
Uniform Generation of Random Regular Graphs
of Moderate Degree

Computer Science Department, Australian National University, G. P .0 . Box 4,
ACT 2601. Australia

AND

Department of Mathematics and Statistics, University of Auckland, Private Bag,
Auckland, New Zealand

Received August 17, 1988; revised March 7, 1989

We show how to generate k-regular graphs on n vertices uniformly at random in
expected time 0 (n k 3) , provided k = O(nl / ') . The algorithm employs a modifica-
tion of a switching argument previously used to count such graphs asymptotically
for k = o(nl"). The asymptotic formula is re-derived, using the new switching
argument. The method is applied also to graphs with given degree sequences,
provided certain conditions are met. In particular, it applies if the maximum degree
is o (\ E (G) \ ' ~ / ' ~) . The method is also applied to bipartite graphs. 0 1990 Academic

Press, Inc.

Random regular graphs have come under ever increasing scrutiny in
recent years. However, it is not easy to generate k-regular graphs on n
vertices uniformly at random. It is known how to do this for small k in
expected time 0(ek2^nk) per graph, using a procedure which does not
necessarily terminate (see Worrnald [5] or Bollobas [I]); but even for
k =s log n this is not polynomial expected time. If one insists on an
algorithm which always terminates, the picture is even worse; it can be done
[5] for k = 3 and 4 but already the algorithm is very complicated. On the
other hand, one can slacken the uniformity constraint slightly and ask for
an almost uniform probability distribution. Sinclair and Jerrum [4] were

5 2
0196-6774/90 $3 00
Copyright ^ 1990 by Academn, Press, Inc
All rights of reproduction in any form reserved

RANDOM REGULAR GRAPHS 53

successful at generating random graphs of this type with given degrees in
polynomial time, as long as the degrees are bounded above by O(ml^),
where m is the number of edges. For this, they employed Markov processes
and asymptotic enumeration results obtained by McKay [2] using switch-
ings.

Our aim here is to show how to generate graphs with given degrees
uniformly at random in polynomial expected time. Our result applies to a
slightly wider range of degree sequences than Sinclair and Jerrum's. To do
this we combine features of the basic method of the algorithm for generat-
ing k-regular graphs in [5] with a type of switching related to that in [2].
This new type of switching also enables extension of the asymptotic
enumeration results (see McKay and Wormald [3]).

Our model of a graph G with vertex degrees k,, . . . , k,, is a set of
M = Â £ k points arranged in cells of size ki , k 2 , . . . , k,,. We take a partition
(called a pairing) P of the M points into $M parts (called pairs) of size 2
each. The degrees of P are k l , . . . , k,,. The vertices of G are identified with
the cells and the edges with the pairs; each edge of G joins the vertices in
which the points of the corresponding pair lie. A loop of P is a pair whose
two points lie in the same cell. A multiple pair is a maximal set of j S: 2
pairs each involving the same two cells; this is a double pair if j = 2, a
triple pair if j = 3, and a double loop if the two cells are the same. The
mate of a point is the other point in its pair.

If the pairing has multiple pairs then G is strictly a multigraph rather
than a graph; we also forbid loops in a graph. For j 2 2, a j-path is a
sequence pl , . . . , p 2 of points such that p2, and p21+i are distinct but in
the same cell, for i = 1,. . . , j - 1. Note that each non-loop double pair
contains four distinct 2-paths, two beginning at each cell involved.

We make use of the following two operations on a pairing:

Take pairs { P I , p6} , { p2, p3 }, { p4, pc, 1 , where { ~ 2 , 0 3 1 is a loop, and
pl , p2, p3, p4, p5, and p6 are in five different cells. Replace these pairs by
{ pr pi }, { p3, p 4 } , { p5, p 6 } . In t h s operation, none of the pairs created or
destroyed is permitted to be part of a multiple pair (see Fig. 1).

Take pairs { p1, p c } , { ~ 2 , p6} , { ~ 3 , ~ 7 1 , { ~ 4 , ~ s } , where ~2 and ~3 are
in the same cell, as are p6 and pi, but the cells containing pl , p2,
p4, p5, p6, pc are all distinct. Replace these pairs by { pl , p d , { p3, p 4 } ,
p 5 , p 6 } , { p , , p 8 } . Note that these form two 2-paths. In this operation,
none of the pairs created or destroyed is permitted to be part of a multiple
pair, except that { p i , p6} , { p i , p , } form a double pair (see Fig. 2).

MCKAY AND WORMALD

2-path and pair
(no loops or doubles)

A forward /-switching is an /-switching as described, and a backward
/-switching is the reverse operation. We use the same convention for
d-switchings. Note that a forward /-switching always reduces the number of
loops by 1 and does not create or destroy double pairs. Similarly, a forward
d-switching reduces the number of double pairs by 1 and neither creates nor
destroys loops.

In the next section, we analyse random pairings and the number of ways
that the switching operations can be carried out in pairings with given
numbers of loops and double pairs. From this, McKay's formula for the
asymptotic number of k-regular graphs is re-derived in Section 3, and in
Section 4 we give a procedure DEG for generating degree-constrained
graphs uniformly at random. In Section 5 , we show how to reduce the
asymptotic average-case time complexity of DEG in the case of regular
graphs. Finally, in Section 6 we discuss the modifications required to apply
the same method to bipartite graphs with given degrees. Note that these are

......'. . .
: 4.; . .P8 :

double pair and two
non-double pairs

two 2-paths
(no loops or doubles)

FIG. 2. d-switching.

RANDOM REGULAR GRAPHS 5 5

equivalent to (0,l)-matrices with given row and column sums, whereas
graphs with given degrees correspond to symmetric (0, 1)-matrices with zero
diagonal and given row sums.

In this section, we consider a pairing P with M points and degrees
kl, . . . , k,,, with kt <, k = k(n) for i = 1,. . . , n. The first four lemmas, 1 to
3', refer to such a pairing P chosen uniformly at random. The notation o,
0 , and - refers to n tending to oo, as does -> when used in connexion
with functions, and our results are uniform over all sequences k l , . . . , k as
above, provided M -> ec. We use E to denote expectation, and put

LEMMA 1. The probability of t given pairs occurring in P is at most
(M - I t) ' , which is asymptotic to M i for t fixed.

Proof. To be precise, the probability is

where [x] denotes x(x - 1). . . (x - t + 1). 0

LEMMA 2. The probability that P contains at least one triple pair is
0(k2M^/M3) and the probability of at least one double loop is 0 (k 2 ~ ^ / M 2) .

Proof. By Lemma 1, the expected number of triple pairs (other than
triple loops) is

Similarly, the expected number of double loops is

Let 1 denote the number of loops, and let d denote the number of double
pairs (not in triple pairs) in P. For counting regular graphs, we use the

5 6 MCKAY AND WORMALD

following:

LEMMA 3. Let u (n) + oo with k 2 + w (n) < M/25. Then

~ r { d > k 2 + u (n) or I > 2k + u (n) } = o (1) .

Proof. By Lemma 1,

Setting j = k 2 + u (n) and taking it as an integer, we obtain

This, together with a similar computation for 1, gives the lemma.

For the generation of graphs, we will use the following similar result.

LEMMA 3'. W e have

Proof. By Lemma 1 , E (1) < (1 + o (l)) (l / ~) ~ (g = (1 +
o (l)) M 2 / 2 M. Thus, Pr{l > M f l } < \ + o(1). Similarly,

Let %', be the set of pairings with I loops, d double pairs, and no triple
pairs or double loops.

LEMMA 4. Denote an operation taking an element of %', , to an element of

\, by V i , - q, ,. For each of the following operations, we bound the

RANDOM REGULAR GRAPHS

number, m, of ways of applying the operation.

(a) forward 1-switching V , , + .̂

(b) backward 1-switching %/_ , + %'/, ^:

(c) forward d-switching V Q , + Vy, d _ :

(d) backward d-switching Vo, ,- + %',,

Proof. Given a pairing in V,, to which a forward /-switching is to be
applied, we can choose the points pi and p, in M ways each, and the point
p2 in 21 ways. This determines precisely how the switching is to be applied;
for example, the point p3 is the mate of p2. Hence the upper bound on m
in (a). For some choices of p l , p4, and p2 the switching cannot be
performed (for example, if pl = p4) or does not yield an element of ,
due to the creation or destruction of other loops or multiple pairs. These
"bad" choices are (overlestimated and subtracted to give the lower bound
on m in (a). We will not need a very accurate estimate of this. Similarly, in
(b) we can choose the points p2 and p-, in M y ways, and then p6 in M
ways. Hence the upper bound. For the lower bound, there are three types of
things that can go wrong:

(i) a pair chosen might be in a loop or double pair,

(ii) a cell containing p, for i <s 4 might contain p5 and p6,

(iii) the selection might be such that a double pair would be created in
the switching. That is, one of three forbidden edges is already present in the
graph (one of these is a loop).

5 8 MCKAY AND WORMALD

We bound the number of possibilities in (i) by 3(21 + 4d)(k - 1)M, in (ii)
by 6M2(k - I), and in (iii) by lM(k - + 2M2(k - I) ~ . The lower
bound follows.

In (c), we choose the points p2 and p, at the same end of a double pair
in 4d ways, and then points p, and p4 in M ways each, and for the lower
bound subtract the number of bad choices as in (a). In (d), we choose p,
and pi, in M2 ways, and p, and p, similarly. A chosen pair can be a
double pair in at most 16d(k - l)M2 ways, a cell can simultaneously
contain p l , p2, p3, or p4 and p5, p6, p7, or p8 in at most 9M k k - 1)
ways, and forbidden pairs can be present in at most 3M2(k - I)' ways.

We show here that the bounds in Lemma 4 are sufficiently accurate to
give a simpler proof of the formula given by McKay [2] for the asymptotic
number of k-regular graphs for k = o(nl/) . The precise forms of the lower
bounds are not even required. We will use this idea elsewhere [3] to extend
the asymptotic formula for counting graphs by degree sequence, but here
we confine the enumerative discussion to the simpler regular case. We
include the proof of the following result because it bears more than passing
resemblance to the algorithm given in Section 4 for generating these graphs.

THEOREM 1. (McKay [2]) . If k = ~ (n ^ ~) , the number of labelled k-regu-
lar graphs on n vertices is

uniformly as n -+ w with kn even.

Proof. Note that for k-regular graphs, M = kn and M2 = k(k - 1)n.
Set c/, = I%'/ ̂I. Suppose d < w(n) + k 2 and 1 < w(n) + k, where o (n)
-+ 00 arbitrarily slowly. By Lemma 4(a) and (b),

for 1 2 1, and from (c) and (d),

RANDOM REGULAR GRAPHS

Hence

Thus the sum of c l d over 0 < I < 2k + u(n) and 0 < d <s k 2 + u(n) is
~ ~ , ~ e x p ((k - l) y 4 + (k - 1)/2). So by Lemma 3, Pr{Vo,o} - exp((1 -
k2)/4), and the theorem follows. 0

We describe in this section a procedure DEG whose input is n and
k1,. . . , k,, and output is a random graph on n vertices of degrees k1,. . . , k,,.
It uses two procedures, which eliminate loops and multiple pairs from a
random pairing, but which are aborted with a certain probability. Such an
abort we denote by restart; in this case DEG should be repeated. We
assume all the ki are non-zero to make it easier to state the complexity
results. In particular, we have M >. n.

Let Bi denote the upper bound in Lemma 4(a), B2 the lower bound in
Lemma 4(b), Bi the upper bound in Lemma 4(c), and B4 the lower bound
in Lemma 4(d). We first have procedures for eliminating loops and double
edges.

procedure NOLOOPS (P) ; [P is a pairing]
while P has at least one loop do
begin

obtain a pairing P' by applying a random forward /-switching to P ;
m , := the number of ways to apply a forward /-switching to P ;
m-, := the number of ways to apply a backward /-switching to P';
restart with probability 1 - (m l B2/m2 B1) ; otherwise P := P';

end;

procedure NODOUBLES (P) ; [P is a pairing]
while P has at least one double pair do
begin

obtain a pairing P' by applying a random forward d-switching to P ;
m 3 := the number of ways to apply a forward d-switching to P ;
m4 := the number of ways to apply a backward d-switching to P';
restart with probability 1 - (m 3 B 4 / m 4 B 3) ; otherwise P := PI;

end:

60 MCKAY AND WORMALD

Finally, we have the following procedure for generating a random graph
G on n vertices of degrees k l , . . . , k n :

procedure DEG (n , k , , . . . , k) ;
begin

select a pairing P uniformly at random from the pairings of degrees k , , . . . , k , , ;
if P has any multiple pairs of cardinality greater than 2,

or a double loop, or more than (M * / M) double pairs,
or more than M 2 / M loops then restart;

NOLOOPS (P):
NODOUBLES (P) :
G := the graph corresponding to P ;

end.

THEOREM 2. DEG generates graphs G of degrees k l , . . . , k n uniformly at
random.

Proof. We show that at each stage in the algorithm, the probability of a
pairing P occurring, given that it is in %'/& is l % ' , , d l l . This is true
immediately of the initial pairing. It only remains to show that each
iteration of the while loops in NOLOOPS and NODOUBLES preserves this
property.

So assume that P, as in the start of NOLOOPS, is chosen uniformly at
random from V/, ^. Consider P' obtained by applying a random forward
/-switching to P. This particular /-switching is performed with probability
(rnl1%'~, ^\)-I . The probability of accepting this as the new P in NOLOOPS
is m,B^/ (m2Bl) , which is at most 1 by Lemma 4(a) and (b). Hence, since
there are m 2 I-switching leading to P', an arbitrary pairing in
occurs as the new P with probability B 2 / (B f i ^ \) . As this is independent
of the old P , and as the only other possible termination within the while
loop of NOLOOPS is a restart, this means that each P in is equally
likely to occur at the beginning of the next iteration of the while loop. The
analysis of NODOUBLES is similar, and the theorem follows. 0

THEOREM 3. DEG can be implemented so that it generates graphs with n
vertices of degrees 1 <s k l , . . . , k 5 k uniformly at random in expected time
0(M + M;) per graph, provided k 3 = O (M 2 / M 2) and k 3 = o(M + M2).

Note. M + M; < nk + n2k4. Also, k = 0 (M 1 ' 4) implies k 3 =

O (M 2 / ~ 2) and k 3 = o (M) .

Proof. We bound the expected time, per successful termination of DEG,
in a sequence of repeated runs. For this, we take an upper bound on the
time taken before a restart or successful termination, and then divide by the
probability of not restarting in a single run.

RANDOM REGULAR GRAPHS 61

Consider firstly the case k 3 = o(M2/M2). The initial pairing P can be
generated by choosing, first, a mate for one point at random from all the
other points, second, a mate for another unused point at random from the
remaining points, and so on. Assuming that a random number in [I , . . . , J] ,

J < M, can be generated in constant time, the time taken to generate P is
0 (M) . Checking for triple pairs and double loops, and finding the numbers
of double pairs and loops can be done in time 0 (M) with an adjacency
matrix (whose initialisation can be avoided by using pointers). By Lemmas
2 and 3', a restart occurs at this point with probability at most 2 + o(1).

It only remains to bound the time taken by a run of NOLOOPS or
NODOUBLES. We analyse NODOUBLES in detail, since better bounds
can easily be obtained for NOLOOPS, due to the smaller number of loops
than double pairs in the worst case.

Note that NODOUBLES is only called if there are at most (M2/M)2
double pairs, and so this is an upper bound on the number of iterations of
the while loop. This also means that we can assume M2 >. M in NODOU-
BLES; otherwise, it cannot be called. We can obtain P' easily enough by
mimicking the proof of Lemma 4(c): choosing p2, p3, pi, and ps at
random in one of 4 d ~ ~ = B, ways, with each choice equally likely. At this
point, if the d-switching cannot legally be performed, restart. The probabil-
ity of not restarting here is m3/B3, so m3 does not need to be computed.
However, the time taken to compute m4 determines the overall expected
run-time. We need m4 since the next thing to do is to restart with
probability 1 - B4/m4, thus achieving the desired probability 1 -
m3B4/(m4BI) of a restart in this step of the algorithm. Note that by
Lemma 4, this probability is 0 ((k2 + d)/M + (kd + k3)/M2) =

O(k / M y) as M2 < kM. Hence, the probability of not restarting during the
whole execution of NODOUBLES is (1 - 0 (k 3 / ~ 2 ,) (M ^ / M) 2 = 1 -
0(k3M2/M2) = 1 - o(1). A similar calculation for NOLOOPS gives 1 -
0 (k 3 / ~) = 1 - ~ (l) .

If ease of implementation were of prime importance, one could calculate
m4 in time O(M2) by running through all M; choices of pi, pc, p3 , and p7
as in the proof of Lemma 4(d), and then testing each (in constant time) for
allowability of the reverse d-switching. (Recall that M-, >. M. An adjacency
matrix of the graph of the pairing is useful here.) This can be repeated for
each iteration of the while loop in NODOUBLES; i.e., at most (M2/M)2
times. The analogous process for NOLOOPS requires 0(MM2), repeated
up to M2/M times. This would give an overall average-case time complex-
ity for NODOUBLES of 0(M4/M2) = 0(k2M^) = 0(n2k6). On the
other hand, instead of recalculating m4 for each iteration, one could
calculate m4 in the initial pass and then update its value for the next
iteration by calculating the change due to the d-switching. Each of the O(1)
pairs involved in a switching requires time O(kM2) to find its contribution

62 MCKAY AND WORMALD

to m4 (either positive or negative) as one of the pairs to be switched out in
a reverse d-switching, and time 0 (k4) as one of the pairs to be switched in.
The update must be performed at most (M2/M)' = 0(M,/k3) times,
yielding the time complexity o(M;) for NODOUBLES, since k -s. n M
< M2 here. As seen before, NOLOOPS requires at most O(M;), and we -

are done in the case k 3 = o(M2/M2).
For k = O(M'/M~) with k # O(M'/M~), triple pairs can become a

problem. However, by using inclusion-exclusion (or Bonferroni's inequali-
ties) it is easy to show that the number of triple pairs in such a random
pairing has asymptotically a Poisson distribution with mean at least
cM2/M2 for some c > 0. (This is similar to the argument in Wormald [6].
Alternatively, it can also be derived by using switchings as in McKay [2].)
Hence, the probability of no triple pairs occurring is exp -0(1). The only
other feature of the proof which changes for k = o (M ~ / M ~) is the
probability of executing NODOUBLES without a restart: again, it is
(1 - ~ (k ~ / M ^ y ~ ^ ~ = exp -0(k3M2/M2) (as k3 = o(M2)), which is
exp -0(1). The number of restarts required per successful termination is
thus expected to be O(1).

We note finally that if My < M, then NOLOOPS and NODOUBLES are
never called, and the time reduces to 0(Mk2).

By Theorems 2 and 3, DEG generates k-regular graphs on n vertices
uniformly at random in expected time O(n2k4) provided k = O(nl^),
since M = nk and M2 = nk(k - 1). We improve this to the following.

THEOREM 4. DEG can be implemented so as to generate k-regular graphs
on n vertices uniformly at random in expected time 0(nk3) per graph,
provided k = ~ (n l ' ~) .

Proof. From the proof of Theorem 3, we see that the theorem will
follow if NOLOOPS and NODOUBLES can each be implemented with a
maximum time 0(nk3) between restarts. To achieve this, we employ the
updating technique and moreover calculate m4 in a very special way to
begin with.

Take a pairing P with d double pairs (and no loops or triple pairs), let F
denote the set of pairs in double pairs, and let E denote the edge set of the
multigraph of the pairing. Note that m4 is the number of ordered pairs of
2-paths (pi , p2, pi, p4, p5, pi,, p,, p8) satisfying none of the following crite-

RANDOM REGULAR GRAPHS 63

ria, where 4, u2, u3, u4, us, and denote the cells containing P I , p2, p4,
p5, p6, and ps, respectively:

(1) { P I . ~2 1 F

(vi) r , = us,

(vii) ui = u6

(viii) v2 = u4

(ix) v-, = us

(xi) u3 = u4

(xii) % = u5

(xiii) u3 = V6

(xiv) vlv4 E E

Specifying the negatives of conditions (i)-(iv) and (xiv)-(xvi) ensures that
the switching will not involve double edges, and given that, (v)-(xiii) ensure
that u1 , . . ., u6 are distinct. For i = 1 ,..., 16, let D, denote the set of
ordered pairs of 2-paths satisfying the zth criterion. Then by inclusion-

64 MCKAY AND WORMALD

exclusion,

where the second sum is for 1 <, jl < . . . < j, < 16, and the empty summa-
tion is taken to be n2k2(k - (the number of ordered pairs of 2-paths
with no restrictions).

To compute some of the terms in (I), we use the 3-path structure of the
pairing, defined as follows. Let T denote the set of points, let V denote the
vertex set of the multigraph, let a, d E V and let h and c each denote
either a point or a special symbol (* , say) used to mark a sum over all
points. For h, c e T. let .s(, ,,,,. denote 1 if there is a 3-path beginning with
b which is in cell u , and ending with c which is in cell d, and 0 otherwise.

- Then put s u * c, d - xp e T ^ U , p , c , d ? and define * , d and * * , '/ simi-
larly. The 3-path structure of the pairing is the set of numbers so, ̂, (, d .

The non-zero elements of the 3-path structure can be determined in time
0 (nk 3, by running through all 3-paths and incrementing the relevant
numbers (which can be stored in an 0 (n3) array with constant look-up
time). We call this the s-array. Records of which entries are non-zero can be
stored in an 0(nk3) linked list (so that all such entries can later be found in
time 0(nk3)), called the s-list, with a pointer from each s-array element to
the corresponding s-list element (for constant-time deletion and insertion,
and eliminating the need to initialise the s-array to zeros). When a d-switch-
ing is performed, each edge inserted or deleted occurs in 0 (k 2) 3-paths and
hence the above data structure can be updated in time 0 (k 2) .

We claim that each of the terms in the second sum in (1) can be
computed in constant time from a set of numbers, including the 3-path
structure, which is computable in time 0(nk3) and can be updated after a
single d-switching in time 0(k2) . This gives the stated complexity of
0(nk3).

It only remains to explain how to deal with the 216 terms in (1). We have
already treated the case i = 0, and each of the 16 terms for / = 1 are
similar because the answer does not depend on the pairing given n, k, and
d. For example, \D. = nk2(k - since for r1 = L~~ we can choose
pl , p2, p3, p4 in nk(k - 1) ways, then choose p5 to be anything in u l (in k
ways), and then p^ p7, pa in k - 1 ways. Similarly, \D^ = (nk -
2d)k2(k - I)2, since there are nk - 2d ordered pairs of adjacent vertices
(eligible for (r , , v4)) and k(k - 1) ways to choose each 2-path from there.

We now turn to i > 2. For these cases, possibly the most difficult being
D14 1"' D16, some computation needs to be done on the given pairing.
Consider DM n D16 first. For this, we wish to find the number of possibili-
ties forpairs {Pi , P21, {P^,P4}, {Pc,, P6}> {P,? Pal wchthat {P2> P,} and

RANDOM REGULAR GRAPHS 65

p 5 , p,} form the beginning and ending of a 3-path, as do { p3 , p4} and
{ po, p 7 } , and p2 and p3 share a common cell u2 , p, and p-, share a
common cell 9. p2 + pi and p6 # pi. Without the last two constraints, this
number is Â£ , , & , T , ~ , , * ,, and similarly by inclusion-exclusion,

This can be computed in time 0(nk3), using the s-list to find the non-zero
terms. Moreover, the value of each term in this expression can be updated
to time 0 (k 2) when a d-switching is performed since at most this many
terms in the s-array are affected.

We only have 65,518 terms in (1) left to deal with. We leave these as an
exercise for the reader. We do have the following hints: DM n D15 n Dn
can be done easily by restricting the calculation for DM n D l , to the case
that u-, and u5 are adjacent. Combinations such as Dc n D are probably
best handled using an array of data for 2-paths as well as 3-paths. Anything
involving any of Dl to D4 is as easy as the corresponding case excluding
these sets, since there are 0 (k 2) double pairs, which can be located in
advance in time 0 (nk2) and listed for ready reference in the future. Often,
it will suffice to look at all such double edges, and all pairs of 2-paths
emanating from either end (in time 0 (k 6) = 0(nk3)). An adjacency matrix
for the multigraph may come in handy. (Again, pointers can be used to
eliminate the need to initialise this.) From here, combinations involving
more of the D get progressively easier to deal with, and almost all of the
terms in (1) can be shown to be 0 always.

Minor modifications and/or simplifications to the methods presented in
the previous sections are sufficient to generate random bipartite graphs
with vertices in the first part, Vl say, having degrees k l , i , . . . , k ,,, and
those in the second part, V^_ say, having degrees k, ,, . . . , kÃ£2,2

Our model of graphs is now slightly different: we consider 2 M points,
with M of them arranged in cells of sizes k I i , . . . , k , , , , (corresponding to
vertices in VJ and the other M in cells of sizes A: , , ? , . . . , k , , (correspond-
ing to vertices in V2) . A pairing P is still a pairing of the 2A4 points, but is
now restricted so that each pair contains one point in a cell in Vl and one
point in a cell in V2. Hence, loops are impossible, and so only d-switchings
are required.

Define M2,, = 'L '~. '~lk,, , j(kl, , - 1) for j = 1 and 2, and M2 = Mu +
M7 -, ,. - The arguments used to establish Lemmas 1, 2, and 3' can be used with

66 MCKAY AND WORMALD

minor alterations to establish the following results. We assume k i k for
all i , and j = 1,2 .

LEMMA IB. The probability of t given pairs occurring in P is at most
(M - f l y t .

LEMMA 2B. The probability that P contains at least one triple pair is

LEMMA 3B'. We have

We also need to modify the definition of a d-switching, to the effect that
the points p2, p-,, pc, and ps must be in Vl whilst pi , p4, p(,, and p7 must
be in V2. Then in place of Lemma 4, we have the following, with V o d
defined as for graphs.

LEMMA 4B. For each of the following operations, the number, m , of ways
of applying the operation is

(a) forward d-switching eo, - eo, d - \-

(b) backward d-switching V o - + V o d :

In order to generate random bipartite graphs, we therefore use the
following algorithm. First, NODOUBLES will be as described previously,
but with the new definition of pairings and d-switchings, and with B3 and
B4 denoting the upper bound in Lemma 4B (a) and the lower bound in
Lemma 4B (b), respectively. We assume M > nl and M > n2.

procedure BIDEG (nl , A l l , . . . , k , , , , , n2, kl,2 , . . . , k n , 2) ;
begin

select a pairing uniformly at random from the pairings of degrees k l 1 , . . . , kÃ£,,
in Vi and k 1 2 , . . . , k , , 2 in V2;
if P has any multiple pairs of cardinality greater than 2,

or more than M2, M2,^/M double pairs then restart;
NODOUBLES (P);
G := the (bipartite) graph corresponding to P;

RANDOM REGULAR GRAPHS 67

We now have

THEOREM 2B. BIDEG generates bipartite graphs G of degrees k l l , . . . ,
k , , in the first part and degrees k l , . . . , k , , in the second part uniformly
at random.

An analogue of Theorem 3 also follows by similar arguments. In particu-
lar, if k = o(M''~) then the expected time taken by BIDEG is 0 (n 2 k 4)
per graph, where n = nl + n2 . This improves to 0 (n k 3) for k-regular
bipartite graphs, using the method of implementation discussed in the proof
of Theorem 4.

1. B. BOLLOBAS, "Random Graphs," Academic Press, London, 1985.
2 B. D. MCKAY, Asymptotics for symmetric 0-1 matrices with prescribed row sums, Ars

Comhin. A19 (1985), 15-25.
3. B. D. MCKAY AND N. C. WORMALD, Asymptotic enumeration by degree sequence of graphs

with degree o(t7'/*), to appear.
4. A. SINCLAIR AND M. JERRUM, "Approximate Counting, Uniform Generation and Rapidly

Mixing Markov Chairs," Internal report CSR-241-87, Department of Computer Sci-
ence, University of Edinburgh, 1987.

5. N. C. WORAIALD, Generating random regular graphs, J. Algorithms 5 (1984). 247-280.
6. N. C. WORMALD. The asymptotic distribution of short cycles in random regular graphs, J.

Comhin. Theory Ser. B 31 (1981). 156-167.

