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Abstract.
We determine the probability that a random n x n symmetric matrix over
{1,2,...,m} has determinant divisible by m.

1. Introduction.
Let m be an integer. The m-rank of an integer matrix A is the greatest integer k
such that A has a k x k submatrix (not il iguous) whose
is nonzero mod m, or 0 if there is no such matrix. If m is a prime, the m-rank
is equivalent to the usual rank over the field GF(m). In this paper we assume
that the elements a;; of A are chosen at random, independently and uniformly,
from Zp = {1,2,...,m}, subject to the condition that a;; = aj, i.c., that A is
symmetric. For corresponding results without the symmetry constraint, see [1].

Let P(n,m) denote the probability that a random n x n symmetric matrix A
over Z, has m-rank n, and define Q(n,m) = 1 — P(n,m). Thus, Q(n,m) is the
probability that det(4) = 0 (mod m). As in Lemma 1.1 of [1], we have

Lemma 1.1. Suppose m = pl ph? -+ pl*, where py,pa,...,px are distinct primes.
Then
k
Qn,m) = [T Q(n,pt).
=1

In view of Lemma 1.1, we restrict our attention to the case that m is a prime
power, say m = ph. It is useful to define g = 1/p.

As in [1], our principal tool is Gaussian elimination, but in this case we have
to use forms of Gaussian elimination which preserve symmetry. This is discussed
in Section 2. Then, in Section 3, we use symmetric Gaussian climination to show
that P(n, p#) satisfies a five-term recurrence relation. In Section 4 we show that the
five-term recurrence can be reduced to a three-term recurrence. Finally, in Section 5
we show that the three-term recurrence can be solved explicitly.

The solution depends on the parity of n and j, and is well known for 4 = 1, but
appears to be new for 1 > 1. To conclude Section 5, we deduce some inequalities
from the explicit solution.
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An i ing problem is to determine the bility that a random n by n
symmetric matrix A over Zy, has given m-rank r, where r < n. The case y = 1
has been solved by Caxlitz [2] (provided p # 2), and the unsymmetric case has been
considered in [1], but the general symmetric case remains open.
Another open problem is to determine the probability that det(A) mod m takes
a given (nonzero) value d. Small examples show that this probability depends on d.
For example, if 4 =1, k = [n/2], (d | p) is the Legendre symbol,
L [0 ifp=2ornisodd,
T 1@ p)(=1)kP=D/2 | otherwise,
and 1T is defined as in Section 5, then the probability is
( q ) k()
1-q/ Mi(q?)

2. Sy ic G ian Eliminati

(1+s¢*).

Suppose that A, n, m = p# and P(n,m) are as in Section 1. Lemmas 2.1 and
2.2 describe symmetric versions of Gaussian elimination.
Lemma 2.1. Suppose that n > 1 and ay1 # 0 (mod p). Then there is a mairic U
such that

0

[N
vAUT = 0 r (mod p*) (21)

0
where A' is a random n—1 by n — 1 symmetric matriz.

Proof. Define

1
A 1 0
U=\ )
: 0 .
An 1
where
andj = —ar; (modm) forj=2,3,...,n. (22)

Observe that As, ..., A exist (since a1y # 0 (mod p)) and (2.1) clearly holds. Also,
A’ depends linearly on the random symmetric matrix

(du ﬂ?n)
Gn2  ** Gnn

and thus is random over Z,,. B



Lemma 2.2. Suppose that n > 2, ay = 0 (mod p), and arp # 0 (mod p). Then
there is o matriz V' such that

VAVT = (mod p*) (2.3)

where A" is @ random n — 2 by n — 2 symmetric matriz.
Proof. Define

1
0 1 0

V=] m 1
o O

(an au) (A;) __ (ﬂn‘) (mod m)
a1 Az Hj az;j

for j = 3,...,n. Observe that ; and \; exist (j = 3,...,n) since

where

det (““ “‘:) #0 (mod p).

az  az

It is easy to see that (2.3) holds. Also, A” depends linearly on the random symmetric

<an aan)
Any 0 Gnn

and thus is random over Z,. B

matrix

3. A five-term recurrence for P(n,p*).
It is convenient to define

P(0,p*) =1for >0

and (3.1)
P(n,p*) =0 for u < 0.

Theorem 3.1. If n >0, u >0, and boundary conditions are given by (3.1), then

P(n,p*) = (1= g)P(n = 1,p*) + ¢(1 = ¢"")P(n - 2,p*)
+¢"(1—q)P(n —1,p*) + ¢"*'P(n, p*~2). (3.2)



Proof. Let A be a random symmetric n x n matrix over Z,, m = p*. The four

terms on the right side of (3.2) arise from four mutually exclusive cases:

a11 #0 (mod p).

a11 =0 (mod p) and some a; # 0 (mod p).

a15=0 (mod p) for j =1,...,n and @y # 0 (mod p?).

a1;=0 (mod p) for j =1,...,n and ay; =0 (mod p?).

In case 1, which occurs with probability 1 — ¢, we apply Lemma 2.1; since

det(4) = aj1 det(4') (mod p) we have det(4) # 0 (mod p#) iff det(4’) # 0
(mod p*), which occurs with conditional probability P(n — 1, p#).

In case 2, which occurs with probability g(1 — g"~1), we can assume that
a1 # 0 (mod p) by making a suitable permutation of rows and columns, if nec-
essary. We then apply Lemma 2.2, obtaining det(d) = (ajiaz — a2,)det(4")
(mod p*), so det(A) # 0 (mod p#) iff det(A") # 0 (mod p*), which occurs with
conditional probability P(n — 2, p*).

In case 3, which occurs with probability ¢"(1 — g), we can reduce A to the form
(2.1) because (2.2) is solvable. Thus det(4) = a1; det(4’) (mod p*) and det(4) # 0
(mod p*) iff det(A') # 0 (mod pt=1), which occurs with conditional probability
P(n—1,pt-1).

Finally, in case 4, which occurs with probability ¢"*!, we can divide the first
row and column of A by p, add random multiples of p#~! to elements in the first
row (and to corresponding elements in the first column), add a random multiple of
p#~2 to the (1,1) element, and obtain a new random symmetric matrix A such that

-

oW

det(4) = p? det(A) (mod p*),

so det(A) # 0 (mod p*) with conditional probability P(n,p*~2). I

4. A three-term recurrence.

The five-term recurrence (3.2) with boundary conditions (3.1) can be used to
calculate P(n,p#) in O(nys) arithmetic operations. However, to obtain inequalities
and asymptotic results it is useful to have an explicit solution. To obtain such a
solution, we first reduce (3.2) to a three-term recurrence for P(n,p*) (n odd).

Theorem 4.1. If 1 >0 and boundary conditions are given by (3.1), then for odd
n>3,
P(n,p*) = (1= ¢")P(n = 2,p") + ¢"P(n,p" ") (41)
and for oddn > 1,
P(n,p*) — " P(n,p"~
1-gn

P(n—1,p") = (12)



Remarks. Equation (4.1) is a three-term recurrence from which P(n,p#) can be
caleulated for odd n. Equation (4.2) then determines P(n, pk) for even n. Equations
(4.1) and (4.2) do not hold for all n > 3; for example, (4.2) fails if n is even and p
is 0dd. In the unsymmetric case [1], (4.2) holds for both even and odd n.

Proof (of Theorem 4.1). Let

o
P = Pul) = Y P(n,p")a* (43)
=
be a generating function for P(n,p*). From the boundary conditions (3.1) we have
Py =z/(1-a). (4.4)
Theorem 3.1 gives
(1= ¢"™H1a?)Pa = (1 = )(1 + ¢"2)Pacy + q(1 = ¢" 7 )Pacz (4.5)

for n > 1. Thus, for odd n =2k +1 > 1 we have
(1= 22 Porsr = (1 — @)1 + ¢**'2) Pk + q(1 — ¢*)Pax—1 (4.6)
and for even n = 2k + 2 > 2 we have
A=) Poeyr = (1= 1+ ¢ F22)Poisr +4(1 = )Pk (47)

Both (4.6) and (4.7) hold for k > 0, and with the boundary condition (4.4) they
define P, for all n > 0.

Assume for the moment that (4.1) and (4.2) are correct. From (4.1) with
n =2k + 3 we have

(48)
and from (4.2) with n = 2k + 1 we have
1— g2hHig
Po = (T_qﬁ—m)%m. (49)

Clearly (4.8) and (4.9) for k > 0 and (4.4) define P, for all n > 0. Thus, it is
sufficient to show that (4.8) and (4.9) for k > 0 imply (4.6) and (4.7) for k > 0.
From (4.8) and (4.9) we have

Pi= (ll:qu)Pn (4.10)
Py= (%)?,, (411)
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which satisfy (4.6) and (4.7) with k = 0. Thus, we may assume k > 1. Equation
(4.8) with k replaced by k — 1 gives

1 2hHig?
Pok-1 = (W)Pﬂﬂ»b (4.12)

Substituting (4.9) and (4.12) in the right side of (4.8) and simplifying, we obtain
(1= ?*+222)Pyy 41, 50 (4.6) holds. Similarly, some algebra shows that (4.8) and
(4.9) imply (4.7).

Thus, the same generating function P, n > 0, is defined by (4.1) and (4.2) as
by (45). 1

We can now give an explicit formula for the generating function Pp.

Theorem 4.2. If k >0, then

1—qa?\ &/ 1= g2+l
Pokia(z) = (1f1)(1_§)1:[(1—q21+ z ) (4.13)
e 1— g2kHig
Poifz) = (m)m“(z). (4.14)

Proof. Equation (4.13) follows by induction from (4.8), using (4.4) and (4.10).
Equation (4.14) is just (4.9). W

5. An explicit solution and some bounds.

From Theorem 4.2 we can obtain an explicit solution for P(n,p#), and hence
for Q(n, p*). Define

.
=Ila-»
j=1
and
k=0,

Tolk,s) = § 5~ o _Meesmn(@) sy (1)
2‘1 T T

Our explicit solution may be written in terms of T} and Ty:
Theorem 5.1. If n21, u> 1, k= |n/2), and s = |(u — 1)/2] then

M2k(q)

Ao (- D) — (1= k). (52)

P(n,p*) =
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Proof. We may show by induction on k from (4.1) that
Mak41(q)
P(2k +1,p") = s (Ta(k, s) — ¢“Tu(k, 9)). 53
( ") (l—q)Hk(q2)(3( s) = ¢"Tu(k,s)) (5.3)
Considering the cases 1 = 25 + 1 and i = 2s + 2 separately, it follows from (4.2)
that 1
P(2k,p*) = P(2k +1,pk) + ¢2*+# 2*(")T,(k s). (5.4)

After some simplification we see that (5.2) holds both for n=2kandn=2k+1. 1

Equation (5.2) is i jent for fon as P(n,p*) is close
to 1 unless p# is small. In order to deduce a convenient expression for Q(n,p*) =

1= P(n,ph), we use the following identities for Ty and T;.
Lemma 5.1. If k>0 and s >0 then

@) () _ o1 S 0 Tas(@10(a%)
Ttk = (0 q“; ) (55)

and

T41(q) 1T5(q*)* Ts(g?)
Proof. (5.5) and (5.6) may be proved by induction on k. The proof is similar to
the proof of Theorem 2.1 of [1], so details are omitted. §

If we substitute (5.5) into (5.2) the factor ITx(¢?)/IT2k(q) cancels. This gives a
convenient explicit solution for Q(n, p*).

Theorem 5.2. If n>1, u>1, k= [n/2], and s = [(u — 1)/2] then

wy_ “A-¢")-R
Q(n,p/ )71—‘1*

Ti(hys) = M(l_q_qhwki nw), 6)
F

where
k-1
i 155(9)54.4(4*)
R= gt (1= q) — q22(1 — gritty) g2 s 58
q ;(q ( )= (1 - gHY) T@ern 9
and
0< R< g™/ (5.9)
Proof. Equations (5.7) and (5.8) follow from Theorem 5.1 and Lemma 5.1 after
some simplification. Since s < 25+ 2 and n > 2k, we have ¢#(1 — ¢") > ¢2*+%(1 —
¢**1) for 0 < j < k—1,50 R > 0 (with equality only when k = 0). It is clear from
(5.8) that R = O(¢g#+**t1) = O(¢*#/?), and computation shows that R < ¢**/2 (the
worst case is n large, jt = 25 + 1 large and ¢ = 1/2). &

We now show that P(n, p*) has the expected monotonicity propertics.
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Theorem 5.3. For n>0 and 4 >0,
P(n+1,p*) < P(n,p*) < P(n,p**). (5.10)

Proof. The inequality P(n,p*) < P(n,p*?) follows by induction on n + y from
the recurrence (3.2), since the coefficients on the right side of (3.2) are independent
of .

To prove P(n + 1,p#) < P(n,p#) we consider several cases. If n is even the
inequality follows from (5.4). If n = 2k+1 is odd and s = 2s+2 is even then, from
Theorem 5.1,

Pk + 1,577 — P2k +2,2°47) = #1314 IO g >0

1Tx(¢*)
Finally, if n = 2k +1 and p = 25 + 1 are odd then, from Theorem 5.1,
P(2k +1,p5 ) — P(2k +2,p2)

_ o2 Tort1(g) W Mits(e®)
_ gpriaen et (T +1,9) - ¢ —nj(qz) )
>0. 1

Corollary 5.1. limp—co Q(n,p*) esists and lies in the interval [g*,q*/(1 — g)].
Morcover,

. ¢ — gt

fim P(n,p*) = —He@__

iz, Plp) = q)Hw(q’) Z (&)

ghti — g¥

. oy (o Fenl@)
Jim Q(np) = (¢ - T Z @)/,

where s = |(1 —1)/2].

Proof. The limit exists by monotonicity in n, and the bounds follow from this
monotonicity and Theorem 5.2. The explicit limits follow from Theorem 5.1 end
Lemma 5.1 respectively. 1
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