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Abstract

Generalized recoupling coefficients or 3nj -coefficients can be expressed as multiple sums over products of Racahj -
coefficients [L.C. Biedenharn, J.D. Louck, Coupling ofn angular momenta: recoupling theory, in: The Racah–Wigner Alg
in Quantum Theory, Encyclopedia of Mathematics and its Applications, vol. 9, Addison-Wesley, 1981, pp. 435–48
problem of finding an optimal summation formula (i.e. with a minimal number of Racah coefficients) for a given 3nj -coefficient
is equivalent to finding an optimal reduction of a so-called Yutsis graph [A.P. Yutsis, I.B. Levinson, V.V. Vanagas, Mathe
Apparatus of the Theory of Angular Momentum, Israel Program for Scientific Translation, Jerusalem, 1962].

In terms of graph theory Yutsis graphs are connected simple cubic graphs which can be partitioned into two vertex
trees. The two parts are necessarily of the same size. In this area Yutsis graphs are also studied under the nam
dual Hamiltonian graphs [F. Jaeger, On vertex-induced forests in cubic graphs, in: Proc. 5th Southeastern Conferen
Numer. (1974) 501–512]. We present algorithms for determining whether a cubic graph is a Yutsis graph. This is in
for generating large test cases for programs (as in [P.M. Lima, Comput. Phys. Comm. 66 (1991) 89; S. Fritzsche, T
T. Bastug, M. Tomaselli, Comput. Phys. Comm. 139 (2001) 314; D. Van Dyck, V. Fack, GYutsis: heuristic based cal
of general recoupling coefficients, Comput. Phys. Comm. 154 (2003) 219–232]) that determine a summation form
3nj -coefficient.

Moreover, we give the numbers of Yutsis and non-Yutsis cubic graphs with up to 30 vertices and cubic polyhedra w
40 vertices. All these numbers have been computed by two independent programs in order to reduce the probability
Since the decision problem whether a given cubic graph is Yutsis or not is NP-complete, we could not hope for a po
time worst case performance of our programs. Nevertheless the programs described in this article are very fast on av
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In various fields of theoretical physics the quant
mechanical description of many-particle processes
ten requires an explicit transformation of the angu
momenta of the subsystems among different coup
schemes. Such transformations are described bygen-
eral recoupling coefficientsand arise mostly in atomi
and nuclear structure and scattering calculations[1].
Several algorithms have been described to genera
summation formula expressing the recoupling coe
cient as a multiple sum over products of Wignerj
symbols multiplied by phase factors and square r
factors[4–10]. It is desirable to find an optimal sum
mation formula, i.e. with a minimum number of sum
mation variables and Wigner 6j symbols.

The best algorithms at present are based on t
niques developed by Yutsis, Levinson and Vanagas[2]
and manipulate a graphical representation of the
coupling coefficient called a Yutsis graph. Reduct
rules are defined for these graphs, which allow a s
wise transformation of the graph by reduction and
moval of cycles. Each reduction step contributes p
of the final summation formula. Section2 summarizes
some notions from the quantum theory of angular m
menta and shows how a Yutsis graph is constructed
a given recoupling coefficient. For the general the
of Yutsis graphs we refer to[1,2].

For our purposes a Yutsis graph can be define
follows. A binary coupling tree onn + 1 leaves is an
unordered binary tree in which each leaf has a dist
label. By taking two binary coupling trees onn + 1
leaves in which the unique leaf vertices with the sa
label are identified and then removed and where
root nodes are connected by an additional edge, we
tain a cubic multigraph with 2n nodes and 3n edges.
In this multigraph the internal vertices of the coupli
trees define two vertex induced trees and the for
leaf and root edges form an edge-cut onn + 2 edges.
Fig. 1 shows an example. A multigraph that can
constructed this way is called aYutsis graphor simply
Yutsis. Two vertex induced trees coming from such
construction are called thedefining treesand the edge
cut is called the defining cut. Note that a given Y
sis graph can in general be obtained from more t
one pair of trees, so the defining trees and the de
ing edge-cut are in general not uniquely determin
Since the two endpoints of multiple edges in a Yut
graph must obviously belong to different trees, th
are trivial from the viewpoint of the decision proble
and we will restrict ourselves to simple graphs wh
discussing the decision problem.

In mathematics, Yutsis graphs are also known
dual Hamiltonian cubic graphs[3].

Up to now no better method is known to determ
whether a cubic graph is Yutsis than to search fo
defining tree (or cut). For the quantum theory of an
lar momenta, we are interested in obtaining large
cases by generating large cubic graphs at random
filter out those graphs which are not Yutsis. In ad
tion we would like to identify the non-Yutsis graph
and study their structure.

All graphs in this article are assumed to be co
nected.

2. Graphical representation of recoupling
coefficients

In [1, Topic 12], recoupling theory is considere
from the point of view ofbinary coupling schemes.
A binary coupling scheme is the rooted binary tr
representing the order of coupling of a state vecto
the tensor product ofn + 1 angular momentum mu
tiplets, labelled respectively by the angular mome
j1, j2, . . . , jn+1. The leaves of the binary tree are l
belled by these angular momentaj1, j2, . . . , jn+1, and
the remaining vertices of the tree can be labelled
the intermediate angular momenta. For example,
following vector can be considered:∣∣((j1, j2)j6,

(
j3, (j4, j5)j7

)
j8

)
j9

〉
,

which corresponds to the left-side tree inFig. 1(a).
There are obviously several ways in whichn + 1

angular momenta can be coupled, and the quant
that typically appear in atomic and nuclear struct
computations are the related general recoupling c
ficients or 3nj -coefficients. A general recoupling co
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Fig. 1. (a) Two binary coupling schemes, and (b) the corresponding Yutsis graph.
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efficient (or a generalized 3nj -coefficient) is defined
to be the transformation coefficient between any s
two coupling schemes, e.g.〈
(j1, j2)j6,

((
j3, (j4, j5)j7

)
j8

)
j9

∣∣
(1)

(
j3,

(
(j5, j1)j10, (j4, j2)j11

))
j9

〉
.

It is a fundamental theorem of recoupling theo
[1, p. 455] that each such transformation coefficie
(i.e. every generalized 3nj -coefficient) can be ex
pressed in terms of sums over products of Racah c
ficients (6j -coefficients).

A famous program of Burke[9], NJSYM, already
deals with this problem. Burke’s approach is equi
lent to finding a certain path between the two bin
coupling schemes (representing the bra- and ket-
of the general recoupling coefficient) by success
elementary transformations on the trees. The sho
this path, the better the resulting formula. The p
found byNJSYM is generally rather long, thus yield
ing expressions which are far from optimal. In ord
to improveNJSYM, other algorithms have been d
veloped which implement graphical methods due
Yutsis et al.[2].

Consider a general recoupling coefficient ofn + 1
integer and half integer angular momenta. With e
label in the recoupling coefficient an edge in the gra
is associated and with each coupling a node is ass
ated, resulting in a cubic graph with 2n nodes and 3n
edges. The nodes representing the coupling of the
hand side of the recoupling coefficient get a ‘−’-sign,
those on the right-hand side get a ‘+’-sign. The edges
corresponding to the compounded angular mome
on the left-hand side are directed away from the n
while the edges representing the resultant are dire
towards the node. The direction of the edges co
sponding to the left-hand side are the reverse of th
corresponding to the right-hand side. The Yutsis gr
shown inFig. 1(b) corresponds to the recoupling c
efficient in Eq. (1) (where signs and directions a
omitted).

The sign of a node where angular momentaj1, j2
andj3 meet can be inverted by multiplying the val
the graph represents by(−1)j1+j2+j3. A change of
direction of an edge with labelj results in a mul-
tiplication by (−1)2j . The transformation coefficien
then equals thej coefficient represented by the di
gram multiplied by (see[2, Eqs. (22.1) and (22.2)]):

(−1)2(J+∑n−1
i=1 bi+S)

[
n−1∏
i=1

(2ai + 1)(2bi + 1)

]1/2

,

with S the sum of all ‘first’ coupled angular moment
n + 1 the number of angular momenta,ai the interme-
diate angular momenta on the left side,bi the inter-
mediate angular momenta on the right side, andJ the
total angular momentum.

Once the graph is generated, it can be simpli
with the help of the reduction rules developed by Y
sis et al.[2]. Using these rules the reduction algorith
iteratively eliminate cycles from the Yutsis graph, un
the graph is simplified to a so-called “triangular delt
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i.e. a graph consisting of two nodes connected by th
parallel edges. Several algorithms based on this
proach have been developed[4–8,10,11].

From an algorithmic point of view one is interest
in the complexity of the formula. Since the differen
between the number of summations and the num
of 6j coefficients is constant, the number of 6j coef-
ficients suffices as measure for the complexity of
formula. With this idea in mind the signs of the nod
and the direction of the edges can be neglected, s
they only contribute in phase and weight factors,
influencing the complexity of the generated summ
tion formula.

3. The decision problem is NP-complete

In this section we will prove that the problem
deciding whether a given graph is Yutsis or not is
very hard problem in the worst case. To be exact: T
problem is NP-complete and it is even NP-compl
when restricted to the subclass of cubic polyhedra,
3-connected planar cubic graphs.

Theorem 1. The decision problem whether a given c
bic polyhedron is Yutsis or not isNP-complete.

Proof. Since it is easy to see that this problem is in
(take, e.g.,n random vertices and check whether th
and their complement each induce a tree), the resu
a direct consequence of results of Jaeger, Chváta
Wigderson:

In [3] Jaeger defines a graphG to be dual Hamil-
tonian if it has an elementary cut on|E| − |V | + 2
edges. He mentions that the planar dual of a d
Hamiltonian graph is Hamiltonian, but also the reve
is well known and easy to prove. He also proves t
a graphG is dual Hamiltonian if and only if it has
a partitioning ofV as T1 ∪ T2 such thatT1 and T2

induce a tree. This means that a cubic polyhedro
Yutsis if and only if its dual triangulation is Hami
tonian.

Chvátal and Wigderson proved, independently
each other, that determining the hamiltonicity of
graph is NP-complete, even when restricted to tri
gulations[12,13].
Since the computation of the dual can easily
done in polynomial time, combining these resu
proves the theorem.�

4. Preliminaries

In this section we will give and prove some lemm
and remarks that we will use in the algorithm.G =
(V ,E) always denotes a simple cubic graph withn
nodes and 3n edges.

Lemma 2. Let G be a cubic graph with2n nodes,T
an induced subgraph onn vertices that is a tree andS
the complement ofT .

ThenS,T are defining trees for a Yutsis decomp
sition if and only ifS is connected.

Proof. If T is an induced tree onn vertices in a cu-
bic graph, then there are 3n − 2(n − 1) = n + 2 edges
betweenT and its complementS. Therefore, there ar
(3n − (n + 2))/2 = n − 1 internal edges inS which
gives thatS is a tree if and only if it is connected.�
Lemma 3. Let G be a cubic graph with2n nodes,T ′
an induced connected subgraph andS′ the comple-
ment ofT ′.

If S′ is not connected, then there are no defin
treesT ,S of a Yutsis decomposition so thatT ′ ⊆ T .

Proof. Suppose that there is such a decomposit
SinceT is a tree andT ′ is a connected subgraph ofT ,
each component ofT \ T ′ is a tree and contains a ve
tex which is an endvertex ofT . Each such endvertex
adjacent toS, which implies thatS′ is connected con
trary to hypothesis. �

The following remark is trivial to prove, but w
want to mention it nevertheless in order to be able
refer to it later on.

Remark 4. A vertex of degree 2 is a cutvertex
a graph if and only if it is not contained in a cycle.

In planar graphs we will use the embedding of
graph to speed up the algorithm. Note that in a tw
connected plane graph every edge is in the boun
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of two different faces. This gives the following rema
and definition:

Remark 5. In a cubic 2-connected graphG = (V ,E)

embedded in the plane, for every paire, e′ of edges
sharing a vertex, there is exactly one facefG(e, e′) so
that bothe ande′ are in its boundary.

This remark enables us to formulate the followi
lemma we use in the algorithm:

Lemma 6. Given a cubic2-connected graphG =
(V ,E) embedded in the plane, a subgraphT =
(VT ,ET ) that is a tree and a vertexv /∈ VT that has
one neighbour inT and2 neighboursv′, v′′ in V \VT .
Let e′ = {v, v′}, e′′ = {v, v′′}.

The vertexv is a cutvertex in the graphT c induced
by V \ VT , if and only if the boundary offG(e, e′)
contains a tree vertex.

Proof. First suppose thatfG(e, e′) does not contain a
tree vertex. Then the boundary is a cycle inV \ VT ,
sov is contained in a cycle and therefore no cutver
due toRemark 4.

Now suppose thatfG(e, e′) does contain a tree ve
tex t and lett ′ denote the tree neighbour ofv. Then
there is a path fromt to t ′ in T and adding the edg
{t ′, v} to it we have a path between two vertices
the boundary offG(e, e′). Connecting the endvertice
through the interior offG(e, e′) we get a Jordan curv
with the two non-tree neighbours ofv in different
components. So they are also in different compon
of T c − {v} while they are in the same compone
of T c. Sov is a cutvertex ofT c. �

We also use the following easy criterion to det
mine that some graphs are in fact not Yutsis grap
As Tables 1 and 2show, this criterion does not elim
nate too many graphs, but all computations neces
to apply it are also used to determine a good star
vertex for the exhaustive search for a tree decomp
tion, so applying it is practically for free:

Lemma 7. Let t denote the number of triangles in
cubic graph andf the number of vertices not con
tained in a triangle. Ift > f + 4 then the graph is
not a Yutsis graph.

Proof. Note that in a Yutsis-decomposition in eve
triangle there is exactly one edge that belongs to on
the trees. This implies that all vertices in triangles h
degree 1 or 2 in one of the trees and in every trian
there is at least one vertex with degree 1 in one of
trees. So the number of triangles is a lower bound
the numbers of leaves in two trees that form a Yu
decomposition. If for a given decomposition treeT we
let v3 denote the number of vertices ofT with degree 3
andb the number of leaves, then we havev3 = b − 2
for
nrecognized

running

(sec)
Table 1
The number of Yutsis and non-Yutsis cubic graphs with 2n nodes forn � 15. The numbers of graphs with too many triangles are only
bridgeless graphs. The column labeled #app./%unrec gives the number of times that the heuristic was applied and the percentage of u
Yutsis graphs (i.e. Yutsis graphs for which the heuristic did not find a decomposition). The times given are on a 2.6 GHz Pentium 4
Linux

2n # Graphs Yutsis Not Yutsis With bridge Too many triangles #app/%unrec Time

4 1 1 0 0 0 1/0.0
6 2 2 0 0 0 1/0.0
8 5 5 0 0 0 1/0.0

10 19 18 1 1 0 3/0.0
12 85 80 5 4 1 3/0.0
14 509 475 34 29 2 3/0.0
16 4060 3836 224 186 6 4/0.0521
18 41301 39555 1746 1435 22 4/0.0834 < 0.1
20 510489 495045 15444 12671 77 6/0.0418 1.3
22 7319447 7159696 159751 131820 351 6/0.0476 25
24 117940535 116040456 1900079 1590900 1660 6/0.0524 480
26 2094480864 2068782009 25698855 21940512 8875 7/0.0358 8400
28 40497138011 40107422184 389715827 339723835 49978 7/0.0345
30 845480228069 838931116609 6549111460 5821548438 301277 9/0.0516
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es that the
position).

sec)
Table 2
The numbers of Yutsis and non-Yutsis cubic polyhedra up to 40 vertices. The column labeled #app/%unrec gives the number of tim
heuristic was applied and the percentage of unrecognized Yutsis graphs (i.e. Yutsis graphs for which the heuristic did not find a decom
The times given are on a 2.6 GHz Pentium 4 running Linux

2n # Graphs Yutsis Too many triangles Not Yutsis #app/%unrec Time (

4 1 1 0 0 4/0.0
6 1 1 0 0 6/0.0
8 2 2 0 0 8/0.0

10 5 5 0 0 10/0.0
12 14 14 0 0 12/0.0
14 50 50 0 0 14/0.0
16 233 233 0 0 16/0.0
18 1249 1248 1 1 18/0.0
20 7595 7593 0 2 20/0.0
22 49566 49536 4 30 22/0.0 0.2
24 339722 339483 2 239 24/0.0012 1.1
26 2406841 2404472 67 2369 26/0.0035 9
28 17490241 17468202 16 22039 28/0.0074 76
30 129664753 129459090 1268 205663 30/0.0151 663
32 977526957 975647292 414 1879665 32/0.0263 5830
34 7475907149 7458907217 29984 16999932 34/0.0422 73273
36 57896349553 57744122366 11109 152227187 36/0.1049
38 453382272049 452028275567 744000 1353996482 38/0.1460
40 3585853662949 3573870490382 318520 11983172567 40/0.1253
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so for both trees together we have that there must b
leastt − 4 vertices of degree 3 in the two trees whi
can—as noticed before—not belong to a triangle.�

5. Fast heuristics—a greedy approach

In spite of the fact that this decision problem is N
complete, in most cases a set of defining trees ca
found very quickly by a heuristic we will now de
scribe. Both of our filters work by first applying
heuristic a couple of times. Only in cases where
heuristics do not find a tree decomposition do we
ply exhaustive search methods.

Given a connected cubic graphG, we start with a
random vertex forming a one-vertex treeT1 and a list
L1 of all its neighbours. We increase the tree vertex
vertex forming treesT2, T3, . . . , Tk and corresponding
lists L2,L3, . . . ,Lk . In each stepi, Li is a list of all
vertices inV \Ti which neighbour vertices inTi . If we
manage to build a treeTn this way and the subgraphS
induced by the remainingn vertices is connected, the
we have proved thatG is a Yutsis graph.

The treeTi+1 is formed by adding a vertex fromLi

to Ti . We never add a vertex to the treeTi that has two
neighbours inTi , as this would lead to a cycle inTi
and therefore also inTn. Nor do we add a cutvertex o
the graph induced byV \Ti , becauseLemma 3applied
to Ti ∪{v} gives in that case thatTn cannot be a tree o
a Yutsis decomposition. If we attempt to add a ver
but it is rejected by one of these conditions, we rem
it from the list and choose a new vertex.

As long as there are vertices in the list, this proc
can continue and hopefully find a decomposition—
must only stop (unsuccessfully) when the list is emp
This is where the greedy aspect comes in: when ch
ing the next vertex to be added toTi we always choose
one for which the list grows the most—or in oth
words: a vertexv so that the number ofunplaced
neighbours ofv—that is: neighbours that are not y
contained inLi or the tree—is as large as possible.

5.1. Algorithmic details

In order to make this approach run quickly, it
necessary to be able to find the next vertex to add
ciently. That is, we must find those vertices in the
that have the largest number of unplaced neighbo
very quickly and be able to check whether they
cutvertices of the complement or have two neighbo
in the tree.
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To this end we keep three listsLj
i for every stepi

with 0� j � 2 and append a new vertex that has to
added to one of the lists to listLj if it has j unplaced
neighbours at stepi. When there are two vertices wit
the same numberj of unplaced neighbours, they a
added toLj in a random order.

When choosing the next vertex to add, we alwa
choose the listLj with j as large as possible so th
Lj is nonempty and take the last vertex added to
list (so it is a kind of a depth-first or LIFO approach
If j > 0, this vertex is then tested for the numberk of
unplaced neighbours, which may have decreased s
the vertex was added to the list. Ifj �= k, sok < j , the
vertex is placed in the listLk

i , becoming the last verte
added to the list, and we choose again. Since the c
putation of the number of unplaced neighbours
obviously be done in constant time and every ver
is tested and moved at most 3 times, we have:

Remark 8. The total number of steps necessary
choosing vertices in one run of the heuristic in a gra
with 2n vertices is at most O(n).

The most time consuming part in this heuristic
the computation whether a vertex is a cutvertex in
complement ofTi . This computation takes time O(n)

and must be performed O(n) times. Therefore we get
total running time of O(n2). Some techniques sped u
the cutvertex testing routine considerably though
enough to guarantee a total of O(n) steps in total pe
application of the heuristic in the general case:

Note that we only have to test verticesv that have
degree 2 in the complement for being cutvertices
the complement, so due toRemark 4we just have to
find out whetherv lies on a cycle. We do a simulta
neous breadth-first search started at both neighb
of a vertex to be tested and stop as soon as a ve
is reached from both neighbours. Ifg is the size of a
smallest cycle containingv, the routine will only visit
vertices at distance at most�g/2� from v, so in case of
smallg this gives a sub-linear performance, but in ca
of v being a cutvertex, the whole complement still h
to be searched. In addition we mark vertices that
known to not lie on a cycle (e.g., discovered in an e
lier test) and perform our breadth-first searches on
graph with those vertices removed. Though speed
up the search considerably, this still does not lead
sub-quadratic worst case performance.
A similar technique with three simultaneo
breadth-first searches is also performed for the s
ing vertex. If it is found to be a cutvertex ofG, thenG

is not Yutsis.
In case of plane graphs that come with an emb

ding, we keep a list of all 6n pairs of edges sharin
a vertex. When the first vertex is added to the tr
all pairs of edges belonging to faces containing t
vertex are marked. This can easily be done in t
proportional to the number of pairs to be marked. Te
ing a vertex for being a cutvertex can now—due
Lemma 6—be done in constant time: we just have
check whether the pair of edges that do not lead
tree neighbours is marked or not. Adding a new v
tex to the tree we just have to mark all pairs of ed
belonging to the face just checked, which again
be done in time proportional to the number of pa
marked. Since there is a linear number of pairs
edges and every pair is marked at most once we
a time consumption of O(n) for all connectivity tests
and markings done in one application of the heu
tic. So for planar graphs we have a total running ti
of O(n).

5.2. Discussion

Though the heuristic is extremely simple and c
easily be implemented to run in time O(n2) per trial,
O(n) for plane graphs, the results are astonishin
good. We tested various variants of this approach
modifying the ways of choosing the next vertex
add—e.g. choosing vertices from the list completely
random or in a depth-first or breadth-first manner. T
greedy approach always turned out to give the low
average number of attempts necessary to find a dec
position.

In [14] a much more elaborate approach via
local search method requiring time O(n4) per trial is
described. Nevertheless in the local search appro
the number of graphs where a decomposition is fo
in the first one or two attempts decreases rapidly fr
87% (one trial), 97% (two trials), forn = 10 (1000
random cubic graphs tested) to about 30%, resp. 5
for n = 200 (2000 random cubic graphs tested), wh
is the largest case for which the program was r
while the greedy method described above finds a
composition for about 96% (n = 10), 89% (n = 200),
of the graphs in the first trial and 99.5%, resp. 98.5
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in the first two trials. For the greedy approach the
erage number of trials needed to find a set of defin
trees grows very slowly—from 1.04 forn = 10 to 1.16
for n = 150 000.

In spite of testing more than 350 000 large grap
we only once came across a graph where the heur
did not find a set of defining trees. This graph turn
out to have a bridge—note that a graph with a brid
is trivially non-Yutsis. In the other more than 350 0
cases the maximum number of times the heuristic
to be applied to find a decomposition was 8. InFig. 2
you will find the development of the number of tria
needed when choosing the vertex to add randomly
stead of greedily, but still applying the same rules
remove vertices from the list.
Taking into account that it is an NP-hard proble
even the random approach works astonishingly w
though choosing a completely random tree (tha
without the deletion of cutvertices from the list) on
leads to the finding of defining trees for very small v
tex numbers (seeFig. 3where this approach is name
Plain Random). The key is in fact the application o
the simpleLemma 3.

There are graphs for which the heuristic cannot fi
a tree decomposition in spite of the fact that one exi
The smallest examples are for 22 vertices. The rand
approach does find a decomposition, but as the gr
ics show, for by far most of the graphs the performa
of the greedy heuristic is considerably better. The
uation where the greedy approach does not find a
edy heuristic

d tested.
Fig. 2. The average number of runs on large random cubic graphs. For every size at least 25 000 graphs have been tested by the gre
and 1000 by the random heuristic.

Fig. 3. The average number of runs on small random cubic graphs. For every size at least 9000 graphs have been generated an
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composition while the random approach does, occ
so exceptionally that it is not interesting to incorpor
also the random approach in the algorithm.

6. An exhaustive search method

Our testing method works in 4 phases: first
greedy heuristic is applied to the graphs, then the
maining graphs are tested for having bridges (s
graphs are trivially non-Yutsis), then the heuristic
applied again to the graphs still remaining, and fina
an exhaustive search is applied to the graphs.

The number of applications of the heuristic is det
mined by the input graphs. We found that	(1/5)|V |

trials for the first series and	(1/10)|V |
 trials for the
second series are suitable values for (small) graphs
two times(1/2)|V | trials are good for cubic polyhedra
which are listed inTable 2. As an example: in the cas
of all cubic graphs on 24 vertices, 98.25% of the in
graphs were determined to be Yutsis after the firs
runs of the heuristic. That were 99.86% of the gra
that turned out to be Yutsis in the end. In the follo
ing step 76.92% of the remaining graphs were dete
to have a bridge and after the last two applications
the heuristic 99.95% of the Yutsis graphs had been
tected and only 0.31% of all graphs remained to
examined by the exhaustive test.

Our exhaustive search is simply a branch-a
bound version of the construction also used for
heuristic, without the greediness. That is: We s
with some vertex and recursively add vertices from
list of vertices neighbouring the tree. In each iterati
vertices that became cutvertices in the complemen
have two neighbours in the tree are removed from
list. All vertices remaining in the list are first added
the tree and in case no Yutsis decomposition is fo
in the following recursion steps then removed from
list and forbidden for later addition.

We tried several more elaborate search meth
but though they decreased the number of iteratio
all of them in fact slowed down the computations
small graphs.

One thing that did in fact pay off was the determ
nation of a good starting vertex based on the num
of triangles in the neighbourhood:

Define t (v) = #{w ∈ V | {v,w} ∈ E andw is con-
tained in a triangle} and the qualityq(v) of a vertex as
∑
{w|{v,w}∈E} t (w). We choose a random vertex amo

those with maximal quality as the starting vertex. F
24 vertices this choice of the starting vertex decrea
the number of iterations needed in the exhaustive
by a factor of 4.4 (2.9 for graphs that turned out to
Yutsis and 4.5 for non-Yutsis graphs).

Since in order to apply this criterion we have
search for triangles anyway, we can also use the re
to applyLemma 7. The fraction of graphs that can b
proven not to be Yutsis this way is fairly small (e.g
1660 for 24 vertices) but since applying the lem
causes no extra cost, it is of course worth doing it.

7. Results

The following numbers of Yutsis and non-Yuts
graphs were computed independently by the prog
described here1 and another somewhat slower a
proach that we have not described. The numbe
graphs with bridges and graphs with too many tri
gles were only computed by the first program. T
programs used to generate the graphs wereminibaum
for all cubic graphs (see[15]), plantri for all cubic
polyhedra (see[16]) andgenrangfor the tests of large
cubic random graphs (see[17]). Some of the large
numbers were computed by a program using a prel
nary version of the greedy heuristics in which the n
vertex to add was always chosen among the last
vertices added to the list. Since the number of Yu
and non-Yutsis graphs or graphs that can be de
mined to be non-Yutsis due toLemma 7are indepen-
dent of this, we did not repeat the computation. Tim
where given always refer to the method described h
implemented in C and run on a 2.6 GHz Pentium
Linux computer. For large vertex numbers the com
tation was done on clusters with various machine ty
in Bielefeld, Canberra and Ghent.
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