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Abstract. We complete the construction of all the simple graphs with at most 26 ver- 
tices and transitive automorphism group. The transitive graphs with up to 19 vertices 
were earlier constructed by McKay, and the transitive graphs with 24 vertices by Praeger 
and Royle. Although most of the construction was done by computer, a substantial 
preparation was necessary. Some of this theory may be on independent interest. 

1. Introduction 

Let G be a finite simple graph with automorphism group Aut(G). If Aut(G) acts 
transitively on V(G), then we say that G is transitive. The aim of this paper is 
to describe the methods by which the complete set of transitive graphs of order at 
most 26 has been generated. 

The transitive graphs on a prime number p of vertices are the graphs whose 
automorphism groups contain a p-cycle. The isomorphism classes were deter- 
mined by Elspas and Turner [5]. 

For the case when the number of vertices is 2  p, p  prime, Alspach and Sutcliffe 
[I] described a particular family of transitive graphs and conjectured that there 
were no others. The truth of their conjecture follows from results of Masru3iE 
[I51 in conjunction with a corollary of the classification of the finite simple groups 
(that there are no simply-transitive primitive permutation groups of degree 2 p  for 

. P 4 5 ) .  
For other orders, few general results are known. H.P. Yap made the first sig- 

nificant attempt at a catalogue; he found all the transitive graphs up to 11 vertices, 
. and many classes of them on 12 vertices. A complete list of transitive graphs up 

to 19 vertices was compiled by McKay [la] and published in [17]. The method 
of construction was not described in [17], however; that will be the subject of our 
Sections 2 and 3. The transitive graphs on 20-23 vertices were found by McKay 
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and Royle [24]; we will describe this construction in Section 4. Section 4 also 
describes, for the first time, the construction of the transitive graphs on 25 or 26 
vertices. Finally, the transitive graphs on 24 vertices were found by Royle and 
Praeger [24,25]; we will not repeat this construction here. 

A few related compilations can be mentioned here. The circulant graphs 
(those on n vertices whose automorphism group contains an n-cycle) were found 
up to order 37 by the first author in 1977 (unpublished). Graphs of order up to 
11 with isomorphic vertex neighbourhoods were found by J. Hall [Ill. D.H. Rees 
[23] determined all the cubic symmetric graphs of order up to 40 (G is symmetric 
if Aut(G) acts transitively on the directed edges of G); more extensive classi- 
fications or compilations of cubic transitive graphs were performed by Coxeter, 
Frucht and Powers [4] and Lorimer [12,14]. A classification of symmetric graphs 
of prime degree was made by Lorimer [13]. The transitive planar graphs were 
completely classified by Fleischner and Imrich [6]. The complete list of Cayley 
graphs to 23 vertices was constructed in 1977 by the first author (unpublished) and 
to 31 vertices in 1986 by the second author [ a ] .  Finally, R. Mathon [16] found 
all transitive self-complementary graphs with less than 50 vertices. 

2. Theoretical Background 

We will assume that the reader is conversant with the elementary terminology of 
graph theory and group theory. Only simple graphs will be considered. We will 
denote an edge {x, y} of a graph as xy for brevity. E(G) is the edge-set of G and - 
G is the complement of G. The set of neighbours of v in G will be denoted by 
N(v,G),andV(G)\({v} U N(v,G)) w i l l b e d e n o t e d b y ~ ( v , ~ ) .  

Suppose that A is a set of permutations (not necessarily a group) acting on 
a set V. The support supp(A) of A is the set of elements of V moved by some 
element of A ,  while ^fixed-point set fix(A) of A is the set of elements of V 
fixed by every element of A . Obviously, supp( A ) U fix(A ) = V. 

If G is any graph, then the switching graph of G, denoted Sw(G), has 
V(Sw(G)) = V(G) x { O ,  1} and E(Sw(G)) = {(x,i)(y, j)li = j and xy E 
N G ) ,  or i # j and xy e E(G) }. Switching graphs have relevance to the switch- 
ing classes of [26]; in particular, two graphs are in the same switching class if and 
only if their switching graphs are isomorphic [8]. 

If G and H are graphs, the lexicographic product G[ HI has V(G[ HI) = 
V(G) x V ( H )  andE(G[Hl) = { ( ~ ~ , Y I ) ( ~ z , Y z ) ~ x ~ x z  ? E(G) orxi = x2 
and yl y-i E(H)}. We will say that G is a non-trivial lexicographic product 
(NTLP) if G = H[ J ]  for some graphs H and J with at least two vertices. The 
importance of NTLPs to us comes from the following lemma. A subset W C 
V(G) is called externally related (ER) in G if each pair of vertices in W are 
adjacent to exactly the same vertices in V(G)\W. W is a non-trivial ER subset 
i f2  < IWI < V(G) - 1. 



Theorem 2.1. Let G be a transitive graph which is neither empty nor complete. 
Then the following are eq~ll-valent. 

(a) G is an NTLP. 
(b) G = H [ Jl for some transitive graphs H and J with at least two 

vertices. 
(c) G has a non-trivial ER subset. 
(d) Aut( G) has a non-trivial ER block. 
(e) Aut( G) has an intransitive subgroup with exactly one orbit of length 

greater than one. 

Proof: Obviously, (b)+(a)+(c) and (d)+(e)+(c), so that it will suffice to prove 
that (c)+(d)+(b). 

Suppose that condition (c) is satisfied. Let W be a non-trivial ER subset of 
the least possible size. If Aut(G) constains no transpositions, then \W\ > 3. 
Now, for each 7 e Aut(G), if W n W l  # 0 then W = W since otherwise 
one of W n W and W\Wl would be a non-trivial ER subset smaller than W .  
Suppose alternatively that Aut(G) contains a transposition ( x y) . By replacing G 
by G i f  necessary,we have N(x,G) = N(y,G).  Then {v E V(G)\N(v,G) = 
N (  x, G) } is a non-trivial ER block of Aut(G) or else G is empty. 

Suppose that condition (d) is satisfied and let Bl , Bz, . . . , Br be the corre- 
sponding complete block system. Since Aut(G) acts transitively on the blocks, 
each B, is ER and induces an isomorphic subgraph of G. Thus, each distinct pair 
B, and Bj are joined either by no edges of G or by all possible edges. Condition 
(b) is thus satisfied. I 

The implications (a)+(e) were first proved by C. Godsil. As sample appli- 
cations of Theorem 2.1, we have the following theorems. 

Theorem 2.2. Let G be a non-complete connected transitive graph. If N(v , G) 
is disconnected for some v 6 V (  G) , then G is an NTLP 

Proof: By Gardiner [7] or Ashbacher [2], either N ( v,  g) = N(  w, G) for some 
v # w (implying that (v w) 6 Aut(G)) or G has a non-trivial ER block. Theo- 
rem 2.1 applies immediately in either case. I 
Theorem 2.3. Let G be a connected non-complete transitive graph with odd 

order n > 7 .  If Aut(G) contains a non-trivial subgroup A which moves at most 
7 vertices, then G is an NTLP. 

Proof: By considering all the possibilities for A ,  we see that A contains a sub- 
group satifying part (e) of Theorem 2.1 or else a subgroup of the form (( a b) ( c d) ) 
or ((a b c) (d  e f ) ) .  In the latter case, consider all the possibilities for the sub- 
graph induced by {a, b, c, d, e, f}; in every case we find that ( a  b) (d  e) e A .  
Now suppose V(G) # 0, where V(G) is the set of all elements of Aut(G) of 
the form (a  b) ( c d) . Since n is odd, and Aut( G) is transitive, there are distinct 



1,8 e V(G) such that supp(7) n supp(5) # 0. Now consider all the ways that 
7 and 6 can overlap. In most cases, ( 7 4  contains a subgraph satisfying part (e) 
of Theorem 2.1. [For example, take 7 = (a  b) ( c  d) and A = ( a  e) ( c f )  , where 
all these vertices are distinct. Then (7,8@) contains exactly one orbit.] The only 
exception is when --y and 5 overlap as do (a  b)(c d) and ( a  e)(c f), so assume 
that all non-trivial overlaps between elements of P (G)  have this form. Define a 
relation "-" on V( G) : 

(i) x w x for all x. 
(ii) If x # y , then x y if and only if there are elements 7 = ( x a) ( y b) 

and6= (xc ) (yd)  ofD(G) suchthata# candb#d.  

It is easily seen that "-" is an equivalence relation with classes of size 2, 
contradicting the assumption that n is odd. I 

If A1 and A2 are permutation groups acting on a set V, and supp(A1)fl 
supp(Az) = 0, then we will write Al @ A; for the group (Al, A2). Clearly, 
Al @ A2 is isomorphic as an abstract group to the direct product of A1 and Az , 
but the permutation representation is important to us here. If A is a non-trivial 
permutation group acting on V, then A has a unique representation 

where the supports of the A (l) are non-empty and disjoint, and r is maximum. We 
will refer to the groups A (i) as the fragments of A. 

For a group A and a prime p, let Sylp(A ) be the set of all Sylow p-subgroups 
ofA. 

Lemma 2.4. Let G be a transitive graph, and let v e V(G) . Suppose that 
P e S y lp( r,,) , where V = Aut( G) , Tv denotes the point stabiliser of v in V , 
and p is a prime dividing 1 r,, 1. Define a graph H = H ( G, P )  as follows. V ( H) 
is the set of  non-tn'vial orbits o f  P. Two distinct vertices o f  H are adjacent if 
and only if the corresponding orbits o f  P are joined by some edges o f  G but not 
completely joined in G.  Then the supports o f  the fragments of  P correspond to 
the components o f  H .  

Proof: Let ~ ( l ) ,  P^ . . . , P^ be the fragments of P. Since the action of P on 
orbits in different fragments is independent, fragments correspond to unions of 
orbits. Now suppose that the support of a fragment P^ is Vi u V;, where Vi 
and V2 are disjoint non-empty sets of orbits each of which corresponds to a union 
of components of H. Then the restrictions P\vi and PIv2 are each in r by the 
structure of G. However, Ply, @ PIh is not in P^ since P^ is a fragment. Thus 
p(1) @ . . . @ PO'-1) @ PIv, @ PIn2 @ P('+ @ . . . @ P^ is a p-subgroup of Fw 
larger than P ,  contradicting the assumption that P Sylp(ru). I 



If A < <& < r are groups, we say that A is weakly-closed in <I> with respect 
t o r  if,foreachqe F , A l  < <& i fandonlyifAl=A. 

Lemma 2.5. Suppose that V is a group acting transitively on V = { 1 , 2  , . . . , n}, 
and let 1 < P Sylp( rl ) for some prime p. If 1 < A < P and A is weakly 
closed in P with respect to Y , then lfix( A ) 1 < n/2 . 
Proof: Suppose that lfix(A)l > 7212. Let 7 ? r and <& (A,Al). Then 
lfix(<&) I > 1, so that <& 5 r, for some x ? V. By Sylow's Theorem, there are 
Q ? Sylp(<&) and if> e <& such that A < Q and A1 < Q^. ~ u t  then A *  a n d ~ l  
are both in Q^ and hence in any conjugate of P which contains Q^. Therefore 
A^ = A1 by the weak closure condition. But then lfix(A) 1 < ( n  - 1) /2 by a 
result of C. Praeger [22], contradicting our assumption. I 
Theorem 2.6. Assume the definitions of Lemma 2.4. Suppose that some fmg- 

ment <& o f  P is uniquely identified amongst the fragments of  P by the sizes of  
its orbits and that, for every 7 r , <& < P only if the non-trivial orbits o f  
are orbits of  P .  Then lsupp( <&) 1 > n/2. 

Proof: Let 7 F . If <&I < P then, by assumption, supp(<& ) is a union of orbits 
of P. Since supp( <&I) is a component of H(G, P I ) ,  supp(<&l) = supp(<&') for 
some fragments <&' of P. But then < î < <&I  since <&q < P and so <&I = <&I ,  
since both W and <&I are Sylow p-subgroups of the subgroup of F which fixes 
the orbits of <&I setwise. 

It follows that <& is weakly closed in P with respect to r , so Lemma 2.5 
applies. I 

As an example of the use of Theorem 2.6, consider the automorphism 
group of a transitive graph with 15 vertices. A Sylow 2-subgroup cannot have 
theform ((2 3)(4 5)(6 7 ) , (8  9)(10 11)(12 13)(14 15)),since thefragment 
(( 2 3) (4 5) ( 6 7) ) has a support which is too small. 

Next we classify some types of subgroups of rw where I" is a group acting 
transitively on V, w V( G) and p is a prime dividing lrw 1: 

(a) Fw itself is a type-] subgroup. 
(b) Any A e Sylp(rw) is a type-2 subgroup. 
(c) The subgroup {Sylp( Fw)) generated by all the Sylow p-subgroups 

of rw is a type-3 subgroup. 
(d) Suppose that A ? Sylp( rw)  has fix(A ) = { w } .  If A has an orbit 

X of size p and IA,l > 1 for x E X, then A, is a fype-4 subgroup. 

Theorem 2.7. 

(a) If A is a subgroup o f  Vy, of  type 1 ,2 ,3  or 4, then the nonnaliser 
Nr ( A ) acts transitively on fix( A ) . 

(b) If A is a subgroup of  I",, of type 1 or 3, then fix( A ) is a block of  
r .  



Proof: In (a), A is a conjugate in Fw to any of its conjugates in F which lie in 
Fw. (For type-4 subgroups, Lemma 7.4.7 of [lo] is required.) We can thus apply 
Jordan's theorem (Theorem 3.5 of [29]). Claim (b) is an elementary exercise. I 

We now turn to some applications of linear algebra. Let G be a transitive 
graph with V( G) = { 1 , 2 ,  . . . , n}. Let A be the ( 0,1)  adjacency matrix of 
G. Suppose that A < Aut(G) and let Vl, V2, . . . ,Vm be the orbits of A in 
lexicographical order. The m x m matrix Q(G, A )  = (gij) is defined by 

where eij is the number of vertices in V, to which each vertex in V, is adjacent in 
G. It is not completely obvious, but true, that Q(G, A )  is symmetric. 

For any real symmetric matrix M and real number A, define pA/(A) to be 
zero if A is not an eigenvalue of M and the multiplicity of A as an eigenvalue of 
M otherwise. 

Theorem 2.8. Suppose that Vf contains a single vertex for some t. Let Q = 
Q ( G, A ) . For any real number A,  define p( Q , A ,  t) as follows. 

(a) If AisnotaneigenvalueofQ,p(Q,A,t) = O .  
(b) If A isaneigenvalueof Q,let xl ,x2 ,  ... ,x ,  beawmpleteor- 

thonormal set of  eigen vectors of Q for A .  Then define p( Q , A ,  t) = r*=i (xi):, where the summand is the square of the t-th entry of 
Xi.  

Then^AW = v ( Q , A , t ) .  

Proof: This is a special case of Theorem 3.4 of [9]. I 

Corollary 2.9. p( Q, A ,  t) is independent of t so long as \ Y( 1 = 1 . I 

Corollary 2.10. Q(G, A ) and A have the same eigenvalues up tomultiplicities. 
I 

We will also have use for the following facts about simple eigenvalues of A. 

Theorem 2.11. Let A be the ( 0 , 1 )  -adjacency matrix of a vertex transitive graph 
G of order n and degree k . 

(a)  If A is a simple eigenvalue of A, then A is an integer of the form 
k - 20, forinteger a. 

(b) n is even if A has at least two simple eigen values, and divisible by 
four if A has at least three simple eigenvalues. 

Proof: Part (a) was first proved by Petersdorff and Sachs [211. A proof of part (b) 
can be found in [9]. 1 



3. Construction of transitive graphs up to 19 vertices 

This construction was very involved, and many steps required computations whose 
intermediate steps were too numerous to list here. We will confine ourselves to a 
brief overview; a more detailed description can be found in [18]. 

Throughout this section G will be a transitive graph of degree k with vertex 
set V = {I ,  2 , .  . . , n} and automorphism group r = Aut(G). 

Our basic approach to constructing the graphs was to investigate the sub- 
groups of Fi. To make this a little easier, we generated some simple families of 
transitive graphs separately. Define Q to be the family of all transitive graphs G 
such that 

(i) n ~ { 8 , 9 , 1 0 , 1 2 , 1 4 , 1 5 , 1 6 , 1 8 } ,  
(ii) 3 3 k A< ( n -  l ) /2 ,  

(iii) G is not an NTLP, 
(iv) G is not a switching graph, 
(v) r is not regular, 

(vi) G has connectivity k ,  and 
(vii) G is not strongly regular. 

We will first describe how to generate the transitive graphs not in Q. Those 
with prime order have a p-cycle as an automorphism, by Sylow's theorem. This 
enabled rapid generation using the isomorphim program described in [20]. Those 
with degree at most two, or order at most six, are easily determined by hand; those 
which have degree greater than (n- 1) / 2  are complements of those which don't. 

All the transitive switching graphs and NTLPs were found with the help of 
the catalogue of 9-vertex graphs made by Baker, Dewdney and Szilard [3]. Note 
that it is only necessary to form the switching graph of onegraph from each switch- 
ing class. Similarly, transitive NTLPs are NTLPs of transitive graphs, by Theo- 
rem 2.1(b). The transitive stongly regular graphs were extracted from Weisfeiler's 
list [28]. 

The transitive graphs with connectivity less than their degree are studied by 
Watkins [27]. With the help of his theory, it can be shown that there is only one 
such graph satisfying (i), (ii) and (iii), namely the graph in Figure 1. See [18] for 
a proof of this claim. 

To obtain the transitive graphs with regular automorphism groups, we gen- 
erated all the Cayley graphs of groups of order up to 18 and determined their 
isomorphism types using the program described in [20]. Such graphs were found 
in 12, 14, 16 and 18 vertices. We should note here that we could have excluded 
all Cayley graphs from Q, but we could not see how this could help us detemine 
Q (even though it would be very much smaller). In any case, the fact that all the 
Cayley graphs in Q were found by the general method constitutes a good check. 



Figure 1. 

We can now turn to the construction of Q. A numerical partition of n is 
a sequence a of the form ( qml ,nmz ,. . . ,nmr) such that 1 < nl < n2 < 
. . . < T+, m, > 0 for 1 < i < r ,  and n = ELl mi%. Superscripts equal 
to one are usually omitted. Further, define r^, ( a )  = m, for 1 < i < r and 
rj(a) = 0 if j $ {nl, n2,. . . , %}. Also define R(0) = {jlj >2, r j(a)  # O}. 
If A is a permutation group of degree n, then a(A)  is the numerical partition 
(n;  q, el . . . , TÎ ) with mi equal to the number of orbits of length n, for 
each i .  

Lemma 3.1. For a numerical partition a of n, define m( a)  = max {r, 1 i 6 
R( 0) } and t( a )  = ,,) , Let Â be the set of numerical partitions a of n E 
{8,9,10,12,14,15,16,18} suchthat 1 < r l (a)  < n,rl(cr) isadivisorof 
n, and a satisfies none of the following conditions. 

(a) rl > 2 and m(u) = 1. 
(b) t(a)=l. 
(c) rl = 1 and t (a)  = 2 .  
(d) F o r s o m e i > 2 , r , =  1 and(;,;') = 1 forall if  j â  R(a).  
(e) For some prime p, TI = p and m( a)  < p. 
(f) max{jlrj(a) # 0 1  > 10. 

Then,foreveryGeQ,u(Fl) e x ,  wherer = Aut(G). 

Proof: Let G e Q, r = Aut(G), and a = u ( r i ) .  r i (a)  is a divisor of n by 
Theorem 2.7(b). 

By Theorem 2.1, we know that G cannot have any non-trivial ER subsets. 
If (a) is satisfied, fix(r1) is ER, since N r ( H )  fixes each of the non-trivial ER 



subsets. If (b) is satisfied, the non-trivial orbit of Fl is ER. If (c) is satisfied, G is 
strongly regular. If (d) is satisfied, the orbit of size i is ER, since the coprimality 
condition ensures that it is either not joined or completely joined to each other 
orbit. 

Suppose (e) is satisfied. Then, by Theorem 2.7(a), a Sylow p-subgroup P of 
Nr (Fl)  acts transitively on fix( P).  Also, P permutes the orbits of Fi , and so 
fixes the non-trivial orbits set-wise because there are fewer than p of each size. 
Therefore, fix(Fl) is ER. 

Suppose ( f )  is satisfied, and let I be the length of the longest orbit of Fi . 
S i n c e n s  18,condition(d)issatisfiedifI E {11,13,15,16,17}. If1 = 14, 
either (a) or (d) is satisfied. This leaves only the possibilities ( 18; 12, 2 2 ,  12) and 
( 18; 1,2,3,12).  In the first case the 12-orbit is ER, while in the second case the 
2-orbit is ER. I 

The set Â contains 154 numerical partitions and, as the preceding theorem 
states, includes the orbit structure of all type-1 subgroups for elements of Q. Some 
of these partitions can be easily shown not to occur. Furthermore, if we allow 
subgroups of type 2 ,3  or 4 as well, we can reduce the number of partitions even 
more (since each graph only needs to have one subgroup represented). Eventually, 
we come to the following conclusion. 

Theorem 3.2. There is a set E' of 57 numerical partitions such that, for any 
G ? Q, Aut(G)l contains a subgroup A of type 2 or type 4 such that a (  A ) e Â£' 

Proof: This occupies eight pages of [I81 as well as some computations; we will 
be content here to give a few examples. Type-1 and type-3 subgroups don't need 
inclusion in the theorem because all the entries of each o- e S' are powers of the 
same prime. However, type- 1 and type-3 subgroups play an important part in the 
proof. Let G E Q and r = Aut(G). 

Example 1 .  Suppose that T\ has all its non-trival orbits even, but not all powers 
of 2. Consider P e Sy12 (Fl) . Clearly a(  P )  # o-(Fl) , and o (P)  e Â by its def- 
inition. Thus, we can eliminate 5(F1) without losing G. [Such eliminations need 
to be done with great care less we remove partitions required for the elimination 
of other partitions.] 

Example 2.  Suppose that Fl has at least one orbit of size 2 and at least one orbit of 
length divisible by 3. Let A = (Syls (FI)) .  Then o(A)  # a(r1) and o(A) e Â£ 
With some care, this enables us to eliminate o(l-1) from Â without losing G. 
Example 3. Suppose o( A ) = ( 18; 1 ,3 ,6 ,8 )  for some A < Fl . Then G has 
degree 3,6 or 8. By considering the numbers of edges between each of the orbits, 
it turns out that at least one of the non-trivial orbits must be ER. Thus, this case 
doesn't occur at all. 



Example 4. Suppose a(A ) has the form ( 2 r  + 2; 12,  r2)  for some A < r l .  
Since G Q, G has degree r and the two fixed points are not adjacent. If they 
are adjacent to the same r-orbit, fix(A) is ER. If they are adjacent to different 
r-orbits, G is a switching graph. Thus, these cases cannot occur. 
Example 5. Suppose a (  P )  = (9; 1 , 2  ', 4) for some P e Sy12 ( Fl ) . Consider 
A = P,,,, where w lies in orbit of size 2. If cr(Pw) was (9; 13, 2,4),  (9; l5 ,4) or 
(9; 15,  2'), fix(pW) would be ER, so we must have cr(P,,,) = (9; 1 ~ , 2 ~ ) .  This 
is present in Â£I so we can eliminate (9; 1 , 2  2 ,  4). I 

The numerical partitions of n = 12 which appear in Z' are ( 12; 1 2 ,  2 , 4  '), 
(12; 12,23,4) ,  (12; 1 ~ , 2 ~ ) ,  (12; 1 ~ , 4 ~ ) ,  ( 1 2  1 ~ , 2 ~ , 4 ) , ( 1 2 ;  1 ~ ~ 2 ~ ) .  
(12; 1 ~ , 2 ~ ) ,  (12; 13,33)  and(12; 1 ~ , 3 ~ ) .  

Our next task will be to determine a family Q of matrices such that for every 
G e G, Aut(G) contains a subgroup A of type 2 or type 4 such that Q(G, A) 
2. An important tool is Theorem 2.7(a), which implies that Aut( Q(G, A )) acts 
transitively on fix( A ) . 

Choose an arbitrary G E Q and let A be a type-2 or type-4 subgroup of 
Aut(G) which is represented in Â£' Let k be the degree of G. To begin with, we 
must choose the orbits to which vertex 1 is joined. Let ul(G, A) be the numerical 
partition of k associated with the sizes of these orbits. Note that Theorem 2.7(a) 
implies that we would the same numerical partition if we chose a fixed point other 
than 1. 

Lemma 3.2. Let a = a(A ) and a' = d ( G ,  A).  Then 

(a) foralli,r,(o') < ri(cr), 
0) rl(crl) < n ( a ) ,  
(c) 71 ( 0') < f c ,  
(d) 7-1 ( cr) r ( a') is even, and 
(e) if rl ( cr) > 2, there is some i > 2 such that 0 < ri(crl) < r,( a )  . 

Proof: Conditions (a) and (b) are obvious. Condition (c) is necessary because 
G is connected. Condition (d) follows from the fact that the subgraph fix(A) is 
regular. Finally, if condition (e) was not satisfied, fix(A) would be ER. I 

The next step is to detemine which orbits of A are completely joined in G. 
Define a graph K = K(G, A) as follows. V(G) is the set of orbits of A. Two : 

vertices are adjacent if the corresponding orbits are completely joined in G. This 
includes all edges between fixed points, as well as a loop in each vertex associated 
with a non-trivial orbit containing a complete subgraph of G. 

Clearly, Aut( K)  must act transitively on fix(A ) . The subgraph of K induced 
by fix( A ) must therefore be transitive; the possibilities can be extracted from the 
catalogue of [3]. The possibilities for the other edges of K were then computed 
by a sequence of backtrack searches which made extensive use of Theorem 2.7(a). 
Also, ER subsets were avoided, and some possibilities were rejected on a variety 



of connectivity grounds. Eventually a family of 199601 was produced, after about 
4 hours computation. 

Addition of the non-complete joins was done by similar means, and led to 
our first solution for Q, containing 962131 matrices. These matrices were then 
subjected to a battery of necessary conditions, of which we describe a few. Let 
Q = Q(G,A) e 2. 

(a) The number of triangles (3-cycles) of G incident with each vertex 
can be found by examining the neighbours of a fixed point Q. This 
number t must be independent of which fixed point is used. Also, 
upper and lower bounds for the number of incident triangles can 
be obtained for the vertices lying in larger orbits as well. These 
bounds must include t. Finally, n t / 3  is the total number of trian- 
gles in G and so must be an integer. These tests removed all by 
62818 matrices. 

(b) The orbits of the fragments of A can be determined using Lemma 2.4. 
A fragment which moves 7 or fewer vertices cannot occur for odd 
n, by Theorem 2.3. Many other sets of fragments are rules out by 
Theorem 2.6. 

(c) Define p( Q , A ,  t) as in Theorem 2.8. Then, whenever A is an eigen- 
value of Q, iw>(Q, A,t) must be the same positive integer for all 
t fix(A). If this integer is 1, we have a simple eigenvalue of 
A; the conclusions of Theorem 2.11 must hold. Since these cal- 
culations require floating point arithmetic, rounding error,must be 
taken seriously. All eigensystem computations were verified to at 
least ten significant digits and then assumed accurate to only 3 dig- 
its. Fortunately, the tests are not invalidated if we mistake two very 
close eigenvalues for a single eigenvalue. These tests were spec- 
tacularly successful: of the 58454 matrices tested, only 709 passed. 

We can now complete the determination of Q by searching for realisations of 
each Q 2. There are only 7 matrices corresponding to groups with an orbit of 
length 5 or more; these were processed by hand. All transitive realisations of the 
other 702 matrices were found by the computer in about 12 minutes. Only 120 
matrices produced no transitive realisations, attesting to the power of the necessary 
conditions described above. 

After merging Q with the transitive graphs not in Q ,  all isomorphs were re- 
moved. The resulting graphs appear in [17], together with a large number of their 
properties and relationships. 



4. Construction of transitive groups with 20-23 or 25-26 vertices 

The transitive graphs of order 23 contain a 23-cycle in their automorphism 
groups; this makes their generation easy. For 20,21,22 or 26 vertices, we use the 
following Lemma. 

Lemma 4.1. Let T be a transitive with degree n = pm, where p is a prime and 
1 < m < p. Then F has an element of order p without fixedpoints. 

Proof: Apply Bumside's Lemma to a Sylow p-subgroup of r . I 
We will now describe the construction of the 20-vertex transitive graphs. The 

others are similar but easier. 
LetGbeatransitivegraphwithV(G) = {vijll < i < 4 , 1  < j < 5 } a n d  

degree k. By Lemma 4.1, we can suppose that Aut(G) contains the permutation 
7 = 71 7 2 7 3  74, where 7, is the cycle (v,l v;2 v,3 v;4 v , ~ )  . Let Xi denote the sup- 
port of 7i, and also the subgraph of G induced by it. Let Xi, denote the subgraph 
with vertices Xi U X, and all the edges with one end in Xi and the other in Xj. 

It is clear that each Xi is transitive, although different X, need not be iso- 
morphic. Similarly, Xi, is a regular graph for which 7,7, is an automorphism. 

Define the matrix Q = Q(G, (7)) as in Section 2. Since all the orbits are the 
same length, we see that q,; is the degree of Xi and g,, (i # j )  is the degree of Xi,. 
Our first task is to determine all potential values of Q. Some necessary conditions 
on Q are 

(a) Q is a 4 x 4 symmetric matrix, 
(b) for l  < i < 4 , q ; ; e { 0 , 2 , 4 } ,  
(c) for1 < i <  j<4,q,,â‚¬{0,1,2,3,4,5},a 
(d) for l  2 , < 4 , G ; g i j =  k. 

Condition (d) follows from the regularity of G. 
We used a backtrack procedure to determine all solutions of (a)-(d) and then 

applied the progarn nauty [I91 to eliminate isomorphs. 
Next, we determined all transitive realisations of each matrix. Suppose Q is 

one such matrix. We can begin by filling in the subgraphs Xi, as there is only one 
possibility for each matrix. We can begin by filling in the subgraphs X;, as there 
is only one possibility for each degree. (This is not true for n = 21 and n = 22; 
in any case just try all the possibilities.) Then we can try all the possibilities for 
the graphs Xij in the order X12, X13, X14, XZ,  X24, XM . 

It is unnecessarily expensive to try all the available subgraphs in each case. 
Consider X I 2 ,  for example. If two possibilities for Xn are equivalent under the 
group (72), they clearly lead to the same possibilities for G. If X2 is empty or 
complete, we can also consider equivalence under the group {( v21 v22 "24 V23)), 
since application of that group preserves the property that 7172 is an automor- 



phism of Xn . We can us the same reductions for XH and X u ,  but not for XD, 
Xu and X34. 

Finally, the resulting graphs were tested for transitivity using nauty , and iso- 
morphs were eliminated. The complete computation took about 30 minutes on a 
VAX for n = 20, and less than 10 minutes each for n = 21,22,26. 

Lemma 4.1 could also be used to construct the transitive graphs with 25 ver- 
tices, but it is easier to notice that all these graphs must be Cayley graphs. In fact, 
we have the following more general theorem. 

Theorem 4.1. Let p be prime. Then any transitive graph with p2 vertices is a 
Cayley graph. 

Proof: Let G be a transitive graph with n = p2 vertices, and let P be a Sylow 
p-subgroup of Aut(G). Clearly, P is transitive. Now consider Pv, for some 
v E V ( G ) .  If Pv is trivial, then G is a Cayley graph of P. Otherwise, Pv must 
have p fixed points and p - 1 orbits of size p. Thus, by Theorem 2.7(a), the nor- 
maliser Np(P,,) acts transitively on fix(P) and fixes the larger orbits set-wise. 
This implies that fix(P) is an ER subset, which in turn implies (by Theorem 2.1) 
that G in an NTLP GI [G;], where GI and G2 are transitive graphs, and hence 
Cayley graphs, with p vertices. Thus, G is a Cayley graph of Cp x Cp. I 

The construction of 25-vertex transitive graphs is now easily completed by 
generating all Cayley graphs of CZ5 and Cs x Cs and eliminating isomorphs. 

5. Summary of Results 

In Table 1 we give the number of transitive graphs of each order and degree. 
For convenience, we also restate the numbers of 24-vertex transitive graphs as 
found in [25l. To obtain the counts for degrees not in the table, simply look up the 
complementary degrees. 

Since a disconnected transitive graph is just a collection of isomorphic con- 
nected transitive graphs, we can easily obtain Table 2, in which only connected 
graphs are counted. In this case, counts for degrees not shown are obtained by 
looking up the complementary degrees in Table 1. 

It turns out that the great majority of transitive graphs are Cayley graphs. 
In fact, non-Cayley transitive graphs don't occur for n < 25 except for n E 
{ 10,15,16 , 18,20 ,24 ,26 }. The examples on 10 vertices are, of course, the 
Peterson graph and its complement. The counts of non-Cayley transitive graphs 
are shown in Table 3. Use the complementary degree for degrees not shown. The 
values for n = 24 are taken from [25l. The others were found by computing all 
the Cayley graphs and comparing this list with our list of all transitive graphs. 



degree 
0 1 2 3 4  5 6 7 8 9 10 11 12 
1 
1 1  
1 1 
1 1 1  1 
1 1 1 
1 1 2  2 1 1 
1 1 1 1 
1 1 2  3 3 2 1 1 
1 2 3 2 1 
1 1 2 3 4 4 3 2  1 1  
1 1 2 2 1 1 
1 1 4  7 1 1  13 13 11 7 4 1 1 
1 1 3 4 3 1 1 
1 1 2 3 6 6 9 9  6 6 3 2 1 
1 3 8 12 12 8 3 
1 1 3  7 1 6  27 40 48 48 40 27 16 7 
1 1 4 7 10 7 4 
1 1 4  7 1 6  24 38 45 54 54 45 38 24 
1 1 4 10 14 14 10 
1 1 4 11 28 47 83 115 149. 168 168 149 115 
1 3 11 29 48 56 48 
1 1 2 3 11 18 38 52 79 94 109 109 94 
1 1 5 15 30 42 42 
1 1 6 20 74 167 373 652 1064 1473 1858 2064 2064 
1 2 9 25 57 86 104 
1 1 2 5 16 29 71 117 204 286 397 466 523 

total 
1 
2 
2 
4 
3 
8 
4 

14 
9 

22 
8 

74 
14 
56 
48 

286 
36 

380 
60 

1214 
240 
816 
188 

15506 
464 

4236 

Table 1. The number of transitive graphs. 

References 

1. B. Alspach and J. Sutcliffe, Vertex-transitive graphs of order 2 p, Annals New 
York Acad. Sci. 319 (1979), 19-27. 

2. M. Ashbacher, A homomorphism theorem for finite graphs, Proc. American 
Math. Soc. 54 (1974), 468-470. 

3. H. Baker, A. Dewdney and A. Szilard, Generating the nine-point graphs, 
Math. Comput. 28 (1974), 833438 .  

4. H.S.M. Coxeter, R. Frucht and D.L. Powers, "Zero Symmetric Graphs", Aca- 
demic Press, New York, 1981. 

5. B. Elspas and J. Turner, Graphs with circulant adjacency matrices, J .  Com- 
binatorial Theory 9 (1970), 297-307. 

6. H. Fleischner and W. Imrich, Transitive planar graphs, Math. Slovaca 29 
(1979), 97-105. 



degree 

Table 2. The number of connected transitive graphs. 

degree 
n I 3  4 5 6 7 8 9 10 11 12 I total 

total 
1 
1 
1 
2 
2 
5 
3 

10 
7 

18 
7 

64 
13 
5 1 
44 

272 
35 

365 
59 

1190 
235 
807 
1 87 

15422 
46 1 

4221 

Table 3. The number of transitive graphs which are not Cayley graphs. 

7. A. Gardiner, Partitions in graphs, Proc. Fifth British Combintorial Confer- 
ence (1975), 227-229. 

8. C.D. Godsil, Neighbourhoods of graphs and GRRs, J .  Combinatorial Theory, 
Ser. B 29 (1980), 51-61. 



9. C.D. Godsil and B.D. McKay, Feasibility conditions for the existence of 
walk-regular graphs, Linear Algebra Appl. 30 (1980). 51-61. 

10. D. Gorenstein, "Finite Groups", Harper and Row, 1968. 
11. J.I. Hall, Graphs with constant link and small degree order, J .  Graph Theory 

9 (1985), 4 1 9 4 4 .  
12. P. Lorimer, Vertex-transitive graphs of valency three, Europ. J .  Combina- 

tones 4 (1983),37-44. 
13. P. Lorimer, Vertex-transitive graphs: symmetric graphs of prime valency, J .  

Graph Theory 8 (1984), 55-68. 
14. P. Lorimer, Trivalent symmetric graphs of order at most 120, Europ. J .  Com- 

binatorics 5 (1984), 163-171. 
15. D. Marugit!, On vertex-symmetric digraphs, Discrete Math. 36 (1981), 69-81. 
16. R. Mathon. private communication (1986). 
17. B.D. McKay, Transitive graphs with fewer that twenty vertices, Math. Comp. 

33 (1979), 1101-1121 & microfiche supplement. 
18. B.D. McKay, Topics in Computational Graph Theory, Ph. D. Thesis, Mel- 

bourne University. 
19. B.D. McKay, nauty users guide (version 1.2). Computer Science Depart- 

ment, Australian National University, Technical Report TR-CS-87-03. 
20. B.D. McKay, Practical graph isomorphism, Congressus Numerantiurn 30 

(1981), 45-87. 
21. M. Petersdorff and H. Sachs, Specktrum und Automorphismengruppe eines 

Graphen, in "Combinatorial Theory and its Applications, III", North Hol- 
land, 1969, pp. 891-907. 

22. C.E. Praeger, On transitive permutation groups with a subgroup satisfying 
a certain conjugacy condition, J .  Austral. Math. Soc., Series A 36 (1984), 
69-86. 

23. D.H. Rees, Singleton-regular graphs. preprint. 
24. G.F. Royle, Constructive enumeration of graphs, PH. D. Thesis, Department 

of Mathematics, University of Western Australia. 
25. G.F. Royle and C.E. Praeger, Constructing the vertex-transitive graphs of 

order 24, submitted. 
26. J.J. Seidel, Graphs and two-graphs, Proc. 5th. Southeastern Conf. on Com- 

binatorics, Graph Theory and Computing, Utilitas Math. (1974), 125-143. 
27. M.E. Watkins, Connectivity of transitive graphs, J .  Combinatorial Theory 8 

(1970), 23-29. 
28. B. Weisfeiler, On Construction and Identification of Graphs, "Lecture Notes 

in Mathematics", 558, Springer-Verlag, 1976. 
29. H. Wielandt, "Finite Permutation Groups", Academic Press, 1964. 
30. H.P. Yap, Point symmetric graphs with p < 13 points, Nanta Math. 6 (1973), 

8-20. 


