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Spanning Trees in Regular Graphs 

Let X be a regular graph with degree k 2 3  and order n. Then the number of spanning trees 
of X is 

where yk,  ck and (3, ,k(l/k) are positive constants, and p, is the number of equivalence classes of 
certain closed walks of length i in X. The value 

( k  - l )k- l  
Ck = (k2_2k)"i/2)-l 

is shown to be the best possible in the sense that K(x~)"" +c^ for some increasing sequence X,, 
X2, .  . . of regular graphs of degree k .  A sufficient condition for this convergence is established. 
Finally, for some absolute constant A, K ( X )  SAC: log n/(nk log k), a bound which (for fixed k )  
is high by at most O(log n). 

In this paper we investigate the number of spanning trees of a regular graph. We 
succeed in finding a tight upper bound in terms of the numbers of small cycles and other 
subgraphs. The only previous similar result known to the author was found by Kel'mans 
[7] and independently by Nosal [l31 and Biggs [2]: 

THEOREM 1.1. A regular graph of order n and degree k has at most (nk / (n  - l ) ) " l / n  
spanning trees. 

We will not allow our graphs to have multiple edges, but the same results can easily 
be extended to that case also. 

A walk of length r in a graph X is a sequence v = (vo, 0 1 , .  . . , v,) of vertices of X such 
that is adjacent to vi for l G i  S r .  We say that v starts at v", finishes at vr, and is 
closed if v, = U". Suppose that for some i (0 < i <r)  we have = vi+l. Then we can 
reduce v by deleting the elements vi and The result is clearly a walk of length r -2 
which is closed if and only if v is closed. If v cannot be reduced in this way it is called 
irreducible. 

Given any walk v there is a unique irreducible walk i5 which can be obtained from v 
by a sequence of reductions. The uniqueness of 17 is proved in [ 5 ] .  If I7 has length 0, we 
will call v totally reducible. Obviously, totally reducible walks are closed. 

Our first theorem gives a relationship between the number of walks and the number 
of irreducible walks between two vertices of X, if X is regular. 

THEOREM 2.1. Let X be regular with degree k ,  and let v and v' be the vertices of X, 
not necessarily distinct. Define a ( x )  =E,,, ai.xi and ^ ( X )  =xzo bixi where, for each i, a, 
is the number of walks of length i in X which start at v and finish at v' ,  and b, is the 
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number of such walks which are irreducible. Then 

and 

PROOF. For each r =s 0, define Wr to be the n X n matrix whose (i, j)th entry is the 
number of irreducible walks in X which start at xi and finish at xi. Let W(x) = I,-=o Wrxr. 

Obviously, WO =I ,  W1 = A and W2 = A 2  - kI, where A is the 0-1 adjacency matrix 
of X. From [l] we know that for r 3 2 ,  Wr+l = WrA - (k - l )  Wr-l. Therefore 

The second equation now follows on solving for W(x), and the first on a simple change , 
of variable. 

Let v = (vo, VI, . . . , vr) be a closed irreducible walk of length r 2 3  in X, such that 
ul # v r - ~  and a11 cyclic permutations of v are distinct. The primitive circuit %(v) is the - 
equivalence class containing all cyclic permutations of v and all cyclic permutations of 
the reverse walk (v,, vrP1, . . . , vo). Clearly %(v) contains exactly 2r irreducible closed 
walks and is uniquely defined by any one of its members. The simplest example of a 
primitive circuit is an ordinary cycle. 

We now show that in order to count the closed walks in X it suffices to count the 
primitive circuits, provided X is regular. 

THEOREM 2.2. Let X be a regular graph of order n and degree k. Let wi be the number 
of closed walks of l e ~ t h  i in X (i 3s O), and let pi be the number of primitive circuits of 
length i in X (i s' 3). Define 

Then 

PROOF. Let di be the number of irreducible closed walks of length i in X, for i 3 0 .  
Then do  = n and d1 = d2 = 0. Define d(x)  = dixi. 

An irreducible closed walk of nonzero length in X is necessarily of the 
form (zo, 21,. . . , zm, 01, v2, . . . , vr, . . . , VI,  v2,. . . , vr, zm-1, zm-2,. . . , zo), where 
z o ,  z1, . . . , zm)  is an irreducible walk (not necessarily closed), v = (vo, v\,. . . , or) is an 
element of a primitive circuit, repeated s 3 1 times, zm = vo = vr and U I  7^ zm-1 7^ vr-1 (if 
m > 0). The length of this walk is rs + 2m. 

Given the primitive circuit %(v) of length r, the choice of v can be made in 2r ways. 
If m # 0, any of the vertices adjacent to z,,, = v o  other than vl or vr-1 can be chosen as 
zmP1. Further vertices zmP2, zm-.,. . . , if required, can each be chosen in k - 1 ways. 
Therefore 
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By Theorem 2.1 we find 

from which the theorem follows on a change of variable. 

We note that the term (k -2  - k(1-4(k - l ) ~ ~ ) l / ~ ) / 2 ( k ~ x ~ -  1) counts totally reducible 
walks with a fixed starting vertex. This can be deduced from the proofs above, or can 
be proved by demonstrating a one-one correspondence between these walks and the 
closed walks with fixed starting vertex in an infinite regular tree of degree k. We state 
this result in the next theorem, and at the same time recall some of the results we will 
need from McKay [ l l ] .  

For notational convenience, define W = 2(k - l)l12. 

THEOREM 2.3. Let X be a regular graph of degree k. Let v be a vertex of X and, for 
i 3 0, let ti be the number of totally reducible walks of length i in X which start a t  v.  Define 

00 

t(x)=T.,^ t ,xl.  
2 2 1/2 k -2 -k (1 -W X ) 

a )  t(x) = 2(k2x2- l )  

(b) ti = 0 if i is odd, and 

(c) Define 

0 ,  otherwise. 

Then t, K x'f,(x) dx. 
(d) If k 2 3 ,  

(e) Define the Chebysheff polynomials To(x), Ti(x), . . . by T,,,(cos 8 )  = cos me. Then 

Let X be a graph with vertices xi,  x2, . . . , X,, (n 3s 2), and adjacency matrix A = A(X).  
Let A be the n x n  diagonal matrix whose ith diagonal entry is the degree of xi, and 
define K = K ( X )  = A-A. The first lemma in this section reviews some of the basic 
properties of the eigenvalues of A and K. 

 LEMMA^.^. LetAis;A2S-~~SAnbetheeigenvaluesofA,andletpl=Sp2=S~~~"spn 
be the eigenvalues of K. Let X have K(X) spanning trees, maximum degree A and 
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edge-connectivity 17. 
(a) For l ~ i - s n ,  - A G A , = Z A  and O ~ p , - s 2 A .  
(b) For r 0, wr = l A  \ is the number of closed walks of length r in X. 
(C) k2p3 ' ' ' k n  = n ~ ( x ) .  
(d) If X has c components, (JLI = k 2  = * . =pc = 0 and pc+1 >0 (if c # n). 
(e) p2 S 2~ (1 - c o s ( ~ ~ / n ) ) .  
(f )  If X is regular with degree k ,  pi = k for 1 G i S n. Also, ŷ,, . . . , p,, are not 

all equal unless X is empty or complete. 

PROOF. Part (a) follows from Gershgorin's Theorem. Part (b) follows from the fact 
that XLl A \  is the trace of Ar.  Part (c) is equivalent to the well-known matrix tree 
theorem, first proved by Borchardt [3], but closely related to a theorem of Kirchhoff 
[8]. Part (e) was proved by Fiedler [4]. Part (f) is true because A = k l  in this case. 

The next lemma is a standard result (see [6] for example). 

LEMMA 3.2. Let a l ,  a->, . . . , am be positive real numbers, not all equal. For t > 0  define 
M( t )  = ($ zl a ;)l7' . Then M ( t )  is strictly increasing and 

lim M(t )  = ( m a 2  - . -)lrn. 
r+o+ 

THEOREM 3.3. Let X be a connected regular graph with n vertices and degree k 3 3. 
Define r{X) = (~K(x))~ ' (""~ ' .  Then 

1 1/1 

Â¥(X = t t + o +  lim (- n - 1 X (:) I - 1 ) ~ ' )  , 

Furthermore, the value of the expression on the right for t > 0 is greater than its limit, unless 
X is a complete graph. 

PROOF. By Lemma 3.1, 

( ? ( l - $ ) l ) ,  byLemma3.2. = k lim - 
t+o+ n - 1  

Since t > 0, the binomial expansion of (1 -X)' is convergent for -1 -sx s; 1. Therefore, 

1 n w  
l/[ 

Â ¥ ( X  = k lim (- X (' ) ( -1) '~  ik") , 
t-o+ n - l .= l  

The second claim follows from Lemma 3.1(f) and Lemma 3.2. 

Now write wr = ntr +U,, where tr is as in Theorem 2.3. We can identify ur as the number 
of closed but not totally reducible walks of length r in X. Define 

it} 
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Noting that ua = U I  = uz = 0, Theorem 3.3 can be restated as 

Since fk(x) is an even function with support (-W, W), Ik(t)>O. Also, ('X-llr ss0 for 
0 < t "Â 1 and r s: 2. Therefore a consequence of Theorem 3.3 is as follows. 

THEOREM 3.4. Under the conditions of Theorem 3.3, 

The case t = 1 of Theorem 3.4 is equivalent to Theorem 1.1. In order to estimate Ik ( t )  
we first consider a related integral. 

LEMMA 3.5. For ly\ < l /w define Jk(y) = j"" log(1- yx)fk(x) dx. Then 

(k-2) /2  l -(l - 4(k - l)y2)1'2 
W y )  = -log^ (h) k - 1  ), where q = 2(k - 

PROOF. A standard result is that log(1-2yz +z2 )  = -2 ~ ~ 7 ' , ( ~ ) / i ,  for -1 s= y s; 1 
and 12 [ < 1. Putting z = (1 - (1 -4(k - l )y2)1 '2) / (2~)  and y = x/w, we find that log(1- 
yx) = -log(l + z ') - 2 z 'T,(x/u)/i, for /X 1 a. 

Since the series on the right is absolutely convergent, we can perform the integration 
term by term using Theorem 2.3(e). The result is immediate. 

THEOREM 3.6. For any k  3 3 ,  k!k(t) =ck(l  +O(t))  as  t ->Â 0 + ,  where 

c k 1 
= (1 + O(t)), by Lemma 3.5 with y = -. 

k 

Some sample values of ck are ~ 3 ~ 2 - 3 0 9 4 ,  c4 = 3-375 and cs  "4-4066. Asymptotically, 



& ( X )  = 2i+2i d d  
sin 24((i/ cot id  -2i l .  

2 2 1 / 2  2 ( l - ( l - w t )  ) 
and z = 

2 
= S  ̂dt, where y = 2 2 2 1/2 

0) t (1-0, t ) 
0 

The expression for piTk(x)  in the lemma is now easily obtained via the substitution 
at = sin 2d .  

THEOREM 3.8. For any k s- 3 and R ss 3 there is a constant D = D ( k ,  R )  such that 

PROOF. Firstly, note that I(t)- '  = 1 + 0 ( t )  and that ('^(-l)'^ < t ( 1 -  t)" ' / i  for 
0 < t < 1 and i 5- 3. By Theorems 3.4 and 3.6 we have 

1 1  R 
~ c k ( l  + o ( t ) )  expf- n - 1  (-- t 11 + 0 ( t ) )  pi13~.k (F))) .  

i = 3  

Now L pf l i yk ( ( l  - t ) / k )  = fi ~ , P , , k ( l / k )  - 0 ( t n ) ,  since pi S n ( k  - l ) ' / ; .  The theorem 
now follows on putting t = n 1 ' 2 .  

A table of values of p i , k ( l / k )  can be found in [9]. Some example values are p3,3(1/3) = 
0-26706, <33,4(1/4)==0-07548, p4,3(1/3)=0-12908 and p5,5(1/5)=0-00195. It can be 
shown that p i , k ( l / k )  - 2 / ( k  - l ) '  as i + k +al. 

By refining the techniques above, a reasonably good upper bound on D, and thus one 
on r ( X ) ,  can be found. However, viewed as an upper bound on K(X), the uncertainty 
involved in D (a factor of e O(nl12)  is annoyingly large. Fortunately, there is a technique 
by which this factor can be reduced to a constant. We begin with a result from [10]. 

THEOREM 3.9. Let 2 <Ko K l  be constants. Let n 1 < n2 < - be a sequence of natural 
numbers and, for each i, let k i  = ( k \ ' ,  k , ,  . . . , ky) be a graphical degree sequence for 
which ki" S K i  for 1 s= l S ni and with arithmetic mean fei ^KO. Define fe, to be the geometric 
mean of the entries of ki. 
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For each i define Ki  to be the average number of spanning trees over all labelled graphs 
with degree sequence ki. Then there are constants A > 0 and B, independent of  i, such that 
A ~ ( k i ) ~ - / n i  Â¥Â£s S Bc(ki)"Â¥/ni  where 

Since X has n vertices and degree k ,  it has m = n k / 2  edges. Label these e l ,  e-i, . . . , em 
in any order. For 1 s s j ~  m form the (n  + 1)-vertex graph X, by inserting a new vertex 
in the middle of the edge et In other words, replace the edge e, by a path of length two. 

LEMMA 3.10. For i 2 3  define pi,, to be the number of primitive circuits of length i in 
X,. Then 

PROOF. Fix 0 < 6 <i. By Theorem 3.9 there is an increasing sequence of graphs Gl ,  
G 2 , .  . . such that 

(a) G ,  has degree sequence kr = ( k ; ,  k?, . . . , k'""), where k\" = k - 2 for 1 S l &mr 
and k:" = k for amr < l S m,. 

(b) For some constant A, depending only on 8 and k ,  K(G,.) 5Â¥;Ac(k,)"'7mr 
For each r form the graph H ,  by taking one copy of G ,  and [Sm,] copies of X,, then 

identifying each of the vertices of degree k - 2 in Gr with the vertex of degree 2 in one 
of the copies of X,, Clearly, Hr is regular of degree k and order N = m ,  + n \6m,\. 

Since the number of primitive circuits of length i in Hr is at least MP,,, where M = 18mr\, 
Theorem 3.8 tells us that for some D = D ( R ) ,  

NOW T(H,) = ( N K  ( H , ) ) ' / ( ~ - "  , by definition, and K (Hr )  = K (G,)K obviously. 
Therefore 

Letting r -Ã CO we obtain 

R 1/S 

K ( & )  a C ;  exp( - i=3 p i , jpi ,k(~/k))  + lim (%) c ( k r )  . 

Since D has disappeared, we may replace R by a. Finally, from Theorem 3.9, we find 
that 

118 k - 1 2  
lim lim (A) =(-) . 
S-O+ r-cc c (k , )  k - 2  
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PROOF. For 1 G j G m define a, to be the proportion of the spanning trees of X which 
use edge efi Then K (X,) = (2 - a j ) ~  (X),  and so 

l / m  l / m  

( F l K ( x j ) )  =~(x)( f i  / = l  (2-a;)) 

Since each spanning tree uses n -1 edges and we are summing over every edge, 
^ml a, = 2(n - l ) / (nk)  < 2/k. Therefore 

PROOF. Since a primitive circuit of length i uses at most i edges, it is clear that 

The theorem now follows by taking the geometric mean over 1 s= j sÂ m of Lemma 3.10 
and then applying Lemma 3.11. 

EXAMPLE. Let X be the cartesian product Clo X Clo. Thus n = 100 and k = 4. 
Theorem 1.1 gives K(X) < l - 0 9 x  10~'. Using the trivial bounds pi 2 0 ,  Theorem 3.12 
gives K(X) < 1-07 X 1 0 .  With the actual values p4 = 100, p6 = 200 and pg = 1300, 
Theorem 3.12 gives ~ ( X ) < 3 " 7 6 x  10~'.  The correct value of K(X) is approximately 
1-545 X loS0. 

In this section we consider a sequence Xi ,  X i , .  . . of regular connected graphs of 
degree k 2 3 ,  and investigate the limit points of the sequence r(X1), r ( X 4 ,  . . . . In 
particular we will show that the value ck is best possible in the sense that there are 
sequences X I ,  X2, . . . for which r(Xi) + ck as i + m .  

Let X i ,  X2, . . . be a sequence of connected regular graphs of degree k 3 3 .  For each 
i, define ni to be the order of Xi and let f i  = log(ni~(Xi))/ni.  We will assume throughout 
that n l  < n 2 <  a a . Define the function F, :  R+R, where Fi(x)  is the proportion of the 
eigenvalues of A(Xi) which are less than or equal to X. Thus Fi(x)  is a non-decreasing 
right-continuous step function with Fi(x)  = 0 for x < -k and Fi(x) = 1 for x 3s k. 

For i 3s 1 and m 3s 3 define Ci(m) to be the number of cycles in Xi with length m or 
less. The sequence X I ,  X2, . . . will be said to satisfy Condition (A) if, for each fixed m, 
Ci(m)/ni  -Ã 0 as i -Ã m. The sequence will satisfy Condition (B) if there are constants 
a > (2 1og(k /u) ) l  and e > 0 such that Ci(ri) = O(ni(log n i ) l E )  as i + m, where ri = 

2 [ a  log log n i l .  Clearly Condition (B) implies Condition (A). The existence of a sequence 
X I ,  X2,  . . . which satisfies Condition (B) follows from the existence of regular graphs of 
high girth (see [14]). In fact, rather more is true: 
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THEOREM 4.1. [l21 For i s: 1 choose Xi a t  random from the set of all labelledconnected 
regular graphs of degree k and order ni. Then Condition (B) is satisfied with probability one. 

Our principal tool in the following is a result from [ l  l]: 

LEMMA 4.2. If X i ,  Xz, . . . satisfies Condition (A) then, for each real X, F,(x) + F ( x )  
a s  i + m ,  where 

By Lemma 3.1, fi  =fiO log(k -X) dFi(x), where the integral excludes the jump in 
&(X) at X = k. Unfortunately Lemma 4.2 does not imply that, under Condition (A), 
fi  + jfk 10g(k - X )  @(X) = log ck. However, our next theorem shows that Condition (B) 
is sufficient. 

THEOREM 4.3. If X i ,  X2,  . . . satisfies Condition (B) then Ti + log ck as  i + W. 

PROOF. Since e > 0 and a > (2 l og (k /u ) ) '  > 0, there is a number z such that 
max{w exp(l /2a) ,  k exp(-e/2a)}<z < k. Then z >U, so that 

by Lemma 4.1, since F ( x )  is constant outside [ - q w ] ,  and log(k -X)  is uniformly 
continuous on [-U, U]. Therefore, it will suffice to prove that 

By Lemma 3.1(e), the second largest eigenvalue of A(Xi) is less than or equal 
to k - 2(1 -cos(TT/ni)) < k - l/n;. It follows that g o  log(k -X)  dFi(x) + 0 if (1 - 
Fi(z)) log ni + 0 as i + m. 

. For sufficiently large i, ri ? 0. Let r = ri and define wr = nitr + ur as in Section 3. By 
Lemma 3.1, 

m k 

Therefore, 

wr tr U l - ^ ( z ) s s - = - + L  
nizr z r  nizr '  

We first consider the term tr/zT. By Theorem 2.3(d), there is a constant K depending 
only on k, such that tr < Kwr. Therefore, 
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Now r  = 28 + 2a log log nÃ where -1 < 8 -S 0.  Therefore 

Now consider the term ur/(nizr) .  Each closed walk of length r  in Xi which is not totally 
reducible is a cyclic permutation of one which starts at a vertex on a cycle of length 
or less. Since there are at most k r  closed walks of length r starting at a given vertex, we 
must have ur S ci (r )krr2 .  Therefore 

+0 as i+oO, 
since 

z > k  e-Fr2a,  ~ , ( r )  = O(ni(log n i ) l F )  and r  = 0(log log n,) .  

We conclude that ( l  -F, (z ) )  log ni -> 0 as i + a ,  and so f i  + log ck as i  + a. 

COROLLARY 4.4. If X i ,  X2 ,  . . . satisfies Condition ( B )  then r ( X i )  + ck as i  -> W. 

We wish to point out that we know of no sequence X i ,  Xi, . . . which satisfies Condition 
(A)  but for which r ( X , )  h ck. In other words Condition (B) may be too strong. We suspect 
that a deeper analysis using the techniques of Section 3 might solve this problem. 
However, we can show that Condition (A) is necessary for T(Xi)  + ck. 

THEOREM 4.5. If X i ,  X 2 ,  . . . violates condition (A),  then lim infi.+oo r ( X i )  <ck. 

PROOF. If X i ,  X2 ,  . . . violates Condition ( A ) ,  there is a subsequence X ,  X,,, . . . and 
constants r s- 3 and a > 0 such that Ci,(r) 2 an,, for j s' l .  The claim now follows easily 
from Theorem 3.12. 

The method used in the proof of Theorem 4.3 can be used in conjunction with Theorem 
4.4 of McKay [ l  l] to obtain a rudimentary lower bound for K (X) in terms of the order, 
degree and girth of X. We will leave the details to the reader. 

5. UNIFORM BOUNDS 

A trivial corollary to Theorem 3.2 is that 

which Theorem 3.9 shows to be too high by at most O(n) .  In this section we will sharpen 
this bound until it is high by at most O(log n ) .  We begin with a collection of necessary 
lemmas. All notation is as in Section 3. 

LEMMA 5.1. 
(a) Let p, be the largest eigenvalue of A {X). Then p p  k  - 2{k - 2) / ( kn ) .  
(b) For i  Ss l ,  t2i S 4w2ii-3'2. 
(c) If - l < x < l  a n d r ^ O ,  then I .^ ,x ' / i>0.  
(d) Forsome], ~ ( X ) s s k ~ ( X , ) / ( 2 k  -2). 
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T PROOF. To prove part (a), recall that p;s3x A(X,Â¥)X/X~ for any non-zero vector X. 

The required bound is obtained on chosing the entries of x thus: 2k for the vertex of 
degree two, k2  - 1 for its two neighbours, and k 2  for every other vertex. 

Part (b) can be proved from Theorem 2.3(b). Part (c) follows from the identity 
~ : ~ , x ; ' / i  = [ t z 2 r 1  dz/( l -2) .  Part (d) is implicit in the proof of Lemma 3.11. 

THEOREM 5.2. K ( X )  ' :^a(k)ci log n/n, where a ( k )  = O(l / (k  log k)).  

PROOF. The proofs of Theorems 3.8 and Lemma 3.10 can be reworked with essen- 
tially no change to derive the inequality 

k - l  00 

s (-) k - 2  c; exp(- is3 1 %), zk 

where U,, is the number of closed walks of length i in Xj which are not totally reducible. 
By Lemma 5.1 (a)-(c), 

where y '= 0-5772 is Euler's constant. 
Choose r = flog n / 2  log(k/w)l. Lemma 5.1(d) and the trivial inequality n ss k + 1 then 

yield the required bound, with 

It is clear that the bound in Theorem 5.2 can be reduced further by doing the calculations 
more carefully. However, we are unable to reduce it by an increasing function of n. 
Indeed, such a reduction may not be possible. The argument used in the proof ignores 
closed walks of length less than 2r; the average contribution of the primitive circuits of 
length less than 2r to the bound in Lemma 3.10 is within a constant of log n .  Of course, 
closed walks longer than 2r can use primitive circuits shorter than 2r, so this argument 
is hardly conclusive. Nevertheless, we are confident enough to conjecture that the bound 
in Theorem 5.2 is high by at most a function of k .  

I am indebted to B. E. Eichinger, who was the first to suggest that the results of [l11 
could be applied to the counting of spanning trees. The technique used in the proof of 
Theorem 2.1 was suggested by C. D. Godsil. 
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