Proc. 3rd Car. Conf. Comb.
\& Comp. pp. 139-143
SPANNING TREES IN RANDOM REGULAR GRAPHS
Brendan D. McKay
Computer Science Dept., Vanderbilt University, Nashville, Tennessee 37235

Let $n_{1}<n_{2}<\cdots$ be possible orders of connected regular graphs of fixed degree $k \geq 3$. For each i, choose a graph X_{i} at random from the set of all connected regular graphs of order n_{i} and degree k. Let $\kappa\left(X_{i}\right)$ be the number of spanning trees of X_{i}. Then, with probability one,

$$
\kappa\left(X_{i}\right)^{1 / n_{i}} \rightarrow \frac{(k-1)^{k-1}}{\left(k^{2}-2 k\right)^{k / 2-1}} \quad \text { as } \quad i \rightarrow \infty
$$

§1 INTRODUCTION

Let $X=X_{1}, X_{2}, \ldots$ be a sequence of connected regular graphs of degree $k \geq 3$ and orders $n_{1}<n_{2}<\cdots$. Define κ_{i} to be the number of spanning trees of X_{i}. For $i \geq 1$ and $m \geq 3$, let $C\left(m, X_{i}\right)$ be the number of cycles of length at most m in X_{i}. We will say that X satisfies Condition (B) if there are constants m_{0} (arbitrary), $m_{1}>1 / \log \left(k^{2} / 4(k-1)\right)$ and $\epsilon>0$ such that $C\left(2\left\lfloor m_{0}+m_{1} \log \log n_{i}\right\rfloor, X_{i}\right)=$ $O\left(n_{i}\left(\log n_{i}\right)^{-1-t}\right)$ as $i \rightarrow \infty$. The ordinal B is used for consistency with [2]. Our first theorem was proved in [2].
1.1.Theorem If X satisfies Condition (B), then

$$
\kappa\left(X_{i}\right)^{1 / n_{i}} \rightarrow \frac{(k-1)^{k-1}}{\left(k^{2}-2 k\right)^{k / 2-1}} \quad \text { as } \quad i \rightarrow \infty
$$

In this paper we will prove that, if \boldsymbol{X} is constructed by choosing each X_{i} at random from the set of all connected labelled regular graphs of order n_{i} and degree k, then X satisfies Condition (B) with probability one.

§2 SUBGRAPHS OF RANDOM REGULAR GRAPHS

In this section we will be concerned exclusively with the set $R(n, k)$ of all connected labelled regular graphs of degree k and order n. Two such graphs, X_{1} and X_{2}, are closely related if $\left|E\left(X_{1}\right) \backslash E\left(X_{2}\right)\right|=2$. Since we are only considering simple graphs, it is clear that each of $E\left(X_{1}\right) \backslash E\left(X_{2}\right)$ and $E\left(X_{2}\right) \backslash E\left(X_{1}\right)$ consists of two independent edges and that these four edges together form a square. Another way of defining this relationship is to say that $X_{1}, X_{2} \in R(n, k)$ are closely related if there are distinct vertices $v_{1}, v_{2}, v_{3}, v_{4}$ of X_{1} such that $v_{1} v_{2}, v_{3} v_{4} \in E\left(X_{1}\right), v_{1} v_{3}, v_{2} v_{4} \notin$ $E\left(X_{1}\right)$ and $E\left(X_{2}\right)=E\left(X_{1}\right) \backslash\left\{v_{1} v_{2}, v_{3} v_{4}\right\} \cup\left\{v_{1} v_{3}, v_{2} v_{4}\right\}$.

Let F be any non-empty subset of $E\left(K_{n}\right)$, and define $R(n, k, F)$ to be the subset of $R(n, k)$ consisting of those graphs X for which $F \subseteq E(X)$. Let $v_{1} v_{2} \in F$.
2.1 Lemma $\left|R\left(n, k, F \backslash\left\{v_{1} v_{2}\right\}\right)\right| \geq \frac{n k-2|F|-2\left(k^{2}-1\right)}{2 k^{2}}|R(n, k, F)|$.

Proof: Let M be the number of pairs $\left(X_{1}, X_{2}\right)$ of closely related graphs, where $X_{1} \in R(n, k, F)$ and $X_{2} \in R\left(n, k, F \backslash\left\{v_{1} v_{2}\right\}\right)$. We will prove the lemma by estimating M in two different ways.

Firstly, consider an arbitrary $X_{1} \in R(n, k, F)$. We can construct any closely related graph in $R\left(n, k, F \backslash\left\{v_{1} v_{2}\right\}\right)$ by finding adjacent vertices v_{3} and v_{4} of X_{1} and then replacing the edges $v_{1} v_{2}$ and $v_{3} v_{4}$ by $v_{1} v_{3}$ and $v_{2} v_{4}$. For this to be valid, it is necessary that $\left\{v_{3}, v_{4}\right\} \cap\left\{v_{1}, v_{2}\right\}=\emptyset, v_{3} v_{4} \notin F$, and $v_{1} v_{3}, v_{2} v_{4} \notin E\left(X_{1}\right)$. This leaves us with at least $n k-2|F|-2\left(k^{2}-1\right)$ choices for (v_{3}, v_{4}), except that we are also requiring X_{2} to be connected. Furthermore, it is easy to see that, since X_{1} is connected, at least one of X_{2} and X_{2}^{\prime} is connected, where $E\left(X_{2}\right)=E\left(X_{1}\right)$ \} $\left\{v_{1} v_{2}, v_{3} v_{4}\right\} \cup\left\{v_{1} v_{3}, v_{2} v_{4}\right\}$ and $E\left(X_{2}^{\prime}\right)=E\left(X_{1}\right) \backslash\left\{v_{1} v_{2}, v_{3} v_{4}\right\} \cup\left\{v_{1} v_{4}, v_{2} v_{3}\right\}$. Therefore,

$$
\begin{equation*}
M \geq\left(n k / 2-|F|-k^{2}+1\right)|R(n, k, F)| \tag{1}
\end{equation*}
$$

Now consider an arbitrary $X_{2} \in R\left(n, k, F \backslash\left\{v_{1} v_{2}\right\}\right)$. Since X_{2} has degree k, the number of closely related graphs in $R(n, k, F)$ is at most k^{2}. Therefore

$$
\begin{equation*}
M \leq k^{2}\left|R\left(n, k, F \backslash\left\{v_{1} v_{2}\right\}\right)\right| \tag{2}
\end{equation*}
$$

The lemma now follows easily from (1) and (2).
2.2 Corollary If $R(n, k) \neq \emptyset$ and $2|F|<n k-2\left(k^{2}-1\right)$, then

$$
\frac{|R(n, k, F)|}{|R(n, k)|} \leq\left(\frac{2 k^{2}}{n k-2\left(k^{2}-1\right)-2|F|}\right)^{|F|}
$$

§3 CYCLES

Our primary aim in this section is to prove that X satisfies Condition (B) with probability one. In doing so we will prove rather more.

Since a direct application of Corollary 2.2 to the estimation of $C\left(m, X_{i}\right)$ does not appear to be sufficient, we will instead bound the expectation of $C\left(m, X_{i}\right)^{2}$. The following lemma will prove very useful.
3.1 Lemma Let $1 \leq l<r \leq s \leq n$. The number of ways of choosing an r-cycle C_{1} and s-cycle C_{2} from K_{n} such that $\left|E\left(C_{1}\right) \cap E\left(C_{2}\right)\right|=l$ is

$$
w(n, s, r, l) \leq \frac{n^{r+s-l-1}}{2}\left(1+\sqrt{\frac{2(l-1)}{n}}\right)^{r+\theta-2 l-2}
$$

Proof: Since $l<r \leq s, E\left(C_{1}\right) \cap E\left(C_{2}\right)$ consists of a collection of disjoint paths. Suppose that the number of paths is t.

The number of ways of choosing t paths, containing l edges altogether, is

$$
\binom{l-1}{t-1} \frac{n!}{2^{t} t!(n-l-t)!}<\frac{n^{l+t}(l-1)^{t-1}}{2^{t} t!(t-1)!} .
$$

Given $E\left(C_{1}\right) \cap E\left(C_{2}\right)$, we can construct C_{1} by arranging the t paths in a cycle and then inserting $r-l-t$ new vertices. The number of ways this can be done is

$$
2^{t-1}(r-l-1)!\binom{n-l-t}{r-l-t}<2^{t-1} n^{r-l-t} \frac{(r-l-1)!}{(r-l-t)!} .
$$

Constructing C_{2} similarly, we find that the pair $\left(C_{1}, C_{2}\right)$ can be chosen in less than

$$
\frac{n^{r+s-l-t} 2^{t-2}}{t}\binom{r-l-1}{t-1}\binom{s-l-1}{t-1}
$$

ways.
The sum of this expression over t is bounded by the function given in the statement of the lemma.

We will use $\mathcal{E}(Z)$ to denote the expectation of a random variable Z.
3.2 Theorem Let $m=m(n)=O\left(n^{\frac{t}{2}-\epsilon}\right)$, for some $\epsilon>0$. Then

$$
\varepsilon\left(C\left(m\left(n_{i}\right), X_{i}\right)^{2}\right)=O\left(\frac{(2 k)^{2 m}}{m^{2}}\right) .
$$

Proof: First note that, by Corollary $2 \cdot 2$, the probability that X_{i} contains any specified set of $t \leq m\left(n_{i}\right)$ edges is bounded above by $A\left(2 k / n_{i}\right)^{t}$, for some constant A.

Now define $F_{1}, F_{2}, \ldots, F_{N}$ to be the set of all cycle (read sets of edges forming cycles) of length at most m in K_{n}. For $1 \leq j \leq N$, define

$$
Z_{j}= \begin{cases}0, & \text { if } F_{j} \nsubseteq E\left(X_{i}\right) \\ 1, & \text { if } F_{j} \subseteq E\left(X_{i}\right) .\end{cases}
$$

Then clearly

$$
\begin{equation*}
\mathcal{E}\left(C\left(m, X_{i}\right)^{2}\right)=\sum_{1 \leq u, v \leq N} \mathcal{E}\left(Z_{w} Z_{v}\right) . \tag{3}
\end{equation*}
$$

We will break the sum above into three parts, according to $\left|F_{u}\right|,\left|F_{v}\right|$ and $\left|F_{u} \cap F_{v}\right|$. Put $n=n_{i}$.
(a) First consider the contribution to (3) with $u=v$. This is clearly equal to

$$
\begin{aligned}
\sum_{1 \leq u \leq N} \mathcal{E}\left(Z_{u}\right) & \leq A \sum_{s=3}^{m} \frac{n!}{2 s(n-s)!}\left(\frac{2 k}{n}\right)^{s} \\
& <A \sum_{s=3}^{m} \frac{(2 k)^{s}}{2 s} \\
& =O\left(\frac{(2 k)^{m}}{m}\right)
\end{aligned}
$$

(b) Next, consider the terms of (3) for which $\left|F_{u} \cap F_{v}\right|=0$. The contribution here is

$$
\begin{aligned}
A \sum_{r=3}^{m} \sum_{s=3}^{m} \frac{n!}{2 r(n-r)!} \frac{n!}{2 s(n-s)!}\left(\frac{2 k}{n}\right)^{r+z} & <A \sum_{r=3}^{m} \sum_{s=3}^{m} \frac{(2 k)^{r+s}}{4 r s} \\
& =O\left(\frac{(2 k)^{2 m}}{m^{2}}\right) .
\end{aligned}
$$

(c) Finally, by Lemma 3.1, the contribution to (3) from the terms not included in (a) or (b) is bounded above by

$$
A \sum_{r=3}^{m} \sum_{s=r}^{m} \sum_{l=1}^{r-1} n^{r+s-l-1}\left(\frac{2 k}{n}\right)^{r+t-l}\left(1+\sqrt{\frac{2(l-1)}{n}}\right)^{r+s-2 l-2}
$$

This expression can be shown to be $O\left((2 k)^{2 m} / m^{2}\right)$, but we will leave the gory details to the reader.
3.3 Theorem Let $m(n)=O\left(n^{\frac{1}{2}-\epsilon}\right)$ for some $\epsilon>0$, and suppose that T_{1}, T_{2}, \ldots is a sequence of positive numbers such that

$$
\sum_{i=1}^{\infty} \frac{(2 k)^{2 m\left(n_{i}\right)}}{m\left(n_{i}\right)^{2} T_{i}^{2}}<\infty .
$$

Then, with probability one, $C\left(m\left(n_{i}\right), X_{i}\right)=O\left(T_{i}\right)$ as $i \rightarrow \infty$.
Proof: This is a simple application of the Borel-Cantelli Lemma and Chebychev's Inequality (see [1] for both) to Theorem 3.2.

As a simple application we have:
3.4 Corollary Let $\alpha>0$ be constant. Then, with probability one, $C\left(\alpha \log _{2 k} n_{i}, X_{i}\right)=O\left(n^{\frac{1}{2}+\alpha}\right)$ as $i \rightarrow \infty$.
3.5 Corollary X satisfies Condition (B) with probability one.
§4 NOTES

The technique used to prove of Lemma 2.1 can be strengthened considerably, and also used to prove a corresponding upper bound. This will be demonstrated at length in [3], but without the connectivity restriction. For random regular graphs; not necessarily connected, the bound of Theorem 3.2 can be lowered to $O\left((k-1)^{2 m} / m^{2}\right)$, which is best possible. See Wormald [4] for many related results.

REFERENCES

1. W. Feller, An introduction to probability theory and its applications, Vol. I, Third Edition (Wiley, NY 1968).
2. B. D. McKay, Spanning trees in regular graphs, Vanderbilt University, Computer Science Technical Report CS-81-01 (1981).
3. B. D. McKay, Subgraphs of random graphs with specified degrees, to appear.
4. N. C. Wormald, The asymptotic distribution of short cycles in random regular graphs, to appear.
