SUBGRAPHS OF RANDOM GRAPHS WITH SPECIFIED DEGREES

Brendan D. McKay
Computer Science Department, Vanderbilt University,
Nashville, Tennessee 37235

Let g be a graphical degree sequence and let H C J C L be (the edge-
sets of) graphs of the same order as g. Using an elementary technique, we derive
bounds on the probability that GNL = J given that GNL 2 H, when G is chosen
at random from the set of all labelled graphs with degree sequence g. Similar
results are also gtven for bicoloured graphs. An application to the enumeration

of spanning trees is mentioned.

1. INTRODUCTION

For n > 1 define K, = {{u,v} |1 < u < v < n}. For notational clarity,
an element {u,v} € K, will be written as wv. A graph of order n is a subset

G C K,. The degree sequence of G is the n-tuple d(G) = (g1, g2, - -, 9gn), Where
gu=H{v|uweG}.

Let g be an n-tuple of natural numbers and let H C L C K,. Define
G(g,L,H) to be the set of all graphs G such that Gn L = H, and denote the
cardinality of G(g, L, H) by N(g, L, H). In this paper we will employ an elementary
technique to investigate the relative values of N(g, L, H) when H varies, with g and
L fixed.

Two graphs Gy, G, € K,, are said to be closely related if d(G;) = d(G;)
and |Gy \ G| = 2. It is easy to see that G; and G, are closely related if and only if
there are distinct u, v, z, y € {1,2, ..., n} such that uz, vy € G;\ G, and uv, zy €
G2 \ Gi. This situation is depicted in Figure 1. The operation which takes G; onto
G> or vice versa is sometimes called a switching, and was first employed by Senior
[11]. Any graph can be obtained from any other with the same degree sequence
by applying a sequence of switchings (see Havel[6] and Eggleton[4]). Similar results
were proved for bicoloured graphs (in effect) by Ryser [10] and for multigraphs by
Hakimi [5]. Our method does not depend on these results.

CONGRESSUS NUMERANTIUM, Vol. 33 (1981), pp. 213-223.



Figure 1. — Two closely related graphs

2. THE MAIN RESULTS

Let g be an n-tuple of non-negative integers and let H C L C K,. Define
(hi,ha, ..., ha) = d(H) and (ly,ls, ..., ;) = d(L). Suppose that uv € L\ H. We
will investigate the relative values of N(g,L,H) and N(g, L, H U {uv}) by finding
bounds on M, the number of closely related pairs (G, G;) for which G € G(g,L, H)
and G, € G(g,L, H U {uv}). We are not assuming that M 3 0.

Define gmax = max{g; |1 < i < n} and lp,y similarly.

21 Lemma M < (g, — hy)(gv — hy)N(g,L,H).

Proof: Let Gy be an arbitrary element of G(g,L, H). To obtain a closely related
graph G» € G(g,L, H U {uv}) by mecans of a switching as in Figure 1, we need only
to choose uz € G; \ H and vy € G; \ H. The first choice can be made in exactly

gu — h. ways, then the second can be made in at most g, — A, ways. O

22 Lemma

M > (E(gi - hi) - (gmax + 1)(gu -+ gu) + (gmax + 2)(hu -+ hu)
— gmax(ly + L) + 2gmax)N(g, L HU {uu})'

Proof: Take an arbitrary graph G, € G(g, L, H U {uv}). Referring to Figure 1, we
need to choose an ordered pair (z,y) which satisfies the requirements
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(i) {u,v,z,y}| =4, and
(i1) zy € Go\ H, and uz, vy ¢ GoU L.

We can choose 3% ,(g; — hs) ordered pairs (z,y) such that zy € G, \ H.
However we cannot choose (u,v) or (v, ). Similarly we must not choose pairs of
the form (u,w) or (v, w), nor pairs (w, z) for which uw € G, or vz € G,. Bounding
the number of pairs excluded in each case, we find the number of choices possible is

at least
n

Z(gi - h,) - (gmsx + 1)(914 + gu) + (gmax + 2)(hu + hv) - gmax(lu + lu) + 29max- D

i=1

To simplify the subsequent calculations we will use the following weaker
form of Lemma 2.2.

2-3 Lemma Let A= gmax(gmsx + lmax\ Then

]

M > (i:(g; —hi)— 2A)N(g, L, Hu{uv})

0
24 Corollary
(o tor— k) —24)N(g, L, H U {ww}) < (0 — hu)lou — ho)N(g, L, H)
=1
Proof: This is an immediate consequence of Lemmas 2-1 and 2-3. u

The bound on N(g, L, H U {uv}) given by Corollary 2-4 can be generalised
to a bound on N(g,L, HUJ), where HNnJ =0 and HuJ C L, by simply applying
Corollary 2:4 |J| times. Let (ji, %, ...,Jn) = d(J), and define E; = $ 37, 7,
E; =437 g;and Ep = 32, hy. For z,m > 0 define zI™ = i(x—l)- -~ (z—m+1).
In particular, zl® = 1.

2.5 Theorem IfE;—E,—A >0, then

n
25(Ey— En— A)EIN(g, L, HU J) < [](9: — h:)*IN(g, L, H). ]
=1

The bound given by Theorem 25 is of course trivial if £, — E, — A < Ej;.

In order to obtain a bound in the opposite direction to that in Theorem 2-5
we can use similar methods. A bound complementary to Lemma 2-2 is easy.
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26 Lemma M <2(E,—E,—1)N(g,L,HU {uv}). ]

In order to obtain a bound complementary to Lemma 2-1 we need to use a
slightly different argument. The reason for this is that an element of §(g, L, H) might
be closely related to anything from 0 to (gu—hy)(g9v— hy) elements of G(g, L, HU{uv})
— there is no useful uniform lower bound.

27 Lemma Let A= gnax(gmax + Imax +2). If Eg— Exn > A+1 then

M > (gu — hu)(gv — hu)(l 3 Egg’“:"(}if"‘“_}ll l))N(g, L H).

Proof: We must reconsider the proof of Lemma 2-1 and bound the amount by
which (g, — hu)(9» — ho)N(g, L, H) overcounts M. First, note that the lemma is
trivially true if N(g,L,H) =0, so from now on we will assume N(g,L,H) > 0.

As in the proof of Lemma 2-1, we can always choose z in g, — h, ways.
However in the choice of y such that vy € G; \ H, two things that can go wrong are
(i) y =z and (ii) zy € L.

For a random choice of Gy € (g, L, H) and of z such that vz € G; \ H,
the probability that vz € G; is at most

N(g, LU {uz, vz}, Hu{uz,vz}) _ N(g, LU{uz, vz} HU {uz,vz})
N(g, Ly {uz}, H U {uz}) =  N(g,Lu{uz,vz} HuU {uz})
Imax(gv — hv)
T 2AE,—E,—A4-1)

Therefore, the total number of choices of Gy,  and y which encounter problem (i)

by Corollary 2-4.

is at most
gmax(gu — hu)(gu — hu)N(g: L, H)
2AE,—En—A—1) '
By a similar argument, for a random choice of G, € G(g, L, H), z such that
uz € Gy \ H and y such that zy € L, the probability that vy € G is at most

gmax(gv - hu)
2(E;,—Ep— A —1)
where A’ = grax(9max + lmax + 1). Therefore the total number of choices of Gy, z

and y which encounter problem (ii) is at most

gmaxlmax(gu — hu)(gu - hv)N(gr L: H)
2(E,— Ep— A& —1) '

The required inequality now follows immediately. a

Combining Lemmas 2-6 and 2-7 we obtain bounds complementary to Corol-
lary 2-4 and Theorem 2-5.
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28 Lemma IfE,—E,>A+1 then
2Ey—En—1)N(g,L,Hu {uv})

gmax(lmnx + 1)
> _ _ _ -
2 (94 — hu)(gv "")(l 2E,— En—A—1)

)N(g, L, H). .

2.9 Theorem IfE;—E,— E;— A > gmax(lmax + 1), then
25(Eg— Ea—1)®IN(g, L, HU J)

n E;j
i — h,‘ [5:) _ gmnx(lmnx + 1) ) N L H).
> 1o - h(1 - grpfelon 2 ) G, 1, )

Recall that G(g, L, L) is the set of all graphs G C K, such that d(G) = ¢
and L € G. If H C L then the ratio N(g,L,L)/N(g, H, H) is thus the probability
that G € K, contains L, given that d(G) = g and G contains H. Bounds on this
ratio can be obtained with the aid of Theorems 2-5 and 2-9.

2-10 Theorem LetH C L C K,, and J=L\H. Let g= (91,92, --.,9n) be an
n-tuple such that G(g,L,H) # @. Define gmax, lmax, 4, 4, E,;, En, Ej as above.

(a)  IfE,—En—E; > A then

N(g,L,L) _ _ TIEi(gi— ho)™
N(g,H,H) ~ 2B(E,— E,— A)El

(b) IfE,—Ep—E; > A+ gnax(lmax + 1) then

N(g,L,L) > T7_: (e — ki)W
N(g,H,H) = 2Bi(E,— E,— 1)E

’ [(1 B 2(E§Txg:i gjll 5))/ (1 t 3(E, —E» —ﬁmi (e— 1)E;/e))}éj

Proof: Part (a) comes immediately from Theorem 2-5 on making the observation
that

N(gLL) _ N(gLL)
N(g,H,H) = N(g,L,H)

For part (b), notice that G(g, H,H) = Usc s §(9, L, HUS). Therefore

N(g,L,L) _ N(y,L,L)/ N(g,L,HUS)
N(g;H;H) N(g,L,H) SCJ N(g,L,H)
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A lower bound on N(g,L,L)/N(g,L,H) can be found in Theorem 2:9. To
handle the sum we have, by Theorem 2-5,

¥ N(g,L,HUS) _ 17 (g: — ko)
scJ N(g,L,H) Y, EE;— Ep— A)EL

where (sy,8,, ...,8,) = d(S) and E, = ?_, sy. Therefore

g,L HUS) §: e
& Nl LH) 2m(E, — Ep— A)m)’

By Stirling’s approximation we find that zI™ > (z — (e — 1)m/e)™ for 0 < m < z.

Therefore
g,L HuS) ;. Finax &
) N(g,L,H) 2(E,— Ep— A—(e—1)Ej/e) )/
from which (b) follows immediately. O

It is interesting to consider the ratio between the two bounds given in
Theorem 2-10 for large n. Let (g, h,7) be the value of the upper bound in (a),
divided by the lower bound in (b). Suppose that the requirements for each part are
met. If AE; = o(E;— E,— Ej — A) as n — oo then ¢(g, h,7) = 1. The asymptotic
value of N(g,L,L)/N(g,H, H) given is the same as that which can be obtained by
two applications of a theorem of Bender and Canfield [2], when their conditions
overlap ours (essentially when A is bounded).

If AE; = O(E;—E»—E;—A) as n — oo then ¢(g, h, 7) is bounded. In some
cases this is less accurate than the result obtainable from [2], although the latter
only gives asymptotic values without error bounds. Wormald [12] and Bollabds [3]
have also obtained results which partially overlap ours.

All of the methods used in this chapter can be repeated, using Theorems 2:5
and 2-9 to achieve much closer bounds. In order to do this with substantial success
it is necessary to consider in more detail the precise structure of the subgraphs we
are considering. Indeed, for the case A = O(1) and E; — E, — E; — 00, the results
of [2] prove that upper and lower bounds of the form of Theorem 2:10 cannot be
found which are asymptotically equal and only depend on g, h and j.
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3. BICOLOURED GRAPHS

The techniques of Section 2 can be applied equally as easily to the inves-
tigation of subgraphs of bicoloured graphs. The only essential difference is that we
must restrict our switchings to maintain the bipartition.

Let m,n > 0. Define V; = {1,2, ..., m}, Vo ={1',2/, ..., n'} and Kpnn =
Vi x Vo, A bicoloured graph of order (m,n) is a subset G C K,,,. As in Section 2,
(u,v) € Ky, Will be abbreviated to uv. The degree sequence of G is the (n + m)-
tuple d(G) = g = (91,92, ---,9m; 91,92, ..., gn) Where gu = |{v | uv € G }| for
weVyand gp = [{u|uw e G} forveVy If HCLC Kpp, the set of all
G C Kmn such that GNL = H will be denoted by B(g,L,H). The cardinality of
B(g, L, H) will be denoted by M(g, L, H).

We will now list the results which correspond to Corollary 2-4, Lemma 2-8
and Theorems 2:5, 2.9 and 2:10. We will omit the proofs, as they are very similar
to those in Section 2.

Let H,J C L C Kmp and HnJ = 8. Define h= d(H), j= d(J), I = d(L),
E, =Yg, E; and E, similarly, gmax = max{g; | 1 € ViUV, } and I, similarly.
Let wve L\ H.

31 Theorem Let I = 2¢iax(gmax + lmax — 2) + 1. Then

(E,— En—T)M(g, L, H U {uv}) < (9u — hy)(go — ho)M(g, L, H).

32 Theorem Let " = 2¢nax(9max + lmax — 1)+ 2. Then, if E,— Ep > T,

_— — _ — _ gmaxlmnx
(Eo— En—1)M(g, L, H U {w0}) < (0 — hu)(ay h,,)(l R F)M(g,L,HI)j

3.3 Theorem IfE,— E,—1I < Ej, then

(Eg— En—I)ElM(g,L,HU J) < [1(9: — he)¥ M(g, L, H).
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34 Theorem IfE;,—E,—T —E;> gnaxlmasx, then

E;

. n ) I
E,—En—1)8M(g, L, HUJ) > .-—h-["l(l— Fmax max )M L, H).
(E,—Ex—1)""M(g )_.-E(g Q) By Erol - B i1 (9,L,H)
0

3:-5 Theorem Suppose J =L\ H and B(g,L,H)# 0.
(e)  IfE,—Ey—T > Ej, then

M(gr L: L) < H(gl_ h’i)["']
M(g,H,H) =~ (E;— Ep— IN)EI

(b) If E,-Eh—F—Ej"}”l > gmaxlmax, then

M(g, L L) > T(g: — hi)?!
Mg, H,H) > (B, — Ep— 1)B]

2 E;
1— gmaxlmax 1+ Jmax
Eg—Eh—Ej—f‘—i—l Ep_Eb_r_(c_l)Ej/e ' O

X

Some asymptotic results partially overlapping Theorem 3-5 can be derived
from O’Neil [9], Bender [1] and Wormald [12].

It is clear that the samé method we have used for graphs and bicoloured
graphs can be also applied to multigraphs, pseudographs and even to hypergraphs
(via the vertex—edge incidence graph). Variances can also be investigated by using
Theorem 2:10 or 3-5 to bound pair-wise covariances. The analysis in this case is
usually quite complicated.

4. SPANNING TREES

For a graph G, let k(G) denote the number of spanning trees of G. We
say that G is k-regular if d(G) = (k,k, ...,k). The number of spanning trees of a
k-regular graph has been investigated in McKay [7], where a generalisation of the

following theorem is proved.
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41 Theorem Let G be a connected k-regular graph of order n, where k > 3.
Then k(G) < ek, where

(k - 1)2k—2
(k2 — 2k)F—2(k — 2)F21 (k + 1)E=i25F%’

(k—1)
(k"’ — 2k)lc/2—1 .

and

Te =

Cp =

We will apply Theorem 2-10 to investigate the sharpness of the bound gck.
For functions fi(n) and fa(n) we will write f,(n) <~ fo(n) if there are constants ng
and 0 < A < B such that Afi(n) < fo(n) < Bfi(n) for n > ny. The next theorem
demonstrates that the bound of Theorem 4-1 is high by at most O(n).

4-2 Theorem For an infinity of values of n, let g(n) = (g:(n), g2(n), ..., gn(n))
be such that G(g(n),8,0) # 8. Define gmax(n) = max{gi(n) |1 < i < n}, g =

g(n) = (T gi(n))/n and § = §(n) = (IT gi( n))l/" Suppose that § > 2+ € for some
€ > 0 independent of n and that gn.x < K for some constant K. Then the
average number of spanning trees over G € G(g(n),0,0) is

1 _glg—1p Y
n ™ n\ girz(g — 2yt
Proof: According to (8], the number of trees T with d(T) = I= (l;, Lz, ...,ls) for

n>2is
n—2
bh—1,5—1,.. . la—1)

Therefore, by Theorem 2-10,
14]
3 n—2 i=1 91
o Z(11—1 bh—2, ...,y — )zn(ng/g)[»—u
_ (n—=2)
" (ng/2) I"—ilzn Z H z —1
_ (n—2)g" (9—1)
(ng/2)r—t2r\ n—2 )

from which the desired result follows on application of Stirling’s formula. 0

A similar application of Theorem 3-5 leads easily to the next result.
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4-3 Theorem Let N = N(r) — oo as r — 00, and define m = a(r)N and
n = (1 — ar))N, where 0 < a(r) < 1. Suppose that B(g(r),0,0) # @, where
a(r) = (g1(r), .., gm(r); g1e(r), ..., gw(r)). Define gmex = max{gi(r) |i€ ViUVa},
7= (Zg)/N and § = (I1gi(r))/N. If § > 2+ € and gnax < K for constants
€ > 0 and K, then the average number of spanning trees over G € B(g(r), 0, 0) is

10.

., 1 (ﬁ(s‘v — 2a)7/?=%(g + 2a — 2)/2+a—t )N

Ty ~ N gg/z(g _ 2)]/2—1
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