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by
Brendan D. McKay

Abstract

Let M(n, k) be the number of labelled regular simple graphs with order n and
degree k. Let 0 < € < 2/9. Then

(nk)

Min, k) = ka2t ey

exp(~ (K - 1)/4 + O(k* /n))
uniformly as n — oo with 1 < k < en. This is generalised to labelled graphs which
have an arbitrary Jegree sequence and avoid a specified set of edges.

1. Introduction

Let g = (g1, g2, - - - , 9n) be a sequence of non-negative integers, and define M(g)
to be the set of symmetric 0-1 matrices of order n with zero diagonal elements and
row sums gi, gz, .- -, gn, respectively. For obvious reasons, we will always assume
that 7, g; is even. We will be concerned with the asymptotic properties of M(g)
as n — oo, in particular with its cardinality N(g).

We start by summarising the previous results. Define gy,, = max},g;,
e(G) = 3 Ty 9 and A = LI, gi(9; — 1)/(4¢(G)). Define P(g) by
2¢(G))!
Ng) = o —p(g).

T e(G) 2O I, ¢!

The first result of interest to us was that of Read [9], who proved that P(g) =
e Ny o(1) if g; = 3 for all {. The same result with arbitrary but bounded row sums
was established by Bender and Canfield [1] and by Wormald [10]. The first attempt
to allow the degrees to increase with n was made by Bollobds [2], who obtained
P(g) = e (14 0(1)) for gmax < \/2logn — 1. Most recently, Bollobés and McKay
[4] have shown that P(g) = e")"‘)‘z(l + o(ells ,,)4/5/")) for gmay < (logn)Y/3.
Actually, some of the results quoted above have more generality. Bender and
Canfield [1], for example, optionally allow non-zero diagonal entries and integer en-
tries greater than one. Also, [1], [4] and [10] prescribe a restricted set of matrix
entries which must be zero. This extension enables one to investigate such things
as the expected number of submatrices of specified form, a matter which has been
studied by other means in [5].
Leaving aside differences of terminology, all the papers cited above except [5]
and possibly [9] use essentially the same model; only the method and accuracy of the
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analysis varies. This paper is no exception. Our contribution is a new method of
analysis which enables us to considerably extend and strengthen all previous results
for the 0-1 case with zero diagonal.

A parallel study of rectangular 0-1 matrices (not necessarily symmetric) has
appeared in [6].

2. The Model

Consider a collection of disjoint sets vy, vy, ..., v,, where v; has cardinality g;
for each i. These will henceforth be called cells. Define V = {vy,vs,...,v,}. A
pairing is a set of unordered pairs (called the edges of the pairing) such that

(i) each edge has the form {z, 2’} where z, z' € UZ., v;, and
(ii) each element of [J?_, v; is in exactly one edge.

Given a pairing P, we can obtain a multigraph G(P). The vertices of G(P) are
vq,02,...,V,. The number of graph edges joining v; to v; is the number of edges
{z,2'} of P such that z € v; and z' € v;. Equivalently, P yields an n x n symmetric
integer matrix whose (i, j)-th entry equals the number of edges in G(P) from v; to
v;. For the remainder of the paper we will use the graph terminology rather than
the matrix terminology.

Given g, the number of possible pairings is exactly (2e(G))!/(e(G)! 2‘(G)).
Furthermore, each element of M(g) corresponds to exactly []7., ¢;! pairings. P(g)
can thus be interpreted as the probability that a randomly chosen pairing P produces
a multigraph G(P) which has no multiple edges or loops. Previous estimates of P(g)
were made using either inclusion-exclusion or the method of moments. In the next
section we present a method which is more complex yet substantially more accurate.

3. Basic Analysis

For notational convenience, we make no distinction between graphs and their
edge sets. We will always assume that g, > 1.

Let L be a graph with vertex set V' which is simple except that it has a loop
on every vertex. Let [;,, be the maximum degree of L, and let ¢(L) be the number
of edges. Note that a loop contributes 2 to the degree of its vertex. Let H be a
multigraph, also with vertex set V, with the restriction that if zz' is an edge of
non-zero multiplicity of H, then zz' is an edge of L. Let h; be the degree of vertex
v; in H and let e(H) = %E}'_l h; be the total number of edges. If z,z' € V, then
p(zz') denotes the multiplicity of edge zz' in H. Also, H + zz' is the multigraph
obtained from H by adding an extra edge from z to z'. Let C(L, H) be the set of all

pairings P such that, for z,z' € V, if zz' is an edge of L then pg(p)(z2') = pp(zz’)
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and if zz' is not an edge of L then pg(py(22’) < 1. More informally, G(P) is simple
outside L and matches H inside L.

Let P, € C(L,H) and P, € C(L, H + v;v}), where v;v; € L. Then P, and P,
are said to be closely related if P, can be obtained from P; by an operation of the
following type.

2 P,

In the diagram, only the relevant parts of P, and P, are drawn; the other parts
are unchanged by the operation. In detail, the requirements for the legality of the
operation are

(i) v, vj, v, ¥’ € V (distinct except that v; = v; is allowed),
(ii) v;v; € L, and
(iii) yv;, v;y', yy' ¢ L.

Define Ny = |C(L, H)| and N; = |C(L, H + v;v;)|. Furthermore, let M be the
number of closely related pairs (P}, P;) such that P, € C(L, H) and P, € C(L, H+v,v;).
Our aim for the remainder of this section will be to bound the ratio of N; to N.
We will do this via four separate bounds on M.

Lemma 3.1. L
(gt' - ht')(gj - h])Nl: ifi#7],

(™M, ifi=j.

Proof. Choose an arbitrary P; € C(L,H). If ¢ # j, y can be chosen in at most
g; — h;, and y' in at most g; — h; ways. If { = 5, y and y' can be chosen in at most
(*3") ways. n

el

Lemma 3.2. Let A = gpax(9max + lmax — 3)- Then
M 2 2(pg(v;v;) + 1)(e(G) - e(H) - A)N,.

Proof. Choose an arbitrary P € C(L, H + v;v;). We wish to bound the number of
pairings Py € C(L, H) which are closely related to ;. The edge from v; to v; can be
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chosen in p(v;v;) + 1 ways. For the ordered pair (y, y’) we have the e(G) — e(H) - 1
edges of P, which lie outside H + v;v;. Each of these gives two possibilities, except
that some cases are excluded. The latter are listed below, together with an upper
bound on each.

iti i=
y=v,9y=v, ¥ =04 =0,  4gnu-1) 2(gmax — 2)
yv; € G; ylvj €G 2(gmu - 1)2 2(gmu - 1)(gmax - 2)
yv; €L, ylvj €L 20max(lmax — 3) 29max(Imax — 2)

Since gmax = 1, the largest total is for the left column. The Lemma now follows
when this total is subtracted from 2(e(G) — e(H) - 1). 1

Lemmas 3.1 and 3.2 can be combined to give an upper bound on the ratio
N;/N,. By applying this upper bound repeatedly, the following Theorem is obtained.

Let J be a multigraph which satisfies the same requirements as H, and define
e(J) and {j;} consistently with e(H) and {h;}. Let H + J be the multigraph with
pr4s(zz') = py(zz’) + py(zz’) for all z, 2’ € V. Let \(J) be the number of loops
in J, that is ),y ps(zz). For integers a, b define all = ala-1)---(a-b+1)

Theorem 3.3. If e(G)—e(H)- A>e(J) and C(L,H) # @, then

IC(L,H + )| _ ITE i (g: — by
IC(L,H)l = 2U+AINe(G) - e(H) — AV T ppg (2! lis(=2)

where the product in the denominator is over allz, z' € V.

Our next task is to find a bound complementary to Theorem 3.3. The first
prerequisite follows easily from the proof of Lemma 3.2.

Lemma 3.4. M < 2(pg(v;v;) + 1)(e(G) — e(H) - 1)N2. 1
The other prerequisite is not so easy to come by.

Lemma 3.5. Let A’ = g u (max + Imax — 1) + 2, and suppose e(G) — e(H) - A’ > 0.
Then

(9: — hi)(g; — hj)(1 — E)Ny, fi#7j,
M> {("Eh‘)(l-E)Nb ifi =,
where
a

E= ey —em = 2y

Proof. There is no useful lower bound on the number of pairings P € C(L, H + v;v;)
which are closely related to an arbitrary P, € C(L, H). Instead, we will choose a
random P; € C(L, H) and bound the ezpected number of closely related pairings in
C(L,H + v,-v,-).
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The upper bound given in Lemma 3.1 is high because of the possibilities that
yy' € G(P), yy' e L\G(P) and y = ¢".

As a typical case, consider the possibility that yy' < G(P;) when ¢ # 5. Choose
a random P; € C(L,H). There are at most g; — h; choices of y, then at most
Imax — 1 choices of y' such that yy’ € G(P;). Given these choices, the probability
that y'v; € G(P,) is at most

[C(LU {viy, yy', y'v;}, H + viy + yy' + y'v;)| < L9max — 1)(g; — b))
[C(LU {viy,yy', y'v;}, H+ viy+ yy')l  ~ 2(e(G) - e(H) - A')’

by Theorem 3.3. The other cases can be handled in the same way. @

Lemmas 3.4 and 3.5 can now be combined to give a bound complementary to
Theorem 3.3.

Theorem 3.8. If ¢(G) — e(H) - A’ > e(J) and C(L, H) # 8, then

IC(LH + )| T (g: = b
IC(L, H)| = DUHI)e(G) - e(H) — WA T] ppry s(z2')ls=2

A «J)
(- e —a=m) -
where the product in the denominator is over allz, z'€ V.

For later convenience, we combine Theorems 3.3 and 3.8 for the special case
where H has no edges.

Theorem 3.7. If e(G)— A’ > ¢(J) and C(L,8) # @, then

oL, 1) _ e, ¢!
ICL,0) ~ 2UHN((G) ~ YL, ey a2z}

D(g, L, J),

where

A J (e(G) - 1)l
(- sr=am=m)  sPeLs (elG) = A"

4. Synthesis

The results of the previous section can be used to find an estimate of the
probability P(g). In fact we will do this with a little more generality. Let X be a
simple graph with vertex set V and maximum degree z,,,. Define P(g, X) to be the
probability that a random pairing P produces a simple graph G(P) with no edges in
common with X. In the matrix formulation, X specifies a symmetric set of matrix
entries which must be zero.

19



Choose a pairing P and form the multigraph G(P). A naughty edge of G(P)

is one that is either parallel to another edge (i.e. is part of a multiple edge), is a

loop, or coincides with an edge of X. The naughty edges of G(P) together form a

multigraph called the naughty graph of G(P) (and of P). Our problem is to estimate

the probability P = P(g, X) such that a random P has a naughty graph with no

edges. By definition, this is equal to the number of pairings with empty naughty
graph divided by the total number. Thus we have

1 v(K)

P 2 v(9)

K

if P # 0, where v(K) is the number of pairings with naughty graph K, and the
sum is over all possible K. The ratio #(K')/v(@) can be written in terms of the ratio
bounded in Theorem 3.7. To do this, separate each possible naughty graph K into
edge-disjoint multigraphs A(K) and B(K'). The edges of A(K') are those edges of K
which are loops or which coincide with edges of X, and the edges of B(K) are the

others. Then clearly
v(K) _ 6L K)I/IC(L, )|

v(0) — XslC(L, S)I/ICL, o)’
where L includes every edge of B(K), every edge of X and a loop on every vertex,

and the sum in the denominator is over all simple subgraphs S of B(K).
The value of 1/P can now be estimated by comparing it to a more tractible
expression. For k£ > 0 and 1 < ¢, ) < n, define

{gl."'g}"'/k!, if § # 5,
oM j@kRy, iti=j,
Bi(17) = anlif)/(2e(G))

ap(ij) =

and
v = ¥(g,X) = [[(1+ pilii) + Boi5) [T(1 + Ao(id)),
(L4 i<y
where the first product is over all 1, 5 such that ¢ = j or v;u; € X, while the second
is over all 4, j such that { # j and v;u; ¢ X. When ¥ is completely expanded,
it yields a summation some terms of which can be identified with possible naughty
graphs K. Precisely, K can be identified with the term

'p(K) = Hﬁpk(vlvj)(ij)'
iS5
Such a term is present if K has no edges of multiplicity greater than two.

We now present a series of lemmas which will enable us to compare the values
of ¥ and 1/P. Define the function m(z) = (2z)!/(2%z!).
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Lemma 4.1. Let K be a possible naughty graph. Then if 1(8) # 0,

J) _ m(e(G) - e(K
L

J2K
where the sum of J is over all possible naughty graphs which contain K .

Proof. Since the total number of pairings is m(e(G)), we have v(8) = Pm(e(G)).
The product in the Lemma bounds the number of ways of choosing the pairing edges
corresponding to K. The remaining pairing edges can be chosen in m(e(G) — e(K))
ways. |

Lemma 4.2. Let K be a multigraph with vertez set V. Then
> v < B,

J2K
where the sum ts over all multigraphs which contain K .
Proof. This is immediate from the definition of ¥.
For a possible naughty graph K, define
Mi.; g!ux(wv;)l [k (vevg)] IL g[2I‘K("€'1i)]
IL yl-k'] .

Note that #(K) > 1. Also, define A = 2+ g,,m(%gumx + Zpay + 1)

r(K) =

Lemma 4.3. Let K be a possible naughty graph with no edges of multiplicity greater
than two. Assume that A < €,e(G) and e(K) < €2¢(G), where €; and €5 are fized
positive constants with %el + €3 < 1. Then, if v(8) £ 0,

) o(K)
1+ %I/{”)m -1| < r(K)exp(O(Ae(K)/e(c:)))%m.
Proof. By Theorem 3.7,
v(K)/v(9) e(G)K) A/2 -dK)
1+ (K) l‘ : r(K)(e(c)_ A)HK)I( " €(G) - e(K) - A)
IC(L, S)|
séaix) €L 8)l

where the sum is over all simple subgraphs S of B(K) and L is defined near the start
of this section. The value of A is valid since Inax € 2+ Tmax + Imax/2-
The assumed bounds on A and e(K) ensure that

e()®
(¢(G) — Q)N

e(G)c(K )

exp(O(Ae(K)/e(G)))m
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and

A2 -elK) .
(1 - m) = exp(O(Ae(K)/¢(G)))-

To bound the sum, let m be the number of edges of B(K), not counting multiplicities.
The number of simple subgraphs S of B(K') with exactly r edges is at most (':') Thus,
using Theorem 3.7, the sum is bounded by

= m glzn'.&x eylznax "
,Z;(r )(e(G) - A)lrler < (1 * 2e(G) - A))

= exp(0(Ae(K)/e(G)). B
Lemma 4.4. Suppose that A < €,6(G), where ¢, < 2/3. Then
& = ¥ exp(0(4%/¢(G)).

Proof. We proceed by breaking the problem into a number of pieces. Firstly, choose
a constant €z such that 0 < ¢; < 2/3 — ¢;. We can dispose of those K with ¢(K) >
€2¢(G) by arguing as follows. The function

1 .. .. .
f(2) = 3 IIa+ gz + Baii)=®) JI + Bali)e®),
i<s i<j
where the products are restricted as in the definition of ¥, can be interpreted as
the probability generating function of a non-negative random variable which is the
sum of n(n + 1)/2 simpler independent random variables. The mean of the random

variable is bounded by

2)_Bai5)+ D_Aulii)+ 3o Bilis) < Af2.
1<y f vivjeX

Therefore, the contribution to ¥ of those K with e(K) > €2¢(G) is at most
AV /(2¢2¢(G)) = ¥O(A/e(G)). A parallel argument (working directly with pairings)
shows that the contribution to 1/P of the same K is at most O(A/e(G))/P.

At this point, it is convenient to note that the displayed bound above guarantees
the existence of at least one actually occuring naughty graph K for which ¢(K) <
A/2. Because ¢; < 2/3, this gives us a starting point from which we can produce at
least one pairing with empty naughty graph, using the switching operation employed
in Section 3. Thus (@) # O, justifying our use of Theorem 3.9, Lemma 4.1 and
Lemma 4.3.

Next we consider a few of the less common possibilities for K. The contribution
to ¥ of all K with an edge of multiplicity greater than two is zero, by the dcfinition
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of ¥. The contribution of the same naughty graphs to 1/P is, by Lemma 4.1, at
most

i3l 31 o
1 m(e(G) - 3) (<9
Fm:((e()c)) )(E - Z%g) O(gm.x/e(G))

In a similar manner, we can dispose of those K which have a vertex of degree greater

than, 2 not counting multiplicities. The contributions to ¥ and 1/P are respectively
exp(O(A?%/¢(G))¥ and exp(O(A?%/e(G)))/P. Next, consider those terms of ¥ which
correspond to impossible naughty graphs, because of excessive degrees. These have
been counted already, except for a few cases where 1 < g; < 3. The contribution to
¥ here is easily seen (with the help of Lemma 4.2) to be O(A%/e(G))¥.

We are left with the naughty graphs K for which the conditions of Lemma 4.3
hold, and for which the maximum degree, not counting multiplicities, is at most two.
We must consider the maximum possible relative errors associated with the factors
e(G) ) 1(G)1 KN exp(O(Ae(K)/e(G))) and r(K).

To handle the first two factors, compare the term 1 + 8,(f5)z + Ba(ij)z> of
f(z) with exp(B1(¢5)z + Ba(5)z2) and 1 + B(ij)z® with exp(B2(i5)z%). We find
that the coefficient of z¥) in ¥ f(z) is at most that of z%X) in exp(z E;SJ- Bi(ig) +
z? 2 icjPaliy) + z? i< B2(¢5)), where the sums are restricted as before. This
is clearly at most E;LKIL(K) m(A/2)"/k!. A straightforward argument now shows
that the maximum effect of exp(O(Ae(K )/e(G)))e(G)“K)/e(G)[’(K)I is a factor of
exp(0(A?/e(@G))).

Finally, we must investigate the factor r(K). Ignoring those K we have elimi-
nated, non-trivial contributions to r(K) come from those vertices of K which have no
loops and two other edges, not counting multiplicities. There are three possibilities
(0, 1 or 2 double edges) which together provide a contribution of at most g? A%¥ /e(G)?
to ¥ for vertex v; (by Lemma 4.2). The effect on r(K) of this event is a factor of
14+ 0(1/g;), for g; # 0. After some routine calculations, we find that the overall effect
of r(K) on ¥ is a factor of [T, o(1+ O(1/g:))t4*/) = exp(O(A%/e(G))). ®

In order to estimate P we now only need to estimate ¥. Define

2 .0:
4C(G)Zg and m E 9:9;-

=] WIJIEX

Lemma 4.5. If g2, = O(e(G)), then ¥ = exp(A + A2 + p + O(A%/¢(G))).

Proof. Since ¢2,, = O(e(G)), we can uniformly write 1 + Ba(i5) = exp(Ba(ij) +
O(B2(i5)?)) and 1+ B4(i5) + B2(i5) similarly. The expression for ¥ then becomes a
product of exponentials and thus the exponential of a sum. The rest is easy. @
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Theorem 4.8. Suppose that g,y > 1 and A < €16(G), where ¢ < 2/3 and
A=2+ gm,x(%gJmu + Zpax + 1). Then the number of simple graphs with degree
sequence g and no edge in common with X is uniformly

(2¢(G))
e(G) 124G T2, 94!

exp(-X - N - p + O(4%/¢(G))

as n — 0o, where A\ and p are as defined above. |
Let RG(n, k) be the number of regular simple graphs of order n and degree k.
Corollary 4.7. If1< k < €3n, where €3 < 2/9 is fized. Then uniformly

(nk)!

k72 gy P - D/4+ 0% /).

RG(n, k) =
Corollary 4.8. If1< k = o(n), then

nk)!
log RG(n, k) ~ 1°8((7F/2)(_!27'lkﬂ(TF)' '

5. Potpourri

The results of the previous section show that the known asymptotic estimate
of N(g) for gmax < \/M — 1 is in fact accurate for g, = o(e(G)'”). It would
be of considerable interest to know if this is the limit of its validity. It is possible
that the methods of this paper could be improved enough to settle this question. To
begin with, Theorem 3.7 as we have it could be used to sharpen Lemmas 3.1, 3.2, 3.4
and 3.5. These in turn would imply a more accurate version of Theorem 3.7. This
process could in principle be repeated, but even the first iteration would be quite
complicated.

In the case g = (k,k,..., k), we have a little experimental evidence of the
accuracy of Corollary 4.7. In [7] we presented exact values of N(g) for 1 < n < 21
and 0 < k < n. A careful numerical analysis of them suggested the following
possibility.

Conjecture 5.1. [7] Ifk > 1 is fized and g = (k,k, ..., k), then

B (nk)! (k=1 k+1) (k- 1)(k+2)(k>-k+1)
= (nk/2) 2k (k) © (‘ 4 - 12kn

12
_ I)sz:;k +8), 0(k5/n3)).

If the conjecture is true, it would undoubtedly be true if k increased not too

N(g)

quickly with n.
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In [8], McKay and Wormald prove that, if 3 < g; < o(nl/z") for all ¢, almost
no isomorphism class of M(g) has members with non-trivial automorphisms. The
same result for fixed constant g; has been obtained by Bollob4s [3]. It follows, under
these conditions, that the number of equivalence classes in M(g) is asymptotically
N(g)/n!. In fact, the estimates in [8] lead quickly to results of the following kind.

Theorem 5.2. Let URG(n, k) be the number of unlabelled regular simple graphs of
order n and degree k. If € > 0 i3 fized, and 3 < k = O(nl/z“), then uniformly

(nk)!
(nk/2)! 2nk/2(KY)nn!

URG(n, k) = exp(- (K — 1)/4 + O(k*/n)).
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