Computer Reconstruction of Small Graphs

B. D. McKay
university of melbourne

Abstract

The Reconstruction Conjecture is established for graphs with nine vertices.

1. INTRODUCTION

The purpose of this note is to report recent computational work on graphical reconstruction. Surveys of theoretical work on this subject can be found in [2] and [4]. For each $n \geq 2$, let \mathscr{G}_{n} denote the family of all graphs with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let I_{n} denote the set $\{1,2, \ldots, n\}$. If $G \in \mathscr{G}_{n}$ and $i \in I_{n}$, define G_{i} to be the subgraph of G formed by removing the vertex v_{i}. We shall consider three conjectures.

Conjecture 1. Let $G, H \in \mathscr{G}_{n}$, where $n>2$. If $G_{i} \cong H_{i}$ for each $i \in I_{n}$, then $G \cong H$. (This conjecture is commonly called the Reconstruction Conjecture.)

Conjecture 2. Let $G, H \in \mathscr{G}_{n}$, where $n>3$. Suppose that for any $i, j \in I_{n}$ there exists $k, l \in I_{n}$ such that $G_{i} \cong H_{k}$ and $H_{j} \cong G_{l}$. Then $G \cong H$. (This conjecture was first made by Harary [3].)

Conjecture 3. Let $G, H \in \mathscr{G}_{n}$, where $n>5$. Suppose that for any $i, j \in I_{n}$ there exists $k, l \in I_{n}$ such that G_{i} is isomorphic to either H_{k} or \bar{H}_{k} and H_{j} is isomorphic to either G_{l} or \bar{G}_{l}. Then G is isomorphic to either H or \bar{H}.

5
0

FIGURE 1. Largest counterexample to conjecture 3 for $n \leq 5$.

If Conjecture 3 holds for some fixed $G \in \mathscr{O}_{n}$ and arbitrary $H \in \mathscr{G}_{n}$, it also holds for \bar{G}, since $(\bar{G})_{i}=\left(\bar{G}_{i}\right)$ for any $i \in I_{n}$. This fact allows Conjecture 3 to be tested on the computer in just over half the time required to test Conjecture 2, thus justifying our introduction of Conjecture 3.

The largest counterexamples to Conjecture 3 for $n \leq 5$ is shown in Figure 1. It is easily verified that $G_{1} \cong G_{2} \cong H_{1} \cong H_{2} \cong \bar{H}_{5}, G_{3} \cong G_{4} \cong H_{4}$, and $G_{5} \cong \bar{H}_{3}$.

2. RESULTS

Conjecture 1 has been previously verified by Stockmeyer for $3 \leq n \leq 8$ and by McKay and Godsil for $n=9$ (both unpublished). In this note we report the following stronger result.

Theorem. Conjectures 1,2 , and 3 are true for $6 \leq n \leq 9$.
It is only necessary to verify Conjecture 3 , since it is clearly stronger than either of the other conjectures. The computation is now briefly described for $n=9$.

First, a linear ordering on \mathscr{G}_{n} was devised, using the degrees of the vertices and the canonically labelled adjacency matrix of each graph [6]. Relative to this ordering, a list of the 137,352 9-vertex graphs with $G \leq \bar{G}$ was prepared from the graphs generated by Baker, Dewdney, and Szilard [1]. For each graph G of this list, generators for the automorphism group were found, and for one value of i from each orbit, the $\operatorname{graph} \min \left(G_{i}, \bar{G}_{i}\right)$ was constructed and canonically labelled. This required the canonical labelling algorithm of [6] to be applied over 1.1 million times to 8 -vertex graphs. Isomorphic graphs were then eliminated from the set thus associated with each 9-vertex graph. Finally, a search revealed that no two of these sets were the same. The total execution time (CDC Cyber 70 model 73) for $n=9$ was about 71 min .

An incidental outcome of the computation was the production of those graphs with 8 or 9 vertices having pseudosimilar vertices [5]. Vertices v_{i} and v_{j} of G are pseudosimilar if $G_{i} \cong G_{j}$ but there is no automorphism of G taking v_{i} onto v_{j}. There are 44 such graphs with 8 vertices and 454 with 9 vertices. A listing of these is available from the author.

References

[1] H. Baker, A. Dewdney, and A. Szilard, Generating the nine-point graphs. Math. Comput. 28, 127 (1974) 833-838.
[2] J. A. Bondy and R. L. Hemminger, Graph reconstruction-a survey. J. Graph Theory 1 (1977) 227-268.
[3] F. Harary, On the reconstruction of a graph from a collection of subgraphs. Theory of Graphs and its Applications. Academic Press, New York (1964) 47-j2.
[4] F. Harary, A survey of the reconstruction conjecture. Graphs and Combinatorics. Springer-Verlag, Berlin (1974) 18-28.
[5] F. Harary and E. M. Palmer, On similar points of a graph. J. Math. Mech. 15, 4 (1966) 623-630.
[6] B. D. McKay, Backtrack programming and the graph isomorphism problem. Masters Thesis, Melbourne University (1976).

