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We show how to generate k-regular graphs on n vertices uniformly at random in 
expected time 0 ( n k 3 ) ,  provided k = O(nl / ' ) .  The algorithm employs a modifica- 
tion of a switching argument previously used to count such graphs asymptotically 
for k = o(nl"). The asymptotic formula is re-derived, using the new switching 
argument. The method is applied also to graphs with given degree sequences, 
provided certain conditions are met. In particular, it applies if the maximum degree 
is o ( \ E ( G ) \ ' ~ / ' ~ ) .  The method is also applied to bipartite graphs. 0 1990 Academic 

Press, Inc. 

Random regular graphs have come under ever increasing scrutiny in 
recent years. However, it is not easy to generate k-regular graphs on n 
vertices uniformly at random. It is known how to do this for small k in 
expected time 0(ek2^nk)  per graph, using a procedure which does not 
necessarily terminate (see Worrnald [5] or Bollobas [I]); but even for 
k =s log n this is not polynomial expected time. If one insists on an 
algorithm which always terminates, the picture is even worse; it can be done 
[5] for k = 3 and 4 but already the algorithm is very complicated. On the 
other hand, one can slacken the uniformity constraint slightly and ask for 
an almost uniform probability distribution. Sinclair and Jerrum [4] were 
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successful at generating random graphs of this type with given degrees in 
polynomial time, as long as the degrees are bounded above by O(ml^),  
where m is the number of edges. For this, they employed Markov processes 
and asymptotic enumeration results obtained by McKay [2] using switch- 
ings. 

Our aim here is to show how to generate graphs with given degrees 
uniformly at random in polynomial expected time. Our result applies to a 
slightly wider range of degree sequences than Sinclair and Jerrum's. To do 
this we combine features of the basic method of the algorithm for generat- 
ing k-regular graphs in [5] with a type of switching related to that in [2]. 
This new type of switching also enables extension of the asymptotic 
enumeration results (see McKay and Wormald [3]). 

Our model of a graph G with vertex degrees k,, . . . , k,,  is a set of 
M = Â £ k  points arranged in cells of size ki ,  k 2 , .  . . , k,,. We take a partition 
(called a pairing) P of the M points into $M parts (called pairs) of size 2 
each. The degrees of P are k l ,  . . . , k,,. The vertices of G are identified with 
the cells and the edges with the pairs; each edge of G joins the vertices in 
which the points of the corresponding pair lie. A loop of P is a pair whose 
two points lie in the same cell. A multiple pair is a maximal set of j S: 2 
pairs each involving the same two cells; this is a double pair if j = 2, a 
triple pair if j = 3, and a double loop if the two cells are the same. The 
mate of a point is the other point in its pair. 

If the pairing has multiple pairs then G is strictly a multigraph rather 
than a graph; we also forbid loops in a graph. For j 2 2, a j-path is a 
sequence pl ,  . . . , p 2  of points such that p2, and p21+i are distinct but in 
the same cell, for i = 1,. . . , j - 1. Note that each non-loop double pair 
contains four distinct 2-paths, two beginning at each cell involved. 

We make use of the following two operations on a pairing: 

Take pairs { P I ,  p6} ,  { p2, p3 }, { p4, pc, 1 ,  where { ~ 2 ,  0 3  1 is a loop, and 
pl ,  p2,  p3, p4, p5, and p6 are in five different cells. Replace these pairs by 
{ pr pi }, { p3, p 4 } ,  { p5, p 6 } .  In t h s  operation, none of the pairs created or 
destroyed is permitted to be part of a multiple pair (see Fig. 1). 

Take pairs { p1, p c } ,  { ~ 2 ,  p6} ,  { ~ 3 ,  ~ 7 1 ,  { ~ 4 ,  ~ s } ,  where ~2 and ~3 are 
in the same cell, as are p6 and pi,  but the cells containing pl ,  p2, 
p4, p5, p6, pc are all distinct. Replace these pairs by { pl ,  p d ,  { p3, p 4 } ,  
p 5 ,  p 6 } ,  { p , ,  p 8 } .  Note that these form two 2-paths. In this operation, 
none of the pairs created or destroyed is permitted to be part of a multiple 
pair, except that { p i ,  p6} ,  { p i ,  p , }  form a double pair (see Fig. 2). 
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2-path and pair 
(no loops or doubles) 

A forward /-switching is an /-switching as described, and a backward 
/-switching is the reverse operation. We use the same convention for 
d-switchings. Note that a forward /-switching always reduces the number of 
loops by 1 and does not create or destroy double pairs. Similarly, a forward 
d-switching reduces the number of double pairs by 1 and neither creates nor 
destroys loops. 

In the next section, we analyse random pairings and the number of ways 
that the switching operations can be carried out in pairings with given 
numbers of loops and double pairs. From this, McKay's formula for the 
asymptotic number of k-regular graphs is re-derived in Section 3, and in 
Section 4 we give a procedure DEG for generating degree-constrained 
graphs uniformly at random. In Section 5 ,  we show how to reduce the 
asymptotic average-case time complexity of DEG in the case of regular 
graphs. Finally, in Section 6 we discuss the modifications required to apply 
the same method to bipartite graphs with given degrees. Note that these are 

...... .... . .'. . . 
: 4.; . .P8 : . . ...... ......... 

double pair and two 
non-double pairs 

two 2-paths 
(no loops or doubles) 

FIG. 2. d-switching. 
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equivalent to (0,l)-matrices with given row and column sums, whereas 
graphs with given degrees correspond to symmetric (0, 1)-matrices with zero 
diagonal and given row sums. 

In this section, we consider a pairing P with M points and degrees 
kl, .  . . , k,,, with kt <, k = k(n) for i = 1,. . . , n.  The first four lemmas, 1 to 
3', refer to such a pairing P chosen uniformly at random. The notation o, 
0 ,  and - refers to n tending to oo, as does -> when used in connexion 
with functions, and our results are uniform over all sequences k l ,  . . . , k as 
above, provided M -> ec. We use E to denote expectation, and put 

LEMMA 1. The probability of t given pairs occurring in P is at most 
( M  - I t ) ' ,  which is asymptotic to M i  for t fixed. 

Proof. To be precise, the probability is 

where [ x ]  denotes x(x - 1). . . (x - t + 1). 0 

LEMMA 2. The probability that P contains at least one triple pair is 
0(k2M^/M3) and the probability of at least one double loop is 0 ( k 2 ~ ^ / M 2 ) .  

Proof. By Lemma 1, the expected number of triple pairs (other than 
triple loops) is 

Similarly, the expected number of double loops is 

Let 1 denote the number of loops, and let d denote the number of double 
pairs (not in triple pairs) in P. For counting regular graphs, we use the 
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following: 

LEMMA 3. Let u ( n )  + oo with k 2  + w ( n )  < M/25.  Then 

~ r { d  > k 2  + u ( n )  or I > 2k + u ( n ) }  = o ( 1 ) .  

Proof. By Lemma 1, 

Setting j = k 2  + u ( n )  and taking it as an integer, we obtain 

This, together with a similar computation for 1, gives the lemma. 

For the generation of graphs, we will use the following similar result. 

LEMMA 3'. W e  have 

Proof. By Lemma 1 ,  E ( 1 )  < ( 1  + o ( l ) ) ( l / ~ ) ~ ( g =  (1 + 
o ( l ) ) M 2 / 2  M. Thus, Pr{l > M f l }  < \ + o(1). Similarly, 

Let %', be the set of pairings with I loops, d double pairs, and no triple 
pairs or double loops. 

LEMMA 4. Denote an operation taking an element of %', , to an element of 

\, by V i  , - q, ,. For each of the following operations, we bound the 
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number, m, of ways of applying the operation. 

(a) forward 1-switching V ,  , + .̂ 

(b) backward 1-switching %/_ , + %'/, ^: 

(c) forward d-switching V Q  , + Vy, d _  : 

(d) backward d-switching Vo, ,- + %',, 

Proof. Given a pairing in V,, to which a forward /-switching is to be 
applied, we can choose the points pi and p, in M ways each, and the point 
p2  in 21 ways. This determines precisely how the switching is to be applied; 
for example, the point p3 is the mate of p2. Hence the upper bound on m 
in (a). For some choices of p l ,  p4, and p2  the switching cannot be 
performed (for example, if pl = p4) or does not yield an element of , 
due to the creation or destruction of other loops or multiple pairs. These 
"bad" choices are (overlestimated and subtracted to give the lower bound 
on m in (a). We will not need a very accurate estimate of this. Similarly, in 
(b) we can choose the points p2 and p-, in M y  ways, and then p6 in M 
ways. Hence the upper bound. For the lower bound, there are three types of 
things that can go wrong: 

(i) a pair chosen might be in a loop or double pair, 

(ii) a cell containing p, for i <s 4 might contain p5 and p6, 

(iii) the selection might be such that a double pair would be created in 
the switching. That is, one of three forbidden edges is already present in the 
graph (one of these is a loop). 



5 8 MCKAY AND WORMALD 

We bound the number of possibilities in (i) by 3(21 + 4d)(k - 1)M, in (ii) 
by 6M2(k - I), and in (iii) by lM(k - + 2M2(k - I ) ~ .  The lower 
bound follows. 

In (c), we choose the points p2 and p, at the same end of a double pair 
in 4d  ways, and then points p, and p4 in M ways each, and for the lower 
bound subtract the number of bad choices as in (a). In (d), we choose p, 
and pi, in M2 ways, and p, and p, similarly. A chosen pair can be a 
double pair in at most 16d(k - l)M2 ways, a cell can simultaneously 
contain p l ,  p2, p3, or p4 and p5, p6, p7, or p8 in at most 9M k k - 1) 
ways, and forbidden pairs can be present in at most 3M2(k - I)' ways. 

We show here that the bounds in Lemma 4 are sufficiently accurate to 
give a simpler proof of the formula given by McKay [2] for the asymptotic 
number of k-regular graphs for k = o(nl/) .  The precise forms of the lower 
bounds are not even required. We will use this idea elsewhere [3] to extend 
the asymptotic formula for counting graphs by degree sequence, but here 
we confine the enumerative discussion to the simpler regular case. We 
include the proof of the following result because it bears more than passing 
resemblance to the algorithm given in Section 4 for generating these graphs. 

THEOREM 1. (McKay [ 2 ] ) .  If k = ~ ( n ^ ~ ) ,  the number of labelled k-regu- 
lar graphs on n vertices is 

uniformly as n -+ w with kn even. 

Proof. Note that for k-regular graphs, M = kn and M2 = k(k - 1)n. 
Set c/, = I%'/ ̂I. Suppose d < w(n) + k 2  and 1 < w(n) + k, where o ( n )  
-+ 00 arbitrarily slowly. By Lemma 4(a) and (b), 

for 1 2 1, and from (c) and (d), 



RANDOM REGULAR GRAPHS 

Hence 

Thus the sum of c l d  over 0 < I <  2k + u(n)  and 0 < d <s k 2  + u(n) is 
~ ~ , ~ e x p ( ( k  - l ) y 4  + (k - 1)/2). So by Lemma 3, Pr{Vo,o} - exp((1 - 
k2)/4), and the theorem follows. 0 

We describe in this section a procedure DEG whose input is n and 
k1,. . . , k,, and output is a random graph on n vertices of degrees k1,. . . , k,,. 
It uses two procedures, which eliminate loops and multiple pairs from a 
random pairing, but which are aborted with a certain probability. Such an 
abort we denote by restart; in this case DEG should be repeated. We 
assume all the ki are non-zero to make it easier to state the complexity 
results. In particular, we have M >. n. 

Let Bi denote the upper bound in Lemma 4(a), B2 the lower bound in 
Lemma 4(b), Bi the upper bound in Lemma 4(c), and B4 the lower bound 
in Lemma 4(d). We first have procedures for eliminating loops and double 
edges. 

procedure NOLOOPS ( P ) ;  [ P  is a pairing] 
while P  has at least one loop do 
begin 

obtain a pairing P' by applying a random forward /-switching to P ;  
m ,  := the number of ways to apply a forward /-switching to P ;  
m-, := the number of ways to apply a backward /-switching to P'; 
restart with probability 1 - ( m l  B2/m2 B1) ;  otherwise P  := P';  

end; 

procedure NODOUBLES ( P ) ;  [ P  is a pairing] 
while P  has at least one double pair do 
begin 

obtain a pairing P' by applying a random forward d-switching to P ;  
m 3  := the number of ways to apply a forward d-switching to P ;  
m4 := the number of ways to apply a backward d-switching to P'; 
restart with probability 1 - ( m 3 B 4 / m 4 B 3 ) ;  otherwise P  := PI; 

end: 
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Finally, we have the following procedure for generating a random graph 
G on n vertices of degrees k l ,  . . . , k n :  

procedure DEG ( n ,  k , ,  . . . , k ) ;  
begin 

select a pairing P  uniformly at random from the pairings of degrees k , ,  . . . , k , , ;  
if P has any multiple pairs of cardinality greater than 2, 

or a double loop, or more than ( M * / M )  double pairs, 
or more than M 2 / M  loops then restart; 

NOLOOPS ( P): 
NODOUBLES ( P ) :  
G := the graph corresponding to P ;  

end. 

THEOREM 2. DEG generates graphs G of degrees k l ,  . . . , k n  uniformly at 
random. 

Proof. We show that at each stage in the algorithm, the probability of a 
pairing P occurring, given that it is in %'/& is l % ' , , d l l .  This is true 
immediately of the initial pairing. It only remains to show that each 
iteration of the while loops in NOLOOPS and NODOUBLES preserves this 
property. 

So assume that P, as in the start of NOLOOPS, is chosen uniformly at 
random from V/, ^.  Consider P' obtained by applying a random forward 
/-switching to P. This particular /-switching is performed with probability 
(rnl1%'~, ^\)-I .  The probability of accepting this as the new P in NOLOOPS 
is m,B^/ (m2Bl ) ,  which is at most 1 by Lemma 4(a) and (b). Hence, since 
there are m 2  I-switching leading to P',  an arbitrary pairing in 
occurs as the new P with probability B 2 / ( B f i ^ \ ) .  As this is independent 
of the old P ,  and as the only other possible termination within the while 
loop of NOLOOPS is a restart, this means that each P in is equally 
likely to occur at the beginning of the next iteration of the while loop. The 
analysis of NODOUBLES is similar, and the theorem follows. 0 

THEOREM 3. DEG can be implemented so that it generates graphs with n 
vertices of degrees 1 <s k l ,  . . . , k 5 k uniformly at random in expected time 
0( M + M;) per graph, provided k 3  = O ( M 2 / M 2 )  and k 3  = o( M + M2).  

Note. M + M; < nk + n2k4.  Also, k = 0 ( M 1 ' 4 )  implies k 3  = 

O ( M 2 / ~ 2 )  and k 3  = o ( M ) .  

Proof. We bound the expected time, per successful termination of DEG, 
in a sequence of repeated runs. For this, we take an upper bound on the 
time taken before a restart or successful termination, and then divide by the 
probability of not restarting in a single run. 
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Consider firstly the case k 3  = o(M2/M2). The initial pairing P can be 
generated by choosing, first, a mate for one point at random from all the 
other points, second, a mate for another unused point at random from the 
remaining points, and so on. Assuming that a random number in [ I , .  . . , J ] ,  

J < M, can be generated in constant time, the time taken to generate P is 
0 (  M) .  Checking for triple pairs and double loops, and finding the numbers 
of double pairs and loops can be done in time 0 ( M )  with an adjacency 
matrix (whose initialisation can be avoided by using pointers). By Lemmas 
2 and 3', a restart occurs at this point with probability at most 2 + o(1). 

It only remains to bound the time taken by a run of NOLOOPS or 
NODOUBLES. We analyse NODOUBLES in detail, since better bounds 
can easily be obtained for NOLOOPS, due to the smaller number of loops 
than double pairs in the worst case. 

Note that NODOUBLES is only called if there are at most (M2/M)2 
double pairs, and so this is an upper bound on the number of iterations of 
the while loop. This also means that we can assume M2 >. M in NODOU- 
BLES; otherwise, it cannot be called. We can obtain P' easily enough by 
mimicking the proof of Lemma 4(c): choosing p2, p3, pi, and ps at 
random in one of 4 d ~ ~  = B, ways, with each choice equally likely. At this 
point, if the d-switching cannot legally be performed, restart. The probabil- 
ity of not restarting here is m3/B3, so m3 does not need to be computed. 
However, the time taken to compute m4 determines the overall expected 
run-time. We need m4 since the next thing to do is to restart with 
probability 1 - B4/m4, thus achieving the desired probability 1 - 
m3B4/(m4BI) of a restart in this step of the algorithm. Note that by 
Lemma 4, this probability is 0 ( (k2  + d)/M + (kd  + k3)/M2) = 

O(k / M y )  as M2 < kM. Hence, the probability of not restarting during the 
whole execution of NODOUBLES is (1 - 0 ( k 3 / ~ 2 , ) ( M ^ / M ) 2  = 1 - 
0(k3M2/M2) = 1 - o(1). A similar calculation for NOLOOPS gives 1 - 
0 ( k 3 / ~ )  = 1 - ~ ( l ) .  

If ease of implementation were of prime importance, one could calculate 
m4 in time O(M2) by running through all M; choices of pi, pc,  p3 ,  and p7 
as in the proof of Lemma 4(d), and then testing each (in constant time) for 
allowability of the reverse d-switching. (Recall that M-, >. M. An adjacency 
matrix of the graph of the pairing is useful here.) This can be repeated for 
each iteration of the while loop in NODOUBLES; i.e., at most (M2/M)2 
times. The analogous process for NOLOOPS requires 0(MM2), repeated 
up to M2/M times. This would give an overall average-case time complex- 
ity for NODOUBLES of 0(M4/M2)  = 0(k2M^) = 0(n2k6).  On the 
other hand, instead of recalculating m4 for each iteration, one could 
calculate m4 in the initial pass and then update its value for the next 
iteration by calculating the change due to the d-switching. Each of the O(1) 
pairs involved in a switching requires time O(kM2) to find its contribution 



62 MCKAY AND WORMALD 

to m4 (either positive or negative) as one of the pairs to be switched out in 
a reverse d-switching, and time 0 (k4)  as one of the pairs to be switched in. 
The update must be performed at most (M2/M)' = 0(M,/k3) times, 
yielding the time complexity o(M;) for NODOUBLES, since k -s. n M 
< M2 here. As seen before, NOLOOPS requires at most O(M;), and we - 

are done in the case k 3  = o(M2/M2). 
For k = O( M'/M~) with k # O(M'/M~), triple pairs can become a 

problem. However, by using inclusion-exclusion (or Bonferroni's inequali- 
ties) it is easy to show that the number of triple pairs in such a random 
pairing has asymptotically a Poisson distribution with mean at least 
cM2/M2 for some c > 0. (This is similar to the argument in Wormald [6]. 
Alternatively, it can also be derived by using switchings as in McKay [2].) 
Hence, the probability of no triple pairs occurring is exp -0(1). The only 
other feature of the proof which changes for k = o ( M ~ / M ~ )  is the 
probability of executing NODOUBLES without a restart: again, it is 
(1 - ~ ( k ~ / M ^ y ~ ^ ~  = exp -0(k3M2/M2) (as k3 = o(M2)), which is 
exp -0(1). The number of restarts required per successful termination is 
thus expected to be O(1). 

We note finally that if My < M, then NOLOOPS and NODOUBLES are 
never called, and the time reduces to 0(Mk2). 

By Theorems 2 and 3, DEG generates k-regular graphs on n vertices 
uniformly at random in expected time O(n2k4) provided k = O(nl^), 
since M = nk and M2 = nk( k - 1). We improve this to the following. 

THEOREM 4. DEG can be implemented so as to generate k-regular graphs 
on n vertices uniformly at random in expected time 0(nk3) per graph, 
provided k = ~ ( n l ' ~ ) .  

Proof. From the proof of Theorem 3, we see that the theorem will 
follow if NOLOOPS and NODOUBLES can each be implemented with a 
maximum time 0(nk3) between restarts. To achieve this, we employ the 
updating technique and moreover calculate m4 in a very special way to 
begin with. 

Take a pairing P with d double pairs (and no loops or triple pairs), let F 
denote the set of pairs in double pairs, and let E denote the edge set of the 
multigraph of the pairing. Note that m4 is the number of ordered pairs of 
2-paths (pi ,  p2, pi, p4, p5, pi,, p,, p8) satisfying none of the following crite- 
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ria, where 4, u2, u3, u4, us, and denote the cells containing P I ,  p2,  p4, 
p5, p6, and ps,  respectively: 

(1) { P I .  ~2 1 F 

(vi) r ,  = us, 

(vii) ui = u6 

(viii) v2 = u4 

(ix) v-, = us 

(xi) u3 = u4 

(xii) % = u5 

(xiii) u3 = V6 

(xiv) vlv4 E E 

Specifying the negatives of conditions (i)-(iv) and (xiv)-(xvi) ensures that 
the switching will not involve double edges, and given that, (v)-(xiii) ensure 
that u1 , .  . ., u6 are distinct. For i = 1 ,..., 16, let D, denote the set of 
ordered pairs of 2-paths satisfying the zth criterion. Then by inclusion- 
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exclusion, 

where the second sum is for 1 <, jl < . . . < j, < 16, and the empty summa- 
tion is taken to be n2k2(k - (the number of ordered pairs of 2-paths 
with no restrictions). 

To compute some of the terms in (I), we use the 3-path structure of the 
pairing, defined as follows. Let T denote the set of points, let V denote the 
vertex set of the multigraph, let a,  d E V and let h and c each denote 
either a point or a special symbol ( * ,  say) used to mark a sum over all 
points. For h, c e T. let .s(, ,,,,. denote 1 if there is a 3-path beginning with 
b which is in cell u ,  and ending with c which is in cell d,  and 0 otherwise. 

- Then put s u  * c,  d - xp  e T ^ U ,  p ,  c ,  d ?  and define * ,  d and * * ,  '/ simi- 
larly. The 3-path structure of the pairing is the set of numbers so, ̂, (, d .  

The non-zero elements of the 3-path structure can be determined in time 
0 (nk  3, by running through all 3-paths and incrementing the relevant 
numbers (which can be stored in an 0 (n3 )  array with constant look-up 
time). We call this the s-array. Records of which entries are non-zero can be 
stored in an 0(nk3)  linked list (so that all such entries can later be found in 
time 0(nk3)),  called the s-list, with a pointer from each s-array element to 
the corresponding s-list element (for constant-time deletion and insertion, 
and eliminating the need to initialise the s-array to zeros). When a d-switch- 
ing is performed, each edge inserted or deleted occurs in 0 ( k 2 )  3-paths and 
hence the above data structure can be updated in time 0 ( k 2 ) .  

We claim that each of the terms in the second sum in (1) can be 
computed in constant time from a set of numbers, including the 3-path 
structure, which is computable in time 0(nk3) and can be updated after a 
single d-switching in time 0(k2) .  This gives the stated complexity of 
0(nk3). 

It only remains to explain how to deal with the 216 terms in (1). We have 
already treated the case i = 0, and each of the 16 terms for / = 1 are 
similar because the answer does not depend on the pairing given n, k, and 
d. For example, \D. = nk2(k - since for r1 = L~~ we can choose 
pl ,  p2, p3, p4 in nk(k - 1) ways, then choose p5 to be anything in u l  (in k 
ways), and then p^ p7, pa  in k - 1 ways. Similarly, \D^ = (nk - 
2d)k2(k  - I)2, since there are nk - 2d ordered pairs of adjacent vertices 
(eligible for ( r , ,  v4)) and k(k - 1) ways to choose each 2-path from there. 

We now turn to i > 2. For these cases, possibly the most difficult being 
D14 1"' D16, some computation needs to be done on the given pairing. 
Consider DM n D16 first. For this, we wish to find the number of possibili- 
ties forpairs {Pi ,  P21, {P^,P4}, {Pc,, P6}> {P,? Pal wchthat {P2> P,} and 
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p 5 ,  p,} form the beginning and ending of a 3-path, as do { p3 ,  p4}  and 
{ po,  p 7 } ,  and p2 and p3 share a common cell u2 ,  p, and p-, share a 
common cell 9. p2 + pi and p6 # pi. Without the last two constraints, this 
number is Â£ , , & ,  T , ~ ,  , * ,, and similarly by inclusion-exclusion, 

This can be computed in time 0(nk3),  using the s-list to find the non-zero 
terms. Moreover, the value of each term in this expression can be updated 
to time 0 ( k 2 )  when a d-switching is performed since at most this many 
terms in the s-array are affected. 

We only have 65,518 terms in (1) left to deal with. We leave these as an 
exercise for the reader. We do have the following hints: DM n D15 n Dn 
can be done easily by restricting the calculation for DM n D l ,  to the case 
that u-, and u5 are adjacent. Combinations such as Dc n D are probably 
best handled using an array of data for 2-paths as well as 3-paths. Anything 
involving any of Dl to D4 is as easy as the corresponding case excluding 
these sets, since there are 0 ( k 2 )  double pairs, which can be located in 
advance in time 0 (nk2 )  and listed for ready reference in the future. Often, 
it will suffice to look at all such double edges, and all pairs of 2-paths 
emanating from either end (in time 0 ( k 6 )  = 0(nk3)). An adjacency matrix 
for the multigraph may come in handy. (Again, pointers can be used to 
eliminate the need to initialise this.) From here, combinations involving 
more of the D get progressively easier to deal with, and almost all of the 
terms in (1) can be shown to be 0 always. 

Minor modifications and/or simplifications to the methods presented in 
the previous sections are sufficient to generate random bipartite graphs 
with vertices in the first part, Vl say, having degrees k l , i , .  . . , k ,,, and 
those in the second part, V^_ say, having degrees k, ,, . . . , kÃ£2,2 

Our model of graphs is now slightly different: we consider 2 M  points, 
with M of them arranged in cells of sizes k I i , .  . . , k , , ,  , (corresponding to 
vertices in VJ and the other M in cells of sizes A: , , ? ,  . . . , k , ,  (correspond- 
ing to vertices in V2) .  A pairing P is still a pairing of the 2A4 points, but is 
now restricted so that each pair contains one point in a cell in Vl and one 
point in a cell in V2. Hence, loops are impossible, and so only d-switchings 
are required. 

Define M2,, = 'L '~. '~lk,, , j(kl, ,  - 1) for j = 1 and 2, and M2 = Mu + 
M7 -, ,. - The arguments used to establish Lemmas 1, 2, and 3' can be used with 
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minor alterations to establish the following results. We assume k i  k for 
all i ,  and j = 1,2 .  

LEMMA IB. The probability of t given pairs occurring in P is at most 
( M  - f l y t .  

LEMMA 2B. The probability that P contains at least one triple pair is 

LEMMA 3B'. We have 

We also need to modify the definition of a d-switching, to the effect that 
the points p2,  p-,, pc, and ps must be in Vl whilst pi ,  p4, p(,, and p7 must 
be in V2. Then in place of Lemma 4, we have the following, with V o d  
defined as for graphs. 

LEMMA 4B. For each of the following operations, the number, m ,  of ways 
of applying the operation is 

(a) forward d-switching eo, - eo, d -  \- 

(b) backward d-switching V o  - + V o  d :  

In order to generate random bipartite graphs, we therefore use the 
following algorithm. First, NODOUBLES will be as described previously, 
but with the new definition of pairings and d-switchings, and with B3 and 
B4 denoting the upper bound in Lemma 4B (a) and the lower bound in 
Lemma 4B (b), respectively. We assume M > nl and M > n2. 

procedure BIDEG (nl ,  A l l  , . . .  , k , , , , ,  n2, kl,2 , . . . ,  k n , 2 ) ;  
begin 

select a pairing uniformly at random from the pairings of degrees k l 1 , .  . . , kÃ£,,  
in Vi and k 1 2 , .  . . , k , ,  2 in V2; 
if P has any multiple pairs of cardinality greater than 2,  

or more than M2,  M2,^/M double pairs then restart; 
NODOUBLES ( P); 
G := the (bipartite) graph corresponding to P; 
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We now have 

THEOREM 2B. BIDEG generates bipartite graphs G of degrees k l l , .  . . , 
k , ,  in the first part and degrees k l ,  . . . , k , ,  in the second part uniformly 
at random. 

An analogue of Theorem 3 also follows by similar arguments. In particu- 
lar, if k = o(M''~)  then the expected time taken by BIDEG is 0 ( n 2 k 4 )  
per graph, where n = nl  + n2 .  This improves to 0 ( n k 3 )  for k-regular 
bipartite graphs, using the method of implementation discussed in the proof 
of Theorem 4. 
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