BACKTRACK PROGRAMMING AND ISOMORPH REJECTION

- ON ORDERED SUBSETS
Brendan D. McKay

ABSTRACT: Let V be a finite set, where |V| = n > 0 and let
denote the set of sequences of n distinct elements of V. Suppose
X is a subset of which is invariant under the action of a
permutation group 'T acting on V. We consider the application
of backtrack programming to the problem of finding a transversal
for the action of T on X. Effective methods are devised which
require no information about TI' other than a procedure for
recognising whether or not a given permutation is in I'. We show
that these algorithms find a small set of generators for T. An
application to graph isomorphism is mentioned.

1. Imtroduction. Let V be a finite non-empty totally ordered set.
Without loss of generality, we will assume that V = {1, 2, ..., n}
with the usual ordering. For each k (0 < k < n) define Q = Qk(V)
to be the set of all sequences v = [vl, cees vk] of distinct elements
of V. The length of v e'Qk is |v| = k. If k = 0, then Q, contains

only the null sequence [], sometimes written as [vl, cees vk] where

k = 0.

The set of all sequences of distinct elements of V will be

n
denoted Q = kU Qk' The ordering on V can be extended to an ordering
=0

on Q in a natural way. If us= [vl, oo vk] e Q and
v = [wl, cees wl] € Q then u is earlier than v, written u < v, ir
either

(i) v,= v (1<i<t<min(k,%)), and Ve < W, or

k) and k < 2.

n
]
—~
[
A
e
A

- (ii) \A

Let Sn bé the symmetric group on V. For vy € Sn and

v =[v ey vk] € Q we can define VY o= [vY, cens vl]. Obviously,

1? 1
vY Yl =

€ Q and |v Ivl. More generally, if Uc Q and ¥ ¢ Sn we can

define Uw = {uwl ue U, € W}.
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let T < Sn‘ If yyve Q and v = uY for some vy € I' we say

that p and v are equivalent wnder T, denoted u g vor simply u ~ v.

2. The Problem. Suppose X is a subset of Qn such that Xr = X.
Clearly X is a union of equivalence classes under T. Let R be the

set containing the earliest element of each equivalence class. The

problem is to find R either
(P1) if T is specified explicitly, or

(P2) if elements of T can be recognised, i.e. a procedure is
given which can decide whether or not a given permutation

is in T.

The case Pl has been treated in somewhat greater generality
by Fillmore and Williamson [ 4 ]J. The different case where Q(V) is
replaced by the power set 2V of V has been treated by Perlman [11, 12].
Our main contributions here will be towards the solution of case P2
when the set X occurs as the terminal nodes of a backtrack program.

The proofs of all results not proved here can be found in [ 6 ].

3. We begin with a formal description of a large class of

backtrack programs.

let W: Q > 2V be a function such that for any

v=1[vy, ..., v, ] € Q ve have W(v) ¢ V\{vl, ..y V. }.  The search

1 k

tree with defining function W is the set

N Q| v, € W([vl, ""vk-l])’ k>1}u Q -
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To avoid trivial cases, we will assume that T has at least two
elements. The following algorithm, known as a backtrack program or
depth-first search generates T from W in the order induced from Q.
The symbol <« denotes an assignment of value. For example,

"k +~k-1" decrements k by 1.

4. ALGORITHM. Find T given W.

(1) k<0

‘I‘«—QO
(2) Uk4—W([v1, cees vk])
(3) 1f Uk = ¢ go to (6).

(L) Viee1 < min Uy

U UMy, b
k+— k +1

T« TuU {[vl, vy vk]}

: (5) If k <n go to (2).

: (6) k+— k -1

If k20 go to (3); otherwise stop.
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. Example. Let G be the labelled graph of figure 1.

4
1
S
2
3
Figure 1

Let T = Aut (G) = {(1), (2 4), (35), (2 4)(35)}.
Suppose X is the set of sequences [vl, cees vs] € QS such that vi

and. A are adjacent in G for i = 1,2, 3, 4. Thus X is the set of

+1

directed Hamiltonian paths in G.

Algorithm 4 can be used to find X by defining the function W

as follows.

(1) w(Ll) = v

(2) W([vl, ...,vk]) ={ve V\{vl, ...,vk} | v is adjacent to vk},

k2 1.

The search tree T for this example can be drawn as in

figure 2.

The elements of T will be called nodes to avoid confusion
with the points of the graph G. A node of the form

[vl, e ] is called a successor of the node [vl, vees V. 1.

Vi* Vi+1 X
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The lines drawn in figure 2 join each node to its successors. For
clarity, the nodes are labelled only with their last entries, but
the full sequence can be obtained by tracing a path downwards from
the top (root) of the tree. Thus the node marked A is [3, 2, 1, 4].
Algorithm 4 begins at the root of the tree and works downwards where
possible, taking the left-most branches on the way down. If it
reaches a dead-end it "backtracks" to find another path downwards,

and thus continues until it has traversed the entire tree.

The successor relationship can be extended as follows.

A node v, of the form[v., ..., V., ..., v.] (0 £ k < r) is called a
1 1 r

descendant of the node v, = [vl, ey vk]. Conversely, v, is an

ancestor of v._. If a node has no successors (and hence no

1
descendants) it is called an endnode of T. An endnode of length n

is a terminal node of T.

We are going to examine solutions to problems Pl and P2
in the case where X is the set of terminal nodes of a search tree T
for which Tr = T. Although this latter condition is clearly stronger
than the condition XF = X, it seems that comparitively few problems
of practical interest have Xr = X but Tr #T. In any case, the
discussions to follow can be generalised to the case TF # T by
restricting attention to the subtree of T formed by X and its

ancestors.

6. A convenient tool for the study of search trees is the

Q

successor function F: Q- 27 defined by
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{u € Q | u is a successor of v}, velT
F(v) =
[ , VET.

The condition ‘I‘r = T can often be verified by application

of the following theorem.

7. THEOREM. Tet T be the search tree with successor function F.

Let T < S . Then the following are equivalent.

(1) T

[}
=]

(2) E = E, where E is the set of endnodes of T.

(3) Foreach veQ,yerl,

F(VY) = F(v)Y.

From now on we will assume that Tr =T and X # ¢.

As described earlier, the terminal nodes X of T can be
divided into equivalence classes according to the action of T. The
earliest terminal nodes in each class will be called the identity
nodes of T and denoted by the set R = {el, ez, vess er} in the order

induced from Q.

The basis of our solutions to problems Pl and P2 lies in

the following simple ideas.

Let v be a node of T. Then the subtree of T rooted at v

is the set T(v) consisting of v and all its descendants in T.
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8. LEMMA. Let veT, yeTl. Then
T(vY) = T(v)Y.

9. LEMMA. Let v, v, € T where Ivll = Ivzl, and suppose € T(vl)

and u, € T(vz). Then v, <V, if and only if uo< o,

10.LEMMA. et V>V, €T where v, vy, and v, <V, Then T(vz)

contains no identity nodes of T.

An immediate consequence of lemma 10 is that, in our search
for identity nodes, having generated the subtree T(vl), any later
subtree of the form T(vI) for vy € T can be ignored. This idea gives

us a simple solution to problem P1.

For any v € Q, we define Fv to be the subgroup of I' which
individually fixes each element of v. Define a function W/T : Q— 2V
as follows. For any v € Q, consider the orbits of Fv which intersect

W(v). Define (W/T)(v) to be the set of the smallest elements from

each of these orbits.

11. THEOREM. [Let T/T be the search tree with defining funetion W/T.

Then the terminal nodes of T/T are the identity nodes of T.

For the example of §5 we find T/T to be the search tree

drawn in figure 3. The labelling is the same as for figure 2.
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12. We now turn to problem P2. Suppose that T, = [vl, cees vn]

and 1, = [w

s ++.5 W ] are elements of X, where v, = w, for
2 1 n i i

0 <i<k<nbut vk Then define

o1 7 Viar

]

A
}
-
]

1 ’ [vl, cees Vs Vi

and

1.

T, - T, = [wl, cees W, wk+1

Clearly Tl - 1, and T, - T, are both in T. Suppose 1 € X\R. Then

2 1
for some e, € R, Yy e T we have T = eI. Consequently, if
e, - T = [vl, cees Vs vk+1] then © - e, = [vl, cees Vies kalj'
Hence T-e = (ei -0y
and so (1t - ei) = T(ei - )Y by lemma 8.
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Since e, is earlier than T, ei - 1 is earlier than t - e, -
Hence T(1 - ei) contains no identity nodes, by lemma 10, and so can
be ignored. This process of removing subtrees is carried out
systematically by the following algorithm.

13. ALGORITHM. Find R = {el, s +ovs er}.

(2) Uk<—W([vl, vy vk])

(3) It U =¢ goto (9).

() Vi < min U

Uk «— Uk\ {Vk+l}

k «— k + 1
(5) If kX <n go to (2).

(6) {We have found a terminal node T = [vl, cees vn].}

If -r~e'j for some j (1< j <r) go to (8).

(1) r+—r+1
e+ T

r

Go to (9).

(8) k +— IT-ejI

(9) k+—x-1

If k20 go to (3); otherwise stop.
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The search tree T1 produced by algorithm 13 for the

example of §5 is shown in figure L.

Suppose that during the execution of algorithm 13 we have
found an identity node ej and a terminal node T # ej such that T = e}
for some vy € . Then we say that 1 - ej is absorbed onto ej -1t by vy.

In figure 4 such absorptions are indicated by arrows.

14, LEMMA. Let ej [vys -oes vn] € R. Then any node of T of the
form [v , ..., Vi w] (0 £k < n) will also be in T,. In

particular, ey € T,.

15. COROLLARY. Ifte X, T - ej € Tl'

16, LEMMA. Let e, [vl, ey vn] € R. Let v, # v, € T where

v, = [vl, cees Vo vk+1] and v, = [vl, cees Vs wl. Then if
v, = vI for some y € T, v, will be absorbed onto v, by some
§ e T.

The element 8§ € I' of lemma 16 is the permutation for which
T = eg, where T is the earliest terminal node of T(vz) and ej € R.

It is not hard to show that v2 =1 - ej.

17. Let ej = [vl, vees vn] € R. For 0 < k € n define
(k) _

v, =[v., ..., vk] and T

k 1 r

\)k'

18, THEOREM. For each k (0 £ k < n) we have the disjoint wnion

4]
=

LK)

W

F(k+1) Yik)

i=1
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(k)
1

(k)

where y 5

= (1) and {v cees Ys(}}:)} are the elements of T

by which nodes of T are absorbed onto Vs

19. COROLLARY 1. For 0 <h < n, I‘(h) is gemerated by the set

Q = {Yﬁk)l h<k<n, 2<iss}. Inparticular, ,

)
generates T.

20. COROLLARY 2. T has < IR| [[g] + 1] terminal nodes, with

equality only if T = S,-

For example, in figure 4 with e, = e,» we have

J
p(o) o (1)
1"(1) = r(z) U r(z)(e L)
r(2) _ F(3) " r(ss)(3 5)
(3 o (W)

p*) o p(8) {(n}.

Hence r = <(2h), (35)>.
21. Let Ug V. A partition of U is a set m of disjoint non-
empty sets whose union is U, The elements of 7 are called its cells.

The family of all partitions of U will be denoted N(U).

If =, and m, are partitions of U, we say that m is finer

1 1

than Tys denoted ™ < Tys if each cell of LY is contained in some

cell of T, Conversely, ™, is coarser than LA It is not hard to
show that (N(U), <) is a lattice. The finest partition of U has only

one element of U in each cell, and will be called the discrete
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partition of U.

€ M(U) and ¢ € S_. Ifc‘.p=c.
n 1

Suppose T = {Cllczl ... |c .

)
for 1 £ i £ k we say that m is fixzed by V. Notice that each cell
must be individually fixed by ¢. If ¥ ¢ Sn and U‘y = U, we say that
m is fixed by ¥ if it is fixed by each element of ¥. The finest

partition which is coarser than m but fixed by Y is denoted m Vv VY.

For simplicity m v {y} will be written 7 Vv .

22. LEMMA. (1) mv ¥ = 7 v <¥Y>, where <¥Y> is the growp

generated by Y.

(2) If <y>

<lp19 q’z’ M 1P£>9
(Coon (v ) V)V eee v )

TV Y

"

A simple algorithm for computing m V ¥ can be found in [6 1].

We will find it convenient to assume that the cells of a
partition are ordered according to their lowest elements. Thus

when we write m = {CIIC (RS ICk} we implicitly assume that

2

min C1 < min 02 < +++ < min Ck’ where min Ci is the least element

of C,.

i
23. We return to our discussion of problem P2. Define ej, Ve
and I‘<k) as in §17, and suppose that O < q < n.

Let {Yl’ ooy Ym} be a set of elements of I' by which nodes
(a)

of T are absorbed onto nodes Vi where k > q. Clearly A < T s

where A = <Y1’ cees Ym>' Let U = W(vq). Then, by theorem 7,

UA = U. Suppose W, <w, where WisW, € U and w, = wi‘ for some A € A.
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A
Then B, = M) where Hy = (v, «v.y vq, w1] and u

1 = [vl, cees vq, w2].

2

Hence, by lemma 10, T(uz) contains no identity nodes.

In order to construct a useful algorithm out of these ideas
we must introduce some new data items. Upon encountering a node v ¢ T
we compute W(v) and create a partition L equal to the discrete
partition of W(v). Thereafter, whenever we discover an element y € T
by which a node is absorbed onto a descendant of v we set nv<—-nv vV Y.
At any stage we need partitions only for the current node and its
ancestors (excepting that we don't need a partition for a terminal

node) and so at most n partitions must be stored at one time.

In the following description, a cell of a partition is
regarded as having been "chosen" if any element of the cell has been

chosen.

- 79 -



24, ALGORITHM: Find R = {el, €, tes er}.

(1) x+o0

r <0

(2) U«—w([vl, vk])

If U=¢ go to (9).

(3) m +— discrete partition of U

(4) €+ first cell of ™ Dot yet chosen

k+— k +1

Vi +— min C

(5) If X <n go to (2).

(6) {We nave found a terminal node T = [v , ..., v 1.}
1 n

If T ~e, for some J (1<J3<r)goto(8).

J

(1) r+—r+1

ep — T
Go to (9).
(8) Compute y such that T = e}.

k+— |t -e,l|

J

For 0 £ i < k set LA — LA vy

(9) If k =0 stop.

k+— k-1

(10) If all cells of T have been chosen go to (9);

otherwise go to (4).
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The search tree T2 produced by algorithm 24 for the example

of §5 is shown in figure 5.

Suppose that at some execution of step (8) in algorithm 24
we have [vl, cees vn] =T = e} where T € X, ej e R, y e I'. Let
0<ic<|t-e,]l. Suppose that for some node v = [v

J

of T2 the operation T - T vV y causes the cell of " containing w

1> cres Vi w]

to be increased in size. Then we can say that y is active at v.

25. LEMMA. Y 18 active at eJ - T.

Recall the definitions of §1T.

26. THEOREM. Let Y be the set of elements of T found by algorithm

24 which are active at ancestors of e 5 Then

(1) For 0 < k < n, I‘(k) =<Yn I‘(k)>. In particular, Y

generates T.

(2) IY] <n-p <n-1, where T has p orbits.
27. COROLLARY. T, has < IRI(n - p + 1) terminal nodes.

Despite the power of algorithm 24, further improvement is
possible. Upon creating a node v of TZ, algorithm 24 initially
sets m  to the discrete partition of W(v). 1In this sense it
assumes no prior knowledge of I‘V. However, if we have a set
{Yl’ cees Ym} of previously discovered elements of I' then some of
them, say {Yl’ ooy Yq} may be in I‘v. Clearly we can set

, - 'nv v {Yl, cees Yq} at this stage without losing identity nodes.
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In practice it seems best to limit the number of group
elements stored, since the time for initialisation of each m,, may
become excessive. In the following algorithm, J is a positive
integer specifying the maximum number of elements to be stored. It
is actually only necessary to keep a list of the non-trivial cycles
of each such element, since this is all that matters in the

operation ™ «— LN v Yi'
28. ALGORITHM: Find R = {el, s cues er}.

(1) x+o0
r<—20

m<— 0

(2) U<—w([v1, vk])

If U=¢ go to (10).

(3) T +— discrete partition of U

For 1 < i < m such that y; fixes [vl, vees vk]

set ﬂk +—-wk v Yi

() C <+ first cell of T not yet chosen

k+— k +1

vk +— min C

(5) If k<n go to (2).

s

(6) {We have found a terminal node T = [vl, cees vn].}

If 1~ e, for some jJ (1 <3 <r) go to (8).

- 83 -



(7) r+—r+1
e, — T

Go to (10).

(8) Compute y such that T = e}.

k+— |t - ejl

For 0 < i <k set LA et LA vy

(9) If m=J go to (10).
m+«—m+ 1

+—
Ym Y

(10) If k =0 stop.
k+k -1

(11) If all cells of T have been chosen go to (10);

otherwise go to (4).

If J = 0, algorithm 28 is identical to algorithm 2k. If
J 2 2, algorithm 28 applied to the example of §5 produces the search
tree T3 shown in figure 6. At the termination of the algorithm we

have Y, = (35), Y, = (2 4).

29. THEOREM: For any J 2 0, theorem 26 holds for algorithm 28

provided j = 1.

If J is sufficiently large, the number of terminal nodes
of T, seems to be typically of order |IR| + n, but no bound better
than that for T2 has been proven. For search trees with large

numbers of endnodes that are not' terminal nodes, T3 is often
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considerably smaller than T,, since the size of subtrees having no

terminal nodes can be reduced.

30. A possibly undesirable feature of these algorithms is that
they require the full set of identity nodes to be stored. If the

set R must be determined exactly, there seems to be no alternative,
since otherwise further identity nodes could not be positively
identified. However, in some applications a larger set of terminal
nodes, known to contain R will be sufficient. One method which
appears to work very well is to choose an integer L 2 0 and to store
the first identity node e, and the latest L terminal nodes which

have not been recognised as not identity nodes. Any further terminal
node which is not equivalent to one of the stored terminal nodes is

regarded as "possibly an identity node". The reason for storing e,

is that theorems 18, 26 and 29 will still hold for this identity node.

Algorithm 28 often works very well even if L = 0, in which
case only e, is stored. The set Y of theorem 26 will contain all
the elements of TI' discovered by the algorithm. The resulting search

tree in this case for the example of §5 is shown in figure T.

31. We have shown that, in addition to finding R, algorithms 2k
and 28 can be used to find a set of <n - 1 elements of I which
generate T. Consequently they can be used for this purpose whether
or not R is required, and we will now concentrate on this aspect of
algorithm 28. We begin by showing how the full group TI' can be found

from its generators.
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Let e = [vl, vees vn].

let Y = {Yl, ey Ym} be the elements of T found by
algorithm 28 which are active at ancestors of el, in the order they

are produced.

32. ALGORITHM, Generate T, given Y and e

(1) ny+ (1)
Output Ng+

If m =0 stop.

(2) §+«— 1
L +— 1

G < digraph with vertices V and no edges
'3
(3) kx «— min{ilvi #vi} -1

(4) For each v = \ (k < i < n) moved by YJ’ add the

Y
directed edge [v, v J], labelled YJ’ to G —

unless it is already there.

(5) §+<— 3+1
¥
If j<m and vi‘j=vi for 1 <i <k, go to (k4).

(6) {Let {wl, vees wr} be the component of G containing

¥ F vk+1}

524—1'—1

For 2 <i <r set p(i-1, &) +— 8,6, - Gt, where

61, 62, ey Gt are the labels of the edges of

a directed path in G from v, to LA
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(7) If j >m go to (8).
L +— 2+ 1

Go to (3).

(8) x<+1

(9) i, «—1i +1

If i, <s o to (10).
" Jkg (

. .
Je T 1
If 3y > %2 go to (11).

1k<—l

(10) +— (i

nk x’ Jk)nk-l

Output n -
If j, =% & to (9).
k+k + 1

j +
e T v
i, —1
Go to (10).

(11) k+— k-1

If k = 0 stop; otherwise go to (9).
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The ideas behind algorithm 32 can be found in [ 6], p. 24-25.
Note that the storage requirements depend on |V| and not on |T|. If
|T| is very large, the algorithm requires only marginally more than
one permutation multiplication (at step (10)) per element of I'. The

group elements Y(i, j) used in the algorithm are coset representations

(k)

akin to the elements vy 1 of theorem 18.

If it is not practical or desirable to generate the whole
of T there is still a lot of information about T which may be obtained
more directly. For example, lemma 22 shows that the orbits of T can

be easily found.

For 0 € j <n define v, = [V, ..., vj], ana rd) = ¢

J 1 \)j,

where \)n = e1 as before.

),

The following result shows that we can easily obtain [T

for any J.

33. THEOREM. Consider algorithm 28 immediately it has completed

the examination of the subtree T(\)j), where 0 < j < n.
(a) The cells of m, are orbits of I‘('j).

(b) If C is the cell of m containing Vi then

TACATE G LIV

The following theorem can be used to prove theorem 26 (2).

34, THEOREM. For O < i < m define w(l) = <:yl, Yoo oes yij>.
Then ©f 0 < i < j <m, W(J) has strictly fewer orbits than

does \l'(i).
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For the following results we will assume, in the notation
of §30, that all the terminal nodes stored by algorithm 28 as
possible identity nodes are actual identity nodes. This will be the

case, for example, if L =0 or L = |R| - 1.

35. LEMMA. Suppose that at step (8) of algorithm 28 we have t = e},
where 1 € X, ej e R, Yy e . Then t is the earliest terminal

node of T(t - ej) which is equivalent to ey

Let ¥ ¢ T. The support of ¥, supp(¥) is the set of
elements of V moved by some element of ¥. If ¥ = {y} we write

supp (y) for supp({y}). Thus supp(y) = {v e V| W # v}.

36. THEOREM. Suppose that for some Yy € Y, y = of where a,B € T,

a # (1) and supp(a) n supp(B) = ¢. Then B = (1).

Proof. Suppose that during the algorithm we have found t = eY.

J

where 1 € X, ej = [wl, vees wn] e R. Without losing generality,

there is some j (0 < j < n) such that wz =w, for 1<i < but

w? #w

341 J41° If § is a non-identity element of T such that

supp(8) ¢ {wil j+l=<i<n, LA ¢ supp(a)}, then e?é > e? or

else e? < ej. Hence the earliest terminal node of

a R o
T([wl, ey wJ,, wj+1]) equivalent to ej must be eJ_. Hence
g = (1). 0
(1) (2)
Let ¥ and Y be subgroups of I' such that

(1) ‘”,(2)

supp(‘l’(l)) n supp(‘l’(z)) = ¢. The direct sum ¥ is the

group <‘1’(1) U ‘P(z)).
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THEOREM. Suppose that for some subset Y* ¢ Y, we have
(1) (2)

are non-trivial
(1), y(2)

<Y¥*¥> = \l/(l) @ ‘}‘(2) where ¥ and ¥

subgroups of T'. Then Y* is a disjoint union Y

where <Y(l)> ey and <Y(2)> = ‘l’(z).

(1) (2)

Proof. Any element of ¥ oV

(1) (2)
d:l e Y and wz e ¥ .

is of the form wlwz where
By Theorem 36, one of ¥, and ¥, is

trivial. n|

THEOREM. Suppose that for some v € Q, the subgroup r, has
exactly one non-trivial orbit C. Under any of the foliowing
conditions, there is a subset Y* c Y such that <Y*> is

conjugate to r, in T.

(1) T Zs abelian.

(2) N( I‘v) = rv where N(Fv) 18 the normaliser of I‘v in the
symmetric group S(C) on C. [For example, this

is true if r, = s(c).]

(3) T. =1{y e aut(G) | vy fizes n} where G is a graph (or digraph)

with vertices V and m € (V).

Proof. TFor A < T denote 2£(A) = min{i | v, € supp(A)}.  Suppose
¥ is a conjugate of I‘v in T for which t + 1 = £(¥) is a maximum.

Then Y < I‘(t).

Let D = supp(¥). The maximality of 2(¥) ensures that
(t)

D is an orbit of T .

- 92 -



H(8)

(i) If Vv = the theorem follows from theorem 29.

(t) and let T denote the permutation group

on D induced by P(t). Clearly Y < T. We now

(ii) Suppose ¥ < T

treat cases (1)-(3) separately.

(1) If T is abelian, so are ¥ and T. But then |¥| = |T| = |D|
since transitive abelian groups are regular. Thus
Yy ="T.

(t)

(2) Since Y is normal in I''~’, it is normal in T. But then

N(¥) = ¥ implies ¥ = T.

(3) Suppose T = {y € Aut(G) | y fixes w} where G is a graph with
vertices V and m ¢ m(V). The case where G is a
digraph is similar.

Let p be the partition of V whose cells are the orbits of

P(t). Then F(t)

= {y € Aut(G) | y fixes p}.

Suppose D1 is a cell of p other than D and that some vertex v
in Dl is adjacent to a vertex in D. Since Y is
transitive on D and fixes v, v must be adjacent to every
vertex in D. Furthermore, considering the action of
F(t), every vertex in D is adjacent to every vertex in
Dl'

Consequently D is either not joined, or completely joined,
to every other cell of p. It is easy to see that this
implies ¥ = T = Aut(<D>), where <D> is the subgraph

of G induced by D.

We have found in each case that T = V. Since any element y of
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(t)

T is of the form aB where a € T and supp(B) n D = ¢, we see

that a ¢ ¥ and B € F(t).

Thus I'(t) =Ye I‘]gt)

, and the result follows from theorems

29 and 37. 0

A simple implication of theorem 38 is that Y contains at
least one transposition from each conjugacy class of transpositions
in T. This observation can be generalised as follows, but we omit

the proof.

39. THEOREM. Suppose that in theorem 38, FV acts as the symmetric
group on C. Then Y¥* can be chosen to consist of |C|-1

transpositions.

40. Application to Graph Isémorphism. One of the standard problems
in computational graph theory is that of canonically labelling a
graph. Intuitively, this involves assigning labels to the vertices
of a graph in an order independent of any previous labels. We shall
define this idea rigorously and then demonstrate how our techniques

can be applied.

Suppose G = G(V) is the set of all (labelled) graphs with
vertex set V = {l, 2, c..y n}. For Ge G, v ¢ Sn define G ¢ G to

Y Y

be the graph in which vertices v' and w' are adjacent exactly when

v and w are adjacent in G.

A canonical labelling algorithm is a map
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such that for each G ¢ G, v ¢ Sn’

(1) c(G) is isomorphic to G,

(2) c(GY) = c(a).

Conditions (1) and (2) imply that two graphs G,H e G are

isomorphic if, and only if, c¢(G) = c(H).

h1. The operation of the known canonical labelling algorithms
can be described in terms of a canonical map. This is defined to

be a map

b: g — 28\ {4}

such that for each G ¢ g, Y € Sn’

(1) every member of A(G) is isomorphic to G.

(2) A(GY) = afa).

Canonical maps are also important in aslgorithms which test

two graphs for isomorphism by examining them together.

Given a canonical map, we can define a canonical labelling
algorithm by choosing a linear ordering on G. A common method is to
apply the usual ordering of the integers by considering the 0-1
adjacency matrix of a graph as an n?-bit binary number. Another
method uses the incidence matrix similarly [9, 13]. Relative to
vhatever order on G we have chosen, a canonical labelling algorithm c

can be defined by

c(G) = max A(G) (G e @)

- 95 -~



Lo, A great many canonical maps have been used, explicitly or
not, in published algorithms. However the majority of them fall into

the class we now describe.

For Ge G, 1 = [v., ..., vn] € Qn’ define the graph G' e G

1’
to have vertices i and j adjacent exactly when vertices vy and vj are

adjacent in G.

let H: GxQ— 2V be a map such that for each G e G,

vVeRQR, YE Sn we have

(1) W(G, v) € V\v
(2) W(e', v') = WG, v)¥

(3) The program tree T, with defining function W(G, +) has

G

at least one terminal node.

43, THEOREM. For any G € G define
A(G) = {c¢" |t is a terminal node of TG}.

Then (1) A is a canonical map

(2) T =Ty, where T = Aut(G).
Explicit uses of this method for finding a canonical map
have been given by Berztiss [2], Overton and Proskurowski [9, 131,
Ullmann [15] and Arlazarov et al. [1]. However, as demonstrated in

[6]1, most of the so-called "partitioning" procedures [3, 5, 8, 10, 1k, 16]

also fall into this class.
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Obviously, any terminal nodes of TG which are equivalent
under Aut (G) correspond to the same labelled graph. Consequently,

the definition of A in theorem 43 can be replaced by
A(c) = {6 |t is an identity node of TG}.

Since TG often has vastly fewer identity nodes than terminal nodes,
any of our methods for producing the identity nodes can be used to
advantage in computing A. The first attempt along these lines was
made by Arlazarov et al. [1], who used a method something like
algorithm 24. A faster method (probably the fastest available) can
be found in [6]. Recent improvements in data structures have enabled
the development of an algorithm [T] which can efficiently compute

Aut(G) and c(G) for most graphs with up to about 1000 vertices,

without use of secondary storage.
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