p)k dx

+ O
(
B2(n)

) ∫
I

Kp(x)(x− p)2t dx + O
(
B1(n)

) ∫
(0,1)−I

Kp(x) dx.

By symmetry, the odd terms in the summation are zero. To complete the proof, note that∫ ∞

−∞
Kp(x)(x− p)2k =

(2k)!
k!

( pq

4N

)k

and

10



∫ ∞

y

x2ke−x2/2 dx <
y2ke−y2/2

y − 2k/y
,

provided 2k < y2. To prove the latter, note that (y + u)2k ≤ y2k exp(2ku/y) for u, y ≥ 0 and
apply the standard inequality

∫∞
y

e−x2/2 dx < e−y2/2/y for y > 0.

A common occurence is that variables have asymptotic normality in Ep. If the mean and
variance vary smoothly with p, we are likely have normality in Ip as well, though perhaps with
a different variance. Several of our intended applications will fit the following theorem.

Theorem 3.8. Let X be a random variable defined on En. Suppose pqN →∞ and let a = a(n),
y = y(n) and ε = ε(n) be functions such that y → ∞, y < min

(√
pN/q,

√
qN/p

)
, and ε → 0.

Suppose that for |x− p| ≤ y
√

pq/N we have that X has an asymptotically normal distribution
in Ex with mean µ(x) and variance σ(x)2 in the sense that

PEx
(X ≤ t) = O(ε) +

1
σ(x)

√
2π

∫ t

−∞
exp

(
− (µ(x)− z)2

2σ(x)2
)

dz (3.6)

uniformly over x and t. Suppose further that if in addition |t− µ(x)| ≤ yσ(x) we have

t− µ(x)
σ(x)

=
t− µ(p)

σ(p)
− a

σ(p)
(x− p) + O(ε) (3.7)

uniformly over x and t. Then

PIp
(X ≤ t) = O(ε + e−y2/2) +

1
s
√

2π

∫ t

−∞
exp

(
− (µ(p)− z)2

2s2

)
dz,

uniformly over t, where

s2 = σ2(p) +
a2pq

2N
.

Proof. Write µ = µ(p) and σ = σ(p). For |x− p| ≤ y
√

pq/N , we have

PEx
(X ≤ t) = O(ε + e−y2/2) +

1
σ
√

2π

∫ t

−∞
exp

(
− (z − µ− (x− p)a)2

2σ2

)
dz (3.8)

uniformly for all t. For |t− µ(x)| ≤ yσ(x), this is immediate from (3.6) and (3.7) using the
simple fact that Φ(D + δ) = Φ(D) + O(δ) uniformly for all D, δ. For t < µ(x) − yσ(x) and
t > µ(x) − yσ(x), we have PEx

(X ≤ t) = O(ε + e−y2/2) and PEx
(X ≤ t) = 1 − O(ε + e−y2/2),

respectively. These are easily seen to hold also for the right side of (3.8).
From Lemma 2.4,

PIp
(X ≤ t) = V (p)−1

√
N

πpq

∫ 1

0

exp
(
− (p− x)2N

pq

)
PEx

(X ≤ t) dx

= O(ε + e−y2/2) +

√
N

πpq

∫ p+y
√

pq/N

p−y
√

pq/N

exp
(
− (p− x)2N

pq

)

× 1
σ
√

2π

∫ t

−∞
exp

(
− (z − µ− (x− p)a)2

2σ2

)
dz dx.

11



The contraction of the limits on x is justified since |PEx
(X ≤ t)| ≤ 1. After replacing PEx

(X ≤ t)
by its approximation from (3.8), we note that the replacement is bounded by 1 for all x. This
enables us to expand the limits of the outside integral to (−∞,∞) while absorbing the difference
in value into the error term. Interchanging the order of integration now allows the integration
over x to be carried out, with the desired result.

4. Relationship between Bp and Ep; a new model Qp.

In this section we demonstrate a strong correspondence between the models Bp and Ep for
functions which do not change too rapidly. Roughly speaking, the technique used is to cover
the space Bp with positively weighted hypercubes, such that the sum of the weights of the
hypercubes containing a point is equal to the probability of that point. This permits us to take
advantage of any equality or near equality of the values of a function on adjacent even and odd
points.

We need a preliminary result before defining the weights. For k ≤ n + 1, define

w(k, n, p) = (−1)k(q − p)n +
k−1∑
i=0

(−1)k−1−i

(
n

i

)
piqn−i.

Lemma 4.1.
(i) For 0 ≤ k ≤ n + 1,

w(k, n, p) =
n∑

i=k

(−1)k−i

(
n

i

)
piqn−i.

(ii) For 1 ≤ k ≤ n + 1, w(k − 1, n, p) + w(k, n, p) =
(

n
k−1

)
pk−1qn−k+1.

(iii) For p ≤ 1
2 and 1 ≤ k ≤ n + 1,

0 ≤ w(k, n, p) ≤ min
{(

n

k − 1

)
pk−1qn−k+1,

(
n

k

)
pkqn−k

}
.

(iv)
n∑

k=0

w(k, n, p) = 1
2 + 1

2 (q − p)n.

Proof. We note from the binomial theorem that
∑n

i=0(−1)i
(
n
i

)
piqn−i = (q−p)n and (i) follows.

Part (ii) is immediate. It is possible to see that (iii) follows from Bonferroni’s inequalities, but
it is simpler to give a direct verification. Let j denote the greatest i for which

(
n
i

)
piqn−i ≥(

n
i−1

)
pi−1qn−i+1. First take k ≤ j. Then since 0 ≤ (q − p)n ≤ qn, the definition of w(k, n, p)

is an alternating sum of nonincreasing nonnegative terms, beginning with
(

n
k−1

)
pk−1qn−k−1 ≤(

n
k

)
pkqn−k (if j ≥ 1), or is just (q − p)n < (1 − p)n (if j = 0). This gives (iii) in this case. For

k > j, (iii) follows from (i) since then
(
n
k

)
pkqn−k ≤ (

n
k−1

)
pk−1qn−k+1. Finally, (iv) follows from

(i):

n∑
k=0

w(k, n, p) =
n+1∑
k=0

w(k, n, p) =
n∑

i=0

1
2 (1 + (−1)i)

(
n

i

)
piqn−i = 1

2 + 1
2 (q − p)n.

12



We require further notation to proceed. Define w(k) = w(k, n − 1, p) for short. For x ∈ In

and S ⊆ {1, . . . , n}, define

wx,S =
∏
i∈S

w(xi)
∏
i/∈S

(
n− 1

xi

)
pxiqn−1−xi ,

define wx,S = 0 for x /∈ In and all S, and put

w = 1
2 + 1

2 (q − p)n−1.

Noting from Lemma 4.1(iv) that
∑

x∈In
wx,S = w|S|, and also Lemma 4.1(iii), provided p ≤ 1

2

we can turn In into a probability space QS,p for which

PQS,p
(x) =

wx,S

w|S| .

For p > 1
2 define QS,p = QS,q. For any function f : In → R, define

f̃(x) =
{

f(x), x ∈ En;
−f(x), otherwise,

and for x ∈ In and S ⊆ {1, . . . , n} define

Qx,S = {y ∈ In | yi = xi − 1 or xi for i ∈ S, and yi = xi otherwise} ,

and

fS,p(x) = w|S| ∑
y∈Qx,S

f(y).

Finally, ei denotes the elementary vector with 1 in the i-th component and 0 elsewhere.

Theorem 4.2. For any function f : In → R

EBp
f =

∑
x∈In, y∈Qx,S

wx,Sf(y) = EQS,p
fS,p.

Proof. We assume without loss of generality that p ≤ 1
2
.

The right-hand equality is from the definitions, so we prove the one on the left by induction
on the cardinality of S. It is immediate for S = ∅. Pick i ∈ S and write

In(i, k) = {x ∈ In |xi = k}.

Then noting that
wx,S

wx,S−{i}
=

wxi(
n−1

k

)
pkqn−k−1

,
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we have

∑
x∈In

y∈Qx,S

wx,Sf(y) =
∑
x∈In

y∈Qx,S−{i}

wx,S(f(y) + f(y − ei))

=
∑
x∈In

y∈Qx,S−{i}

(wx,S + wx+ei,S
)f(y)

=
n−1∑
k=0

w(k) + w(k + 1)(
n−1

k

)
pkqn−k−1

∑
x∈In(i,k)

y∈Qx,S−{i}

wx,S−{i}f(y)

=
n−1∑
k=0

∑
x∈In(i,k)

y∈Qx,S−{i}

wx,S−{i}f(y)

=
∑
x∈In

y∈Qx,S−{i}

wx,S−{i}f(y)

=EBp
f,

where the third-last step is by Lemma 4.1(ii), and the last is by induction on |S|.
Theorem 4.2, together with Lemma 2.2, gives the following immediately from the observa-

tion that
EBp

f + EBp
f̃ = (2EEp

f)PBp
(En).

Corollary 4.3. For any function f : In → R,

EEp
f =

EBp
f + EQS,p

f̃S,p

1 + (q − p)2N
.

Corollary 4.3 will be used to measure the difference between EEp
f and EBp

f . By letting f

be the indicator function of any subset A of En we obtain:

Corollary 4.4. If pqN →∞ then PEp
(A) ∼ 2PBp

(A) for all A ⊆ En.

Two major special cases of Corollary 4.3 will be useful: one with |S| fairly small and the
other with S = {1, . . . , n}. In this paper we develop a result more useful for the former. The
latter is deferred to the next paper.

Define an operator ∆S recursively by

∆Sf(x) =
{

f(x), xi = 0 for all i ∈ S;
∆S−{i}f(x)−∆S−{i}f(x− ei), otherwise;

where in the second case i is chosen from S with xi > 0. Note that for x ∈ In,

∆Sf(x) = w−|S|(−1)x1+···+xn f̃S,p(x). (4.1)

In the following, Ā denotes the complement of A in In.

14



Corollary 4.5. Suppose pqN →∞, S = S(n) ⊆ {1, . . . , n}, and A = A(n) ⊆ In. Let f be any
real-valued function defined on In. Then

EEp
f = EBp

f + O
(
(q − p)2N + 2|S|PBp

(Ā)
)
sup
In

|f |+ O(sup
x∈A

|∆Sf(x)|)

uniformly over S.

Proof. Without loss of generality take p ≤ 1
2 . Since w ≥ 1

2 , we have PQS,p
(x) = O(PBp

(x)),
and so the corollary follows from Corollary 4.3 and (4.1).

If f has mixed partial derivatives which are reasonably well behaved, then the following
result can be used in conjunction with Corollary 4.5. For simplicity of notation we now let
S = {1, . . . , k}, although this is no significant restriction. Let f12···k denote the mixed partial
derivative of f with respect to the variables x1, . . . , xk. Also, let c(Qx,S) denote the convex hull
of Qx,S. For the following lemma we need to restrict A to the subset of In in which the first k

coordinates are strictly positive, which we denote by I+k
n .

Lemma 4.6. Let A ⊆ I+k
n . If f12···k is defined on Â =

⋃
x∈A

c(Qx,{1,2,...,k}), then

sup
x∈A

|∆Sf(x)| ≤ sup
x∈Â

|f12···k(x)|

provided the supremum on the right exists.

Proof. Recall that a function g(x) is absolutely continuous if for all ε > 0 there exists δ > 0 such
that

∑j
i=1 |g(βi)−g(αi)| < ε for any j and any disjoint collection {αi, βi} of segments with total

length less than δ. By the Mean Value Theorem, if g′ bounded on a closed interval [a, b] then g

is absolutely continuous on [a, b]. Then by Theorem 7.20 of Rudin [8], g(b)− g(a) =
∫ b

a
g′(x) dx.

In the context of this lemma, we can take n to be fixed. Let C denote the supremum of
|f12···k| on Â. From the above remark, for y ∈ Â with yk an integer at least 1,

∆{k}f12···k−1(y) =
∫ yk

yk−1

f12···k(y1, . . . , yk−1, xk, yk+1, . . . , yn) dxk. (4.2)

Here we use the assumption that A ⊆ I+k
n .

Since |f12···k| ≤ C on Â, we now observe by the Mean Value Theorem that the absolute
value of the difference function on the left side of (4.2) is bounded above by C on that subset
of Â in which yk ≥ 1. Moreover this function is the partial derivative of ∆{k}f12···k−1(y) with
respect to yk−1. Hence we can iterate this integration process to obtain, for y ∈ A,

∆{1}∆{2} · · ·∆{k}f(y) ≤ C,

from which the lemma follows.

As a simple example of the use of Corollary 4.5, we can we put S = {1} and let A denote
the set of x ∈ In for which |f(x)− f(x− e1)| ≤ C|f(x)|, to obtain the following.

Corollary 4.7. If pqN →∞ and PBp
(|f(x)− f(x− e1)| > C supIn

|f |) = o(1) for all C > 0
then EEp

f = EBp
f + o(supIn

|f |).
In the second paper of this series, we will illustrate the use of Corollary 4.3 with |S| large.

For this paper, however, we will be content with fixed |S|.
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5. A simple example: geometric mean degree

In this section we will illustrate the use of our techniques by investigating the geometric
mean of the degrees in model Dp. Let d̄ = (d1 + · · ·+ dn)/n and d̂ = d

1/n
1 · · · d1/n

n . For suitable
p, our methods could be used to estimate the distribution of d̂ to high accuracy. Specifically,
we could asymptotically determine the probability in Dp of any event of the form A ≤ d̂ ≤ B so
long as that probability is greater than n−k for some fixed k. However, in this paper we will be
content with some simpler computations.

We know that d̂ ≤ d̄ and can reasonably expect both to be close to the mean of d̄, namely
p(n− 1), so we will estimate the mean and variance of the two random variables

G1 = d̄− d̂,

and

G2 = p(n− 1)− d̂.

We will assume that pn = ω(n) log n. This is a natural boundary for the problem because
d̂ = 0 almost surely if pn = o(log n), for this is where the random graph almost surely contains
an isolated vertex (see Bollobás [2]).

Theorem 5.1. Let p = p(n) be acceptable and pn = ω(n) log n. Then

EDp
(G1) = EDp

(G2) ∼ 1
2
q,

VarDp
(G1) ∼ 1

2q2/n + 1
4q/n2,

and

VarDp
(G2) ∼ 2pq.

Proof. We begin by applying the model Bp. For r ≥ 0, define

f1(r) =
n−1∑
k=0

(
n− 1

k

)
pkqn−k−1kr/n

and

f2(r) =
n−1∑
k=0

(
n− 1

k

)
pkqn−k−1k1+r/n.

The functions f1(r) and f2(r) can be estimated by expanding kr/n in a Taylor series about
k = pn then performing the sum. For example, we have

EBp
(G1) = EBp

(G2) = p(n− 1)− f1(1)
n

= 1
2
q + O

( q

pn

)
.

Similarly, EBp
(d̂2) = f1(2)

n, EBp
(d̂d̄) = f1(1)

n−1f2(1) and EBp
(d̄2) = p(n− 1)(pn− p + q/n), so

we obtain

VarBp
(G1) ∼ 1

2q2/n + 1
4q/n2

and
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VarBp
(G2) ∼ pq.

Transferral of these results to Ep is easy using Corollary 4.5. In the notation used there,
define A = A(n) = {d | di ≥ 1

2np for all i}. Then PBp
(Ā) = n−ω(n) by Lemma 3.3. Using

Lemma 4.6, we find for k = |S| ≥ 3 that ∆S d̂ = o(n−k+1), ∆S d̄ = 0, ∆S d̂2 = o(n−k+2),
∆S d̄d̂ = o(n−k+2), and ∆S d̄2 = 0. Corollary 4.5 immediately implies that the expectation and
variance of G1 and G2 agree in Bp and Ep to within a factor of 1 + O(n−t) for any t.

From Ep, we can use Theorem 3.7 to take the results to the model Ip then apply Theorem 2.6
to obtain the claimed result. The only significant difference between Ep and Ip is for VarDp

(G2).
In the notation of Lemma 2.4, we have VarEx

(G2) ∼ x(1−x) and EEx
(G2)−EIp

(G2) ∼ (x−p)n.
Now Theorem 3.7 gives the required answer.

Theorem 5.2. Let p = p(n) be acceptable, with pn = ω(n) log n and qn → ∞. Then d̂ is
asymptotically normal in Dp with mean p(n− 1

2 )− 1
2 + O(q/pn) and variance 2pq.

Proof. Take t > 0, write f for d̂, and let χ(t) denote the indicator variable of the event {f ≥ t}.
Take S = {1}. For integers z2, . . . , zn, let

T = Tz2,...,zn
= {x |xi = zi, 2 ≤ i ≤ n}.

There is at most one x ∈ T for which

χ(t)(x) 6= χ(t)(x− e1).

Thus, for x ∈ T , f̃S,p(x) is either 0 or w, the latter only for at most one value of x1. Hence

EQS,p
(f̃S,p(x) |x ∈ T ) ≤ w maxx∈T PQS,p

(x)

PQS,p
(T )

=
w maxx∈T wx,S∑

x∈T wx,S

=
w maxn−1

xi=0 w(xi)∑n−1
xi=0 w(xi)

= max
k=0,...,n−1

w(k)

by Lemma 4.1(iv)

≤ max
k=0,...,n−1

(
n− 1

k

)
pkqn−1−k

by Lemma 4.1(ii)

= o(1)

since pqn →∞. Thus EQS,p
f̃S,p = o(1), and so by Corollary 4.3, EEp

χ(t) = EBp
χ(t)+ o(1); that

is, PEp
(d̂ ≤ t) = PBp

(d̂ ≤ t) + o(1).
In Bp, log d̂ is the sum of n iid random variables. Application of the Berry-Essèen inequality

[3, p. 542] shows that log d̂ is asymptotically normal and gives a uniform error estimate. This
implies that d̂ is asymptotically log-normal, but since the variance of log d̂ tends to 0 [in fact it
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is O
(
1/(pn2)

)
] this is the same as being asymptotically normal. From the calculations above,

we have that the mean of d̂ in Bx is f1(1)n and the variance is x(1 − x)(1 + o(1)) for x close
to p, where f1 is as defined above but for x instead of p. Now it is routine to check that (3.7)
holds for a = n and any y → ∞ sufficiently slowly, with the uniformity of the approximation
following from the continuity of the error term. Consequently, Theorem 3.8 gives that

PIp
(d̂ ≤ t) = o(1) +

1
2
√

πpq

∫ t

−∞
exp

(
− (z − µ(d̂))2

4pq

)
dz

for all t. The mean µ(d̂) in any of Bp, Ep or Dp can be used in this formula, as they are all the
same to this accuracy.
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