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Abstract

If D is an acyelic digraph, define the height & = k(D) to be the length of the longest
directed path in D. We prove that the values of 2(D) over all labelled acyclic digraphs
D on n vertices are asymptotically normally distributed with mean C'n and variance
("n, where (' ~ 0°764334 and (" ~ 0-145210. Furthermore, define 13(D) to be the set
of sinks (vertices of out-degree 0) and, for r > 1, define V(D) to be the set of vertices
v such that the longest directed path from v to V(D) has length ». For each £ > 1, let
n,(D) be the number of sets V;(D) which have size k. We prove that, for fixed ¥, the
values of n,(D) over all labelled acyclic digraphs D on n vertices are asymptotically
normally distributed with mean ', » and variance (', n, for positive constants (' and
(. Results of Bender and Robinson imply that our claim holds also for unlabelled
acyclie digraphs.

1. Introduction

By an acyclic digraph we mean a simple directed graph without directed cycles.
Let o/, be the set of all labelled acyclic digraphs with n vertices. In this paper we
will be concerned with the statistical properties of random members of «7,. If
o =Ux, o, and f:.of >R, we say that f is asymptotically normal over &/ with
mean x = u(n) and variance g® = *(n) if

1 i 2
lim sup | P(n, u+ox, f)—— J e“"zdt‘=0.
lim sup | P sk o N=Tam ).,
_{Ded, |f(D) < 2|

EA

Our fundamental tool for proving the normality of statistics of &/ will be theorem 1
of Bender [1]. While it should be possible to prove stronger local limit theorems for
the same quantities, using theorems 3 or 4 of [1], verification of the additional
requirements does not appear simple.

Previous results about &/ have been obtained by many authors. The generating
function and asymptotic value of 4, = |«/,| were obtained independently by
Robinson and Stanley. Define

where P(n,z,f)

B Z(—1)"z"
a(z)_nzjo g(n) ’

where g(n) = n! 2 Clearly a(z) is an entire function. It is shown in [6] and [7] that
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the zeros of a(z) are all real and positive. Let p &~ 1-4880785456... be the least zero;
the next two are approximately 4-881 and 13-56.
@ n
TueoreMm 1-1. (i) T 4,2 =—1—.
n=0 q( cx(x)

n)
q(n)
P ra(p/2)
Proof. See [6] or [7]. |

(ii)) Asn—>o00, 4, ~

Theorem 1-1 was extended by Bender, Richmond, Robinson and Wormald [2] to
include the dependence on the number of edges.

If De o, let Vy = Vy(D) be the set of sinks of D. Then, for k = 1,2, ..., define V, =
V(D) to be the set of sinks of the subgraph of D induced by V(D)\(V; U ¥, U ... U Vi)
Let V, be the last V; which is non-empty. It is easy to see that A = A(D) is the length
of the longest directed path in D and that V,, V,, ..., V, are the sets of the same name
defined in the Abstract. We will call (D) the height of D, (V,,V,,..., V,) the tower of
D, and V, V,,..., V, the layers of D.

The limiting distribution of sizes of V;(D) was determined by Liskovec([5].

THEOREM 1'2. For n >0,k > 1, define p(n, k) to be the probability that a random
De s, has |Vy(D)| = k. Then, as n— o0 with fixed k,

pra(2*p)
(n, k)8, =—-—2 1
? *T )

It is proved in [2] that the average height lies eventually in an interval [c, 7, ¢, 7]
for some constants ¢, and ¢, with 0 < ¢, < ¢, < 1. Apart from this, nothing appears
to have been previously known about the height, although Liskovec (incorrectly)
predicted an average close to n/p.

2. A generating function

For each n > 1 and De o/, let n; be the number of layers of D which have size i.

Define A, oy ) = T T glu)TanylOy e
nzl Dedfy
THEOREM 2-1.
o bty
a,(x, (yl’yzy )) = Z H (1_2—7)i)vi+1 H z7
vy, ¥y ..., Uy 1=0 i=0 q(?"i)
where the sum is over all vectors (vy. vy, ..., v,) such that h > 0 and v; > 1 for 0 < i < h.
Proof. Consider a particular (vy,2,....,7,). We will count the number of acyclic
digraphs D with height h and |V;(D)| = v; for 0 <i < h. Let n = vy+v,+...+v,. The
number of ways of assigning vertex labels to the layers ¥, 1;,..., F, is

( ' )
Vo, Uy, e, U,

Each vertex of layer J; can be adjacent to any subset of ;U ¥, U... U F_, which
contains at least one element of V,_;: the number of possibilities is clearly
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20atort. - Hviey(2Vi-1— 1), Therefore the total number of digraphs corresponding to
(Vg 0q, ..., Up) 18

h
( n ) H (2vo+. . -+vi—1)1’i(1 — 2—1},_1)1)1-’

Vo, V15 o0+ V) 41

from which the theorem readily follows. I

In order to write a(x,y) in a more manageable form, we resort to a matrix
representation. Define the infinite matrices

. xty xly,
A = dia (x Ry .‘,...),
g yl 4 q(lj

M = (my), wheremy= (1—27"/for1<1,j < 0.

Let 1 be the infinite identity matrix. For any matrix M, let det (M) denote the
determinant of M, adj (M) the adjoint matrix of M, and &(HM) the sum of all the
entries of M.

THEOREM 2:2. a(x, (Y1, Y. -..)) = L (I —AM)TA).

Proof. It is easily seen that the sum of the terms in Theorem 2-1 corresponding to
any particular value of & is & ((AM)"A). Thus

a(@, (s Yo, .- ) = LA+ AMA + (AMPA+..) = L(I—AM)*A). |

At this point we should note that we have shown Theorem 2-2 to be correct only
in the space of formal generating functions. However, if we write

(I—AM)™ = adj (I — AM)/det (I — AM),

it can be shown (using the fact that the entries of A decrease very rapidly down the
diagonal) that each entry of adj(/—AM), their sum, and det (/—AM) are entire
functions of x for any fixed and uniformly bounded values of y,,¥,,.... The same is
true after any finite number of differentiations by any of the y, separately or by all
the y, simultaneously.

3. Extraction of the asymptotics

Armed with the generating function of the previous section, we can now derive the
promised limit theorems.

TuEOREM 3-1. There are constants C' = (r7643344264 and " =~ 01452097407 such
that the height function h is asymptotically normal over o with mean Cn and variance
"n.

Proof. Define Ayt
He,py= %2 X

n>1Deat, 9N

. : c(x, y)
By Theorem 22, H(r.y)= \
) : (.y) o )
where clr.y)=FLadj(I—AM)A) and d(v.y) =det ([ —AM)

with A = A(x, (, 9. ...)). For reasons noted at the end of the previous section, e(x. y)
and d(x,y) are entire functions of a for fixed y. so the singularities of H(x,y)
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correspond to zeros of d(x, y) which are not cancelled by zeros of ¢(x, y). (c(x, y) has
a zero at & = 0 which cancels the y in the denominator of H.) Since H(x, 1) = 1/a(x)
and the least-modulus zero of the entire function a(x) is a simple pole at p, we can
apply theorem 1 of [1] with m = 0 and a function 7(s) with 7(0) = p. (See [1] for the
meanings of m and r(s).) The derivatives »"(0) and r"(0) can be found using formula
(3:2) of [1], with d(x, €*) playing the part of A(z, €*); this only requires computing the
values of the first and second order derivatives of d(x, y) at the point (x,y) = (p, 1).
The most computationally successful approach tried was to compute the necessary
derivatives for the leading & x k minor of I—AM for increasing k. Convergence to six
digits only required k=25; k=10 gave better than 20 digit accuracy. This
computation was done using the symbolic algebra package Maple, although it could
be done using conventional numerical methods. ]i

Theorem 31 could also be derived directly from the gencrating function. In our
next theorem, we will improve the estimates of the mean and variance. We begin
with a lemma of more general application.

LeMma 31, Let F(x.y) = 2, 15, 2"y, where each a,, is real and non-negative.
Suppose that there are real numbers 0 < p < p’ such that d(x. y) = 1/F(x,y) satisfies the
Jollowing conditions:

(i) d(x,y) and all its derivatives of order three or less are analytic in x for |x| < p’ and
y=1;

(i) d(z, 1) is non-zero for |2| < p’ except for a simple zero at x = p.

For each n, define a discrete random variable X, with probability generating function
Jormed by normalizing the coefficient of a™ in F(x,y). Then, as n—o0, X, has mean
An+A4"+0((p/p')") and variance Bn+B'+0((p/p')"). where A, A’, B and B’ are given
by the following expressions, in which subscripts denote differentiation and missing
arguments are (p, 1):

a=%.
pd;’
d,d,, d
= Y xx Tay
e S
_ % 24,4, 4 4, djd,

pd,  pdy  py pd, pdi

s p 2y, &Bdy,, dd, dy 2RE, dyd, &, d.,, 4d,d.d,
B=b+—5 G TR Lt e e &

xT
Proof. The mean is derived as theorem C of [4]. The variance can be derived in
precisely the same way. Higher moments could be computed similarly. To reduce the
probability of error. these calculations were performed using the symbolic algebra
package Maple.

When Lemma 3-1 is applied to the function H(x,y) of Theorem 31, the following
result is obtained.

TaEoREM 3-2. Let u(n) and o®(n) be respectively the mean and variance of the height
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Table 1

k c, o S,

1 05478347055 04909736925 05743623733
2 01979192508 01124338637 0-3662136732
3 00180023617 00172276787 00564645435
4 570873 x 107 570569 x 102 2:90231 x 1073
5 7-19708 x 10 7-19721 x 10-° 566517 x 107°
6  385217x107° 3-85217 x 10~# 449589 x 10~
7 906982 x 10-1 906982 x 10~ 1-51097 x 10~°
8 9-58495 x 10714 9-58495 x 10714 2:20861 x 10712
9 4-60293 x 10717 4-60293 x 10717 1-43063 % 10713

h(D) over De of,. Then,asn—> 0, u(n) = Cn+E+0(37") and a*(n) = C'n+E +0(37"),
where
(=~ 07643344264, E ~—0-8688716771,

(" ~ 01452097407, E’ = —0-0989894976. |

THEOREM 3'3. Fixz k = 1. For De o/, define ny(D) to be the number of layers of D with
size k. Then there are positive constants C, and C; such that the function n, is
asymptotically normal over £ with mean Cyn and variance Cyn.

Proof. Define Ly
Ny, y)= X X%

nzl Desly q(ﬂ)

Then Ny (z,y) =;E;: z;,
where e(x,y) = L(adj(I—AM)A), f(z,y) = det (I —AM),

with A = A(z, (1,1,...,¥,1,1,...)), where the ‘y’ is in the kth entry of the second
argument. The proof now proceeds exactly as that of Theorem 3-1.

It has been proved by Bender and Robinson [3] that almost all members of &/ have
trivial automorphism groups and are weakly connected. It follows that Theorems 3-1
and 33 also hold for the classes of labelled weakly connected acyclic digraphs,
unlabelled acyclic digraphs, and unlabelled weakly connected acyclic digraphs.

Some approximate values of €, and C} are given in Table 1. As checks, note that
S50, =C and ¥ kC, =1. We also give some approximate values of S, as
defined in Theorem 1-2. It is worth noting here that the values of ¢, given in
Table 1 demonstrate that typical layers do not have the same distribution of sizes
as does the bottom layer, disproving a conjecture made by Liskovec[5]. Similarly,
the average height is quite different from »/p.

Finally, we present some counts of acyclic digraphs by height. The number shown
at position (n, ) in Table 2is a,, ,/((h+1) 129)), where a,  is the number of labelled
acyclic digraphs of order » and height A. This number is easily shown to be an integer.
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