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With the help of computer algorithms we prove that there are no 4-(12,6,6) designs, 
thereby answering the last open existence question in design theory for at most 12 
points. We also enumerate three families of related designs, namely the 10977 simple 
3-(10,4,3) designs, the 67 simple 4-(11,5,3) designs, and the 23 simple 5-(12,6,3) 
designs. Finally, we complete the census of all possible partitions of 6-sets on 12 
points into 5-(12,6, A) designs and of 5-sets on 11 points into 4-(11,5, A) designs. 

1 INTRODUCTION 

A t- (v, k, A) design is a pair (X, 'D) where X is a v-element set of points and 'D 
is a multiset of k-element subsets of X, called blocks, such that for all T X, 
ITI = t, I{K E 'D : T K}I = A. A design is called simple if it has no repeated 
blocks. For v :::; 12,4-(12,6,6) was the only set of parameters for which design 
existence was unsettled before this work. The recent paper by Kreher, de 
Caen, Hobart, Kramer and Radziszowski [9J contains much information about 
the properties of this and related designs, in particular it notes that 4- (12,6, A) 
designs exist for the arithmetically feasible adjacent A'S, namely 4 and 8, with 
an unknown case at A = 6. Our result that no 4-(12,6,6) design exists is the 
first known example where such a hole of nonexistence appears as A is varied 
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with the other parameters held fixed. The nonexistence of 4-(12, 6, 6) designs 
was firmly established using three independent methods, many important steps 
of which were performed in duplicate. 

The family of simple t-(t + 7, t + 1, >.) designs is perhaps one of the most 
investigated parameter situations in design theory [1], [2], [4], [5], [7], [9], [13], 
with particular attention given to the well known Witt designs with >. = 1. 
For>. = 2 all such simple designs were described in [13]. The census of this 
family for>. = 3 is completed here. The study of the latter is included in this 
work since all the simple t-(t + 7, t + 1,3) designs for t 2:: 4 are required by 
one of our proofs of the nonexistence of 4-(12,6,6) designs. Table 1 below 
summarizes the number of nonisomorphic simple t-(t + 7, t + 1, >.) designs for 
all t and >. 3 (for>. 2:: 4 such designs are complements of those with >. 3). 
This table completes Table I in [13], the new entries being those with >. = 3 
and 3 t 5. 

t >.=1 >.=2 >.=3 

1 1 3 6 
2 1 13 332 
3 1 27 10977 
4 1 1 67 
5 1 1 23 

Table 1. The number of nonisomorphic simple t-(t + 7, t + 1, >.) designs 

Having completed the enumeration of all simple t-(t + 7, t + 1, >.) designs, we 
could not resist the temptation to answer the remaining open questions con-
cerning their resolvabilities. This problem was studied originally by Kramer 
and Mesner in [7], who showed that there are at most two disjoint Steiner sys-
tems S(5,6,12). Other possible resolvabilities within this family were discussed 
in [13]. In Section 4 we report our computation completing the census of all 
possible resolvabilities for interesting t, namely all possible partitions of 6-sets 
on 12 points into 5-(12,6, >.) designs and of 5-sets on 11 points into 4-(11,5, >.) 
designs. 
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2 THREE TOWERS OF DESIGNS 

For 8 ::; v ::; 12, let Du, Au and Bu denote any p-(v, s, 6), q-(v, s, 3) and 
p-(v, q, 4) design, respectively, where p = v - 8, q = v -7 and s = v - 6. Table 
2 gives the number of blocks in these designs in all cases. All such designs are 
known to exist [3] except Dl2 , i.e. 4-(12,6,6). The counts of simple designs 
Au appear in the last column of Table 1, and the main goal of this paper is to 
disprove the existence of D l2 . Note that the point derived design from Du is 
a design DU-l' and similarly for Au and Bu' In the sequel let Dl2 denote the 
blockwise complement of D l2 . For all designs we assume a fixed set of points 
X = {O, 1, ... , 11}, or its subset of proper order, and also we will identify 
designs with their collections of blocks. 

v=8 v=9 v = 10 v = 11 v = 12 

Du 6 18 45 99 198 
Au 12 36 90 198 396 
Bu 4 18 60 165 396 

Table 2. The number of blocks in Du, Au and Bu designs 

The following theorem contains a condensation of some results obtained in [9], 
which establish relationships between our three towers of designs. 

Theorem 1 [9] 
(a) Any 4-(12,6,6) design must be simple. 
(b) For any D l2 , Dl2 is also a 4-(12,6,6) design. 
(c) Dl2 U Dl2 is a simple Al2 design. 
(d) Dl2 n Dl2 = 0,. equivalently, Dl2 has no disjoint blocks. 
(e) Each 5-set is covered by one or two blocks of D 12 . 

(f) In A l2 , if S is a block then S is also a block. 
(g) Each 1-set contains exactly 3 blocks of A l2 . 

(h) The 5-sets covered by one block of Dl2 form a B l2 . 

(i) The 5-sets covered by two blocks of Dl2 form a B l2 . 

(j) Each block of Dl2 intersects 0,8,50,80,55,4 other blocks in 0,1, ... ,5 
points, respectively. 

Some additional properties of Au designs, formulated in Theorem 2 below, were 
used in the computations. 
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Theorem 2 Let A12 be any simple 5-(12,6,3) design. Then 
(a) No k-ly derived design ofA12 (k = 0,1,2,3) can have a (7-k)-set con-

taining more than 3 blocks. 
(b) If AlO is a doubly derived design from A 12 , then any 5-set of AlO contains 

1, 2, or 3 blocks. 

Proof. Since we consider only simple designs, properties (a) and (b) follow 
immediately from Theorem l(g). • 

3 ALGORITHMS 

The success of our study was considerably facilitated by the use of efficient 
programs for the canonical labelling of designs. The program nauty written by 
the first author [11] can perform rapid canonical labelling of arbitrary graphs, 
and so can be applied to the bipartite point-block incidence graphs of designs. 
However, this approach is not very efficient, as the graphs are quite large (v + b 

vertices) and labellings are treated as permutations of the points and blocks 
together. In fact, it suffices to treat labellings of the points only, as an ordering 
of the points implies an ordering of the blocks apart from the interchange of 
equal blocks. 

Accordingly, a version of nauty was prepared that treats designs (X, V) as 
hypergraphs with vertex set X and edge set V. Both vertices and edges can 
be coloured, the latter to enable direct processing of the partitionings we will 
describe in Section 4. Automorphisms and labellings appear as permutations 
of X only. Only about 5% of the code for nauty needed to be replaced, but 
the result was an improvement of about one order of magnitude in processing 
efficiency. 

Typical execution times for computing automorphism groups and canonical 
labellings are 0.5 seconds for 3-(10,4,2) designs, 1.6 seconds for 3-(10,4,3) 
designs, 20 seconds for 4-(11,5,3) designs and 520 seconds for 5-(12,6,3) 
designs. These times are in fact unnecessarily long, as the program is tuned 
not for completed designs but for partial designs induced by some subset of 
the points. In this case the program is usually very much faster, for example 
0.011 seconds for six points of a 3-(10,4,3) design. All the computer times 
given in this paper refer to a Sun Microsystems Sparcstation One computer 
(approximately 12 mips). 
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There are a very large number of designs D lO • This lead us to avoid the 
most natural approach of enumerating D12 's by straightforward extensions 
Di -+ Di+1' for i = 8, ... ,11. Instead we took two alternative approaches, 
one similar to the algorithms described by Ivanov [6], and the other one using 
design extensions Ai -+ Ai+1' for i = 8, ... ,11 and the relationship between 
the Av-tower and Dv-tower of designs. 

Let S be a t-(v, k, A) design with b blocks. If one sees S as a v x b (0,1)-
matrix M with M Ii, j] = 1 if and only if block j contains point i, then the 
core of our two approaches lies in finding a labelling in which row-by-row or 
column-by-column, respectively, construction of M is efficient, and limits the 
combinatorial explosion in the number of intermediate configurations. In our 
experience both methods may work well after a proper combinatorial study of 
the design S is performed. In the case of Dv and Av designs such a detailed 
study has been done in [9]. The bulk of the current work consisted of the choice 
of properties to be implemented, the choice of appropriate methods for the 
different computational paths, and finally implementation, tuning of programs 
and verification of results. 

ALGI. Row-by-row construction. 
Let SIn] stand for the configuration of partial blocks of S corresponding to 
the first n rows of matrix M. The set of feasible (n+l)-th rows are the 0-1 
solutions of a set of linear equations that express the basic design properties. 
In addition, there may be further equations or inequalities derived from theory 
such as that in Theorem 1. If SIn] has many equal columns, there can be 
many solutions which only differ by the interchange of those columns. Such 
equivalent solutions can be avoided by replacing the 0-1 variables for each set 
of equal columns by an integer variable equal to their surri. 

Overall isomorph rejection can be handled by several different methods. One is 
to simply generate all feasible extensions and reject isomorphs using nauty. The 
other employs nauty in a quite different way. Suppose SIn + 1] is constructed 
by adjoining row n+l to SIn]. Application of nauty provides the orbits of the 
automorphism group of SIn + 1] and also a canonical labelling of the rows. 
SIn + 1] is then rejected if row n + 1 is not in the same orbit as the row whose 
canonical label is "1". Isomorph rejection is then carried out only within the 
matrices derived from each particular SIn]. It is not hard to show [12] that 
each isomorphism class is represented exactly once in the output. 

ALG2. Column-by-column construction. 
By using a suitable labelling of the points, this approach is reduced to con-
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secutive extension of (s-I)-designs 8 s- 1 to s-designs 8 s ' for s = 1, ... , t. All 
extensions of a single (s-I)-design can be obtained by solving an appropriate 
system of integer equations (possibly also inequalities, if known). Each design 
extension adds 18s l-18s - 11 columns to the matrix M. 

4 CONSTRUCTIVE RESULTS 

Using both methods (ALGI) and (ALG2) from Section 3, we have obtained 
the following enumeration results. The computations will be described in more 
detail in Section 5. 

Theorem 3 
(a) There are exactly 10977 nonisomorphic simple 3-(10,4,3) designs. Of 

these, 1685 satisfy condition (b) of Theorem 2, and 248 of the latter extend 
to a simple 4-(11,5,3) design. 

(b) There are exactly 67 nonisomorphic simple 4-(11,5,3) designs. Of these, 
28 are rigid, 6 have groups of order 2, 14 of order 3, 6 of order 4, 11 of 
order 8, and one each of orders 12 and 24. None of these designs is point 
transitive. 

(c) There are exactly 23 nonisomorphic simple 5-(12,6,3) designs. Of these, 
none is rigid, 3 have groups of order 2, 2 of order 3, 2 of order 9, 4 of 
order 12, 2 of order 16, 3 of order 36, 2 of order 48, and one each of orders 
6, 24, 32, 144 and 288. Exactly seven of these designs are point transitive. 

Observe that by Alltop's extension theorem every Au extends uniquely to an 
A 12 , hence given all A12 's one can easily recover Au's. Several A12 designs 
have been described in [9], hence here we only that we found 10 more, 
including one with the largest automorphism group pf order 288. The latter 
design is described in full in the sequel as a part of a partition of all 6-sets on 12 
points into 5-designs. The interested reader is to request electronic 
copies of some or all designs from Theorem 3 from lIe authors. 

Some particularly beautiful configurations of sets can be obtained by partition-
ing all k-subsets of a v-set into designs. Kramer and Mesner [7] proved that 
there are no three mutually disjoint Steiner systems 8(5,6,12). The computa-
tions in [13] showed that there is a unique simple 5-(12,6,:2) design, which is 
formed by two disjoint copies of 8(5,6,12). As observed in [13], this implies 
that the only possible partitions of all 6-sets on 12 points into nonresolvable 
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5-(12,6, >.) designs are of type (1+1+5) or (1+3+3), where the type lists the 
>.'s of the participating resolvent designs. In particular, the latter implies that 
there is no resolvable simple 5-(12,6,3) design. A very detailed study of type 
(1+1+5) partition can be found in [7]. Before the current work no partition of 
type (1+3+3) was known. 

Please note that all the remarks of the preceding paragraph are equally valid 
for partitioning the 5-sets on 11 points into 4-(11,5, >.) designs. 

By analyzing the designs from Theorem 3(b) and 3(c) we have been able to con-
struct all such nonisomorphic partitions on 11 and 12 points, and we summarize 
them in the next theorem. By an automorphism of a type (1+3+3) partition 
into designs we understand a permutation of points which is an automorphism 
of the Steiner resolvent, and is an automorphism of two other resolvents or is an 
isomorphism between them. The resolvability claims below are consequences 
of Theorem 3, the computations, and the remarks above. 

Theorem 4 
(a) There are exactly 7 nonisomorphic partitions of all 5-sets on 11 points 

into 4-(11,5, >.) designs of type (1 + 3 + 3). Of these, two are rigid, and 
the other 5 have 3 automorphisms. In no case is there an automorphism 
exchanging two resolvents. Nine nonisomorphic 4- (11,5,3) designs are 
resolvents of such partitions; equivalently, 58 of the 67 simple 4-(11,5,4) 
designs are not resolvable. 

(b) There are exactly 5 nonisomorphic partitions of all 6-sets on 12 points into 
5-(12,6,>.) designs of type (1+3+3). Of these, two have 9 automorphisms, 
and the other 3 have 36 automorphisms and are point transitive. In no case 
is there an automorphism exchanging two resolvents. Seven nonisomorphic 
5-(12,6,3) designs are resolvents of such partitions; equivalently, 16 of the 
23 simple 5-(12,6,4) designs are not resolvable. 

Similarly to Theorem 3, every partition from (a) extends uniquely to a partition 
from (b). Also, given all partitions from (b), one can easily recover all partitions 
from (a). 

Now we will give a full description of a partition of type (1 + 3 + 3). We will 
call the resolvents R 1 , R2 and Ra, respectively. 

Define four permutations of {O, 1, ... , 11}: 

gl = (1 3 5)(2 11 10)(6 8 9) 
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92 = (0 2 7 1 4 8)(3 10 9 5 11 6) 

93 (45118)(61079) 

94 = (35)(410)(79) 

Resolvent R1 is a 5-(12,6,1) design. Its automorphism group is G 1 = 
(91,92,93)' which is a 5-transitive representation of the Matthieu group M12 

(order 95040). The action on the blocks is transitive. Resolvent R2 is a 
5-(12,6,3) design. Its automorphism group is G2 = (91,92,94)' which acts 
transitively and has order 288 (the largest for any 5-(12,6,3) design). There 
are seven orbits of blocks. Resolvent R3 is a 5-(12,6,3) design. Its automor-
phism group is G3 = (91,92)' which acts transitively and has order 36. There 
are eleven orbits of blocks. 

In Table 3, we give the lengths and representative members of the actions of 
group Gi on the blocks of Ri , for i = 1,2,3. Since G3 = G1 n G2 and the three 
resolvents are nonisomorphic, the full automorphism group of the partition 
is G3 . 

5 COMPUTATIONS 

The nonexistence of D12 was established by three independent computations, 
and all the design constructions have been obtained at least twice each, with 
different implementations. 

The following were the major computations for this work: sequences (C1) and 
(C2) used the point extension algorithm (ALGI), sequence (C3) used the stan-
dard design extension algorithm (ALG2), and (C4) used both. 

(C1) Dd6] - Dd7] - D12 [8] - Dd9] - D12 [10]. Properties (a), (b), (c), 
(e), (j) of Theorem 1 were enforced for D 12' and property (e) for D 12' The 
unique D12 [6] containing a full block was used as a starting point. In addi-
tion the required number of partial blocks of each size were encoded. It is 
worth observing that some of these properties are logically redundant, but 
experiments showed that their explicit inclusion dramatically decreased 
the execution time. The numbers of partial designs obtained at each level 
were 1, 13, 28794, 14084, and 3, respectively. None of the three designs 
Dd10] extended to 11 points. 
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Resolvent Orbit length Representative 

Rl 132 {5,6,7,8,9,10} 

R2 12 {3,4,5,6,8,1O} 
12 {3,4,5,7,9,10} 
18 {3,5,6,7,8,9} 
48 {3,5,7,8,10,1l} 

144 {4,5,7,8,10,1l} 
144 {5,7,8,9,10,1l} 
18 {6,7,8,9,1O,1l} 

R3 36 {3,4,5,7,8,10} 
36 {3,4,5,8,9,10} 
36 {3,5, 7,8,9, 1O} 
36 {3,5,8,9,1O,1l} 
36 {4,5,6,9, 10, ll} 
36 {4,5,7,8,9,1l} 
36 {4,5, 7,9,10, ll} 
36 {4,7,8,9,10,1l} 
36 {5,6,7,8,9,1l} 
36 {5,6,7,8,10,1l} 
36 {5,6,7,9,10,1l} 

Table 3. A partition of all 6-sets on 12 points into three 5-(12,6, A) designs 

(C2) Ad6] ---7 Ad7] ---7 ••• ---7 A12[12]. Properties (f) and (g) of Theorem 1, and 
the pattern of blocks sizes within each 7-set were enforced. The starting 
points were the two possible configurations of six points, one covering a 
block, the other not. The numbers of partial designs obtained at each level 
were 2, 1, 6, 232, 2424, 67 and 23, respectively. The value 2424 is reduced 
to 1685 if property (b) of Theorem 2 is enforced as well. It was checked 
that the generated A 12's do not split into D12 U D 12 . 

(C3) As ---7 Ag ---7 Aio ---7 Au ---7 A 12 . The designs Ag agreed with the results in 
[5]. Only special AlO's were produced, namely those satisfying Theorem 
2(b). The number of designs obtained at each level was 6, 332, 1685, 67 
and 23, respectively. Crosschecks with intermediate results of sequences 
(Cl) and (C2) were done. It was checked twice that D12 cannot be ob-
tained: firstly by splitting special AlO's into candidates for partial systems 
D 12 [10] U D 12 [10] and showing that none can be completed, and secondly 
by verifying that A12's do not split into D12 U D 12 . 
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(C4) Ag Aw. Dramatic improvement of the programs after (C3) had been 
finished enabled a full census of the 10977 simple 3-(10,4,3) designs Aw 
to be completed in about 100 hours by method (ALG2). In slightly more 
time, it was repeated by method (ALGI) with identical results. 

Finally, the special designs Aio needed by (C3) were extracted from the 10977 
and checked against those found before. 

In addition, several small testing programs were implemented to crosscheck 
other intermediate results of different sequences. These programs were based 
on obvious relationships between designs, and the properties listed in Theorems 
1 and 2. For example, 248 out of the 1685 special Aw's produced in sequence 
(C3) extended to 67 All's. After rejecting isomorphs amongst the 11 x 67 point 
derived designs, we recovered the same set of 248 Aw's. Note that each of the 
sequences (C1), (C2) and (C3) shows the nonexistence of D12 designs. Thus 
we have: 

Theorem 5 4-(12,6,6) designs do not exist. 

The partitions of Theorem 4 were obtained as follows. First we produced all 
simple 4-(11,5,4) designs by taking the complements of All's. Then using 
an equation solver we found all possible embeddings of the Steiner system 
8(4,5,11) as a subdesign of each 4-(11,5,4). Each such embedding gave an 
instance of a type (1+3+3) partition. The partitions of Theorem 4(b) were 
obtained twice: the same way as those of Theorem 4(a) and independently by 
applying Alltop's extension theorem to those from Theorem 4(a). As usual, 
all these computations were performed independently by each of two authors, 
using distinct programs. The computer time needed to obtain all partitions 
was negligible. 

The total computer time used for all computations was just about 1000 cpu 
hours, including all repetitions and verification. A single disproof of the exis-
tence along path (C3) could be obtained in about 50 cpu hours and along path 
(C2) in about twice that long. Our computations were completed quickly by 
using a network of about 120 Sun computers simultaneously. 
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6 THE NEXT CHALLENGE 

To the best of our knowledge, as reported in [3], the only remaining open exis-
tence question in design theory for v 13 is that for 4-(13,6,6) designs (286 
blocks). For other arithmetically feasible A'S with the same parameters such 
designs exist; namely, there are known constructions of simple 4-(13,6,12) [8) 
and simple 4-(13,6,18) designs. The latter are actually the simple 5-(13,6,4) 
designs found in [10). 

The only design on 14 points whose existence is in question is a 5-(14,7,6) 
design [3). Note that if a 5-(14,7,6) design exists, its derived design is a 
4-(13,6,6) design, mentioned above. Hence any construction of a simple 
5-(14,7,6) design or proof of the nonexistence of 4-(13,6,6) designs would 
answer all remaining existence questions for v 14. 

Observe that, using the notation from Section 2, the known 5-(13,6,4) and 
6-(14,7,4) designs [10) can be seen to be B 13 and B 14, respectively. We 
feel that one can expect a relationship between the unknown tower of designs 
t-(t+9, t+2, 6) and t-(t+8, t+ 1,4) (= Bt+s), to be similar to the relationship 
between the D v and Av towers studied here. 
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