
Towards Deciding the Existence of 2–(22,8,4) Designs

Brendan D. McKay Stanis law P. Radziszowski∗

Department of Computer Science Department of Computer Science

Australian National University Rochester Institute of Technology

Canberra, ACT 2601, Australia Rochester, NY 14623, USA

bdm@cs.anu.edu.au spr@cs.rit.edu

Draft, October 1994

Abstract.

We report on progress towards deciding the existence of 2−(22, 8, 4) designs without

assuming any automorphisms. Using computer algorithms we have shown that in any such

design every two blocks have nonempty intersection, every quadruple of points can occur

in at most two blocks, and no three blocks can pairwise intersect in a single point.

1. Overview.

A design is a pair (X,D) where X is a v-element set of points and D is a multiset

of subsets of X, called blocks. A design is called simple if it has no repeated blocks. A

t−(v, k, λ) design is a design (X,D) with |X| = v, such that the blocks have size k and

|{K ∈ D : T ⊆ K}| = λ for all T ⊆ X with |T | = t.

The case t = 2 defines an important category called balanced incomplete block designs,

BIBD’s. Among BIBD’s, 2−(22, 8, 4) is the smallest design whose existence is unsettled

[CCK] despite much work done by many authors.

Let D denote any such design and let N be its 22 by 33 (0,1)-incidence matrix for

the remainder of this paper. The point set will be also fixed throughout this paper to

X = {1, 2, ..., 22}. The design D has b = 33 blocks, and each point belongs to r = 12

blocks. Hamada and Kobayashi [HK], and later Hall, Roth, van Rees and Vanstone [HRRV]

discovered much of the structure of D. In particular, in [HK] it is shown that D may have

only four types of blocks with respect to their intersection pattern with other blocks, as

shown in Table 1. For each type of block the table gives the number bi of blocks intersecting

it in i points, for all possible i.

Table 1 clearly indicates that any two blocks intersect in at most 4 points, in particular

that D is necessarily simple. We show that any two blocks must have nonempty intersec-

tion, thus eliminating type 4. In [HRRV] it is proved that if B is a block of type 3, and C,D

are the two blocks intersecting B in a single point, then 1 ≤ |C ∩D| ≤ 2. We show that no

three blocks can pairwise intersect in one point, hence here necessarily |C ∩D| = 2. This

∗ supported in part by a grant from the NSA number MDA904-94-H-2009.

1

Type b
0

b
1

b
2

b
3

b
4

1 0 0 12 16 4

2 0 1 9 19 3

3 0 2 6 22 2

4 1 0 6 24 1

Table 1. The types of blocks in D.

eliminates one (the easier) of the two subcases of blocks of type 3. Finally, on another path,

we prove that every quadruple of points can occur in at most two blocks. All our results

were obtained with the extensive use of computer algorithms, described in Section 3.

Each of the computations was done at least twice, using a different program written

by each of the two authors. Furthermore, the two rounds agreed exactly on a very large

number of intermediate partially constructed designs, as described in Section 4. During

these computations we constructed thousands of “near” 2−(22, 8, 4) designs, which are

collections of 33 blocks of size 8, hitting each of the 22 points 12 times, each pair of blocks

intersecting in 1, 2, 3 or 4 points, and such that at least 227 (out of 231) pairs of points are

covered exactly 4 times. The details concerning near designs are presented in Section 2.

Among the various software tools used in this work, the novel ones included an efficient

method for eliminating most isomorphs during point by point extensions of partial designs,

and a method partitioning the set of points into cells and analysing the possible intersection

patterns between the blocks and the cells (Section 3).

Throughout our work we did not assume any automorphism acting on D, but consid-

eration of group actions on partially constructed designs formed a very important factor

in obtaining efficient algorithms. We note that several papers have appeared that study

possible automorphism groups of D [Hall, Kap, Lan, LT, Šift]. Currently it is known that

any nontrivial automorphism group of D cannot have elements of odd order, a cycle of

length 8, or an element of order 2 fixing 3 blocks.

In Section 5 we report on some other approaches, with which we were so far not able to

produce any substantial progress. The main line followed the study of block intersection

matrices NTN for D developed in [HRRV], and later strengthened by Greig [Gre].

2. Near Designs.

Definition 1. The design (X,ND) will be called a near design if it satisfies the following

properties:

(a) |X| = 22, |ND| = 33,

(b) each block has 8 points,

2

(c) each point occurs in 12 blocks,

(d) each pair of blocks has nonempty intersection,

(e) each pair of blocks intersects in at most 4 points,

(f) at least 227 pairs of points occur in exactly 4 blocks.

The design D we search for is a near design in the above sense. Note that by the

definition, in any near design there are at most 4 pairs of points that are not covered

exactly four times. Using elementary combinatorics one can prove that there cannot be

precisely 1, 2 or 3 such pairs of points. The algorithms described in the next section so far

produced more than 11000 nonisomorphic near designs, failing however to produce D. This

number is steadily growing with almost every new experiment performed. The existence

of a large number of near designs is perhaps an explanation of why the search for D is

such a difficult computational problem; this is because it is very hard to devise necessary

conditions for intermediate configurations which are not also satisfied if the configuration

can complete to a near design. The large number of constructed near designs does not

mean that we have found them easily, but rather reflects the fact that we have at our

disposition a remarkable cpu power (see Section 4), and our algorithms (see Section 3) are

specially devised to produce designs satisfying most or all of conditions (a)–(f).

An incidence matrix of a near design chosen from the output of our programs is pre-

sented in Figure 1. Its first three blocks intersect pairwise in one point.

333221211212121212121111212 <- block type

1 000111111111000000000000000111000
2 110111000000111110000000000100100
3 101000110000110001110000000011100
4 011100101100101001001100000000010
5 100100010010010000101111000100010
6 100000001001001000011000110110110
7 100010000110001101010001001001010
8 100010100101010011001010010000001
9 100100101000000110100100111001000

10 100001010100101000000110101010001
11 010011010000000001001101110001100
12 010000110010100100011000011100001
13 010110000001100000110010100001011
14 010001100001010010010101001010010
15 010000011011001011100010001000100
16 010000001100010101100001100110001
17 001011001010011000110100010000001
18 001100000111110000000001111000100
19 001010011000100110000011010010010
20 001000100001001100000111000101101
21 001101000010000111011010100010000
22 001001000100000010101000001101111

Figure 1. Example of a near design.

3

Here, there are two pairs covered 3 times, (20,21) and (19,22), and two pairs covered

5 times, (19,21) and (20,22). All other pairs of points are covered exactly 4 times. This

design has a trivial full automorphism group. In addition to conditions (a) through (f), it

has a property that only the last 6 blocks are not of the types listed in Table 1. Among

the near designs constructed so far, only 4 others have 6 such bad blocks; all the rest have

8–12.

3. Algorithms and Results.

Our general technique for advancing knowledge about D is composed of three stages:

(A) Choice of a small configuration of blocks to be studied,

(B) Construction of a set of starters, refinements of (A),

(C) Design and implementation of an extender, completing (B).

The choices of (A) are those listed in the abstract. The work on (A) is done without

help from the computer. For each choice of (A) we construct by computer a few thousand

“starters” (see below and Section 4 for more details), which are much more specific con-

figurations than (A). The starters are filtered according to known necessary conditions,

and all isomorphs are removed. Stage (B) is human-intensive, and despite needing a large

number of distinct programs, the cpu time needed to complete this stage is rather small

(in the order of a few cpu hours). Finally, to finish stage (C), a program called an extender

is run on each starter. The extender refines a single starter from (B), and finds a family

of near designs that are derivable from this starter, that family being designed to include

D if it is there. An extender is a larger piece of software, and is both human-work and

cpu-time intensive.

Our starters, and the intermediate configurations constructed by extenders, are in the

form of pd-systems defined below.

Definition 2. A quintuple S = 〈X, [X
1
|X

2
|...|Xc], k, b, {sij : 1 ≤ i ≤ b, 1 ≤ j ≤ c}〉 is

called a pd−system if the sij are integers such that S satisfies the following properties:

(1) [X
1
|X

2
|...|Xc] is a partition of X,

(2)
∑c

j=1
sij = k, for each 1 ≤ i ≤ b,

(3) 0 ≤ sij ≤ |Xj |, for each 1 ≤ i ≤ b, 1 ≤ j ≤ c.

Given a design (X,Q) consisting of b blocks with k points each, and a partition of the

domain X into [X
1
|X

2
|...|Xc], a pd-system S of Q can be obtained by identifying all points

in each cell Xj , and defining sij as the number of points in the intersection of the i−th

4

block of Q and the cell Xj . Let us consider the sequence (sij : 1 ≤ j ≤ c) to be the i−th

block of S.

We will be interested only in pd-systems leading potentially to D, i.e. those which

have 22 points and 33 blocks of size 8 (v = 22, b = 33, k = 8). If, in addition, a pd-system

S satisfies the conditions

(4)
∑b

i=1
sij = 12|Xj |, for each 1 ≤ j ≤ c,

(5)
∑b

i=1
sijsim = 4|Xj ||Xm|, for each 1 ≤ j < m ≤ c,

(6)
∑b

i=1

(

sij
2

)

= 4
(

|Xj |
2

)

, for each 1 ≤ j ≤ c,

then we will say that S is a pd-system of D. Condition (4) enforces that points within

cells occur the proper number of times, condition (5) that all the pairs of cells are covered

the number of times needed to hit all pairs of points of the form (Xj , Xm) four times, and

(6) similarly for pairs within a cell.

The concept of a pd-system generalizes that of a design. In particular, for a partition

of X into singletons, any pd-system S of D is clearly equivalent to D itself. In the sequel,

to denote partitions of X with cells possibly of the same size, we specify the sizes of cells

with multiplicities. For example, [5∗1 | 5 | 2∗6] denotes a partition where the first five

points of X form singletons, followed by a 5-cell and two 6-cells, and similarly [22∗1] can

be considered to be the set X itself.

We say that a block Bi is full in a pd-system S iff every cell Xj of S is contained in Bi

(sij = |Xj |) or disjoint from Bi (sij = 0). Note that for any full block B, the pd-system

defines the value of |B ∩ C|, for all blocks C. If n is the number of distinct blocks in S,

and b is the number of all blocks, then we define the repetitiveness of S as

rep(S) = b− n.

Large rep(S) means many repeated blocks in S, which provides an equivalence between

refinements that we can easily exploit to gain efficiency.

Let us illustrate these concepts with the pd-systems used to eliminate one class of

type 3 blocks. We have found that there are exactly 51 nonisomorphic [4∗1 | 3∗6] pd-

systems of D, in which we have three full blocks pairwise intersecting in one point. One

such pd-system is shown in Figure 2. The columns represent blocks, as before, of which

the first three are the full blocks, and the rows represent the cells. An ‘r’ marks a block

which is identical to the next block; the significance of this will be described shortly.

Tasks (B) and (C) are mathematically the same; construction of the starters consists of

fitting configuration (A) into the trivial partition [22] and then refining it to the partition

of the starter pd-systems, while the role of the extender is to refine in all feasible ways

a starter pd-system to pd-systems on the final partition [22∗1]. Hence, in what follows

5

1 000 110000000000000001111111101100
2 101 111110000000001111100000000000 singleton
3 110 110000000001110010011000000011 cells
4 011 000000000000001110000111110011

5-10 600 112223333222223212222322332232 6-cell
11-16 060 223333322332222322222222123211 6-cell
17-22 006 222222233333331122222122222323 6-cell

r rr r r r rr r r r

full other
blocks blocks

Figure 2. Example of a [4∗1 | 3∗6] pd-system of D

we will focus only on the more difficult task of designing extenders (C), even though, as

mentioned at the beginning of this section, the types of software used for (B) and (C) were

quite different.

Let S be a starter pd-system, and let Xj be a cell of p > 1 points. We want to split

Xj into singletons. Using a solver of systems of 0-1 linear equations, we can find a set Yj

of all binary vectors y = (y
1
, ..., y

33
) with 12 ones, such that properties (5) and (6) hold

when Xj is split into a singleton, hitting block i iff yi = 1, and a (p−1)-cell. It is easy to

see that we only need to test (5) when either j or m is the index of the new singleton cell,

and that even one of those equations is redundant.

In order to avoid generation of isomorphic configurations due to presence of repeated

blocks in the current pd-system R, we found the following very simple and efficient method.

Singleton cells of R or its refinements are represented as bit vectors, with (currently) equal

blocks being in adjacent positions. Let t = rep(R), and consider a bit vector eqbit with t

ones indicating the positions of the blocks equal to the next block (as indicated by the ‘r’s

in Figure 2). It is clear that among a set of candidates y, equivalent under permutation of

equal blocks, there is exactly one which hits the rightmost possible repeated blocks. Using

eqbit it takes only four machine instructions each to recognise such rightmost y’s and to

update eqbit when one of them is used to split a cell. We leave the details as an interesting

puzzle for the reader.

Now, applying backtracking on candidates from the set Yj , the entire cell Xj can be

split into singletons. We only need to backtrack p − 1 levels, as the final split makes two

singletons. After each new singleton cell is created, to enforce the conditions (5) and (6) for

later partitions, we need only filter out those candidates which don’t intersect the current

y in 4 blocks. We proceed similarly with other cells, unless we want to deliberately relax

some conditions in order to obtain nonempty output at level 22 (see Section 4).

The bubble in backtracking typically occurs when the partition has about 12 singletons

and 1, 2 or 3 larger cells. In order to moderate the difficulty of this barrier, we used various

modifications of the above skeleton. These included:

6

- Lazy filtering. One can define the set of candidates Yj for singletons filling cell Xj ,

for each cell at every level of backtracking. These sets can be computed lazily, only

if required, thus avoiding filtering candidates if a branch of the search dies before

reaching cell Xj .

- Monitoring sizes of blocks. Pd-systems define the exact number of points of each

block in any cell, namely sij . Tracing the current sizes of blocks during backtracking

gives a powerful look-ahead which can often allow us to prune hopeless branches

of the search quite early.

- Block intersection criteria. The properties that no two blocks can intersect in more

than 4 points, and the triangle inequality which must hold for the cardinalities

of the pairwise intersections of any three blocks [Gre], lead to further pruning.

Pd-systems often permit us to compute or estimate the size of intersection of two

blocks at an early stage of backtracking.

- Countless structural changes and tune-ups suggested by experiment.

Using the algorithms outlined above, we have obtained the results summarized in the

following theorem.

Definition 3. Consider blocks of 8 points in a set of 22 points. Define DB to be a pair of

disjoint blocks, T31 to be three blocks which pairwise intersect in one point, distinct for

each pair, and TQ to be three blocks whose pairwise intersection is a common set of four

points.

Theorem. In the design D, every two blocks have nonempty intersection, every quadruple

of points occurs in at most two blocks, and no three blocks pairwise intersect in one point.

Proof. With the cases DB, TQ and T31 as choices for (A), we completed steps (B) and

(C). In each case the families of constructed near designs did not include D, which shows

that D cannot include any of these configurations. Since no two blocks can intersect in

more than 4 points, TQ covers all possible quadruples covered three times. In [HRRV] it

is shown that if three blocks share one point then some pair intersects in more than one

point, and thus the case T31 covers all triples of blocks which pairwise intersect in one

point. For comments on how we have verified the correctness of our implementations see

the next section.

4. Computations.

The three cases eliminated by this paper, disjoint blocks (DB), one class of type 3

blocks (T31), and thrice-covered quadruples (TQ), were completed several times with

gradually improving algorithms. For each case, at least one independent implementation

was developed and run by each author. The data presented below refers to the fastest run

for each case.

7

When we say that agreement was reached at some level k (number of points), it means

the following in reference to two extenders. For each starter, each of the two extenders

produced a set of partial designs on k points, with the partial designs satisfying some

agreed subset of the known necessary conditions chosen to make the number of partial

designs large but manageable. We checked that in each case the sets of partial designs were

isomorphic, though they were always distinct and often many isomorphs were produced

with distinct multiplicities. Such an agreement for all starters gave high confidence in the

correctness of the computations. By the search space size we understand the number of

partial designs (or pd-systems) constructed during one computation.

DB. We first obtained 40492 starter pd-systems for the partition [8∗1 | 8 | 6], where the

two disjoint blocks formed the first 8 singletons and the 8-cell, respectively. The extenders

first split the 8-cell into singletons requiring all pairs on 16 points to be covered exactly 4

times, then, with some conditions relaxed, an agreement between the two implementations

was obtained at level 20. Obviously, an attempt was always made to proceed to 22 points.

The time needed to produce and verify the starters was negligible when compared to about

0.8 cpu years for the fastest DB computation. The search space size was about 4.6 ∗ 1011.

T31. The 51 [4∗1 | 3∗6] pd-systems (one of them used in an example in Section 3) were first

refined to 13484 [5∗1 | 5 | 6 | 6] starter pd-systems. This was done by splitting one of the

three 6-cells into a singleton and a 5-cell. We took great care in choosing this splitting, in

order to produce starters S with large rep(S) in the refined pd-system. The extenders filled

the first 5-cell, then one of the 6-cells, then with relaxed conditions (weaker than needed

for near designs) were run to 22 points. An agreement between the two implementations

was obtained at level 22. The fastest run in this case used about 1 cpu year. The search

space size was approximately 4.6 ∗ 1011.

TQ. There were 11814 [10∗1 | 12] starter pd-systems in this case, where the first 10 points

are disjoint from the three blocks covering the same quadruple of points. A few nontrivial

properties of the remaining 12 bit vectors of length 33 were derived by hand and hardwired

into the extenders. An agreement between the two implementations was reached at levels

19 and 22. The fastest run in this case used 743 cpu hours. The search space size was

approximately 2.8 ∗ 1010.

In all three cases, the value of rep(S) proved to be critical for the efficiency of an

extender processing each starter S. Typically, an increment by one of the value of rep

halved the cpu time.

The similar apparent difficulty of cases DB and T31 shown above should be amended

by a comment that for T31 we used substantially better algorithms for manipulation of pd-

systems, hence the case T31 is actually more difficult than DB. The case TQ is definitely

the easiest one.

As described in [MR], a special version of the graph isomorphism system nauty [Mc1]

was prepared for testing partial designs for isomorphism. It was easily extended to work

on pd-systems and proved very efficient.

8

The computer times cited above refer to Sun Microsystems Sparcstation One and Two

computers. We had at our disposition about 150 computers (including 54 Sparc Two’s)

dominated by the latter two types. Our computations were completed quickly by running

all available machines simultaneously. So far we have used about 15 cpu years for all work

related to D. A single elimination of DB, T31 and TQ was obtained in just about 2 cpu

years, hence now we could do it in one week of real time.

The management of jobs running on many computers at once was done using the first

author’s scheduling system autoson [Mc2].

5. Other Approaches.

If N is the incidence matrix of D, then the square matrix S = NTN of order 33, called

the block intersection matrix, has entry Sij = p iff blocks i and j intersect in p points. Hall,

Roth, van Rees and Vanstone [HRRV] pioneered a very promising approach involving the

properties of principal minors of S. In particular, they constructed 13 5-tuples of blocks,

called C
5
’s, in which each point occurs an even number of times, and proved that any D

must contain at least one of them. The C
5
’s correspond to principal minors of order 5 in S.

This approach was generalized and refined by Greig [Gre], and his new technique reduced

the number of these unavoidable minors from 13 to 7. Each of his 7 intersection minors

has a unique realization as a 5-tuple of blocks, up to isomorphism. We have repeated

all the computations from [HRRV] and [Gre], and, despite some technical errors found in

[HRRV], obtained the same 7 final configurations.

The above technique gave apparently strong results for 5-tuples, but seems to be rather

weak for larger minors. Among several failed attempts to apply mass computations in this

direction was the following. The same argument as in [HRRV] implies that any D must

contain a C
8
, i.e. an 8-tuple of blocks hitting each point even number of times. Even using

some combinatorial filters in addition to the elimination methods developed in [HRRV] and

[Gre], there are about 200000 unavoidable nonisomorphic minors that could correspond

to C
8
’s. Unfortunately, most of these minors correspond to very many C

8
’s. We have

not found any feasible way of completing block extensions of all these 8-tuples. We also

tried further extensions of intersection minors to orders 11 and 12, where an additional

determinant condition [Con] can be applied, to no avail. Very large numbers of minors

of order 12 satisfying all known conditions were produced, and it was still not clear how

to efficiently complete the computation for each case. On another path, the computation

of all possible intersection minors of order 12 corresponding to 12 blocks hitting a fixed

point, and satisfying all necessary conditions known to us, also proved infeasible.

We conclude that this algebraical method will not work by itself, unless coupled with

something more. Without having a very clear idea how to do it, we feel there should be an

approach which applies the method of unavoidable intersection minors jointly with some

kind of generalization of pd-systems.

9

Bate, Hall and van Rees [BHR], on yet another path towards D, studied the so-called

even partial designs, which in our terminology are equivalent to pd-systems with two cells,

such that every block intersects both cells in even number of points. The authors of [BHR]

first defined a set of even partial design parameters, unavoidable in D, and then they

eliminated some special subcases. We think that their approach could be easily modeled

with our tools.

The future success of this project is not clear yet. There are a few subcases which are

definitely accessible, such as the case where some 3-set is covered four times, but they are

not very essential for future progress. Much more important, but much more difficult, is

the remaining class of type 3 blocks. At the time of writing, our best programs could finish

it in about one century of cpu time, but we hope this can be reduced. Blocks of type 1

and 2 are considerably harder still.

References.

[BHR] J. A. Bate, M. Hall, Jr., G. H. John van Rees, Structures within (22, 33, 12, 8, 4)-

designs, J. Combinatorial Mathematics and Combinatorial Computing, 4 (1988)

115-122.

[CCK] Y. M. Chee, C. J. Colbourn and D. L. Kreher, Simple t-designs with v ≤ 30, Ars

Combinatoria, 29 (1990) 193–261.

[Con] W. S. Connor, Jr., On the structure of balanced incomplete block designs, Ann.

Math. Statist., 23 (1952) 57–71; corrected ibid, 24 (1953) 135.

[Gre] M. Greig, An improvement to Connor’s criterion, preprint.

[Hall] M. Hall, Jr., Are designs (22, 33, 12, 8, 4) necessarily rigid?, Congressus Numer-

antium, 69 (1989) 243–244.

[HRRV] M. Hall, Jr., R. Roth, J. van Rees and S. Vanstone, On designs (22, 33, 12, 8, 4),

J. Combinatorial Theory, Ser. A, 47 (1988) 157–175.

[HK] N. Hamada and Y. Kobayashi, On the block structure of BIB designs with pa-

rameters v = 22, b = 33, r = 12, k = 8, and λ = 4. J. Combinatorial Theory,

Ser. A, 24 (1978) 75–83.

[Kap] S. N. Kapralov, Combinatorial 2−(22, 8, 4) designs with automorphisms of order

3 that fix a point, in Mathematics and Mathematics Education (in Bulgarian),

Slnchev Bryag, 1987, 453–458.

[Lan] I. N. Landgev, Block designs (22, 8, 4) with automorphisms of order 2 and self-

orthogonal codes over GF (3), in Mathematics and Mathematics Education (in

Bulgarian), Slnchev Bryag, 1990, 109–111.

[LT] I. N. Landgev and V. D. Tonchev, Automorphisms of 2−(22, 8, 4) designs, Dis-

crete Math., 77 (1989) 177–189.

10

[Mc1] B. D. McKay, Nauty Users’ Guide (Version 1.5), Technical Report TR-CS-90-02,

Computer Science Department, Australian National University, 1990.

[Mc2] B. D. McKay, Autoson, a private batch system for workstation networks, Tech-

nical Report TR-CS-94-10, Computer Science Department, Australian National

University, 1994.

[MR] B. D. McKay and S. P. Radziszowski, The nonexistence of 4−(12, 6, 6) designs,

in Computational and Constructive Design Theory, ed. W. Wallis, Kluwer Publ.,

to appear.

[Šift] J. Šiftar, On 2-groups operating on a 22−(22, 8, 4) design, preprint.

11

