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ABSTRACT

A graph X is walk-regular if the vertex-deleted subgraphs of X all have the same
characteristic polynomial. Examples of such graphs are vertex-transitive graphs and
distance-regular graphs. We show that the usual feasibility conditions for the ex-
istence of a distance-regular graph with a given intersection array can be extended so
that they apply to walk-regular graphs. Despite the greater generality, our proofs are
more elementary than those usually given for distance-regular graphs. An application
to the computation of vertex-transitive graphs is described.

1. INTRODUCTION

Let X be a finite undirected loop-free graph with vertex set V=
{1,2,...,n}. The adjacency matrix of X is the nXn matrix A =(a,;), where
a;=1if i and j are adjacent in X, and a;; =0 otherwise.

For any matrix M, let oM denote the set of eigenvalues of M. If AEoM,
define y1,(A) to be the multiplicity of A as an eigenvalue of M. If A& oM it
will be convenient to define p,,(A) =0. The symbols M’, tr M, and M,; denote
the transpose, the trace, and the (i,f)th entry of M, respectively. The ith
entry of a vector x, will be written as (x,),.

A partition of V is a sequence 7=(V,,V,,...,V,) of disjoint nonempty
subsets of V whose union is V. The elements of 7 are known as its cells.
Following Schwenk [8] we call equitable if there are constants &;; such that
each vertex in cell V, is adjacent to ¢;; of the vertices in cell V; (1<i,j<m).
The set of partitions of V which are equitable for X will be denoted by
II(X), and the subset of those equitable partitions which have {v} as their
first cell will be denoted by IT,(X), for each vE V.
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ExampLE 1.1. The discrete partition ({1},{2},...,{n}) is in II(X) for
any X. The single-cell partition (V) is in II(X) if and only if X is regular.

ExampLE 1.2. Suppose X is distance-regular with diameter d (see Biggs
[1]). Then the partition ({v},D),D,,...,D,) is in II (X), where D, contains
those vertices at distance i from v (1 <i<d).

ExampLE 1.3. Let H be any subgroup of the automorphism group of X.
Then a partition whose cells are the orbits of H is in II(X).

2. QUOTIENT MATRICES

If 7 is the equitable partition defined in Example 1.2, then the matrix
(e), or sometimes its transpose, is referred to as the intersection array
corresponding to the distance-regular graph from which 7 is derived. Details
of the theory of intersection arrays can be found in Biggs [1]. For our present
purposes we will find it more convenient to use a related matrix suggested
by Don Taylor, which we will call the quotient matrix. This has the
considerable advantage of being symmetric.

Let #=(V,,V,,...,V,,) be any partition of V. For 1<i<m, define
k,=|V,|. The m X n matrix S= S(=) is defined by

S,=k™Y* if jev,

=0 otherwise.

Using S, we define the quotient matrix of X by 7 to be Q=Q(X,7)=
SAS’, where A is the adjacency matrix of X.

The equitability of 7 can be defined algebraically via Q, as our first result
shows.

Treorem 2.1. w€II(X) if end only if SA=QS. Furthermore, if m€
II(X), then Q‘,=(k,/k,.)1/2e,.‘ for 1<K4,j<m.

Proof. For v €V, 1<i<m, define h to be the number of vertices in v
which are adjacent to v.
For 1<i<m, vEV, we have

(SA)iv =k~ 172 2 A=k~ Vzhut (1)

weV;
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and
S)i= '21 Qi;S;0= Qifkj—l/zs (2)
=

where vE V.

By compa.nng (1) and (2) we see that if SA=(QS, then h, equals
(k/ k; )1/2Q‘ for all vEV,, and so 7 ETI(X).

Conversely, if wEH(X ) and 1<i,j<m,

Qi;=(SAS") 2 k~%h,S,,,

v=1

= 3 (kk) e,

vEY,
= (k;'/ki)l/ze;‘i’

which implies, as above, that SA = QS. B

If 7 is equitable, there is a close relationship between the spectral
properties of Q and A. Corollary 2.3 is very similar to a result of Haynsworth

[4].

TueoreMm 2.2. Let w€II(X). Then for any m-vector x and scalar A,
Qx=Xx if and only if A(S’x)=A(S'x).

Proof. If Qx=AMAx, then S'Qx=AS’x and so AS’x=AS'x, by Theorem 2.1.
If AS’x=ASx, then SAS’x=ASS'x and so Qx=Ax, since §S’=1. ]

Cororrary 2.3. If m€IL(X), then po(A)< pa(A) for all A. Thus the
characteristic polynomial of Q divides that of A.

Proof. Suppose that A€ocQ. Then A€¢A by the Theorem. Let
{%1,%X5,...,%,} be a full set of orthonormal eigenvectors of Q for A. Then for
1<4,j<r we find (S'x,) (S’xi)—x 58’x;=x;x;, since SS’'=1. Hence, by the
theorem, {S'x;,Sx,,...,5%,} is a set of orthonormal eigenvectors of A for A.
Therefore po(A) < gy ( ) B
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7=({3,6},{1,2,4,5,7,8))

_l o 0 2712 ¢ 0 27¥2 9 0
6-1/2 g-1/2 0 6-1/2 g-l/2 0 6-12 g-1/2 ’
o=| © \/5}
V3 1
Fic. 1.

ExamrLE 2.4. In Fig. 1, we give an example of X, 7, S and Q. The
characteristic polynomial of Q is x*— x—3, while that of A is

(x+1)*(x—1)(x®— x—3)(x*— dx— 1).
3. FEASIBILITY CONDITIONS

In this section we prove a strong condition on a sequence of matrices
Q1 Qz -+, Q, Which is necessary for the existence of a graph X such that for
each v, Q,=(X,7,) for some 7, EII (X). If the matrices Q, are tridiagonal
and all the same, our condition is equivalent to a well-known feasibility
condition on the intersection array of a distance-regular graph (see Biggs [1]).

However, despite the greater generality, we believe our proof to be more
elementary. '

Lemma 3.1, If w €I(X), then Q"=SA"S’ for r=0,1,2,....

Proof. By induction on r, using Theorem 2.1. B

Cororrary 3.2. If 7 €Il (X), then (A),, =(QM)y for vEYV,
r=0,1,2,...

LEmma 3.3, (a) trA"=3, c, pa(MA" for r=0,1,2,....
(b) Let M be any real symmetric matrix. For each AEoM let
{x:(A)%5(A), ... %, (A)} be a complete set of orthonormal eigenvectors of M
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for A. Then

A

M= 3 A3 xAxA)  for r=012,....

A€EoM i=1

Proof. Both claims are standard matrix-theory results. See Lancaster [5],
for example. : B8

Let M be any real symmetric matrix. For each A and i define the number
(M, A, 1) as follows.

(a) If A& oM, define 8(M, A, i) =0 for all i.

(b) If AE oM, let {x),x,,...,x,} be a full set of orthonormal eigenvectors
of M for A. Then define (M, \,i)=32_(x,)2.

We are now in a position to prove our major theorem.

Tueorem 3.4. Let X be any n-vertex graph with adjacency matrix A.
For veEYV, let w, €11 (X) and define Q,=Q(X,7,).
Then p,(\)=27%_,6(Q,,\, 1), for any A.

Proof. For r=0,1,2,...
n

trA’= 3 (Q.)yy by Corollary 3.2,

v=1

= X A8(Q,A1), byLemma3.3,

v=1AE0Q,
= i 2 A9(Q,\1), by Corollary 2.3. (1)
v=1 AE0A
Alternatively,
trA’= AZA pa(MAT, by Lemma 3.3. (2)
=y

The Vandermonde matrix of order |6A| whose ith row contains the
(i—1)th powers of the elements of oA is nonsingular. Hence the result
follows on comparing (1) and (2). B
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Since p,(A) is a positive integer when A € 6A, the existence of X implies
that the number 37 _,6(Q,,A, 1) must be a positive integer whenever A € 6Q,
for any v. This turns out to be a very strong condition on the sequence
01,0, ...,0Q,, as we shall illustrate in Sec. 5. Meanwhile, we conclude this
section with a few corollaries to Theorem 3.4.

CoroLLARY 3.5. For each AEcA and vEV, the number §(Q,,\,1) is
independent of the choice of , EII (X).

CoROLLARY 3.6. For each A Eo0A, there is at least one v €V such that
for any =, EIL (X) we have AEoQ(X,7,).

4. WALK-REGULAR GRAPHS

In this section we restrict our attention to a special class of graphs which
allow us to apply Theorem 3.4 with only one quotient matrix instead of n.

A closed walk of length r in X is a sequence vy, vy,...,v, of vertices of X
such that v,=v; and {v,_,,0,} is an edge of X for 1 <i<r. We say that X is
walk-regular if, for each r, the number of closed walks of length r starting at
v, is independent of the choice of v, One obvious class of walk-regular
graphs is that of vertex-transitive graphs, those whose automorphism group is
transitive on the vertices. Another family is that of distance-regular graphs
[1], which includes that of strongly regular graphs [2]. An example which fits
into neither of these classes is shown in Fig. 2.

Erratum: There
is No vertex in

the centre, only
two edges crossing.

Fic. 2.
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Since the number of closed walks of length 2 starting at v is just the
degree of v, it is clear that a walk-regular graph is regular. Some of the other
properties of walk-regular graphs can be found in the following theorems.
The characteristic polynomial of a graph Y is the characteristic polynomial of
its adjacency matrix, and is denoted by ¢(Y).

Tueorem 4.1.  The following conditions are equivalent:

(a) X is walk-regular.

(b) For r=1,2,..., the diagonal entries of A" are all equal.

(c) For vEV, let X, be the subgraph of X formed by deleting vertex v.
Then the graphs X, have the same characteristic polynomial.

(d) For each AE oA, (A, \,i) is independent of i.

Proof. The equivalence of (a) and (b) follows from the standard result
that the ith diagonal entry of A" is the number of closed walks of length 7 in
X which start at i. The equivalence of (a) and (c) and of (a) and (d) follow
from Lemmas 2.1 and 3.1 of [3]. B

TueorEm 4.2. X is walk-regular if and only if X is walk-regular.

Proof. Let A be the adjacency matrix of X, and let ¢ be the n-vector
with each entry equal to 1. Let k be the degree of X.

Then ¢ is an eigenvector of both A and A, corresponding to the
eigenvalues k and n — k—1, respectively. If y is an eigenvector of A which is
orthogonal to ¢ and corresponds to an eigenvalue A, then it is also an
eigenvector of A, corresponding to the eigenvalue —1—A.

The result now follows by Theorem 4.1(d). [

Lemma 4.3. (a) If Y is any graph with vertices 1,2,...,r, then ¢/(Y)=
EL-1¢(Y0)'

(b) If Y is a disconnected graph, with components Y', Y2 ..., Y", then
S(Y) =1l o(Y").

Proof. The lemma follows readily from Exercises 4 and 6 on p. 50 of [5].
-

Tueorem 4.4. If X is disconnected, then it is walk-regular if and only
if the components of X are walk-regular and have the same characteristic
polynomial.
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Proof. Suppose that the components of X are walk-regular and have the
same characteristic polynomial. Then the point-deleted subgraphs of each
component have the same characteristic polynomial, by Lemma 4.3(a), and
so X is walk-regular, by Lemma 4.3(b).

Suppose conversely that X is walk-regular, and has components
X', X%...,X". Then by Lemma 4.3, each X' is walk-regular, and the prod-
ucts ¢’(X'7)H#,¢(X ) are equal for 1<i<t Therefore, the ratios
¢'(X")/$(X") are equal, which implies that the polynomials ¢(X*) are equal,
since they are monic. B

Tueorem 4.5. Let X and Y be walk-regular graphs. Then X X Y (carte-
sian product), X®Y (tensor product), X+Y (strong product), and X[Y]
(lexicographic product) are walk-regular.

Proof. Each case follows readily from Theorem 4.1(d), but we will omit
the details. B

From now on we will assume that X is walk-regular, with n vertices and
degree k, and that A has s simple eigenvalues.

The next theorem generalizes one of Petersdorf and Sachs [7], who
proved the same result for vertex-transitive graphs.

THEOREM 4.6.  Suppose that A is a simple eigenvalue of A. Then A is an
integer of the form k—2a for 0<a<k.

Proof. Lety be the eigenvector of A which corresponds to A. Then the
entries of y have equal absolute value, by Theorem 4.1(d). The theorem now
follows by considering the first row of the equation Ay=2Ay. &

THEOREM 4.7. n is even if s >2, and is divisible by 4 if s> 3.

Proof. Since X is regular, c is an eigenvector of A corresponding to the
eigenvalue k. Suppose that A is a simple eigenvalue other than k and that y is
the corresponding eigenvector. Since the entries of y have equal absolute
value by Theorem 4.1(d), and y is orthogonal to ¢, n must be even,

Suppose that z is the eigenvector corresponding to a simple eigenvalue
other than k or A. Then, as before, the entries of z have equal absolute value.
The mutual orthogonality of ¢, y, and z now implies that n is divisible by 4.

: ]

Tueorem 4.8. If n >3, then s<n/2.
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Proof. If n is odd, s <1 by Theorem 4.7. Hence we assume n is even, If
the eigenvalues of A are A; <A< --- <\,_, <k, then those of A (the
adjacency matrix of X) are —A,_,—1<—A,_,—1<--- <=\, —1<n—k
— 1. If either X or X is disconnected, then Theorem 4.4 implies that s < 2. If
X and X are both connected, we see that A also has s simple eigenvalues.
Applying Theorem 4.6 to X and to X gives us s <k+1 and s <n— k, which
together imply s < (n+1)/2. Since we have assumed n to be even, s <n /2.

When Theorem 3.4 is applied to a walk-regular graph, we find that only
one quotient matrix is required.

Turorem 4.9. Let X be walk-regular. Then for vEV and any A,
s (A)=n8(Q,,A, 1).

Proof. By Theorem 4.1(b),
trA”=n(A"),,=n(Q))

11

by Corollary 3.2, for r=0,1,2,.... The proof now follows that of Theorem
3.4, B

CoroLLaRY 4.10. Let X be walk-regular, and suppose 7, €I (X) for
any v. Then oQ(X,7,)=oA. =]

Our final result for this section generalizes a known result for symmetric
graphs [1].

Turorem 4.11. Let X be a walk-regular graph with degree k, and
suppose that for some v, the neighborhood of v in X is a single cell of =,.
Then the only possible simple eigenvalues of A are —k and k.

Proof. Let A be a simple eigenvalue of A, and let y be the correspond-
ing eigenvector. Then y is of the form S(,)’x, by Theorem 2.2 and Corollary
4.10. This implies that the entries of y are constant on the neighborhood of v.
The theorem now follows from the vth row of the equation Ay =Ay. &

5. AN APPLICATION

The results of Sec. 4 have been used to advantage in the construction of
every vertex-transitive graph with fewer than 20 vertices [6]. Suppose that X
is a vertex-transitive graph with automorphism group G, and let H be any
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subgroup of the point-stabilizer G,. As we claimed in Example 1.3, the
partition 7 whose cells are the orbits of H is in II,(X). The associated
quotient matrix Q= Q(X,#) must satisfy a number of conditions which we
list in the following theorem. '

Tueorem 5.1.  For any A, define p(A)=n8(Q,A, 1).

(a) For each AEaQ, u()) is a positive integer.

() If uA)=1, then X is an integer.

(€) #(A) > poA) for any A.

(d) Suppose p(A\)=1 for s values of AE0Q. Then n is even if s >2, and
is divisible by 4 if s> 3.

Proof. By Theorem 4.9, p(A) =, (A) for any A, which implies (a). Claims
(b), (c), and (d) now follow immediately from Theorem 4.6, Corollary 2.3,
and Theorem 4.7, respectively. B

The construction of vertex-transitive graphs involved many stages which
it would not be appropriate to detail here. The only stage of interest to us at

n=({1},{2,3),{4)},{5.6},{7,8,9,10},{11,12})

Fic. 3.
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the moment involved the application of Theorem 5.1 to 58,454 matrices,
each of which was a candidate quotient matrix of some vertex-transitive
graph. Since those graphs with regular automorphism groups (“GRRs”) were
constructed separately, it was found convenient to assume that H was a
nontrivial p-group. Of the 58,454 matrices tested, only 709 satisfied all the
requirements of Theorem 5.1. Conditions (a) and (b) eliminated many more
cases than did (c) or (d). Out of the matrices which passed all four tests, 592
yielded one vertex-transitive graph each and 5 yielded two vertex-transitive
graphs each. Many of the remaining 112 matrices probably correspond to
nontransitive walk-regular graphs, but these were not detected by the
program.

In Fig. 3 we give an example of Q and its unique vertex-transitive
realisation.
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