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Abstract

Generalized recoupling coefficients otj3coefficients can be expressed as multiple sums over products of Racgh or 6
coefficients [L.C. Biedenharn, J.D. Louck, Couplingrofingular momenta: recoupling theory, in: The Racah—Wigner Algebra
in Quantum Theory, Encyclopedia of Mathematics and its Applications, vol. 9, Addison-Wesley, 1981, pp. 435-481]. The
problem of finding an optimal summation formula (i.e. with a minimal number of Racah coefficients) for a gjvenficient
is equivalent to finding an optimal reduction of a so-called Yutsis graph [A.P. Yutsis, I.B. Levinson, V.V. Vanagas, Mathematical
Apparatus of the Theory of Angular Momentum, Israel Program for Scientific Translation, Jerusalem, 1962].

In terms of graph theory Yutsis graphs are connected simple cubic graphs which can be partitioned into two vertex induced
trees. The two parts are necessarily of the same size. In this area Yutsis graphs are also studied under the name of cubic
dual Hamiltonian graphs [F. Jaeger, On vertex-induced forests in cubic graphs, in: Proc. 5th Southeastern Conference, Congr.
Numer. (1974) 501-512]. We present algorithms for determining whether a cubic graph is a Yutsis graph. This is interesting
for generating large test cases for programs (as in [P.M. Lima, Comput. Phys. Comm. 66 (1991) 89; S. Fritzsche, T. Inghoff,
T. Bastug, M. Tomaselli, Comput. Phys. Comm. 139 (2001) 314; D. Van Dyck, V. Fack, GYutsis: heuristic based calculation
of general recoupling coefficients, Comput. Phys. Comm. 154 (2003) 219-232]) that determine a summation formula for a
3nj-coefficient.

Moreover, we give the numbers of Yutsis and non-Yutsis cubic graphs with up to 30 vertices and cubic polyhedra with up to
40 vertices. All these numbers have been computed by two independent programs in order to reduce the probability of error.
Since the decision problem whether a given cubic graph is Yutsis or not is NP-complete, we could not hope for a polynomial
time worst case performance of our programs. Nevertheless the programs described in this article are very fast on average.
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1. Introduction sis graph can in general be obtained from more than
one pair of trees, so the defining trees and the defin-
In various fields of theoretical physics the quantum ing edge-cut are in general not uniquely determined.
mechanical description of many-particle processes of- Since the two endpoints of multiple edges in a Yutsis
ten requires an explicit transformation of the angular graph must obviously belong to different trees, they
momenta of the subsystems among different coupling are trivial from the viewpoint of the decision problem
schemes. Such transformations are describegelmy and we will restrict ourselves to simple graphs when
eral recoupling coefficientand arise mostly in atomic  discussing the decision problem.

and nuclear structure and scattering calculatidis In mathematics, Yutsis graphs are also known as
Several algorithms have been described to generate adual Hamiltonian cubic graphf3].
summation formula expressing the recoupling coeffi- Up to now no better method is known to determine

cient as a multiple sum over products of Wigngr 6  whether a cubic graph is Yutsis than to search for a

symbols multiplied by phase factors and square root defining tree (or cut). For the quantum theory of angu-

factors[4-10]. It is desirable to find an optimal sum- lar momenta, we are interested in obtaining large test

mation formula, i.e. with a minimum number of sum- cases by generating large cubic graphs at random and

mation variables and WignerjGymbols. filter out those graphs which are not Yutsis. In addi-
The best algorithms at present are based on tech-tion we would like to identify the non-Yutsis graphs

nigues developed by Yutsis, Levinson and Vandgghs  and study their structure.

and manipulate a graphical representation of the re-  All graphs in this article are assumed to be con-

coupling coefficient called a Yutsis graph. Reduction nected.

rules are defined for these graphs, which allow a step-

wise transformation of the graph by reduction and re-

moval of cycles. Each reduction step contributes part 2. Graphical representation of recoupling

of the final summation formula. Secti@summarizes  coefficients

some notions from the quantum theory of angular mo-

menta and shows how a Yutsis graph is constructed for  In [1, Topic 12] recoupling theory is considered

a given recoupling coefficient. For the general theory from the point of view ofbinary coupling schemes

of Yutsis graphs we refer {d,2]. A binary coupling scheme is the rooted binary tree
For our purposes a Yutsis graph can be defined asrepresenting the order of coupling of a state vector in

follows. A binary coupling tree om + 1 leaves is an  the tensor product of + 1 angular momentum mul-

unordered binary tree in which each leaf has a distinct tiplets, labelled respectively by the angular momenta

label. By taking two binary coupling trees on+ 1 J1, j2,---» jn+1. The leaves of the binary tree are la-

leaves in which the unique leaf vertices with the same belled by these angular momenta jo, .. ., jn+1, and

label are identified and then removed and where the the remaining vertices of the tree can be labelled by

root nodes are connected by an additional edge, we ob-the intermediate angular momenta. For example, the

tain a cubic multigraph with 2 nodes and i3 edges. following vector can be considered:

In this multigraph the internal vertices of the coupling N

irees define two vertex induced trees and the former |1 72)Js: (73 (ja. Js) j7) jg) jo)

leaf and root edges form an edge-cuton 2 edges. which corresponds to the left-side treeHig. 1(a).

Fig. 1 shows an example. A multigraph that can be There are obviously several ways in whight 1

constructed this way is calledvaitsis graphor simply angular momenta can be coupled, and the quantities

Yutsis Two vertex induced trees coming from such a that typically appear in atomic and nuclear structure

construction are called trdefining treesnd the edge-  computations are the related general recoupling coef-

cut is called the defining cut. Note that a given Yut- ficients or 3ij-coefficients. A general recoupling co-
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Fig. 1. (a) Two binary coupling schemes, and (b) the corresponding Yutsis graph.

efficient (or a generalizedn3-coefficient) is defined  those on the right-hand side get-g'*sign. The edges
to be the transformation coefficient between any such corresponding to the compounded angular momenta

two coupling schemes, e.g. on the left-hand side are directed away from the node
while the edges representing the resultant are directed

(i1, j2) J6. ((J3. (i js) j7) je) o | towards the node. The direction of the edges corre-
(j3. (s, j) j10, (as j2) j11)) Jo)- (1) sponding to the left-hand side are the reverse of those

corresponding to the right-hand side. The Yutsis graph

It is a fundamental theorem of recoupling theory shown inFig. 1(b) corresponds to the recoupling co-
[1, p. 455] that each such transformation coefficient efficient in Eq. (1) (Where Signs and directions are
(i.e. every generalized n3-coefficient) can be ex-  omitted).
pressed in terms of sums over products of Racah coef-  The sign of a node where angular momeyitaj-
ficients (6-coefficients). and j3 meet can be inverted by multiplying the value

A famous program of Burkgd], NJSYM already the graph represents W_l)j1+j2+j3_ A change of
deals with this problem. Burke’s approach is equiva- direction of an edge with labe} results in a mul-
lent to finding a certain path between the two binary tiplication by (—1)2/. The transformation coefficient
coupling schemes (representing the bra- and ket-partthen equals the coefficient represented by the dia-

of the general recoupling coefficient) by successive gram multiplied by (se€, Egs. (22.1) and (22.2)]
elementary transformations on the trees. The shorter

this path, the better the resulting formula. The path il n—l 172

found byNJSYMis generally rather long, thus yield- —1HFR ) [H(Z“f +D(@bi + 1)] ’

ing expressions which are far from optimal. In order i=1

to improve NJSYM other algorithms have been de- with S the sum of all ‘first’ coupled angular momenta,

veloped which implement graphical methods due to »n + 1 the number of angular momenta,the interme-

Yutsis et al[2]. diate angular momenta on the left sidg,the inter-
Consider a general recoupling coefficientof 1 mediate angular momenta on the right side, drttie

integer and half integer angular momenta. With each total angular momentum.

label in the recoupling coefficient an edge in the graph ~ Once the graph is generated, it can be simplified

is associated and with each coupling a node is associ-with the help of the reduction rules developed by Yut-

ated, resulting in a cubic graph witlk Z10des and i3 sis et al[2]. Using these rules the reduction algorithms

edges. The nodes representing the coupling of the left- iteratively eliminate cycles from the Yutsis graph, until

hand side of the recoupling coefficient get-d-sign, the graph is simplified to a so-called “triangular delta”,
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i.e. a graph consisting of two nodes connected by three  Since the computation of the dual can easily be

parallel edges. Several algorithms based on this ap-done in polynomial time, combining these results

proach have been developd-8,10,11] proves the theorem.O

From an algorithmic point of view one is interested

in the complexity of the formula. Since the difference

between the number of summations and the number4. Preliminaries

of 6 coefficients is constant, the number gf éoef-

ficients suffices as measure for the complexity of the In this section we will give and prove some lemmas

formula. With this idea in mind the signs of the nodes and remarks that we will use in the algorithid.=

and the direction of the edges can be neglected, since(V, E) always denotes a simple cubic graph with 2

they only contribute in phase and weight factors, not nodes and 3 edges.

influencing the complexity of the generated summa-

tion formula. Lemma 2. Let G be a cubic graph witt2n nodes,T
an induced subgraph anvertices that is a tree an8l
the complement df .

3. Thedecision problem is NP-complete ThenS, T are defining trees for a Yutsis decompo-
sition if and only ifS is connected.

In this section we will prove that the problem of
deciding whether a given graph is Yutsis or not is a
very hard problem in the worst case. To be exact: The
problem is NP-complete and it is even NP-complete
when restricted to the subclass of cubic polyhedra, i.e.
3-connected planar cubic graphs.

Proof. If T is an induced tree on vertices in a cu-
bic graph, then there are3- 2(n — 1) = n + 2 edges
betweenl and its complemerS. Therefore, there are
(Bn — (n+ 2))/2=n — 1 internal edges ir§ which
gives thatS is a tree if and only if it is connected.

Lemma 3. Let G be a cubic graph witt2n nodes,T’
Theorem 1. The decision pI’Oblem whether a given CuU- an induced Connected Subgraph aﬂﬁthe Comple_
bic polyhedron is Yutsis or not SP-complete. ment of7".

If S’ is not connected, then there are no defining

Proof. Since itis easy to see that this problemisin NP treesT, S of a Yutsis decomposition so thatc 7.
(take, e.g.n random vertices and check whether they
and their complement each induce a tree), the result isProof. Suppose that there is such a decomposition.
a direct consequence of results of Jaeger, Chvatal andSinceT is a tree and” is a connected subgraph Bf

Wigderson: each component df \ 7’ is a tree and contains a ver-
In [3] Jaeger defines a gragh to be dual Hamil- tex which is an endvertex df. Each such endvertex is
tonian if it has an elementary cut q&| — |V| + 2 adjacent taS, which implies thatS’ is connected con-

edges. He mentions that the planar dual of a dual trary to hypothesis. O

Hamiltonian graph is Hamiltonian, but also the reverse

is well known and easy to prove. He also proves that  The following remark is trivial to prove, but we
a graphG is dual Hamiltonian if and only if it has  want to mention it nevertheless in order to be able to

a partitioning of V as 71 U T» such that7y and T» refer to it later on.

induce a tree. This means that a cubic polyhedron is

Yutsis if and only if its dual triangulation is Hamil- Remark 4. A vertex of degree 2 is a cutvertex in

tonian. a graph if and only if it is not contained in a cycle.
Chvatal and Wigderson proved, independently of

each other, that determining the hamiltonicity of a In planar graphs we will use the embedding of the

graph is NP-complete, even when restricted to trian- graph to speed up the algorithm. Note that in a two-
gulationg[12,13] connected plane graph every edge is in the boundary
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of two different faces. This gives the following remark through the interior off; (e, ¢’) we get a Jordan curve

and definition:

Remark 5. In a cubic 2-connected gragh = (V, E)

embedded in the plane, for every paire’ of edges
sharing a vertex, there is exactly one fatge, ¢’) so
that bothe ande’ are in its boundary.

This remark enables us to formulate the following
lemma we use in the algorithm:

Lemma 6. Given a cubic2-connected graphG =
(V,E) embedded in the plane, a subgragh=
(Vr, E7) that is a tree and a vertex ¢ Vy that has
one neighbour il and2 neighbours’, v” in V\ Vr.
Lete' = {v,v'}, e’ = {v,v"}.

The vertew is a cutvertex in the grapli© induced
by V \ vr, if and only if the boundary off (e, ¢)
contains a tree vertex.

Proof. First suppose thafs (e, ¢’) does not contain a
tree vertex. Then the boundary is a cycleVin\, Vr,
sowv is contained in a cycle and therefore no cutvertex
due toRemark 4

Now suppose thafs (e, ¢’) does contain a tree ver-
tex ¢ and let:’ denote the tree neighbour of Then
there is a path from to +' in T and adding the edge
{t',v} to it we have a path between two vertices of
the boundary off (e, ¢'). Connecting the endvertices

Table 1

with the two non-tree neighbours af in different
components. So they are also in different components

of T¢ — {v} while they are in the same component
of T¢. Sov is a cutvertex off . O

We also use the following easy criterion to deter-
mine that some graphs are in fact not Yutsis graphs.
As Tables 1 and 2&how, this criterion does not elimi-
nate too many graphs, but all computations necessary
to apply it are also used to determine a good starting
vertex for the exhaustive search for a tree decomposi-
tion, so applying it is practically for free:

Lemma 7. Let ¢t denote the number of triangles in a
cubic graph andf the number of vertices not con-

tained in a triangle. Ifr > f + 4 then the graph is
not a Yutsis graph.

Proof. Note that in a Yutsis-decomposition in every
triangle there is exactly one edge that belongs to one of
the trees. This implies that all vertices in triangles have
degree 1 or 2 in one of the trees and in every triangle
there is at least one vertex with degree 1 in one of the
trees. So the number of triangles is a lower bound for
the numbers of leaves in two trees that form a Yutsis
decomposition. If for a given decomposition trEeve

let vz denote the number of vertices Bfwith degree 3
andb the number of leaves, then we have=5b — 2

The number of Yutsis and non-Yutsis cubic graphs withnddes forn < 15. The numbers of graphs with too many triangles are only for
bridgeless graphs. The column labeled #app./%unrec gives the number of times that the heuristic was applied and the percentage of unrecognizec
Yutsis graphs (i.e. Yutsis graphs for which the heuristic did not find a decomposition). The times given are on a 2.6 GHz Pentium 4 running

Linux
2n # Graphs Yutsis Not Yutsis With bridge Too many triangles #app/%unrec Time (sec)
4 1 1 0 0 0 ¥0.0
6 2 2 0 0 0 ¥0.0
8 5 5 0 0 0 ¥0.0
10 19 18 1 1 0 $0.0
12 85 80 5 4 1 30.0
14 509 475 34 29 2 2.0
16 4060 3836 224 186 6 /0.0521
18 41301 39555 1746 1435 22 /010834 <01
20 510489 495045 15444 12671 77 /08418 13
22 7319447 7159696 159751 131820 351 /0.6476 25
24 117940535 116040456 1900079 1590900 1660 /0.0524 480
26 2094480864 2068782009 25698855 21940512 8875 /0.0358 8400
28 40497138011 40107422184 389715827 339723835 49978 /0.0345
30 845480228069 838931116609 6549111460 5821548438 301277 /0.0596
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Table 2

The numbers of Yutsis and non-Yutsis cubic polyhedra up to 40 vertices. The column labeled #app/%unrec gives the number of times that the

heuristic was applied and the percentage of unrecognized Yutsis graphs (i.e. Yutsis graphs for which the heuristic did not find a decomposition).
The times given are on a 2.6 GHz Pentium 4 running Linux

2n # Graphs Yutsis Too many triangles Not Yutsis #app/%unrec Time (sec)
4 1 1 0 0 40.0
6 1 1 0 0 §0.0
8 2 2 0 0 §0.0
10 5 5 0 0 100.0
12 14 14 0 0 120.0
14 50 50 0 0 140.0
16 233 233 0 0 10.0
18 1249 1248 1 1 1®.0
20 7595 7593 0 2 2m.0
22 49566 49536 4 30 2.0 0.2
24 339722 339483 2 239 24.0012 11
26 2406841 2404472 67 2369 /860035 9
28 17490241 17468202 16 22039 /RO074 76
30 129664 753 129459090 1268 205663 /30151 663
32 977526957 975647292 414 1879665 /32263 5830
34 7475907149 7458907217 29984 16999932 /022 73273
36 57896349553 57744122366 11109 152227187 /03649
38 453382272049 452028275567 744000 1353996 482 /0.3860
40 3585853662949 3573870490382 318520 11983172567  /0.14%53

so for both trees together we have that there must be atand therefore also ifi,. Nor do we add a cutvertex of
leastr — 4 vertices of degree 3 in the two trees which the graph induced by \ 7;, becauséemma 3applied
can—as noticed before—not belong to a trianglel to T; U {v} gives in that case thdf, cannot be a tree of

a Yutsis decomposition. If we attempt to add a vertex
butitis rejected by one of these conditions, we remove
it from the list and choose a new vertex.

As long as there are vertices in the list, this process
In spite of the fact that this decision problem is NP-

can continue and hopefully find a decomposition—it

complete, in most cases a set of defining trees can beys; only stop (unsuccessfully) when the listis empty.
found very quickly by a heuristic we will now de-

! ) - v This is where the greedy aspect comes in: when choos-
scribe. Both of our filters work by first applying a

= , p ing the next vertex to be addedTpwe always choose

heuristic a couple of times. Only in cases where the onq for which the list grows the most—or in other

heuristics dp not find a tree decomposition do we ap- ,0.4s: 4 vertexv so that the number otinplaced

ply e_xhausnve search methods. ) neighbours ofv—that is: neighbours that are not yet
Given a connectgd cubic gragh, we start W'th a contained inL; or the tree—is as large as possible.

random vertex forming a one-vertex trégand a list

L, of all its neighbours. We increase the tree vertex by L ,

vertex forming treed, Ts, ..., Ty and corresponding -1 Algorithmic details

lists Lo, L3, ..., L. In each step, L; is a list of all

vertices inV \ T; which neighbour vertices iff.. If we In order to make this approach run quickly, it is

manage to build a treg, this way and the subgragh necessary to be able to find the next vertex to add effi-

induced by the remaining vertices is connected, then  ciently. That is, we must find those vertices in the list

we have proved thaf is a Yutsis graph. that have the largest number of unplaced neighbours
The treeT; ;1 is formed by adding a vertex froib; very quickly and be able to check whether they are

to 7;. We never add a vertex to the tréethat has two cutvertices of the complement or have two neighbours
neighbours in7;, as this would lead to a cycle iy in the tree.

5. Fast heuristics—a greedy approach
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To this end we keep three Iislsl’ for every step A similar technique with three simultaneous
with 0 < j < 2 and append a new vertex that has to be breadth-first searches is also performed for the start-
added to one of the lists to ligt/ if it has j unplaced ing vertex. If it is found to be a cutvertex of, thenG
neighbours at step When there are two vertices with  is not Yutsis.
the same numbej of unplaced neighbours, they are In case of plane graphs that come with an embed-
added toL/ in a random order. ding, we keep a list of all 6 pairs of edges sharing

When choosing the next vertex to add, we always a vertex. When the first vertex is added to the tree,
choose the list./ with j as large as possible so that all pairs of edges belonging to faces containing this
L/ is nonempty and take the last vertex added to this vertex are marked. This can easily be done in time
list (so it is a kind of a depth-first or LIFO approach). proportional to the number of pairs to be marked. Test-
If j > 0, this vertex is then tested for the numbeof ing a vertex for being a cutvertex can now—due to
unplaced neighbours, which may have decreased sinceLemma 6—be done in constant time: we just have to
the vertex was added to the list.iE£ k, sok < j, the check whether the pair of edges that do not lead to
vertex is placed in the Iisltf.‘, becoming the last vertex  tree neighbours is marked or not. Adding a new ver-
added to the list, and we choose again. Since the com-tex to the tree we just have to mark all pairs of edges
putation of the number of unplaced neighbours can belonging to the face just checked, which again can
obviously be done in constant time and every vertex be done in time proportional to the number of pairs

is tested and moved at most 3 times, we have:

Remark 8. The total number of steps necessary for
choosing vertices in one run of the heuristic in a graph
with 2n vertices is at most ).

The most time consuming part in this heuristic is
the computation whether a vertex is a cutvertex in the
complement off;. This computation takes time (@)
and must be performed(®) times. Therefore we get a
total running time of @z2). Some techniques sped up
the cutvertex testing routine considerably though not
enough to guarantee a total of/) steps in total per
application of the heuristic in the general case:

Note that we only have to test verticeghat have
degree 2 in the complement for being cutvertices in
the complement, so due ®emark 4we just have to
find out whethen lies on a cycle. We do a simulta-

marked. Since there is a linear number of pairs of
edges and every pair is marked at most once we get
a time consumption of @) for all connectivity tests
and markings done in one application of the heuris-
tic. So for planar graphs we have a total running time
of O(n).

5.2. Discussion

Though the heuristic is extremely simple and can
easily be implemented to run in time(&¥) per trial,
O(n) for plane graphs, the results are astonishingly
good. We tested various variants of this approach by
modifying the ways of choosing the next vertex to
add—e.g. choosing vertices from the list completely at
random or in a depth-first or breadth-first manner. The
greedy approach always turned out to give the lowest
average number of attempts necessary to find a decom-

neous breadth-first search started at both neighboursposition.

of a vertex to be tested and stop as soon as a vertex

is reached from both neighbours.dfis the size of a
smallest cycle containing, the routine will only visit
vertices at distance at mogt/2] from v, so in case of

In [14] a much more elaborate approach via the
local search method requiring time(&?) per trial is
described. Nevertheless in the local search approach
the number of graphs where a decomposition is found

smallg this gives a sub-linear performance, but in case in the first one or two attempts decreases rapidly from
of v being a cutvertex, the whole complement still has 87% (one trial), 97% (two trials), for = 10 (1000

to be searched. In addition we mark vertices that are random cubic graphs tested) to about 30%, resp. 50%,
known to not lie on a cycle (e.g., discovered in an ear- for n =200 (2000 random cubic graphs tested), which
lier test) and perform our breadth-first searches on the is the largest case for which the program was run,
graph with those vertices removed. Though speeding while the greedy method described above finds a de-
up the search considerably, this still does not lead to a composition for about 96%(= 10), 89% ¢ = 200),
sub-quadratic worst case performance. of the graphs in the first trial and 99.5%, resp. 98.5%,
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in the first two trials. For the greedy approach the av- Taking into account that it is an NP-hard problem,
erage number of trials needed to find a set of defining even the random approach works astonishingly well,
trees grows very slowly—from 1.04 far=10t0 1.16 though choosing a completely random tree (that is
for n =150000. without the deletion of cutvertices from the list) only
In spite of testing more than 350 000 large graphs leads to the finding of defining trees for very small ver-
we only once came across a graph where the heuristictex numbers (seEig. 3where this approach is named
did not find a set of defining trees. This graph turned Plain Randor The key is in fact the application of
out to have a bridge—note that a graph with a bridge the simpleLemma 3
is trivially non-Yutsis. In the other more than 350 000 There are graphs for which the heuristic cannot find
cases the maximum number of times the heuristic had a tree decomposition in spite of the fact that one exists.
to be applied to find a decomposition was 8Hig. 2 The smallest examples are for 22 vertices. The random
you will find the development of the number of trials approach does find a decomposition, but as the graph-
needed when choosing the vertex to add randomly in- ics show, for by far most of the graphs the performance
stead of greedily, but still applying the same rules to of the greedy heuristic is considerably better. The sit-

remove vertices from the list. uation where the greedy approach does not find a de-
7
6 - Random m
5 ‘ .
4t _
runs .
3F .
2r Greedy
1F =
0 L | 1 | 1
0 50000 100000 150000 200000 250000 300000
graph size

Fig. 2. The average number of runs on large random cubic graphs. For every size at least 25 000 graphs have been tested by the greedy heuris
and 1000 by the random heuristic.

50
45
40
35
30
runs 25
20

15
10 b Random - --- - i

Greedy ——

Plain random

I e S I I AT - . -

20 22 24 26 28 30
graph size

Fig. 3. The average number of runs on small random cubic graphs. For every size at least 9000 graphs have been generated and tested.
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composition while the random approach does, occurs ), 1, w1k f (w). We choose a random vertex among
so exceptionally that it is not interesting to incorporate those with maximal quality as the starting vertex. For
also the random approach in the algorithm. 24 vertices this choice of the starting vertex decreases
the number of iterations needed in the exhaustive test
by a factor of 4.4 (2.9 for graphs that turned out to be
Yutsis and 4.5 for non-Yutsis graphs).

Since in order to apply this criterion we have to

Our testing method works in 4 phases: first the search for triangles anyway, we can also use the result
greedy heuristic is applied to the graphs, then the re- to applyLemma 7 The fraction of graphs that can be
maining graphs are tested for having bridges (such proven not to be Yutsis this way is fairly small (e.g.,
graphs are trivially non-Yutsis), then the heuristic is 1660 for 24 vertices) but since applying the lemma

6. An exhaustive search method

applied again to the graphs still remaining, and finally
an exhaustive search is applied to the graphs.

The number of applications of the heuristic is deter-
mined by the input graphs. We found that/5)|V|]
trials for the first series anf{1/10)|V|] trials for the

second series are suitable values for (small) graphs and

two times(1/2)| V| trials are good for cubic polyhedra,
which are listed infable 2 As an example: in the case
of all cubic graphs on 24 vertices, 98.25% of the input
graphs were determined to be Yutsis after the first 4
runs of the heuristic. That were 99.86% of the graphs
that turned out to be Yutsis in the end. In the follow-
ing step 76.92% of the remaining graphs were detected
to have a bridge and after the last two applications of
the heuristic 99.95% of the Yutsis graphs had been de-
tected and only 0.31% of all graphs remained to be
examined by the exhaustive test.

Our exhaustive search is simply a branch-and-
bound version of the construction also used for the
heuristic, without the greediness. That is: We start
with some vertex and recursively add vertices from the
list of vertices neighbouring the tree. In each iteration,
vertices that became cutvertices in the complement or
have two neighbours in the tree are removed from the
list. All vertices remaining in the list are first added to
the tree and in case no Yutsis decomposition is found

in the following recursion steps then removed from the .

list and forbidden for later addition.

We tried several more elaborate search methods,
but though they decreased the number of iterations,
all of them in fact slowed down the computations for
small graphs.

One thing that did in fact pay off was the determi-
nation of a good starting vertex based on the number
of triangles in the neighbourhood:

Definer(v) =#{w € V | {v, w} € E andw is con-
tained in a trianglpand the quality (v) of a vertex as

causes no extra cost, it is of course worth doing it.

7. Results

The following numbers of Yutsis and non-Yutsis
graphs were computed independently by the program
described hefeand another somewhat slower ap-
proach that we have not described. The number of
graphs with bridges and graphs with too many trian-
gles were only computed by the first program. The
programs used to generate the graphs wi@rébaum

for all cubic graphs (segl5]), plantri for all cubic
polyhedra (segl6]) andgenrangfor the tests of large
cubic random graphs (s¢&7]). Some of the larger
numbers were computed by a program using a prelimi-
nary version of the greedy heuristics in which the next
vertex to add was always chosen among the last two
vertices added to the list. Since the number of Yutsis
and non-Yutsis graphs or graphs that can be deter-
mined to be non-Yutsis due temma 7are indepen-
dent of this, we did not repeat the computation. Times
where given always refer to the method described here
implemented in C and run on a 2.6 GHz Pentium 4
Linux computer. For large vertex numbers the compu-
tation was done on clusters with various machine types
in Bielefeld, Canberra and Ghent.

References

[1] L.C. Biedenharn, J.D. Louck, Coupling sfangular momenta:
recoupling theory, in: The Racah—-Wigner Algebra in Quantum

1 The program is available dtttp:/caagt.ugent.befyutsis/filter.
caagt


http://caagt.ugent.be/yutsis/filter.caagt
http://caagt.ugent.be/yutsis/filter.caagt

70

Theory, in: Encyclopedia of Mathematics and its Applications,
vol. 9, Addison-Wesley, 1981, pp. 435-481.

[2] A.P. Yutsis, I.B. Levinson, V.V. Vanagas, Mathematical Appa-
ratus of the Theory of Angular Momentum, Israel Program for
Scientific Translation, Jerusalem, 1962.

[3] F. Jaeger, On vertex-induced forests in cubic graphs, in: Proc.

5h Southeastern Conference, Congr. Numer. (1974) 501-512.

[4] P.M. Lima, Comput. Phys. Comm. 66 (1991) 89.

[5] S. Fritzsche, T. Inghoff, T. Bastug, M. Tomaselli, Comput.
Phys. Comm. 139 (2001) 314.

[6] D. Van Dyck, V. Fack, GVYutsis: heuristic based calculation
of general recoupling coefficients, Comput. Phys. Comm. 154
(2003) 219-232.

[7] V. Fack, S.N. Pitre, J. Van der Jeugt, Calculation of general re-

coupling coefficients using graphical methods, Comput. Phys.

Comm. 101 (1997) 155-170.

[8] D. Van Dyck, V. Fack, New heuristic approach to the cal-
culation of general recoupling coefficients, Comput. Phys.
Comm. 151 (2003) 353-368.

[9] P.G. Burke, A program to calculate a general recoupling coef-
ficient, Computer. Phys. Comm. 1 (1970) 241-250.

D. Van Dyck et al. / Computer Physics Communications 173 (2005) 61-70

[10] A. Bar-Shalom, M. Klapisch, NJGRAF—An efficient program
for calculation of general recoupling coefficients by graphical
analysis, compatible with NJSYM, Comput. Phys. Comm. 50
(1988) 375-393.

[11] D. Van Dyck, V. Fack, On the reduction of Yutsis graphs, Dis-
crete Math. (2004), in press.

[12] V. Chvatal, Hamiltonian cycles, in: E.L. Lawler, J.K. Lenstra,
A.H.G. Rinnooy Kan, D.B. Shmoys (Eds.), The Traveling
Salesman Problem, John Wiley, 1985, pp. 403—-429.

[13] A. Wigderson, The complexity of the Hamiltonian circuit prob-
lem for maximal planar graphs, Technical Report, Computer
Science Department, Princeton University, vol. 298, 1982.

[14] D. Van Dyck, V. Fack, To be or not to be Yutsis, Electron. Notes
Discrete Math. 17 (2004) 275-279.

[15] G. Brinkmann, Fast generation of cubic graphs, J. Graph The-
ory 23 (2) (1996) 139-149.

[16] G. Brinkmann, B.D. McKay, Fast generation of non-
isomorphic planar cubic graphs, in preparation. 3eip://cs.
anu.edu.au/~bdm/plantri/

[17] B.D. McKay, gtoolsprograms available dtttp://cs.anu.edu.
au/~bdm/nauty


http://cs.anu.edu.au/~bdm/plantri/
http://cs.anu.edu.au/~bdm/nauty
http://cs.anu.edu.au/~bdm/plantri/
http://cs.anu.edu.au/~bdm/nauty

	To be or not to be Yutsis: Algorithms for the decision problem
	Introduction
	Graphical representation of recoupling coefficients
	The decision problem is NP-complete
	Preliminaries
	Fast heuristics-a greedy approach
	Algorithmic details
	Discussion

	An exhaustive search method
	Results
	References


