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ABSTRACT 

The Ramsey number R(3.8) can be defined as the least number n such that 
every graph on n vertices contains either a triangle or an independent set 
of size 8. With the help of a substantial amount of computation, we prove 
that R(3.8) = 28. 

1. INTRODUCTION 

For integers s, t 2 1, define the Ramsey number R(s, t) to be the least num- 
ber n = n(s, t) such that every simple graph on n vertices contains either a 
clique of order s or an independent set of order t. The existence of R(s, t )  is 
a well-known consequence of Ramsey’s Theorem. The book [3] should be 
consulted for an extensive survey to 1980. 

The previous best bounds on the number R(3,8) were obtained by Grin- 
stead and Roberts [4], who showed that 28 I R(3,8) 5 29. Further infor- 
mation on the structure of a minimal graph was obtained by Radziszowski 
and Kreher [6,7]. It is possible that the results in the latter two papers 
might have facilitated the present work, but we were not aware of them at 
the time. 

In this paper we describe a computation that demonstrated that every 
triangle-free graph on 28 vertices contains an independent set of order 8. In 
view of Grinstead and Robert’s result, we conclude that R(3,8)  = 28. 

2. BASIC THEORY 

For integers t, n,  6, e ,  let %(t, n,  6, e) denote the set of all simple triangle- 
free graphs of order n with e edges, minimum degree 6, and no indepen- 
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dent sets of order t. We will drop trailing arguments if we wish them to be 
free. Thus, %(t, n,6)  = U,%(t, n,6,e)  and %(t, n )  = U,%(t, n,6).  

If G is a graph, then VG denotes its vertex-set. If u E VG, then NG(u) 
denotes the set of neighbors of uin G ,  andN(;(u) denotes VG - NG(u) - {u}. 
If W C VG, then G [ W ]  denotes the subgraph of G induced by W. For u E 
VG, degc(u) is the degree in G of vertex u. 

Our basic tool for the construction of %(t, n )  is the following: 

Lemma 1. 
Then 

For t 2 2, let G E %(t, n,  6, e )  and let u E VG have degree 6. 

(a) n - R(3,t - 1) I 6 I min(t - 1,n/2), and 
(b) G[RG(u)]  E %(t - 1, n - 6 - 1, 6 ' , e ' )  for some a', and some e' 

satisfying 

6(n - 6 - 1) - 6(t - 2) I 2e' I ( t  - l ) (n  - 6 - 1) - 6(6 - 1) 

Prooj If 6 2 t, then the neighborhood of u would be an independent 
set of size t. Also, no triangle-free graph on n vertices has more than n2/4 
edges, which shows that 6 I n/2. Alternatively, if 6 < n - R(3,t - l), 
then the existence of G[NG(u)]  would violate the definition of R(3, t - 1). 
This proves (a). 

Let D be the sum of the degrees in G of the vertices in Rc;(u). Then, 
clearly 6(n - 6 - 1) I D I (t - l ) ( n  - 6 - 1). Similarly, if E is the 
number of edges in G between NG(u)  and NG(u),  then 6(6 - 1) I E I 
6( t  - 2). Claim (b) now follows on noting that 2e' = D - E. I 

Let H E %(t - 1, n - 6 - l), and let G be a graph of order n and mini- 
mum degree 6 I t - 1 such that G[NG(u)] = H for some u € VG of de- 
gree 6. In this circumstance, we say that G is an extension of H. Let 
NG(u) = {u1 ,u2 , .  . . , u g }  and, for 1 I i I 6, define X ,  = NG(u,) f' NG(u) .  
Note that IX,l = degG(u,) - 1 for 1 I i I 6. 

Lemma 2. Let G be an extension of H, with H = G[NG(u)] € 
%(t - l , n  - 6 - 1). Then G E %(t,n) if and only if all of the following 
conditions hold. 

(a) NG(u) is an independent set of G. 
(b) Each X ,  is an independent set of H. 
(c) For each Z C {1,2,. . . , a}, no independent set in H of size t - 1Z1 is 

Prooj Since conditions (a) and (b) together are equivalent to requiring 
G to be triangle-free, it will suffice to consider the existence of indepen- 
dent sets of size t. Since H E %(t - 1,n - 6 - l), there can be no such 
sets including u. On the other hand, such a set not including u exists if and 
only if condition (c) fails to hold. 

contained in V H  - U,,,X,. 
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Since any particular G E %(t, n, 6 )  may have many vertices of degree 6, 
it might be constructible from many different H E %(t - 1,n - 6 - 1). 
To reduce the number of times each G was constructed, we employed sev- 
eral different techniques. 

Consider a function O(G) defined for any graph G and satisfying the fol- 
lowing properties: 

(1) O(G) is an orbit of the action of the automorphism group Aut(G) 
on VG. 

(2) The vertices in O(G) have minimum degree in G.  
(3) For any permutation y of VG, O(GY) = B(G)", where exponentiation 

The first author's program nauty [5] computes a permutation K = K(G) of 
VG with the property that (GY)" = G" for any permutation yof VG. (Here, 
the equal sign means equality, not just isomorphism.) Such a permutation is 
called a canonical labeling of G,  and G" is said to be canonically labeled. 
The program nauty can also compute the orbits of Aut(G). Suppose that 
VG = {1,2,. . . , n}. If we define B(G) to be the orbit containing the vertex 
of minimum degree that appears first in the sequence 1" , 2"-', . . . , , 
then O is easily seen to satisfy requirements (1)-(3) above. 

For t I 7, we constrained G to be only constructed from H = G[NG(u)]  
for some u E B(G). The requirements of 6 imply that isomorphic G can 
only arise among extensions of the same H, which greatly simplifies iso- 
morph rejection. (In fact, they can only arise as a result of automorphisms 
of H, but that fact is not simple to use here.) 

For t = 8, we were less concerned with isomophism rejection as we ex- 
pected few or no graphs to be found. Hence we did not use O(G) as de- 
scribed above, but instead accepted any graph produced. This strategy 
permitted an additional technique to be used in one subcase that would 
have otherwise been too difficult. This subcase is described in more detail 
in the next section. In this case we constructed C only from some 
H E %(t - 1, n - 6 - 1,6') with 6' as small as possible, with the help of 
the following lemma. 

by y denotes taking the image under the action of y. 

-I n K - '  

Lemma 3. 
the minimum degree of G[#,(u)] is at most t - 1 - IG(u) n G(w)l. 

Let u and w be distinct vertices of a graph G E %(t, n).  Then 

ProoJ: The claim is obvious if u and w are adjacent. If they are not adja- 
cent, it is easily seen that w has such a degree in G[N,(u)]. I 

3. THE COMPUTATIONAL METHOD 

Given the elementary nature of the underlying theory, the success of the 
computation must be attributed mostly to the details of the implementa- 
tion. Consequently, we will describe this in some detail. 
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Subsets of {1,2,. . . , n} were represented as the pattern of bits in a 32-bit 
machine word. This allows set operations such as union, intersection, and 
containment to be performed in one or two machine instructions. 

Suppose now that we have some H E %(t - 1, n - 6 - 1) and we wish 
to find the extensions G E %(t, n,6) of H. Let S1, Sz, . . . , SN be a list of 
all the independent sets of H with cardinality between S - 1 and t - 2, 
inclusive. 

For w E V H  and X I ,  X 2 , .  . . , X i  C VH,  define 

Now consider the following recursive procedure: 

Procedure makeX (k ,  ( X I , .  . . , Xk-l), (Y1, . . . , YK))  
- k and K are integers. Each X ,  and each Y is a subset of VH. 

if k > 6 then process((X1, X z ,  . . . , X , ) )  
else 

Construct the list ( Z l , .  . . ,Z,) of all elements 2 of ( Y l , .  . . ,YK)  
such that 

(i) For each w E VH,  if d k - l ( ~ )  < k - 1, then w E 2. 
(ii) For each w E VH, if d k - l ( ~ )  = t - 1, then w !$ 2. 

(iii) H has no independent set of size t - 1 - 111 disjoint from 

for i from 1 to L do makeX(k + 1, ( X I , .  . . , Xk-l,  Z , ) ,  
2 U u,,,X, for any I C {1,2,. . . , k - l}. 

(Zl ,  Zlfl, f . . , Z d ) .  
endif 

End make X .  

Lemma 4. Suppose procedure makeX is invoked with arguments (0, ( ), 
( S 1 , .  . . , SN)) .  Then procedureprocess will be invoked exactly once for each 
sequence X I  = S i l ,  Xz  = Siz , .  . . , X S  = S,, such that 1 I i l  I iz I ... I 
is I Nand the conditions of Lemma 2 are met, and for no other sequences. 

ProoJ Procedure makeX has the general form of a standard backtrack 
procedure for this problem. The arguments to a general recursive call rep- 
resent the index k of the set X k ,  which will be determined at this level, the 
values XI, .  . . , Xk-l  determined so far, and a list of possibilities for X k .  
Conditions (i) and (ii), respectively, ensure that the final graph G will have 
minimum degree 6 and maximum degree at most t - 1. Condition (iii) en- 
sures that requirement (c) of Lemma 2 holds. I 

By using the set representation described earlier, tests (i) and (ii) can eas- 
ily be implemented in unit time per set Z .  The most expensive part of the 
procedure is test (iii), and two different methods were used to implement it. 
Suppose, for definiteness, that we have a set S C VH and we wish to deter- 
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mine if H has an independent set of size q disjoint from S. The first method 
was simply to scan a precomputed list of all the independent sets of size q. 
Only a few machine instructions per independent set are needed, but the 
number of independent sets can be large. To understand the second 
method, recognize that the subsets of VH can be identified with the in- 
tegers 0,1,. . . , M ,  where M = 21VH1 - 1, by interpreting the binary repre- 
sentation of an integer as the characteristic vector of a set. We can 
construct in advance a vector of bits (bo, b l , .  . . , b,,,), such that bi = 1 if and 
only if the set represented by i is disjoint from some independent set of size 
q. This vector clearly allows test (iii) to be performed with unit cost. Con- 
struction of the vector itself is expensive, but we found a technique based 
on Gray codes, which was usably efficient. After much experiment, we 
found that the best overall performance was gained by using the second 
method only for large q, typically for q 2 t - 3, and the first method for 
smaller q. The usual speed-up was a factor of 5-10 over using the first 
method alone. 

For t 5 7, the procedure process computed the function B(G) defined in 
the previous section. If u @ O(G), then G was immediately rejected; other- 
wise it was written to a file in canonically labeled form. The canonical label- 
ing was performed by the program nauty [5]. Isomorph rejection was then 
done using the system sorting utility. 

The sets %(t,n,6) produced in this way are those shown in Table 1. In 
each case, it follows from Lemma 1 that each such set for 4 5 t 5 7 can be 
obtained by extending members of other sets also in the table. For the case 
of %(7,20), we did not generate the full set of graphs because our primary 
use for these graphs was to extend them to %(8,28,7). For %(7,20,2) and 
%(7,20,3), we generated the full subset with 49 edges, and the sizes of 
these subsets are given in Table 1. In the case of %(7,20,4), we restricted 
our generation to those graphs with 49 edges having no pair of distinct ver- 
tices with four or more common neighbors. This subset is sufficient, as will 
be shown below. This computation was the single most difficult step. Di- 
rect application of procedure make X to %(6,15) produced almost 695 mil- 
lion graphs, amongst which were 2820645 nonisomorphic members of the 
restricted subset just defined. 

In the process of extending %(7, n)  to %(8,28), we avoided use of 8 but 
instead accepted any graph G generated by procedure make X .  The steps in 
this computation can be described as follows, noting that %(8,28) = 

Uiy5 %(8, 28,6) by Lemma 1. 

(a) %(8,28,5) was found to be empty by applying make X to the 191 
members of %(7,22). 

(b) %(8,28,6) was found to be empty by applying make X to each of the 
graphs in ui,=3%(7,21,6'). These values of 6' are sufficient by 
Lemma 1. 

(c) %(8,28,7) can be found by extending all the members of u",.=, %(7,20, S', 49). This was done by simple application make X for 
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TABLE 1. Various Values of I%(t,n,6)1 

t n 8  t n 6  t n 6  

3 1 0 1 4 7 2  6 6 1 5 2  4236 
2 0 1  8 2  2 3 53343 

1 1  3 1 4 7145 
3 0 1 5 9 0  3 16 2 23 

1 1  1 105 3 1084 
4 1 2  2 172 4 1458 

2 1  3 10 5 11 
5 2 1  4 0 17 3 0 

4 4 0 2  10 1 28 4 7 
1 3  2 240 7 20 2 39544a 
2 1  3 44 3 1698842’ 

5 0 3  4 1 4 2820645a 
1 4  11 2 61 21 3 5674 
2 2  3 43 4 59897 1 

6 0 1  4 1 5 5 1 3460 
1 9  12 3 10 22 4 3 
2 4  4 2 5 178 
3 1  13 4 1 6 10 

7 1 3  6 15 1 8 

aRestricted, see text. 

6’ = 2 and 6’ = 3. (In fact, the case 6’ = 2 can easily be proven im- 
possible, as has been demonstrated to us by Staszek Radziszowski.) 
For 6’ = 4, this approach appeared impossibly difficult, so we modi- 
fied the algorithm to use Lemma 3 .  Since we had already computed 
all extensions from %(7,20,6’) for 6‘ < 4, we could avoid construct- 
ing any graphs known to contain two vertices with four common 
neighbors. This simple test was made in three ways. First, any H fail- 
ing this test could be ignored (as indicated above). Second, no X ,  
can contain 4 vertices adjacent to any w E VH,  nor both of any pair 
w,x  E V H  that had three common neighbors in H. Thirdly, X ,  f l  
X, must have cardinality at most two for any i f j. With these 
changes, this case was completed fairly easily. No graphs in %(8, 28) 
were found. 

4. CONCLUSIONS AND DISCUSSION 

In the previous sections we have described a computation demonstrating 
that %(S, 28) = 0. Since it is already known that R(3,8)  2 28, we have the 
following: 

Theorem. R(3,8)  = 28. I 

This computation was carried out over a period of months on a network 
of SUN workstations. The total amount of computation used was a little 
below 1014 machine instructions. 

 10970118, 1992, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.3190160111 by U

niversity O
f W

estern A
ustralia, W

iley O
nline L

ibrary on [21/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



VALUE OF RAMSEY NUMBER R(3.8) 105 

TABLE 2. Known Values and Bounds on R(3,t) 

t R(3,t) t R(3,t) t R(3.t) 

3 6 8 28 13 58-69 
4 9 9 36 14 66-78 
5 14 10 40-43 15 73-89 
6 18 11 46-5 1 
7 23 12 51-60 

As a partial check of our computational method, we verified the counts 
of %(t,n) by the number of edges, as given in [6]. Our results agree with 
theirs wherever they overlap, namely for all cases with t I 6 and for 
%(7,22). With the help of a small amount of additional computation, we 
also verified the accepted values of R(3, t )  for t I 7. 

In Table 2, we summarize the known values and bounds on R(3,t) for 
t I 15. See [3] for t I 7 and [4] for t = 9. The upper bounds for t 2 10 
come from [7]. The lower bound for t = 10 is from [l], that for t = 12 
from [2], and that for t = 14 from Exoo (personal communication). The 
lower and upper bounds for t = 15 are due to Wang and Wang [8] and to 
Radziszowski (personal communication), respectively. Other values in the 
table are repeated from [4]. 

We wish to thank Staszek Radziszowski for some very useful comments 
on early drafts of this paper. 
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