
Asymptotic enumeration of graphs with a
given upper bound on the maximum degree

Brendan D. McKay†

Department of Computer Science
Australian National University
Canberra ACT 0200 Australia

bdm@cs.anu.edu.au

Ian M. Wanless
Christ Church
Oxford OX1 1DP UK

wanless@maths.ox.ac.uk

Nicholas C. Wormald†

Department of Mathematics and Statistics
University of Melbourne
Parkville Vic 3052 Australia

nick@ms.unimelb.edu.au

Consider the class of graphs on n vertices which have maximum degree at most 1
2n−

1 + τ , where τ ≥ −n1/2+ε for sufficiently small ε > 0. We find an asymptotic formula for
the number of such graphs and show that their number of edges has a normal distribution
whose parameters we determine. We also show that expectations of random variables
on the degree sequences of such graphs can often be estimated using a model based on
truncated binomial distributions.

1. Introduction

Given the variety of solved problems on graph enumeration and random graphs, the
following question is quite natural: what is the probability that a random graph on n

vertices has maximum vertex degree at most 1
2n? It is hard to trace the origin of this

question, but Bollobás [6] attributes it to Sós about 1982. Alon [2] showed that the
probability is at most 2−n/2, whilst the lower bound 2−n comes easily from the FKG
inequality. Riordan and Selby [12] found the exact value of the limit of the nth root of the
probability, numerically .6102304 · · · (and the corresponding limit for edge probabilities
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other than 1
2 ). The question is of course equivalent to enumerating n-vertex graphs with

all vertex degrees at most 1
2n.

In this paper we solve a generalization of this question. Namely, we find an asymptotic
formula for the number G≤k(n) of graphs on n vertices with maximum degree ∆ ≤ k,
where k = 1

2n − 1 + 1
2Tn1/2 with T = O(nε) for some fixed ε > 0. We will meet several

situations where ε needs to be sufficiently small, so without further ado we assume that ε

is small enough to meet all those needs simultaneously. We also note at this time that all
asymptotics in this paper are for n →∞ and that constants implicit in our order notation
are independent of any other variable.

Apart from the approximations mentioned above, the only prior work we are aware
of is that of Bollobás [5], who determined P(∆ ≤ k) in the case where it is constant or
decreasing very slowly.

Our general approach is to use the asymptotic formula of McKay and Wormald [9]
for the number of graphs with given degrees. In principle we just need to sum the formula
over all relevant degree sequences, but such a multidimensional sum has considerable dif-
ficulties. Instead, we use the asymptotic formula to estimate the difference between the
degree sequence of a random graph with degrees restricted to ∆ ≤ k, and a sequence of
independent binomial variables subject to the same upper bound and restricted to even
sum. The same approach was used by McKay and Wormald [11] to derive properties of
the degree sequence of a random graph.

Theorem 1. Let k = 1
2n − 1 + 1

2Tn1/2 be an integer, where T = O(nε) for a fixed,

sufficiently small ε > 0. Then the number of graphs on n vertices with maximum degree

at most k is asymptotic to

2(n
2)
(
Φ(L0 + T )e−L2

0/2
)n exp

(− 1
12

L0(6L3
0 + 11L2

0T − 15L0 + 4L0T
2 − 11T − T 3)

)
√

2L2
0 + L0T + 1

,

where L0 = L0(T ) is the unique solution of φ(L0 + T ) = L0Φ(L0 + T ). Here Φ, defined in

terms of the normal density, is

Φ(x) =
∫ x

−∞
φ(t) dt where φ(x) =

e−x2/2

√
2π

.

Note that the restriction of k to integer is essential, as the value is sensitive to changes
in k as small as n−1/2.

If T →∞ sufficiently quickly, most of the formula in Theorem 1 becomes insignificant.
The leading asymptotic term was established by Bollobás [5] in the case that the result
is not a vanishingly small proportion of the total number of graphs on n vertices, that
is, e−T 2/2/T = O(n−1). Our result shows the following simplification under the weaker
condition e−T 2

= o(n−1), which permits T to grow more slowly.
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Corollary 1. Let T →∞ in Theorem 1 (without the O(nε) restriction). Then the number

of graphs on n vertices with maximum degree at most k is

2(n
2)Φ(T )n exp

(
O(ne−T 2

) + o(1)
)
.

We will also give a simpler version of Theorem 1 in the case where the degree bound
is quite close to 1

2 . Define ` = L0(0), the unique solution of the equation φ(`) = `Φ(`).
The approximate value of ` is 0.506054469.

Corollary 2. Let k = 1
2n− 1 + τ be an integer, where τ = o(n1/4). Then the number of

graphs on n vertices with maximum degree at most k is

2(n
2)ζ0ζ

n
1 exp

(
ζ2τn1/2 + ζ3τ

2 + ζ4τ
3n−1/2 + o(1)

)
,

where

ζ0 =
exp( 5

4
`2 − 1

2
`4)√

1 + 2`2
= 1.083878 · · · ζ3 = − 4`2

1 + 2`2
= −0.677408 · · ·

ζ1 =
e−`2

`
√

2π
= 0.610230 · · · ζ4 =

4`(6`2 − 1)
3(1 + 2`2)3

= 0.104696 · · ·

ζ2 = 2` = 1.012108 · · ·
Moreover, many properties of the degree sequence of random graphs subject to a

bound on the maximum degree can be computed using our method. Theorem 2 shows how
the number of edges is distributed and Theorem 3 shows that, for a fixed number of edges,
the asymptotic distribution is very close to one based on independent truncated binomials.

Theorem 2. Let k, T , ε and L0 be as in Theorem 1. In a random graph on n vertices with

maximum degree at most k, the number of edges is distributed asymptotically normally

with expectation 1
2

(
n
2

)− 1
2
L0n

3/2 + O(n1/2+5ε) and variance 1
8
n2 1−2L2

0−L0T

1+2L2
0+L0T

(
1 + o(1)

)
.

The error term in the expectation is insignificant compared with the standard devia-
tion, which we shall show to be at least the order of n1−ε. Our proof of Theorem 2 will
give the asymptotic probability that the number of edges has a given value, over a wide
range of values.

Define Bin≤k(n−1, p) to be the truncated binomial distribution: Bin(n−1, p) trun-
cated at k. Then Rp = Rp(n, k) is the probability space of vectors of n independent
components each distributed as Bin≤k(n−1, p). A property of the binomial distribution
is that the slice of Rp containing vectors with a given sum is independent of p, provided
0 < p < 1. For this reason the choice of p = 1

2 in the next theorem is unimportant.
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Theorem 3. Let k, T , ε and L0 be as in Theorem 1. Suppose m = m(n) satisfies

n2/(2 log n) ≤ m ≤ b1
2knc. Let F be a nonnegative function defined on integer sequences.

Define E1(F, n) to be the expectation of F over degree sequences of random graphs with

n vertices, m edges, and maximum degree at most k. Similarly, define E2(F, n) to be the

expectation of F over R1/2, conditional on having sum 2m. Then E1(F, n) ∼ E2(F, n) as

n →∞ provided that the maximum value of F over a sequence of n integers with sum 2m

and maximum at most k is O(nt)E2(F, n) for some fixed t.

By taking F to be the characteristic function of an event, Theorem 3 can also be used
to estimate probabilities which are not too small.

2. Outline and definitions.

Our approach to estimating G≤k(n) is to first find the contribution due to graphs with
exactly m edges and then sum over the m which contribute significantly. Let p = m/N

where N =
(
n
2

)
is the total number of possible edges. Let Dp be the space of degree

sequences of random graphs on n vertices where each edge occurs independently with
probability p, and let Bp be the space of n-tuples of independent random variables each
with distribution Bin(n−1, p). In [9], the probability of any sequence d = (d1, d2, . . . , dn)
in the graph model Dp is shown to be asymptotic to the probability of d in the independent
binomial model Bp multiplied by some function g = g(d, p) which, for present purposes, we
can regard as a function of n and k only. This converts the problem to one of estimating
the probability that d in Bp satisfies

∑
di = 2m, conditional upon di ≤ k for each i, and

then summing over m. We find this conditional probability in Bp by relating it to the
same probability in Br, where r is chosen so as to maximise the conditional probability
of
∑

di = 2m. Standard central limit methods then give us the answer. Incidentally,
consideration of Br also assists us in establishing the above claim about the behaviour
of g.

We next introduce some more notation which will be used throughout, and make some
of the statements in the above outline more precise.

For a graph G with vertices v1, v2, . . . , vn let d(G) =
(
deg(v1), deg(v2), . . . , deg(vn)

)
denote the degree sequence of G. For any degree sequence d = (d1, d2, . . . , dn) we use
∆ = ∆(d), δ = δ(d) and d̄ = d̄(d) to be respectively the maximum, minimum and mean
of the dj . The degree sequence d (or, more generally, any sequence d = d(n) of sequences
indexed by n) is concentrated if |dj − d̄| ≤ n1/2+ε∗ uniformly over j as n → ∞, where
ε∗ > 0 is a constant implicit in [9]. We can assume that ε < ε∗/4. In particular, this allows
us to apply the results of Theorem 3 of [9] to our concentrated sequences.

Define V to be the set of all sequences of n integers from the range [0, k], where
k = 1

2
n − 1 + 1

2
Tn1/2. For any integer m, let Vm be the subset of V containing just

those sequences with sum 2m and let V con
m be the set of concentrated sequences in Vm.
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In addition to the probability spaces Dp and Bp defined above, recall the definition of
Rp from Section 1. The restriction of Rp to V con

m is independent of p, and we denote it
by Rcon

m .
The function g mentioned above is expressed in [9] as a function of γ2 and p, where γ2

is a scaled second moment of the components of the sequence d (defined precisely in (18)
below). However, that formula is only valid for concentrated sequences. So we first show
(in Section 4) that we can restrict attention to concentrated sequences, with negligible
asymptotic loss. Then for each m we estimate the contribution of V con

m to G≤k(n) as
follows. Calculate a number (probability) r = r(m) such that 2m is the expected sum of
the components of Rr, in order that PRr

(V con
m ) is not too small. Thus, when we show that

γ2 is sharply concentrated in Rr, it will follow that it is also sharply concentrated in Rcon
m .

In this way, we can find PDp
(V con

m ) in terms of PRr
(V con

m ) which is simpler to determine.
Since each graph with m edges has probability pm(1− p)N−m in Dp, the contribution

to G≤k(n) of V con
m is simply PDp

(V con
m )p−m(1−p)m−N . Our analysis will show that we can

restrict m to a certain interval I1 of length O(n1+ε) in which PDp
(V con

m )p−m(1 − p)m−N

is asymptotically normally distributed with respect to m. Summing over m then gives
Theorem 1.

In the next section some binomial approximations are given. In Section 4 we show that
the vast bulk of the graphs we are counting have roughly the same number of edges and all
degrees reasonably close to k. In Section 5 we study the integral equation which is central
to our formulation of Theorem 1. The key parts of the analysis required for the main
theorem are performed in Section 6. Section 7 is concerned with the random variable γ2.
We find its expected value and prove the sharp concentration result mentioned in the plan
above. In Section 8 we will bring the various parts together to complete the proof of our
main theorems.

3. Binomial Approximations

We need approximations to several functions involving binomial coefficients. These
approximations will make use of the following Euler-Maclaurin summation.

Lemma 1. Let f(x) be a real-valued function such that f (4)(x) is absolutely integrable

on (0,∞). Then for m ≥ 1 we have

m∑
j=0

f(j) =
∫ m

0

f(x) dx +
1
2
(
f(0) + f(m)

)− 1
12
(
f ′(0)− f ′(m)

)
+R(m),

where

|R(m)| ≤ 1
384

∫ m

0

|f (4)(x)| dx.

Proof: See [14; page 36], for example. �
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For the following we assume that T and L are functions of n satisfying T = O(nε)
and L = O(nε), with ε > 0 as in Section 1. Define:

r = 1
2 − 1

2Ln−1/2

k = 1
2n− 1 + 1

2Tn1/2

B =
(

n− 1
k

)

S = S(r, k) =
k∑

i=0

(
n− 1

i

)
ri(1− r)n−1−i. (1)

Our first two results are straightforward. By Stirling’s formula we get

B = 2nφ(T )
( 1√

n
+

T

n
− T 4 − 6T 2 + 3

12n3/2
+ O(n−3/2−ε)

)
, (2)

while from 26.5.1 of [1] we deduce that

dS

dr
= −(n− 1)

(
n− 2

k

)
rk(1− r)n−2−k. (3)

Next we put Lemma 1 to work.

Lemma 2.

S(r, k) =
(
Φ(L + T ) +

3L3 + T 3 + L2T − LT 2 − 3L + 5T

12n
φ(L + T )

)(
1 + O(n−1−ε)

)
.

Proof: Write S = s0

∑k
j=0(sj/s0), where sj =

(
n−1
k−j

)
rk−j(1 − r)n−1−k+j . By (2) and

Taylor’s Theorem, we have

s0 =
( 2

n1/2
+

2(L + T )
n

− 3L4 + T 4 + 4L3T − 12L2 − 6T 2 − 12LT + 3
6n3/2

+ O(n−3/2−ε)
)
φ(L + T ). (4)

To estimate the term sj/s0 we write

sj

s0
=

j−1∏
i=0

si+1

si
, and find

si+1

si
=

(n + T
√

n− 2i− 2)(
√

n + L)
(n− T

√
n + 2i + 2)(

√
n− L)

.

Define C = bn1/2+2εc. Then, for 0 ≤ j ≤ C, expanding log(si+1/si) by Taylor’s
Theorem and summing gives

sj

s0
= eA(j)

(
1 + B(j) + ∆(j)

)
, (5)

where
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A(j) =
2(L + T )j

n1/2
− 2j(j + 1)

n
,

B(j) =
2j(L3 + T 3)

3n3/2
− 2T 2j2

n2
+

8Tj3

3n5/2
− 4j4

3n3
,

and

∆(j) = O(n−1−ε) uniformly over j.

It is easy to see that sj is decreasing for j ≥ C, and furthermore that sC/s0 = O(e−nε

).
Also, B(j) → 0 as n →∞ for 0 ≤ j ≤ C. Therefore we have

k∑
j=0

sj

s0
=
(
1 + O(n−1−ε)

) C∑
j=0

f(j), (6)

where f(j) = eA(j)
(
1 + B(j)

)
.

For 0 ≤ x ≤ C, |f (4)(x)| = f(x)O(n−1−ε). This means that we can apply Lemma 1
to obtain

C∑
j=0

f(j) =

((
1
2n1/2 − 1

2 (L + T ) +
3L4 + T 4 + 4L3T + 6T 2 + 12LT + 3

24n1/2

)Φ(L + T )
φ(L + T )

+
3L3 + T 3 + L2T − LT 2 − 3L + 5T

24n1/2

)(
1 + O(n−1−ε)

)
. (7)

Note that Φ(x)/φ(x) → ∞ as x → ∞ and Φ(x)/φ(x) = O(x−1) as x → −∞. Thus
we can take the product of (4) and (7) to obtain the desired result. �

We note one spin-off of the above proof for later use. By (6) and (7) we have

B

S
rk(1− r)n−1−k =

s0

S
= O(n−1/2+ε). (8)

Finally, we require a good bound on the lower tail of a truncated binomial distribution.

Lemma 3. Let p satisfy 0 < p < 1. Let X be a random variable whose distribution is

Bin≤K(n−1, p). Suppose 0 ≤ t ≤ K. Then

P(X ≤ K − t) ≤ K(K − 1) · · · (K − t + 1) (1− p)t

(n−K)(n−K + 1) · · · (n−K + t− 1) pt
.

Proof: Let b(i) =
(
n−1

i

)
pi(1 − p)n−i−1 denote the probabilty of the value i in the non-

truncated binomial distribution. Then P(X ≤ K − t) =
∑K−t

i=0 b(i)/
∑K

i=0 b(i)
≤ ∑K

i=t b(i−t)/
∑K

i=t b(i) ≤ maxK
i=t

(
b(i−t)/b(i)

)
. It is easy to see that the maximum

occurs for i = K and equals the value given in the lemma. �
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4. Initial results on degree sequences

Our first task will be to show that we can safely restrict our attention to graphs with
concentrated degree sequences and many edges. We do this by first showing that a tight
lower bound on the number of edges implies one on the minimum degree good enough to
imply concentration, and then that almost all graphs have that required number of edges.

Lemma 4. Suppose that 2m ≥ N−O(n3/2+ε). Let G be chosen uniformly at random from

the graphs on n vertices with m edges and maximum degree ∆ ≤ k. Then the probability

that G has minimum degree δ ≤ ∆− n1/2+2ε is O(e−nε

) as n →∞.

Proof: Let v be a given vertex in G and Zv the set of vertices at distance at least 2 from v.
We use a switching argument to bound the probability that deg(v) is low. The switching
operation is to replace some edge (a, b) with an edge (a, v) or vice versa. Switchings must
not create multiple edges or increase ∆ beyond k. For any d < ∆, define s+ to be the
number of switchings which increase deg(v) from d to d + 1 and s− to be the number of
switchings which decrease deg(v) from d + 1 to d. The ratio of these counts is the same as
the ratio of the numbers of graphs in each of the two classes.

We get a lower bound for s+ by noting that there are at least 2m−deg(v)(∆+1) ways
to choose the edge (a, b) with a ∈ Zv. For the reverse operation, there are n− 1− deg(a)
possible moves involving each edge (a, v), except that some of these choices may breach our
bound on ∆. Hence s− ≤ (d + 1)(n− 1− ā) where ā is the mean degree of the neighbours
of v. The least possible value of ā occurs when all vertices in Zv have degree ∆, which
tells us that (d + 1)ā ≥ 2m− (n− d− 2)∆− (d + 1). Hence

s+

s−
≥ 2m− d(∆ + 1)

(d + 1)n− 2m + (n− d− 2)∆
. (9)

Note that the bound in (9) increases with m but has an inverse dependence on ∆ and d.
Also, from the definition of k and the assumption we are making about m in this lemma,
∆ ≤ 1

2n + c1n
1/2+ε and 2m ≥ ∆n− c2n

3/2+ε for positive constants c1 and c2. So then, for
all d < ∆− (2c2 + 1)n1/2+ε, (9) implies that

s+

s−
≥ 1 + 4n−1/2+ε + O(n−1+2ε). (10)

Let pv be the probability that deg(v) ≤ ∆− n1/2+2ε. As a consequence of (10),

pv ≤ exp
(
−(n1/2+2ε −O(n1/2+ε)

)
log
(
1 + 4n−1/2+ε + O(n−1+2ε)

))
= O(e−n2ε

).

The probability that δ ≤ ∆− n1/2+2ε is trivially bounded above by npv. �
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Lemma 5. With probability 1 − O(e−nε

) as n → ∞, graphs with maximum degree at

most k have m > 1
2N − n3/2+2ε edges and concentrated degree sequences.

Proof: Recall that N =
(
n
2

)
. The number of graphs with m = 1

2
(N − αn) edges is

(
N

m

)
≤ 2N exp

(−α2 + O(log n)
)
.

Hence, even without a restriction on the maximum degree, the number of graphs with
m < 1

2
N − n3/2+2ε is

2NO
(
exp(−n1+4ε)

)
. (11)

The bound in (11) can be compared to a simple lower bound on G≤k(n). The degree of
a given vertex in a random graph on n vertices with edge probability 1

2 has distribution
Bin(n−1, 1

2). If the vertex degrees were independent then the probability of having ∆ ≤
k = 1

2n− 1 + 1
2Tn1/2 would be S( 1

2 , k)n, where S is given by Lemma 2. The degrees are
not independent, but since the events deg(vi) ≤ k for i = 1, . . . , n are positively correlated,
Theorem 3.3 of Alon and Spencer [3, p.78] shows that 2NS( 1

2 , k)n is valid as a lower bound.
For T = O(nε), Lemma 2 tells us that 2NS( 1

2 , k)n is at least 2N exp
(−O(n1+2ε)

)
, which

is much larger than (11). It follows that m ≥ 1
2N − n3/2+2ε with probability at least

1−O(e−nε

).
Uniformly over m ≥ N −n3/2+2ε, Lemma 4 tells us that almost all graphs with ∆ ≤ k

have concentrated degree sequences. �
We also need a similar lemma about Rr.

Lemma 6. For 1
2
−O(n−1/2+ε) ≤ r < 1, sequences in Rr are concentrated with probability

1−O(e−n3ε

) as n →∞.

Proof: Each component di of Rr is distributed as Bin≤k(n−1, r). Applying Lemma 3
with p = r, K = k and t = bn1/2+2εc, we find that P(di ≤ k − n1/2+2ε) = O(e−n4ε/2).
Therefore, with probability at least 1 − O(e−n3ε

), all the components of Rr lie in the
interval [k − n1/2+2ε, k], which implies that they are concentrated. �

5. The integral equation.

In this section we look at a particular integral equation which will crop up later in our
calculations. We perform the analysis separately here to avoid disrupting the flow of our
argument in the next section. The pivotal equation has already appeared in the statement
of Theorem 1. It is

L =
φ(L + T )
Φ(L + T )

. (12)
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For a given T , we use L0 to denote any value of L which satisfies (12). We aim to justify
the assertion in Theorem 1 that L0 is uniquely determined as a function of T , as well as
studying other properties of L0.

For a given T , any solution of (12) corresponds to a point (L0 + T, L0) on the graph
of the function φ(x)/Φ(x). This point is also on the line of unit gradient through the
point (T, 0). Since φ(x)/Φ(x) is continuous, positive and strictly decreasing, such a point
of intersection exists and is unique. Hence L0 is determined uniquely. It follows from the
corresponding properties of φ(x)/Φ(x) that L0 is a positive, continuous, strictly decreasing
function of T .

Suppose T → −∞. Then by inspection, (12) has no solution unless L+T → −∞ too.
In that case,

1
L0

=
Φ(L0 + T )
φ(L0 + T )

= −(L0 + T )−1 + (L0 + T )−3 − 3(L0 + T )−5 + O
(
(L0 + T )−7

)
,

and hence
L0 = −1

2T − T−1 + 6T−3 + O(T−5). (13)

Two other cases of interest are T = 0, in which case L0(0) = 0.506054468989 · · · , and
T →∞, in which case L0 ∼ φ(T ).

A quantity which will be of particular importance is ξ = 2L2
0+L0T . By differentiating

(12) we find that
dL0

dT
=

−ξ

1 + ξ
. (14)

Now L0 decreases with T and ξ is clearly positive for T > 0, so by continuity ξ is always
positive. We next show that it is below 1. If ξ = 1 then L0 + T = −L0 + L−1

0 so consider
h = φ(−L0 + L−1

0 )/L0 − Φ(−L0 + L−1
0 ). It is elementary to establish that

dh

dL0
=

φ(L0 − L−1
0 )

L4
0

> 0 and lim
L0→∞

h(L0) = 0.

We infer that there is no (finite) T for which ξ = 1. In the case when T → −∞ we observe
that ξ = 1−4T−2 +O(T−4) by (13); whereas ξ = O(Te−T 2/2) when T →∞. We conclude
that

0 < ξ < 1 and (1− ξ)−1 = O(1 + T 2). (15)

It then follows from (14) that d
dT

(2L0 + T ) = (1− ξ)/(1 + ξ) > 0. Coupled with (13) we
find

(2L0 + T )−1 = O(1 + |T |). (16)

In Figure 1, we show the values of L0 and ξ as functions of T . We also show the
functions F and H, where the formula for G≤k(n) in Theorem 1 is 2(n

2)F (T )nH(T ).
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Figure 1. Some important functions of T .

6. The main calculation

As described earlier, we will count the required graphs according to m, the number
of edges they contain. Let p = m/N and let d = (d1, d2, . . . , dn) be a concentrated degree
sequence such that

∑
di = 2m. Define I0 to be the interval [ 12N − n3/2+2ε, 1

2kn]. Our
primary tool is the following result from [9, Thm 3], which relates the graph model to
the independent binomials model for a range of m that includes I0. Uniformly over all d,
provided n →∞,

PDp
(d) ∼ g(γ2)PBp

(d) (17)

where

g(x) =
√

2 exp
(

1
4
− x2

4p2(1− p)2

)
,

11



and

γ2 =
1

(n− 1)2

n∑
i=1

(di − d̄)2 =
1

(n− 1)2
( n∑

i=1

d2
i − nd̄2

)
. (18)

Note that for r ∈ (0, 1)

PBp
(V con

m ) =
∑

d∈V con
m

PBp
(d) =

∑
d∈V con

m

PRr
(d)

PBp
(d)

PRr
(d)

=
∑

d∈V con
m

PRr
(d)

p2m(1− p)2N−2m
∏

i

(
n−1
di

)
r2m(1− r)2N−2m

∏
i

(
n−1
di

)PBr
(V )

=
∑

d∈V con
m

PRr
(d)

p2m(1− p)2N−2m

r2m(1− r)2N−2m

(
S(r, k)

)n

= PRr
(V con

m )
p2m(1− p)2N−2m

r2m(1− r)2N−2m

(
S(r, k)

)n
, (19)

where S(r, k) is defined in (1). Summing (17) over V con
m , for m ∈ I0, gives

PD1/2(V
con
m ) =

( 1
2)N

pm(1− p)N−m
PDp

(V con
m ) = 2−Np−m(1− p)m−N

∑
d∈V con

m

PDp
(d)

∼ 2−Np−m(1− p)m−N
∑

d∈V con
m

g(γ2)PBp
(d)

= 2−Np−m(1− p)m−NPBp
(V con

m )ERcon
m

(
g(γ2)

)
= Q(r, m)PRr

(V con
m )ERcon

m

(
g(γ2)

)
, (20)

where Q(r, m) = 2−N
(
S(r, k)

)n
pm(1 − p)N−mr−2m(1 − r)2m−2N , and we used (19) and

the fact that the space Bp restricted to V con
m is just Rcon

m , independently of p.
Given m, we would like to choose r such that V con

m is not too small an event in Rr.
Note that we can maximise PRr

(V con
m ) by minimising Q(r, m), since (19) implies that

PRr
(V con

m )Q(r, m) is independent of r.
Now using (3),

1
Q

∂Q

∂r
=

2rN − 2m

r(1− r)
+

n

S

dS

dr
=

2rN − 2m

r(1− r)
− n

S
(n− 1− k)Brk(1− r)n−2−k, (21)

where B =
(
n−1

k

)
. Any local extrema of Q as a function of r satisfy m = α(r), where

α(r) = rN − Bn(n− Tn1/2)
4S(r, k)

rn/2+Tn1/2/2(1− r)n/2−Tn1/2/2. (22)

What we actually want is to have m determine r, so we now prove that α−1 exists in the
region of interest, which is the rectangle R where 0 ≤ m ≤ 1

2kn and 0 < r < 1.

12



Differentiating the logarithm of rN − (22) using m = α(r) gives

α′(r) = N − (Nr −m)(n2 − 4m + Tn3/2 − 2nr)
2nr(1− r)

. (23)

After simplification, the equation α′(r) = 0 turns out to be linear in r. Its solution β(m)
is given by

β(m) =
m(n2 − 4m + Tn3/2)

nN(n + Tn1/2 − 2)−m(4N − 2n)
.

Note that the denominator of this expression is monotonically decreasing in m and at
m = 1

2
kn it equals 1

2
n2(n + Tn1/2 − 2) which is positive. Hence β(m) is differentiable

inside R. Consider a point P of intersection when the two curves m = α(r) and r = β(m)
are plotted with r on the vertical axis. We have α′(r) = 0, and β′(m) is finite at P , so
the α(r) curve crosses from below to above the β(m) curve at P (as we increase r). In
R both curves are continuous so it follows that they intersect at most once, that is α(r)
has at most one stationary point. It is not hard to show that α(r) → 0+ as r → 0+ and
α(r) → 1

2
kn

− as r → 1−. Hence α(r) is monotone, possibly with a single stationary point.
We conclude that α−1 is defined on (0, 1

2kn). We can now deduce by taking r → 1− and
r → 0+ in (21) that, for a fixed m ∈ (0, 1

2
kn), Q achieves its minimum Q̂ = Q̂(m) at some

r ∈ (0, 1) and this must be when r = α−1(m). Henceforth we will choose r to take this
value (it will become apparent from our subsequent calculations that we need not worry
about the endpoints of the interval [0, 1

2kn]). This leads by (22) to

Q̂ = 2−N

(
Bn(n− Tn1/2)

4(rN −m)

)n

pm(1− p)N−mrn2/2+Tn3/2/2−2m(1− r)−n2/2−Tn3/2/2+2m+n.

(24)
We have now finished optimising over r and turn our attention to locating the peak of
Q̂(m), with a view to summing over m. Differentiating (24) gives

dQ̂

dm
=

∂Q̂

∂m
+

∂Q̂

∂r

dr

dm
+

1
N

∂Q̂

∂p

= Q̂ log
(1− r)2p
r2(1− p)

, (25)

after simplification using (23). We deduce that local extrema of Q̂ (with m regarded as a
continuous variable) can only occur when m = µ(r), where

µ(r) =
Nr2

r2 + (1− r)2
= rN − r(1− r)(1− 2r)N

r2 + (1− r)2
. (26)

We would like to find the values of m for which Q̂ can be large. By Lemma 5, we
only have to consider m = α(r) ∈ I0. By (22), α(r) < rN and so this restricts r to

13



r ≥ 1
2 − O(n−1/2+2ε). To locate the local extrema of Q̂ we now turn our attention to

solutions of α(r) = µ(r) in the range I0. From α(r) < rN and (26) it is immediate that
r < 1

2 for such extrema. Moreover, α(r) = rN −O(n−1/2+ε)N by (8) and (22). It follows
that α(r) = µ(r) ∈ I0 can only hold when r = 1

2 −O(n−1/2+ε), and must hold at least once
in this interval, by continuity. Let m0 = α(r) = µ(r) be a simultaneous solution of (22)
and (26), in the required interval I0. Later we will show that m0 is uniquely determined
and is a local maximum of Q̂. In the meantime all statements we make about m0 will hold
for every local extremum in I0. Hence we write r = 1

2 − 1
2Ln−1/2 and m = 1

2N − 1
2κn3/2

where
L = κ

(
1 + O(n−1+2ε)

)
= O(nε) (27)

at the extremum, by (26). The last part of (27) comes from the estimate of r above. For
this r we note that

rn/2+Tn1/2/2(1− r)n/2−Tn1/2/2 = 2−n exp
(−LT − 1

2
L2 + O(n−1+4ε)

)
. (28)

Next, we equate (26) with (22) and substitute (2), (28) and Lemma 2, resulting in an
equation F (L, T ) = 0 which determines the local extrema of Q̂. Taking the series of F as
n →∞ we find that

φ(L + T )
L

− Φ(L + T ) = o(n−1/2).

The similarity of this equation to (12) motivates us to expand F (L, T ) around L = L0,
where L0 is the solution of (12). (The existence and uniqueness of L0 was shown in Sec-
tion 5.) On performing this expansion, we find that for L corresponding to an extremum,

L

L0
= 1− 6L4

0 + 5L3
0T − L2

0T
2 − 27L2

0 + L0T
3 + 5L0T + T 4 + 6T 2 − 9 + O(n−ε)

12(2L2
0 + L0T + 1)n

. (29)

Recall that 1 < 2L2
0 + L0T + 1 < 2 as a result of (15). Next we take the logarithm of (24)

with the value of B from (2) and eliminate m = µ(r) and p = m/N using (26), to get

log(Q̂) = −(L2 + LT + 1
2T 2 + log(L

√
2π)
)
n + 5

2L2 − 1
2T 2 − 1

3L3T − 1
12T 4 + 3

4 + O(n−ε).

Then, by (29) we find the locally extremal value of Q̂ is

Q̂(m0) =

(
φ(L0 + T )e−L2

0/2

L0

)n

exp
(

1
12

L0(6L3
0+L2

0T−L0T
2+3L0+T 3+5T )+o(1)

)
. (30)

Next we need to study behaviour near a local extremum m0. For all m within
o(n3/2−5ε) of m0, equations (23) and (15) tell us that

dr

dm
=
(
( 1
2 − L2

0 − 1
2L0T )n2

)−1 (
1 + o(1)

)
= O(n−2+2ε) (31)

14



and, by (27),
L = κ

(
1 + o(1)

)
= O(nε). (32)

Let I1 = [m0−n1+ε, m0+n1+ε]. We show later that values of m outside the interval I1

may be ignored for asymptotic purposes. For m inside I1, differentiating (25) with respect
to m gives,

d2 log Q̂

dm2
=

1
p(1− p)N

− 2
r(1− r)

dr

dm
= −8

1 + 2L2
0 + L0T

1− 2L2
0 − L0T

n−2
(
1 + o(1)

)
(33)

by (31). Note that the second derivative (33) is negative in I1 by (15), showing that every
local extremum m0 must be a maximum. The absence of minima in fact shows that m0 is
a unique maximum, which we can assume from now on. We can locate its value by (26)
and (29):

m0 = 1
2N − 1

2L0n
3/2 + O(n1/2+5ε). (34)

As an aside, this tells us that the boundary 1
2
kn is far away from m0. Indeed, by (16)

1
2kn−m0 = 1

4n3/2(2L0 + T ) + O(n) > n3/2−2εeO(1) for sufficiently small ε.
Next we find that d3

dm3 log Q̂ = O(n−7/2+7ε) and hence from Taylor’s theorem

log Q̂ = log Q̂(m0) +
1
2

d2 log Q̂

dm2
(m−m0)2 + O(n−7/2+7ε)(m−m0)3 (35)

for all m ∈ I1. Summing the contributions over I1 using (33) gives

∑
m∈I1

Q̂ = Q̂(m0)

√
(1− 2L2

0 − L0T )π
1 + 2L2

0 + L0T

(
1
2n + o(n)

)
. (36)

For m 6∈ I1, the contributions can be ignored. This is because for m = m0±n1+ε, (33) and
(35) show that Q̂(m) = Q̂(m0)O(e−nε

). Together with the knowledge that Q̂ is continuous
with only one stationary point in I0, we infer that

Q̂(m) = Q̂(m0)O(e−nε

) (37)

for all m ∈ I0 \ I1.
The above calculation tells us how to sum (20) over m, assuming that the factors

other than Q in the right hand side are basically independent of m when m ∈ I1, and are
not too much larger when m ∈ I0 \ I1. We show in the next section that this is the case.

7. Estimating γ2 and PRr
(V con

m ).

Our next task is to estimate the effect of γ2 in equation (17). We will show that γ2 is
sharply concentrated in Rr for the important values of r and determine its expected value.
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Throughout this section we consider r for which m = α(r) ∈ I1 as defined in the
previous section, and recall the definition of L there. Hence by (32), r = 1

2 −O(n−1/2+ε)
and moreover by (31), r = α−1(m0) + O(n−1+3ε) and so by (29) and (15),

L = L0 + O(n−1/2+3ε). (38)

From the definition (18),

(n−1)2

n E(γ2) = E(d2
1)−E(d̄2) = E(d2

1)−E(d̄)2 − Var(d̄) = E(d2
1)−E(d1)2 − 1

nVar(d1),

from which we deduce that
ERr

(γ2) = 1
n−1Var(d1). (39)

Now d1 has distribution Bin≤k(n−1, r). The probability at k− j is proportional to sj/s0,
defined in the proof of Lemma 2, which is exp

(−2j2n−1 + 2(L + T )jn−1/2 + O(n−1/2+2ε)
)

for j ≤ n1/2+2ε, as in (5). We also showed there that P(k − d1 > n1/2+2ε) = O(e−nε

).
Therefore, using Lemma 1, ERr

(γ2) = 1
4
σ2 + O(n−1/2+2ε), where σ2 is the variance of the

standard normal distribution truncated at L + T . This gives

ERr
(γ2) =

1
4
−
(

φ(L + T )
2Φ(L + T )

)2

− (L + T )φ(L + T )
4Φ(L + T )

+ O(n−1/2+2ε).

From (38), we have φ(L + T ) = φ(L0 + T )(1 + O(n−1/2+4ε)) and Φ(L + T ) = Φ(L0 + T ) +
O(n−1/2+3ε)φ(L0 + T ). Recalling that φ(L0 + T ) = L0Φ(L0 + T ), we finally obtain

ERr
(γ2) = 1

4 − 1
2L2

0 − 1
4L0T + O(n−1/2+6ε). (40)

We borrow our next lemma directly from [11], and use it to prove that γ2 is sharply
concentrated around the value calculated in (40).

Lemma 7. Let X0, X1, . . . be a martingale and β ≥ 0, 0 < ρ < 1. If for all i we have

|Xi −Xi−1| ≤ c with probability at least 1− υ, and |Xi −Xi−1| ≤ K always, then

P
(|Xn −X0| > β(c + Kρ)n1/2 + nKρ

)
< nυ(1 + 1/ρ) + 2e−β2/2.

Lemma 8. For 1
2 −O(n−1/2+ε) ≤ r < 1, PRr

(|γ2 −ERr
(γ2)| > n−1/3

)
= O(e−nε

).

Proof: Define νi = 1
2
n−di and νmax = maxi

{|νi|
}
. Let Y =

∑
(di−d̄)2 =

∑
d2

i− 1
n
(
∑

di)2

and Xj = E(Y | d1, d2, . . . , dj) so that {X0, X1, . . . , Xn} is a martingale. Trivially, 0 ≤
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Y ≤ n3 so certainly |Xj − Xj−1| ≤ n3 for each j. However, we know from the proof of
Lemma 6 that νmax = O(n1/2+2ε) with probability 1−O(e−n3ε

). Now,

Xj −Xj−1 = n−1
n

(
d2

j −E(d2
j )
)− 2

n

(
dj −E(dj)

)(∑
i<j

di +
∑
i>j

E(di)
)

= n−1
n

(
nE(νj)− nνj + O(ν2

max)
)− 2n−1

n

(
E(νj)− νj

)(
1
2
n−O(νmax)

)
= O(n1+4ε),

with probability 1−O(e−n3ε

). We now invoke Lemma 7 with K = n3, c = n1+5ε, υ = e−n2ε

,
β = nε and ρ = 1/n3. It asserts that

P
(|Xn −X0| > 2n3/2+6ε

)
= O(n4e−n2ε

).

Since γ2 = Xn/(n− 1)2 and E(γ2) = X0/(n− 1)2 the result follows. �

Looking back at (20), we see that only PRr
(V con

m ) remains to be calculated.

Lemma 9. Under the conditions stated at the beginning of this section,

PRr
(V con

m ) ∼ (π( 1
2
− L2

0 − 1
2
L0T )

)−1/2
n−1.

Proof: Recall that Rr is a probability space consisting of sequences Z1, Z2, . . . , Zn of
independent copies of a random variable Z. Here Z has distribution Bin≤k(n−1, r). We
are interested in Yn =

∑
i Zi. Recall that the probability r has been chosen to maximise

PRr
(Yn = 2m).
We first note that Yn obeys a central limit theorem – it is asymptotically normally

distributed. This follows easily from the Berry-Esséen theorem, noting that the Zi are
i.i.d. random variables (although they do depend on n, which is why a simpler central
limit theorem is inadequate).

Next we wish to use a result of Bender [4] which infers a local limit theorem from the
corresponding central limit theorem. To do this we need to show that G, the probability
generating function for Yn, is log-concave. (A generating function is said to be log-concave
if its sequence of coefficients is.) It is a classical result that the sequence of binomial
coefficients is log-concave, and hence so is such a sequence when truncated and scaled.
That is, the probability generating function for Z is log-concave. But this means G is
also log-concave, since any product of log-concave polynomials is also log-concave. See, for
example, Proposition 2 of [13]. Hence we can apply Lemma 2 of [4], to deduce that

lim
n→∞ σPRr

(Yn = 2m) =
1√
2π
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where σ is the standard deviation of Yn. Now since variance is additive,

σ2 = nVar(Z) = n(n− 1)ERr
(γ2) ∼ ( 1

4 − 1
2L2

0 − 1
4L0T )n2

by (40). By (15) and since T = O(nε),

( 1
4 − 1

2L2
0 − 1

4L0T )−1 = O(n2ε)

and so the estimate in the lemma is valid for PRr
(Yn = 2m). Also recall from Lemma 6

that a sequence in Rr is concentrated with probability 1 − O(e−n3ε

). Therefore, since
PRr

(Yn = 2m) is only polynomially small, non-concentrated sequences are also rare in
Rcon

m . Hence, PRr
(Vm) ∼ PRr

(V con
m ) and we obtain the required estimate. �

Equation (20) actually needs the expectation of g(γ2), but this is now easily inferred.

Lemma 10. Under the conditions stated at the beginning of this section,

ERcon
m

(g(γ2)) ∼ g( 1
4 − 1

2L2
0 − 1

4L0T ).

Proof: Our statements here will be true for sufficiently large n. From the definition of
g(x), we see that |g′(x)| < 4 for all x, since p ∼ 1

2
. Also, Lemma 9 and (15) imply that

PRr
(V con

m ) > 1
2n . Therefore, from Lemma 8, we know that

PRcon
m

(∣∣g(γ2)− g(ERr
(γ2))

∣∣ > 4n−1/3
)

= O(ne−nε

).

Furthermore, since the variance of a truncated binomial distribution is less than that of
the original distribution [7], (39) implies that g

(
ERr

(γ2)
)

> 1. Therefore, since g(x) < 2
always,

ERcon
m

(g(γ2)) =
(
g(ERr

(γ2)) + O(n−1/3)
)(

1−O(ne−nε

)
)

+ O(ne−nε

)

∼ g(ERr
(γ2)). (41)

The result now follows from (40) and the fact that g′(x) is bounded. �

8. Proofs of the Theorems

With all the groundwork done, it is just a matter of putting the pieces together.

Proof of Theorem 1: From Lemma 5, we know that 2−NG≤k(n) = PD1/2(V ) ∼∑
m∈I0

PD1/2(V
con
m ). Moreover, putting r = α−1(m) in (20) for m ∈ I0 gives

PD1/2(V
con
m ) ∼ ERcon

m
(g(γ2))Q̂(m)PRr

(V con
m ). (42)
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In the case that m ∈ I1,

ERcon
m

(g(γ2))PRr
(V con

m ) ∼ g( 1
4 − 1

2L2
0 − 1

4L0T )√
π( 1

2 − L2
0 − 1

2L0T )1/2 n
,

by Lemmas 9 and 10. Since this value is independent of m, we can apply (30) and (36) to
find that 2N

∑
m∈I1

PD1/2(V
con
m ) asymptotically equals the value given in the theorem.

For m ∈ I0 \ I1, we can use the fact that g(γ2) and PRr
(V con

m ) are uniformly bounded
to infer from (37) and (42) that∑

m∈I0\I1
PD1/2(V

con
m ) = O(n2e−nε

)Q̂(m0),

which is easily seen to be negligible in comparison to the sum over I1. �
Proof of Theorem 2: This follows from (33–35) and the assumptions listed at the end
of Section 6 (which are justified in Section 7). �
Proof of Theorem 3: If m < 1

2 min{k, 1
2n}n − n3/2+ε, all but a fraction o(n−t) of

graphs with n vertices and m edges have maximum degree less than k, so the theorem
follows from [11, Thm 2.6(b)]. Hence, we can assume that m ≥ 1

2N −O(n3/2+ε).
The same argument that led to (20) also gives∑

d∈V con
m

F (d)PD1/2(d) ∼ ERcon
m

(
F (d)g(γ2)

)
PRr

(V con
m )Q(r, m).

Dividing by (20), we obtain

ED1/2(F |V con
m ) ∼ ERcon

m

(
F (d)g(γ2)

)
ERcon

m

(
g(γ2)

) . (43)

The two expressions on the right of (43) can be analysed similarly to the proof of
Lemma 10. Since we are not restricted to m ∈ I1, we will choose a different value of r.
Define Mr to be the least of those M which maximise the probability that the sum of the
components of a vector in Rr is M . Since the distribution of the sum is log-concave (see
the proof of Lemma 10) and the probability of a given sum is a continuous function of r,
the value r = inf{r |Mr ≥ 2m} ensures that 2m is a most likely sum. It is easy to see that
1
2 −O(n−1/2+ε) ≤ r < 1. The probability of sum 2m will be at least n−2, since there are
at most n2 possible sums. Using this bound in place of Lemma 9, the same argument as
used in Lemma 10 yields the following in place of (41):

ERcon
m

(F (d)g(γ2))

= ERr
(F )
(
g(ERr

(γ2)) + O(n−1/3)
)(

1−O(n2e−nε

)
)

+ O(n2e−nε

) maxF (d)

∼ ERr
(F )g(ERr

(γ2)).
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We have used the facts that F (d) is at most O(nt) times ERr
(F ) (given) and that

g(ERr
(γ2)) > 1 (as in Lemma 10). The case F = 1 gives ERcon

m
(g(γ2)) ∼ g(ERr

(γ2)).
Substituting these estimates into (43), we obtain

ED1/2(F |V con
m ) ∼ ERr

(F ). (44)

From Lemma 5, since the error term is much smaller than O(n−t), we have that
ED1/2(F |V con

m ) ∼ ED1/2(F |Vm). Substituting into (44) gives the theorem. �
Proofs of the Corollaries: For Corollary 1 in the case T > nε, it suffices to apply a
crude tail estimate to each vertex. The case T = O(nε) follows from Theorem 1 if we note
that L0 ∼ φ(T ) as T →∞ and that, by Taylor’s Theorem, Φ(L0+T ) = Φ(T )+O

(
L0φ(T )

)
.

For Corollary 2, expand the function L0(T ) about the point T = 0 using the differential
equation (14). �

9. Numerical checks

The coefficient of zd1
1 zd2

2 · · · zdn
n in the generating function

∏
1≤j<k≤n(1 + zjzk) is the

number of graphs on n vertices with degree sequence d = (d1, d2, . . . , dn). Consequently
G≤k(n) is the constant term in

n∏
h=1

(
1 + z−1

h + · · ·+ z−k
h

) ∏
1≤i<j≤n

(1 + zizj).

A process of summing a generating function over roots of unity to extract particular
coefficients is given by McKay [8]. By these means, we have computed exact values of
G≤k(n) for 0 ≤ k ≤ n − 1 ≤ 17. The results were compared with the predictions of
Theorem 1, and found to have very good agreement except for the smallest values of k.
Data for n = 17, 18 is given in Table 1.
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n k Actual probability Estimated probability Relative error

17 0 0.1148× 10−40 0.2427× 10−40 1.1
17 1 0.2431× 10−32 0.6528× 10−32 1.7
17 2 0.6402× 10−25 0.8267× 10−25 0.29
17 3 0.7106× 10−19 0.7100× 10−19 −0.00074
17 4 0.6006× 10−14 0.5687× 10−14 −0.053
17 5 0.5845× 10−10 0.5593× 10−10 −0.043
17 6 0.8765× 10−7 0.8561× 10−7 −0.023
17 7 0.2529× 10−4 0.2507× 10−4 −0.0090
17 8 0.001695 0.001691 −0.0025
17 9 0.03159 0.03155 −0.0014
17 10 0.1996 0.1991 −0.0026
17 11 0.5428 0.5412 −0.0029
17 12 0.8390 0.8382 −0.0010
17 13 0.9654 0.9664 0.0011
17 14 0.9956 0.9971 0.0015
17 15 0.9997 1.001 0.00087
17 16 1 1.000 0.00030

18 0 0.8758× 10−46 0.3406× 10−45 2.9
18 1 0.8735× 10−37 0.3420× 10−36 2.9
18 2 0.1010× 10−28 0.1545× 10−28 0.53
18 3 0.4195× 10−22 0.4463× 10−22 0.064
18 4 0.1168× 10−16 0.1121× 10−16 −0.040
18 5 0.3367× 10−12 0.3211× 10−12 −0.046
18 6 0.1365× 10−8 0.1324× 10−8 −0.030
18 7 0.9785× 10−6 0.9650× 10−6 −0.014
18 8 0.0001499 0.0001492 −0.0046
18 9 0.005837 0.005829 −0.0014
18 10 0.06915 0.06903 −0.0018
18 11 0.3071 0.3063 −0.0028
18 12 0.6575 0.6560 −0.0022
18 13 0.8939 0.8937 −0.00014
18 14 0.9792 0.9805 0.0013
18 15 0.9975 0.9988 0.0013
18 16 0.9999 1.001 0.00064
18 17 1 1.000 0.00020

Table 1. Results for some typical small values. The third column gives the

probability pact of a random graph on n vertices having ∆ ≤ k. The fourth column

shows an estimate pest of the same probability, computed from Theorem 1. The

last column gives the relative error (pest − pact)/pact.
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