TOPICS IN

COMPUTATIONAL GRAPH THEORY

BY

BRENDAN D. MCKAY

A Thesis Submitted For The Degree 0f
 Doctor Of Philosophy

At The

University Of Melbourne

JUNE 1980

PREFACE

This thesis is concerned with two problems in computational Graph Theory.

The first problem is the design of an algorithm for canonically labelling a graph and for finding generators for its automorphism group. The emphasis here is on the power of the algorithm for solving practical problems, rather than the theoretical niceties of the algorithm. We succeed in developing an algorithm whose implementation is probably the most powerful practical graph isomorphism program yet devised.

The second problem considered here is the construction of an exhaustive list of vertex-transitive graphs with 19 or fewer vertices. This is accomplished with the aid of a large number of theoretical tools, some of which are developed here for the first time and may be of independent interest.

All results not attributed to another author are new. However there are several people whose suggestions and encouragements played a far from trivial part in the conduct of this research. Particular thanks are due to my supervisor D.A. Holton and to C.D. Godsil. I would also like to thank Professor R.G. Stantion for his generous support during my visit to the University of Manitoba in 1978.

CONTENTS

CHAPTER 1 INTRODUCTION 1
CHAPTER 2: A NEW GRAPH LABELLING ALGORITHM 17
CHAPTER 3: IMPLEMENTATION CONSIDERATIONS 51
CHAPTER 4: TRANSITIVE GRAPHS - MISCELLANEOUS THEORY 67
CHAPTER 5: CONSTRUCIION OF TRANSITIVE GRAPHS 81
APPENDIX 1: GROUPS OF ORDERS 5 TO 19 127
APPENDIX 2: TRANSITIVE GRAPHS OF ORDER 2 TO 19 137
APPENDIX 3: EXAMPIES OF ALGORITHM 2•31 OUTPUT 189
REFERENCES 192

INTRODUCTION

In this chapter we present a selection of the definitions and elementary results which will be required for use in later chapters.
1.1 Basic Notation

Throughout this thesis V will denote the set $\{1,2, \cdots, n\}$, where $n \geq 1$. The empty set is denoted by \emptyset. A single-element set $\{x\}$ (a singleton) will generally be abbreviated to x if no confusion is likely.

If X is a set, then $|\mathrm{X}|$ denotes its cardinality. A relation \leq on X is called a linear ordering of X if for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$ we have (i) $\mathrm{x} \leq \mathrm{x}$, (ii) $\mathrm{x} \leq \mathrm{y}$ or $\mathrm{y} \leq \mathrm{x}$, (iii) if $\mathrm{x} \leq \mathrm{y}$ and $\mathrm{y} \leq \mathrm{x}$ then $\mathrm{x}=\mathrm{y}$, and (iv) if $\mathrm{x} \leq \mathrm{y}$ and $\mathrm{y} \leq \mathrm{z}$ then $\mathrm{x} \leq \mathrm{z}$. Let Z be a set whose elements are finite sequences of elements of X (the length may vary). Then the lexicographic ordering of Z induced by \leq is the linear ordering \leq defined as follows.

If $\underset{\sim}{x}=\left(x_{1}, x_{2}, \cdots, x_{k}\right) \in Z$ and $\underset{\sim}{y}=\left(y_{1}, y_{2}, \cdots, y_{\ell}\right) \in Z$ then $\underset{\sim}{x} \leq \underset{\sim}{y}$ if and only if either of the following holds.
(i) For some $t, 1 \leq t \leq \min (k, \ell)$, we have $x_{i}=y_{i}$ for $i<t$ and $x_{t}<y_{t}$.
(ii) $x_{i}=y_{i}$ for $1 \leq i \leq k$ and $\ell \geq k$.

If X is a linearly ordered set and Y is a non-empty finite subset of X, then $\min Y$ and $\max Y$ denote the values of the smallest and the largest elements of Y with respect to \leq, respectively. For notational convenience we write min $\varnothing=\infty$, where ∞ is a symbol with the property of being larger than anything it is compared with.

If M is a matrix, then $M_{i j}$ denotes the (i, j)-th entry of M, M^{\top} denotes the transpose of M and, if M is square, tr M denotes the trace of M. If i and j are integers, (i, j) denotes the greatest common divisor of i and j, while $i \mid j$ indicates that i is a divisor of j. Finally, log always denotes the natural logarithm.
1.2 Graphs

A graph G is a pair $(V(G), E(G))$, where $V(G)$ is a finite set whose elements are called vertices or points of G, and $E(G)$ is a set of unordered pairs of distinct elements of $V(G)$, called edges. In a few special cases we will also allow $E(G)$ to contain singletons from $V(G)$, called Zoops. However, unless otherwise stated, our graphs do not have loops. An edge $\{x, y\} \in E(G)$ will commonly be abbreviated to $x y$. The end-vertices x and y of an edge $x y$ are said to be adjacent or joined.

The set of all graphs G with $V(G)=V$ will be denoted by $G(V)$.
The order of a graph G is the cardinality of $V(G)$. A graph H is a subgraph of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. If, in addition, $V(H)=V(G)$ then H is a spanning subgraph of G. Another special type of subgraph H is that induced by $V(H)$. In this case $E(H)=\{x y \in E(G) \mid x, y \in V(H)\}$. In general we will make no notational distinction between subsets of $V(G)$ and the subgraphs of G which they induce.

If $x \in V(G)$, then $\mathbb{N}(x, G)$ denotes the set (or induced subgraph) $\{y \in V(G) \mid x y \in E(G)\}$ and $\overline{\mathbb{N}}(x, H)$ denotes the set $V(G) \backslash(\{x\} \cup N(x, G))$. The complement \bar{G} of G has $V(\bar{G})=V(G)$ and $E(\bar{G})=\{x y \mid x, y \in V(\bar{G}), x \neq y, x y \notin E(G)\}$. It follows that $\mathbb{N}(x, G)=\overline{\bar{N}(x, G)}$ and $\overline{\mathbb{N}}(x, \bar{G})=\overline{\bar{N}(x, G})$. The degree of a vertex $x \in V(G)$ is the cardinality of $N(x, G)$. If every vertex of G has the
same degree k, we say that G is regular of degree k. If G is regular and the subgraphs $\mathbb{N}(x, G)$ and $\overline{\mathbb{N}}(x, G)$ are empty or regular for each $x \in V(G)$, then G is called strongly regular.

A path of length $r \geq 0$ in a graph G is a sequence
$x_{0}, x_{1}, \cdots, x_{r}$ of distinct vertices of H, such that $x_{i-1} x_{i} \in E(G)$ for $1 \leq i \leq r$. The distance $\partial(x, y)$ between $x, y \in V(G)$ is defined to be the length of the shortest path, if any, whose first and last entries are x and y . If there is no such path, $\partial(\mathrm{x}, \mathrm{y})=\infty$ by convention. More generally, if $\mathrm{X}, \mathrm{Y} \subseteq \mathrm{V}(\mathrm{G})$, the distance between X and Y in G is $\partial(X, Y)=\min \{\partial(x, y) \mid x \in X, y \in Y\}$. The diameter of G is $\max \{\partial(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}, \mathrm{y} \in \mathrm{V}(\mathrm{G})\}$. If G has finite diameter it is called connected, otherwise it is disconnected.

Tlwo graphs G and H are said to be isomorphic, written $G \cong H$, if there is a bijection $\phi: V(G) \rightarrow V(H)$ such that $x y \in E(G)$ if and only if $\phi(x) \phi(y) \in \mathbb{E}(G)$. It is important to realise that $G(V)$ contains all the graphs G with $V(G)=V$, not just representatives of the different isomorphism types.

Several special types of graphs are important enough to warrant names. The complete graph K_{n} has $\mathrm{V}\left(\mathrm{K}_{\mathrm{n}}\right)=\mathrm{V}$ and $E\left(K_{n}\right)=\{x y \mid x, y \in V, x \neq y\}$. The empty graph is the complement \bar{K}_{n} of K_{n}, and thus has no edges. A polygon C_{n} is a connected regular graph of degree 2. A subgraph isomorphic to a complete graph is also called a clique and one isomorphic to a polygon is called a cycle.

Let G be any graph. The Linegraph $L(G)$ has $V(L(G))=P(G)$ and $E(L(G))=\left\{e_{1} e_{2} \mid e_{1}, e_{2} \in \mathbb{E}(G)\right.$ and $\left.\left|e_{1} \cap e_{2}\right|=1\right\}$. The switching graph $\operatorname{Sw}(G)$ has $V(S w(G))=V(G) \times\{0,1\}$ and $E(S w(G))=\{(x, i)(y, j) \mid$ $i=j$ and $x y \in \mathbb{E}(G)$ or $i \neq j$ and $x y \in \mathbb{E}(\bar{G})\}$. If G has n vertices, then $\operatorname{Sw}(G)$ has $2 n$ vertices and is regular of degree $n-1$.

Switching graphs have an important association with a relationship known as switching equivalence [40]. Two graphs G and H with $V(G)=V(H)$ are switching equivalent if $V(G)$ can be partitioned into disjoint non-empty subsets V_{1} and V_{2} such that

$$
\begin{aligned}
E(H) & =\left\{x y \in E(G) \mid x, y \in V_{1} \text { or } x, y \in V_{2}\right\} \\
& \cup\left\{x y \notin E(G) \mid x \in V_{1} \text { and } y \in V_{2}\right\} .
\end{aligned}
$$

Some of the basic properties of switching equivalence are summarised in the following theorem.

1. 3 THEOREM (a) Switching equivalence is an equivalence relation.
(b) Each equivalence class containing graphs of odd order contains exactly one graph whose vertices all have even degree.
(c) Each equivalence class contains at least one graph with a vertex of degree zero.
(d) Two graphs, G and H are switching equivalent if and only if $\mathrm{SW}(\mathrm{G}) \cong \mathrm{SW}(H)$.

Proof: See [40] for (a) - (c) and [14] for (d).

Let G and H be graphs. A number of binary products can be used to construct a new graph from G and H. The simplest is the disjoint union $G \cup H$, for which we assume $V(G) \cap V(H)=\varnothing$. This is defined by $V(G \cup H)=V(G) \cup V(H)$ and $E(G \cup H)=E(G) \cup E(H)$. Any graph isomorphic to the disjoint union of m graphs isomorphic to G will be denoted by mG. Three other products each have vertex set $V(G) \times V(H)$. The tensor product $G * H$ has
$E(G * H)=\left\{\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \mid x_{1} x_{2} \in E(G), y_{1} y_{2} \in E(H)\right\}$. The cartesian product $G \times H$ has $E(G \times H)=\left\{\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \mid x_{1}=x_{2}\right.$ and $y_{1} y_{2} \in E(H)$, or $y_{1}=y_{2}$ and $\left.x_{1} x_{2} \in \mathbb{E}(G)\right\}$. The Lexicographic product $G[H]$ has
$E(G[H])=\left\{\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \mid x_{1} x_{2} \in E(G)\right.$, or $x_{1}=x_{2}$ and $\left.y_{1} y_{2} \in E(H)\right\}$. Some of the elementary properties of these three operations are given in the next lemma.

1. 4 LEMMA (a) $G * H \cong H * G$
(b) $\mathrm{G} \times \mathrm{H} \xlongequal[=]{\mathrm{H}} \times \mathrm{G}$
(c) $G[H] \neq H[G]$ (in general).
(d) $\overline{\mathrm{G}}[\overline{\mathrm{H}}]=\overline{\mathrm{G}[\mathrm{H}]}$
(e) $\overline{\mathrm{K}}_{\mathrm{m}} \times \mathrm{H}=\overline{\mathrm{K}}_{\mathrm{m}}[\mathrm{H}]=\mathrm{mH}$

Let G be any graph. A (vertex-) cutset of G is a subset of V(G) whose removal from G leaves a disconnected graph or a single vertex. An edge-cutset of G is a subset of $E(G)$ with a similar property. The (vertex-)connectivity k and the edge-connectivity η are defined to be the size of a smallest cutset or a smallest edge-cutset, respectively.

Let G be any graph, and let V_{1} and V_{2} be disjoint non-empty subsets of $V(G)$. Let $F=\left\{x y \in E(G) \mid x \in V_{1}, y \in V_{2}\right\}$. We say that V_{1} and V_{2} are completely joined if $|\mathrm{F}|=\left|\mathrm{V}_{1}\right|\left|\mathrm{V}_{2}\right|$, trivially joined if $|\mathrm{F}|=0$ or $|\mathrm{F}|=\left|\mathrm{V}_{1}\right|\left|\mathrm{V}_{2}\right|$ and non-trivially joined if $0 .<|F|<\left|V_{1}\right|\left|V_{2}\right|$. We say that V_{1} and V_{2} are equitably joined if there are constants k_{1} and k_{2} such that each vertex in V_{1} is adjacent to exactly k_{1} vertices in V_{2}, and each vertex in V_{2} is adjacent to exactly k_{2} vertices in V_{1}. Note that $k_{1}\left|V_{1}\right|=k_{2}\left|V_{2}\right|$ in this case. We also say that V_{1} is equitably joined to itself if it induces a regular subgraph of G.

Let $G \in \mathbb{G}(V)$. The adjacency matrix of G is the $n \times n$ matrix $A=A(G)$, where $A_{i j}=1$ if $\{i, j\} \in E(G)$ and $A_{i j}=0$ otherwise.

A partition of the set V is a set of disjoint non-empty subsets of V whose union is V. An ordered partition of V is a sequence $\left(V_{1}, V_{2}, \cdots, V_{r}\right)$, such that $\left\{V_{1}, V_{2}, \cdots, V_{r}\right\}$ is a partition of V. The set of all partitions of V and the set of all ordered partitions of V will be denoted by $\Pi(V)$ and $\underset{\sim}{I}(V)$ respectively. For notational economy we also define $\Pi^{*}(\mathrm{~V})=\Pi(\mathrm{V}) \cup \Pi(\mathrm{V})$.

The elements of a partition (or ordered partition) $\pi \in \Pi^{*}(V)$ are usually called its cells. A trivial cell of π is a cell of cardinality one; the element of such a cell is said to be fixed by π. If every cell of π is trivial, then π is a discrete partition, while if there is only one cell, π is the unit partition.

If $\pi_{1}, \pi_{2} \in \Pi^{*}(\mathrm{~V})$, we write $\pi_{1} \simeq \pi_{2}$ if π_{1} and π_{1} have the same cells, in some order. We say that π_{1} is finer than π_{2}, denoted $\pi_{1} \leq \pi_{2}$, if every cell of π_{1} is a subset of some cell of π_{2}. Under the same circumstances, π_{2} is coarser than π_{1}. It is well known that the set $\Pi(V)$ forms a lattice under the partial order \leq. This means that, given $\pi_{1}, \pi_{2} \in \Pi^{*}(V)$ there is a unique coarsest partition $\pi_{1} \wedge \pi_{2} \in \Pi(v)$ such that $\pi_{1} \geq \pi_{1} \wedge \pi_{2}$ and $\pi_{2} \geq \pi_{1} \wedge \pi_{2}$, and a unique finest partition $\pi_{1} \vee \pi_{2} \in \Pi(v)$ such that $\pi_{1} \leq \pi_{1} \vee \pi_{2}$ and $\pi_{2} \leq \pi_{1} \vee \pi_{2}$. Each cell of $\pi_{1} \wedge \pi_{2}$ is a non-empty intersection of a cell of π_{1} and a cell of π_{2}. Each cell of $\pi_{1} \vee \pi_{2}$ is a minimal non-empty subset of V which is both a union of cells of π_{1} and a union of cells of π_{2}.

Let $\pi \in \Pi^{*}(V)$. Then $\operatorname{fix}(\pi)$ is the set of elements of V which are fixed by π. The support of π is the set $\operatorname{supp}(\pi)=V \backslash \operatorname{fix}(\pi)$. The set of minimum cell representatives of π is $\operatorname{mcr}(\pi)=\left\{\min V_{i} \mid V_{i} \in \pi\right\}$, where the minima are under the natural ordering of V.

Some of the elementary properties of these sets are given in the following lemma.
1.6 LEMMA $\quad \operatorname{Let} \pi_{1}, \pi_{2} \in \Pi^{*}(V)$.
(a) $\operatorname{fix}\left(\pi_{1} \vee \pi_{2}\right)=\operatorname{fix}\left(\pi_{1}\right) \cap \operatorname{fix}\left(\pi_{2}\right)$
(b) fix $\left(\pi_{1} \wedge \pi_{2}\right) \supseteq \operatorname{fix}\left(\pi_{1}\right) \cup \operatorname{fix}\left(\pi_{2}\right)$
(c) $\operatorname{supp}\left(\pi_{1} \vee \pi_{2}\right)=\operatorname{supp}\left(\pi_{1}\right) \cup \operatorname{supp}\left(\pi_{2}\right)$
(d) $\operatorname{supp}\left(\pi_{1} \wedge \pi_{2}\right) \subseteq \operatorname{supp}\left(\pi_{1}\right) \cap \operatorname{supp}\left(\pi_{2}\right)$
(e) $\operatorname{mcr}\left(\pi_{1} \vee \pi_{2}\right) \subseteq \operatorname{mcr}\left(\pi_{1}\right) \cap \operatorname{mcr}\left(\pi_{2}\right)$
(f) $\operatorname{mcr}\left(\pi_{1} \wedge \pi_{2}\right)=\operatorname{mcr}\left(\pi_{1}\right) \cup \operatorname{mcr}\left(\pi_{2}\right)$

Let $\pi=\left(V_{1}, V_{2}, \cdots, V_{x}\right) \in \underset{\sim}{\Pi}(V)$. For each $x \in V$ define $u(x, \pi)=i$, where $x \in V_{i}$. If $\pi_{1}, \pi_{2} \in \underset{\sim}{I}(V)$ then we say that π_{1} and π_{2} are consistent if, for any $x, y \in V, u\left(x, \pi_{1}\right)<u\left(y, \pi_{1}\right)$ implies that $u\left(x, \pi_{2}\right) \leq u\left(y, \pi_{2}\right)$. As a relation, consistency is symmetric but not transitive. If $\pi_{1} \leq \pi_{2}$ and π_{1} and π_{2} are consistent, we indicate this by writing $\pi_{1} \leqq \pi_{2}$ or $\pi_{2} \geqq \pi_{1}$. The relation \leqq is transitive but not symmetric. A partition nest is a sequence
$\left[\pi_{1}, \pi_{2}, \cdots, \pi_{r}\right]$, where $\pi_{i} \in \underset{\sim}{\Pi}(V)$ for $1 \leq i \leq r$, and $\pi_{1} \geqq \pi_{2} \geqq \cdots \geqq \pi_{r}$. The use of square brackets will always indicate that an enclosed sequence of ordered partitions is a partition nest.

1•7 Groups

The most elementary properties of groups will be assumed, as they can be found in any book on group theory, for example Hall [17]. We are only concerned here with finite groups.

The trivial (single-element) group will be denoted by 1. The cyclic group of order n will be denoted by Z_{n}. If p is a prime, a group whose order is a power of p is called a p-group, and a subgroup which is a p-group is called a p-subgroup. If p^{m} is the highest power
of p which divides the order of a group Γ, then a subgroup of Γ of order p^{m} is a Sylow p-subgroup of Γ. The set of all Sylow p-subgroups of Γ will be denoted by $\operatorname{Syl}_{p}(\Gamma)$. The following theorem is due to Sylow.
1.8 THEOREM Let p^{m} be the highest power of a prime p which divides the order of a group Γ. Then Γ has at least one subgroup of each of the orders p, p^{2}, \cdots, p^{m}. In particular $\mathrm{Syl}_{\mathrm{p}}(\Gamma) \neq \phi$. Furthermore, any two members of $\operatorname{Syl}_{p}(\Gamma)$ are conjugate in Γ, and every p-subgroup of Γ is contained in some member of $\mathrm{Syl}_{p}(\Gamma)$.

If Γ and Λ are groups, then $\Gamma \otimes \Lambda$ denotes the direct
product of Γ and Λ. The next lemma follows easily from Theorem 1.8.
1.9 LEMMA If Γ and Λ are groups and p is prime, then

$$
\operatorname{SyI}_{p}(\Gamma \otimes \Lambda)=\left\{P \otimes Q \mid P \in \operatorname{SyI}_{p}(\Gamma), Q \in \operatorname{Syl}_{p}(\Lambda)\right\}
$$

If Ω is a subset or a set of subsets of a group Γ, then the subgroup $\langle\Omega\rangle$ of Γ generated by Ω is the smallest subgroup of Γ which contains each element of Ω. If $\Lambda \leq \Gamma$ then the normaliser $\mathbb{N}_{\Gamma}(\Lambda)$ of Λ in Γ is the largest subgroup of Γ of which Λ is a normal subgroup.

1•10 LEMMA Let Γ be any group. Let $P, Q \in \operatorname{Syl}{ }_{p}(\Gamma)$ such that $P \neq Q$ and $|P \cap Q|$ is maximat. Then any conjugates of $P \cap Q$ in Γ which Lie in P are conjugate in $\mathbb{N}_{\Gamma}(P)$.
Proof: See Lemma $7 \cdot 4 \cdot 7$ in [15].

If Γ is a group, $\gamma, \delta \in \Gamma$ and $\Omega \subseteq \Gamma$, we use γ^{δ} as an abbreviation for $\delta^{-1} \gamma \delta$ and define $\Omega^{\gamma}=\left\{\omega^{\gamma} \mid \omega \in \Omega\right\}$.

Unless otherwise indicated, proofs of all the results mentioned in Sections 1.11-1.16 can be found in [44].

A permutation γ of the set V is a bijection from V to itself. The image of $x \in V$ under γ will be denoted by x^{γ}. An m-cycle ($m \geq 2$) is a permutation of the form ($v_{1} v_{2} \cdots v_{m}$), where elements of v not mentioned are mapped onto themselves. A 2-cycle is also called a transposition. The set of all permutations of V forms a group of order n ! under function composition, called the symmetric group S_{n}. A permutation group of degree n is a subgroup of S_{n}. The group $\Gamma \leq S_{n}$ is transitive if, for each x, $y \in V$, there is some $\gamma \in \Gamma$ such that $x^{\gamma}=y$. If $W \subseteq V$ and $\gamma \in S_{n}$ define $W^{\gamma}=\left\{x^{\gamma} \mid x \in W\right\}$. If $\Gamma \leq S_{n}$, $W \subseteq V$ and $W^{\gamma}=W$ for each $\gamma \in \Gamma$, then Γ induces a group $\left.\Gamma\right|_{W}$ of permutations of W. If also $\left.\Gamma\right|_{W}$ is transitive then W is an orbit of Γ and we say that Γ acts transitively on W. The orbits of Γ are disjoint, and so are the cells of a partition $\theta(\Gamma) \in I(V)$. More generally, if Ω is a subset or a set of subsets of S_{n} we define $\theta(\Omega)=\theta(\langle\Omega\rangle)$. The next lemma follows easily from the definitions.

1. 13 LEMMA If $\Omega, \Phi \subseteq \mathbb{S}_{\mathrm{n}}$ then $\theta(\Omega \cup \Phi)=\theta(\Omega) \vee \theta(\Phi)$.

An orbit of size r can be called an r-orbit. A l-orbit will also be called a trivial orbit. A point $x \in V$ which is in a trivial orbit of T is said to be fixed by F . The set of all points fixed by Γ is denoted by fix(Γ). In other words, fix(Γ) $=f i x(\theta(\Gamma))$. We can similarly define fix $(\Omega)=f i x(\theta(\Omega)), \operatorname{supp}(\Omega)=\operatorname{supp}(\theta(\Omega))$ and $\operatorname{mcr}(\Omega)=\operatorname{mcr}(\theta(\Omega))$ if Ω is any subset or set of subsets of S_{n}. The next lemma follows from Lemmas 1.6 and 1.13.
1.14 LEMMA Let $\Omega, \Phi \subseteq S_{n}$. Then
(a) $\operatorname{fix}(\Omega \cup \Phi)=\operatorname{fix}(\Omega)$ n fix (Φ),
(b) $\operatorname{supp}(\Omega \cup \Phi)=\operatorname{supp}(\Omega) \cup \operatorname{supp}(\Phi)$, and
(c) $\operatorname{mcr}(\Omega \cup \Phi) \subseteq \operatorname{mcr}(\Omega) \cap \operatorname{mcr}(\Phi)$.

If $\Gamma, \Lambda \leq S_{n}$ have disjoint support, the direct sum of Γ and Λ is the group $\Gamma \oplus \Lambda=\langle\Gamma \cup \Lambda\rangle$. Clearly $\Gamma \oplus \Lambda$ is isomorphic as an abstract group to $\Gamma \otimes \Lambda$.

Let $\Gamma \leq S_{n}$. A block of Γ is a subset $W \subseteq V$ such that for every $\gamma \in \Gamma$, either $W^{\gamma}=W$ or $W^{\gamma} \cap W=\varnothing$. Obviously \varnothing, V and every singleton are blocks; any other blocks are called non-trivial. If Γ is transitive and W is a block of Γ, then the different sets W^{γ}, for $\gamma \in \Gamma$, form the cells of a partition of V which is called a block-system for Γ, non-trivial if W is a non-trivial block. If Γ is transitive and has no non-trivial blocks it is called primitive, otherwise it is called imprimitive.

A permutation $\gamma \in S_{n}$ is defined according to its action on V , but it is also convenient to define an action of γ on other objects which involve V. We have already defined the action of γ on subsets of V, for example. Other important cases are as follows.
(i) If $\pi \in I^{*}(V), \pi^{\gamma}$ is formed by replacing each cell V_{i} with $V_{i}^{\gamma}(i n$ situ if $\pi \in \underset{\sim}{\mathbb{I}}(V))$.
(ii) If $G \in \underset{\sim}{G}(V)$ then $G^{\gamma} \in G(V)$ has $E\left(G^{\gamma}\right)=\left\{x^{\gamma} y^{\gamma} \mid x y \in E(G)\right\}$.

Other cases will be defined when they are first required, but in every case the idea is the same. Each element $x \in V$ is simply replaced by x^{Y} wherever it occurs in the object under consideration.

Let $\Gamma \leq S_{n}$ and let Ω be any set such that an action of each $\gamma \in \Gamma$ is defined on each element of Ω. Ω need not be closed under this action. Then the stabiziser of Ω in Γ is the group
$\Gamma_{\Omega}=\left\{\gamma \in \Gamma \mid \omega^{\gamma}=\omega\right.$ for each $\left.\omega \in \Omega\right\}$. Elements of Γ_{Ω} are said to fix Ω. The most important cases of this construction are as follows.
(i) (point-wise stabiliser)

If $W \subseteq V$ then $\Gamma_{W}=\left\{\gamma \in \Gamma \mid x^{\gamma}=x\right.$ for each $\left.x \in W\right\}$.
If $W=\left\{x_{1}, x_{2}, \cdots, x_{r}\right\}$ we will also write
I_{W} as $\mathrm{r}_{\mathrm{x}_{1}}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{r}}$.
(ii) (set-wise stabiliser)

If $W \subseteq V$ then $\Gamma_{\{W\}}=\left\{Y \in \Gamma \mid W^{Y}=W\right\}$.
(iii) (partition stabiliser)

If $\pi \in \Pi^{*}(V)$ has cells $V_{1}, V_{2}, \cdots, V_{r}$ then
$\Gamma_{\pi}=\left\{\gamma \in \Gamma \mid V_{i}^{\gamma}=V_{i}\right.$ for $\left.1 \leq i \leq r\right\}$. Note that this is not the same as $\Gamma_{\{\pi\}}=\{\gamma \in \Gamma \mid \pi \gamma=\pi\}$, unless $\pi \in \underset{\sim}{\mathbb{I}}(\mathrm{V})$.
(iv) (automorphism group)

If $G \in G(V)$, then the automorphism group of G is the group $\operatorname{Aut}(G)=\left(S_{n}\right)_{\{G\}}=\left\{\gamma \in S_{n} \mid G^{\gamma}=G\right\}$.

We will discuss this group in more depth later.

A group $\Gamma \leq S_{n}$ is semi-regular if $\Gamma_{x}=1$ for each $x \in V$, and regular if it is semi-regular and transitive.

Proofs of each part of the following theorem may be found in [44].

1. 15 THEOREM Let $\Gamma, \Lambda \leq S_{n}$ where Γ is transitive but Λ need not be. Let W be an orbit of Λ, and let $\left\{B_{1}, B_{2}, \ldots, B_{r}\right\}$ be a block system for Γ.
(a) If $\gamma \in S_{n}$ then W^{γ} is an orbit of Λ^{γ}. In particuzar, if $\gamma \in \mathbb{N}_{S_{n}}(\Lambda), W^{\gamma}$ is an orbit of Λ.
(b) For any $\mathrm{x} \in \mathrm{W},\left|\Lambda_{\mathrm{x}}\right||W|=|\Lambda|$.
(c) If $\mathrm{P} \in \operatorname{SyI}_{\mathrm{p}}(\Lambda)$ for some prime p , then every shortest orbit of P in W has Length F^{m}, where p^{m} is the highest power of p which divides |W|.
(d) Both $\left|\mathrm{B}_{\mathrm{l}}\right|$ and r are divisors of n .
(e) If $\Phi \leq \Gamma$, then $\theta(\Phi)$ is a block-system for Γ.
(f) The permutation group on $\left\{\mathrm{B}_{1}, \mathrm{~B}_{2}, \cdots, \mathrm{~B}_{\mathrm{r}}\right\}$ induced by the action of Γ is transitive.
(g) $\quad \Gamma_{\left\{\mathrm{B}_{1}\right\}}$ acts transitively on B_{1}.
(h) If $\Gamma_{1} \leq \Phi \leq \Gamma$, then the orbit of Φ which contains 1 is a block for Γ.
(i) fix $\left(\Gamma_{1}\right)$ is a block for Γ.

Now let $\Gamma \leqslant S_{n}$ be transitive. The set $J(\Gamma)$ consists of those subgroups $\Lambda \leq \Gamma$ such that
(i) $1<\Lambda \leq \Gamma_{1}$, and
(ii) $\quad \mathbb{N}_{\Gamma}(\Lambda)$ acts transitively on $f i x(\Lambda)$.

The most useful theorem for the identification of members of $J(\Gamma)$ is due to Jordan. (See [44] for a proof.)
1.16 THEOREM Let $\mathrm{T} \leq \mathrm{S}_{\mathrm{n}}$ be transitive, and let Λ be a non-trivial subgroup of Γ_{1} which is conjugate in Γ_{1} to any of its conjugates in Γ which lie in Γ_{1}. Then $\Lambda \in J(\Gamma)$.

If Γ is regular, then $J(\Gamma)=\emptyset$ obviously. If Γ is
transitive, but not regular, then Γ_{1} itself and any non-trivial Sylow p-subgroups of Γ_{1} are in $J(\Gamma)$. Another useful family of members of $J(I)$ is defined in the next theorem.

1. 17 THEOREM Let Γ be transitive and let ${S H I_{p}}\left(\Gamma_{1}\right) \neq\{1\}$ for some prime p. Then $\Lambda=\left\langle\operatorname{Syl}_{p}\left(\Gamma_{1}\right)\right\rangle \in J(\Gamma)$.
Proof: Obviously $1<\Lambda \leq \Gamma_{1}$. Furthermore, if $\Lambda^{\gamma} \subseteq \Lambda$ for some $\gamma \in \Gamma$, then $\left.\Lambda^{\gamma}=\left\langle\left\{P^{\gamma} \mid P \in \operatorname{Sy}\right]_{p}\left(\Gamma_{1}\right)\right\}\right\rangle=\Lambda$, by Theorem 1.8. Therefore $\Lambda \in J(\Gamma)$ by Theorem $1 \cdot 16$.
2. 18 COROLIARY Under the conditions of the theorem, fix (Λ) is a block for T.

Proof: Let $\Phi=\mathbb{N}_{\Gamma}(\Lambda)$. Then $\Gamma_{1} \leq \Phi \leq \Gamma$, since $\Lambda \leq \Gamma_{1}$ obviously. Therefore $\mathrm{fix}(\Lambda)$ is a block for Γ, by Theorems $1 \cdot 15(\mathrm{~h})$ and $1 \cdot 17$. The next theorem is due to C. E. Praeger [37].

1. 19 THEOREM Let $\Gamma \leq S_{\mathrm{n}}$ be transitive and let $1<\Lambda \leq \Gamma$ have the property that for any $\gamma \in \Gamma$, Λ and Λ^{γ} are conjugate in $\left\langle\left\{\Lambda, \Lambda^{\gamma}\right\}\right\rangle$. Then $|\operatorname{fix}(\Lambda)| \leq \frac{1}{2}(n-1)$.

If $\Lambda \leq \Phi \leq \Gamma$ are groups, we say that Λ is weakly closed in Φ with respect to Γ if for each $\gamma \in \Gamma, \Lambda^{\gamma} \leq \Phi$ if and only if $\Lambda^{\gamma}=\Lambda$.

1. 20 THEOREM Let $\Gamma \leq S_{n}$ be transitive and let $I<P \in \operatorname{Syl}_{p}\left(\Gamma_{1}\right)$ for some prime p. If $1<\Lambda \leq P$ and Λ is weakly closed in P with respect to Γ, then $|\operatorname{fix}(\Lambda)| \leq \frac{1}{2} n$.

Proof: \quad Suppose that $|f i x(\Lambda)|>\frac{1}{2} n$. Let $\gamma \in \Gamma$ and $\Phi=\left\langle\left\{\Lambda, \Lambda^{\gamma}\right\}\right\rangle$. Then $|f i x(\Phi)| \geq 1$, so that $\Phi \leq \Gamma_{\mathrm{x}}$ for some $\mathrm{x} \in \mathrm{V}$. By Theorem $1 \cdot 8$, there are $Q \in \operatorname{Sy}]_{p}(\Phi)$ and $\phi \in \Phi$ such that $\Lambda \leq Q$ and $\Lambda^{\gamma} \leq Q^{\phi}$. But then Λ^{ϕ} and Λ^{γ} are both in Q^{ϕ} and hence in any conjugate of P which contains Q^{ϕ}. Therefore $\Lambda^{\phi}=\Lambda^{\gamma}$ by the weak closure condition. But then $|f i x(\Lambda)| \leq \frac{1}{2}(n-1)$ by Theorem $1 \cdot 19$, contradicting the assumption that $|f i x(\Lambda)|>\frac{1}{2} n$.

1•21 Transitive graphs

A graph G is transitive if $A u t(G)$ is transitive, and edge-transitive if Aut(G) acts transitively on $E(G)$. A t-are in G is a sequence $\left(x_{0}, x_{1}, \cdots, x_{t}\right)$ of vertices of G such that $x_{i-1} x_{i} \in E(G)$ for $1 \leq i \leq t$ and $x_{i-1} \neq x_{i+1}$ for $1 \leq i<t$. The arc transitivity of G is the maximum value of t such that Aut(G) acts transitively on the t-arcs of G. A discussion of arctransitivity can be found in [5]. Clearly l-arc transitivity is the same as transitivity. A 2-arc transitive graph is also called symmetric; such a graph is clearly also edge-transitive. Some of the elementary properties of the various forms of transitivity are summarised in the next theorem.
1.22 THEOREM Let G and H be graphs.
(a) $\operatorname{Aut}(\bar{G})=\operatorname{Aut}(G)$. In particular \bar{G} is transitive if and only if G is transitive.
(b) If G is edge-transitive then $L(G)$ is transitive.
(c) If G and H are transitive, then $G \times H, G * H$ and $G[H]$ are transitive.
(a) If G is transitive and disconnected then $G=m H$ for some $m \geq 2$ and some connected transitive graph H.
(e) Let G be transitive with diameter Δ. Define G plus diagonals to be the graph $D(G)$ where $V(D(G))=V(G)$ and $E(D(G))=E(G) \cup\{x y \mid x, y \in V(G), \partial(x, y)=\Delta\}$. Then $D(G)$ is transitive.

A rich source of transitive graphs is the Cayley graph construction. Let Γ be a group, and let Ω be a subset of Γ such that
(i) Ω does not contain the identity of Γ, and
(ii) $\gamma \in \Omega$ if and only if $\gamma^{-1} \in \Omega$, for all $\gamma \in I$.

The cayley graph of Γ with connection set Ω is the graph $H=C(\Gamma, \Omega)$ with

$$
\begin{aligned}
& V(H)=\Gamma, \text { and } \\
& E(H)=\{\{\gamma, \gamma \omega\} \mid \gamma \in \Gamma, \omega \in \Omega\} .
\end{aligned}
$$

H is a transitive graph on which Γ acts (by left multiplication) as a regular subgroup of $A u t(H)$. Conversely, if $A u t(H)$ contains a regular subgroup Γ then H is (isomorphic to) a Cayley graph of Γ.

Transitive graphs which are not Cayley graphs are comparatively rare, but they do exist. See Appendix 2 for some examples. In order to algebraically represent all transitive graphs we can generalise the Cayley graph construction as in the next theorem, first published by Teh [41].

1•23 THEOREM Let Γ be any group. Let $\Lambda \leq \Gamma$ and $\Omega \subseteq \Gamma$ satisfy the conditions
(i) $\Lambda \Omega \Lambda$ does not contain the identity of Γ, and
(ii) $\gamma \in \Omega$ if and only if $\gamma^{-1} \in \Omega$, for $\gamma \in \Gamma$.

Define the groph $\mathrm{H}=\mathrm{C}(\Gamma, \Lambda, \Omega)$ as follows:

$$
\begin{aligned}
& V(H)=\{\gamma \Lambda \mid \gamma \in \Gamma\} \\
& E(H)=\left\{\{\gamma \Lambda, \delta \Lambda\} \mid \gamma, \delta \in \Gamma, \gamma^{-1} \delta \in \Lambda \Omega \Lambda\right\}
\end{aligned}
$$

Then H is a transitive graph for which Aut(H) contains a transitive (not-necessarily faithful) representation of Γ. Conversely, if Γ is a transitive subgroup of $A u t(H)$ then $H \cong C(\Gamma, \Lambda, \Omega)$ for suitable choices of Λ and Ω.
l. 24 Algorithms
Algorithms in this thesis are given in an informal a
manner as is possible without loss of rigor. Execution commences
at the command marked (1) and proceeds as directed until the
command stop is encountered. The only special symbol is the
assignment operator w, which indicates that the expression on the
right of the operator is to be evaluated and the resulting value
assigned to the variable on the left. When we are describing the
operation of the algorithm, Step (i) refers to the set of commands
starting at that marked (i) and finishing with the command
preceding that marked (i +1$)$.

A NEW GRAPH IABELIING ALGORITHM

In this chapter we will discuss the design of an algorithm for canonically labelling a vertex-coloured graph and for finding a small set of generators for the automorphism group of the graph. This algorithm is a descendant of the one described in McKay [26], which in turn was descended from an algorithm first developed in McKay [28]. Other algorithms which are related to ours in some respects have been devised by Mathon [25], Arlazarov, Zuev, Uskov and Faradzev [21] and Bayer and Proskurowski [3]. However we believe that the algorithm we will present here, or more precisely the implementation which we will discuss in Chapter 3, is the most powerful which is presently in use. It has been successfully applied to difficult graphs of order greater than 600 (see Chapter 3) and to rather easier graphs with around 3000 vertices.

2•1 Canonical Labelling Maps

A canonical labelling map is a map $C: G(V) \times \underset{\sim}{\mathbb{I}}(V) \rightarrow \underset{\sim}{G}(V)$, such that for any $G \in G(V), \pi \in \Pi(V)$ and $\gamma \in S_{n}$ we have
(CI) $\quad C(G, \pi) \cong G$
(C2) $\quad C\left(G^{\gamma}, \pi^{\gamma}\right)=C(G, \pi)$
(C3) If $C\left(G, \pi^{\gamma}\right)=C(G, \pi)$, then $\pi^{\gamma}=\pi^{\delta}$ for some $\delta \in \operatorname{Aut}(G)$.

The main use of a canonical labelling map is to solve various graph isomorphism problems as indicated in the following theorem.
$2 \cdot 2$ THEOREM Let $G_{1}, G_{2} \in \underset{\sim}{G}(V), \pi \in \underset{\sim}{\mathbb{I}}(v)$ and $\delta \in S_{n}$. Then $\boldsymbol{C}\left(\mathrm{G}_{1}, \pi\right)=\boldsymbol{C}\left(\mathrm{G}_{2}, \pi^{\gamma}\right)$ if and only if there is a permutation $\delta \in \mathrm{S}_{\mathrm{n}}$ such that $G_{2}=G_{1}^{\delta}$ and $\pi^{\gamma}=\pi^{\delta}$.

Proof: The existence of δ as required implies that $C\left(G_{1}, \pi\right)=C\left(G_{2}, \pi^{\gamma}\right)$ by Property C2. Suppose conversely that $C\left(G_{1}, \pi\right)=C\left(G_{2}, \pi^{\gamma}\right)$. By Property $C 1, G_{2}=G_{1}{ }^{\beta}$ for some $\beta \in S_{n}$. Therefore $C\left(G_{2}, \pi^{\gamma}\right)=C\left(G_{1}^{\beta}, \pi^{\gamma}\right)=C\left(G_{1}, \pi^{\gamma \beta^{-1}}\right)$, by Property C2. Since $C\left(G_{1}, \pi\right)=C\left(G_{2}, \pi^{\gamma}\right)$, there is some $\alpha \in \operatorname{Aut}\left(G_{1}\right)$ such that $\pi^{\gamma \beta^{-1}}=\pi^{\alpha}$, by Property C3, and so $\pi^{\gamma}=\pi^{\alpha \beta}$. But $\alpha \in \operatorname{Aut}\left(G_{1}\right)$, and so $G_{2}=G_{1}{ }^{\beta}=G_{1}{ }^{\alpha \beta}$.

The isomorphism problem described in Theorem $2 \cdot 2$ can be thought of as that of testing vertex-coloured graphs for isomorphism. Given $|\pi|$ colours, we colour those vertices of G_{1} which lie in the i-th cell of G_{1} with the i-th colour, for $1 \leq i \leq|\pi|$. We then similarly colour the vertices of G_{2} in accordance with π^{γ}. This will use the same colours with the same frequency. Theorem $2 \cdot 2$ now says that $\boldsymbol{C}\left(G_{1}, \pi\right)=\boldsymbol{C}\left(G_{2}, \pi^{\gamma}\right)$ if and only if there is a colour-preserving isomorphism from G_{1} to G_{2}.

The most important case is, of course, when π is the unit partition (V), in which case Property C3 holds trivially. However we will maintain the more general setting we have created, since the added complications will only be slight.

2•3 Equitable Partitions

For $G \in \underset{\sim}{G}(V), V \in V$ and $W \subseteq V$, define $d_{G}(v, W)$ to be the number of elements of W which are adjacent in G to v. The subscript G will normally be suppressed. We will say that $\pi \in \Pi^{*}(V)$ is equitable (with respect to G) if, for all $V_{1}, V_{2} \in \pi$ (not necessarily
distinct) and $\mathrm{v}_{1}, \mathrm{v}_{2} \in \mathrm{~V}_{1}$, we have $\mathrm{d}\left(\mathrm{v}_{1}, \mathrm{~V}_{2}\right)=\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{~V}_{2}\right)$. Some of the elementary properties of equitable partitions are studied in McKay [26]. For our purposes here we need only recall that the equitable members of $\pi(V)$ form a lattice which is closed under v. Since the discrete partition is always equitable, it follows that for every $\pi \in \Pi^{*}(V)$ there is a unique coarsest equitable partition $\xi(\pi) \in \Pi(v)$ which is finer than π.

One of our first concerns in this chapter will be to study an efficient procedure for computing $\xi(\pi)$ from π.
2.4 The Refinement Procedure

The algorithm we give here is a descendant of one first described in McKay [26]. It actually turns out to be a generalization of an algorithm of Hopcroft ([19], see also [16]) for minimizing the number of states in a finite automaton, although it was not derived from the latter.

The algorithm accepts a graph $G \in \underset{\sim}{G}(V)$, an ordered partition $\pi \in \underset{\sim}{\mathbb{I}}(\mathrm{V})$ and a sequence $\alpha=\left(W_{1}, W_{2}, \cdots, W_{M}\right)$ of distinct cells of π. The result is an ordered partition $\mathbb{R}(G, \pi, \alpha) \in \underset{\sim}{\mathbb{I}}(V)$. Under suitable conditions on α, to be discussed below, $R(G, \pi, \alpha) \simeq \xi(\pi)$.
2. 5 ALGORITHM Compute $R(G, \pi, \alpha)$ given $G \in G(V), \pi \in \underset{\sim}{\mathbb{N}}(V)$ and $\alpha=\left(W_{1}, W_{2}, \cdots, W_{M}\right) \subseteq \pi$.
(1) $\tilde{\pi} \leftarrow \pi$
$m \notin 1$
(2) If ($\tilde{\pi}$ is discrete or $m>M)$ stop: $R(G, \pi, \alpha)=\tilde{\pi}$
$W \leftarrow W_{m}$
$m \leftarrow m+1$
$k \leftarrow 1$
\{Suppose $\tilde{\pi}=\left(V_{1}, V_{2}, \cdots, V_{r}\right)$ at this point \}
(3) Define $\left(X_{1}, X_{2}, \cdots, X_{S}\right) \in \underset{\sim}{\Pi}\left(V_{k}\right)$ such that for any $x \in X_{i}, y \in Y_{j}$ we have $d(x, W)<d(y, W)$ if and only if i < j. If ($\mathrm{s}=\mathrm{I}$) go to (4) Let t be the smallest integer such that $\left|X_{t}\right|$ is maximum $(1 \leq t \leq s)$.
$\operatorname{If}\left(W_{j}=V_{k}\right.$ for some $\left.j(m \leq j \leq M)\right) W_{j} \leftarrow X_{t}$
For $1 \leq i<t \operatorname{set} W_{M+i} \leftarrow X_{i}$
For $t<i \leq s \operatorname{set} W_{M+i-1} \leftarrow X_{i}$
$M \leftarrow M+s-1$

Update $\tilde{\pi}$ by replacing the cell V_{k} in situ with the cells $X_{1}, X_{2}, \cdots, X_{s}$ in that order.
(4) $k \leftarrow k+1$

If $(k \leq r)$ go to (3)
Go to (2)
$2 \cdot 6$ THEOREM For any $G \in \underset{\sim}{G}(V), \pi \in \underset{\sim}{\pi}(V), \underset{R}{(G, \pi}, \pi) \simeq \xi(\pi)$.
Proof: (a) The value of $M-m$ is decreased in Step (2) and is only increased when $\tilde{\pi}$ is made strictly finer. Therefore the algorithm is certain to terminate.
(b) By definition, $\xi(\pi) \leq \pi$, so $\xi(\pi) \leq \tilde{\pi}$ at Step (1). Now suppose that $\xi(\pi) \leq \pi$ before some execution of Step (3). Since W is a cell of some partition coarser than $\xi(\pi)$ (some earlier value of $\tilde{\pi}$), it is a union of cells of $\xi(\pi)$. Since $\xi(\pi)$ is equitable, we must have that $\xi(\pi) \leq \tilde{\pi}$ after the execution of Step (3). Therefore, by induction, $\xi(\pi) \leq \boldsymbol{R}(G, \pi, \pi) \leq \pi$ when the algorithm stops.
(c) Suppose that $\mathbb{B}(G, \pi, \pi)$ is not equitable. Then for some $V_{1}, V_{2} \in \boldsymbol{R}(G, \pi, \pi)$ there are $x, y \in V_{1}$ such that
$d\left(x, V_{2}\right) \neq d\left(y, V_{2}\right)$. Since $\tilde{\pi}$ is made successively finer by the algorithm, x and y must always be in the same cell of $\tilde{\pi}$.
(d) At step (I), V_{2} is contained in some element of α. Hence V_{2} must sometime be contained in W for an execution of Step (3).
(e) Since x and y are never separated, $\bar{\alpha}(x, W)=\alpha(y, W)$. But $d\left(x, V_{2}\right) \neq d\left(y, V_{2}\right)$, and since W is a union of cells of $R(G, \pi, \pi)$, there is at least one other cell V_{3} of $\mathbb{R}(G, \pi, \pi)$ contained in W for which $d\left(x, V_{3}\right) \neq d\left(y, V_{3}\right)$. Since V_{2} and V_{3} are different cells of $\boldsymbol{R}(\mathrm{G}, \pi, \pi)$ they must be separated at some execution of step (3). At least one of them, say V_{2} will then be contained in some new element of α.
(f) Since the argument in (e) can clearly be repeated indefinitely, the algorithm never stops, contradicting (a). Therefore our assumption that $R(G, \pi, \pi)$ is not equitable must be false, which proves that $R(G, \pi, \pi) \simeq \xi(\pi)$.

An important advantage that Algorithm 2.5 has over previous algorithms for computing $\xi(\pi)$ is that α can sometimes be chosen to be a proper subset of π. One method of choosing α is described in the next theorem.
$2 \cdot 7$ THEOREM Let $G \in \underset{\sim}{G}(V), \pi \in \underset{\sim}{\Pi}(V)$ and suppose that there is some equitable partition π ' which is coarser than π. Choose $\alpha \subseteq \pi$ such that for any $W \in \pi^{\prime}$, we have $X \subseteq W$ for at most one $X \in \pi \backslash \alpha$. Then $\boldsymbol{R}(G, \pi, \alpha) \simeq \xi(\pi)$.

Proof: (a) By the same arguments as in Theorem 2•6, the algorithm will eventually stop, and $\xi(\pi) \leq R(G, \pi, \alpha) \leq \pi$.
(b) Suppose that $\boldsymbol{R}(G, \pi, \alpha)$ is not equitable. Then for some $V_{1}, V_{2} \in R(G, \pi, \alpha)$ there are $x, y \in V_{1}$ such that $d\left(x, V_{2}\right) \neq d\left(y, V_{2}\right)$.

Since $\boldsymbol{R}(G, \pi, \alpha) \leq \pi^{\prime}$, and π^{\prime} is equitable, there is at least one other cell V_{3} of $R(G, \pi, \alpha)$ such that $d\left(x, V_{3}\right) \neq d\left(y, V_{3}\right)$.
(c) If V_{2} and V_{3} are in different cells of π, the defined relationship between π, α and π^{\prime} ensures that at least one of them, say V_{2}, is contained in some cell of α at step (I). We can then take up the proof of Theorem $2 \cdot 6$ at step (d), and conclude that $R(G, \pi, \alpha) \simeq \xi(\pi)$.
(d) On the other hand, V_{2} and V_{3} may be in the same cell of π. Since they are different cells of $R(G, \pi, \alpha)$ they must be separated at step (3) of the algorithm. At least one of them, say V_{2}, will then be contained in some new element of α. We can now take up the proof of Theorem $2 \cdot 6$ at step (e) and conclude as before that $R(G, \pi, \alpha) \simeq \xi(\pi)$.

One application of Theorem $2 \cdot 7$ occurs when G is regular and π has more than one cell. The unit partition π_{0} is equitable, and so we can choose α to be π less any one cell. This will be particularly time-saving if $\pi=(v, V \backslash v)$ for some v, in which case we can use $\alpha=(\mathrm{v})$.

A much more important application of Theorem $2 \cdot 7$ will be described in Section 2.9.

Two very useful properties of Algorithm $2 \cdot 5$ are stated in the next lemma. Both of them are immediate consequences of the definition of the algorithm.
$2 \cdot 8$ LEMMA Let $G \in \underset{\sim}{G}(V), \pi \in \underset{\sim}{T}(V)$, a an ordered subset of π and $\gamma \in S_{n}$. Then
(a) $R(G, \pi, \alpha) \leqq \pi$, and
(b) $\boldsymbol{R}\left(G^{\gamma}, \pi^{\gamma}, \alpha^{\gamma}\right)=\bar{R}(G, \pi, \alpha)^{\gamma}$.

2.9 Partition nests

Let $\pi=\left(V_{1}, V_{2}, \cdots, V_{k}\right) \in \underset{\sim}{\mathbb{I}}(V)$ and let $V \in V_{i}$ for some i.
If $\left|V_{i}\right|=I$ define $\pi \circ V=\pi$. If $\left|V_{i}\right|>I$ define $\pi \circ v=\left(V_{1}, \cdots, V_{i-1}, V, V_{i} \backslash v, V_{i+1}, \cdots, V_{k}\right)$. Also define $\pi \perp v=\boldsymbol{R}(G, \pi \circ v,(v))$.

Given $G \in \underset{\sim}{G}(V), \pi \in \underset{\sim}{\Pi}(V)$ and a sequence $\underset{\sim}{V}=V_{1}, V_{2}, \cdots, V_{m-1}$ of distinct elements of V, we define the partition nest derived from G, π and $\underset{\sim}{v}$ to be $\left[\pi_{1}, \pi_{2}, \cdots, \pi_{m}\right]$, where
(a) $\pi_{1}=\boldsymbol{R}(G, \pi, \pi)$, and
(b) $\pi_{i}=\pi_{i-1} \perp v_{i-1}$, for $2 \leq i \leq m$.

It follows from Theorems 2.6 and 2.7 that each π_{i} is equitable. Define $\underset{\sim}{\mathbb{N}}(V)$ to be the set of all partition nests derived from some $G \in \underset{\sim}{G}(V), \pi \in \underset{\sim}{\Pi}(V)$ and vector $\underset{\sim}{V}$ of distinct elements of V. 2.10 The basic search tree

Let $G \in \underset{\sim}{G}(V)$ and $\pi \in \underset{\sim}{\mathbb{M}}(V)$. Then the search tree $T(G, \pi)$ is the set of all partition nests $v=\left[\pi_{1}, \pi_{2}, \cdots, \pi_{m}\right] \in \underset{\sim}{\mathbb{N}}(V)$ such that v is derived from G, π and a sequence $v_{1}, v_{2}, \ldots, v_{m-1}$ where, for $1 \leq i \leq m-1, v_{i}$ is an element of the first non-trivial cell of π_{i} which has the smallest size. This definition implies that $\left|\pi_{i}\right|<\left|\pi_{i+1}\right|$ for $I \leq i<m$.

The elements of $T(G, \pi)$ will be referred to as nodes. The Zength $|v|$ of a node v is the number of partitions it contains. If $\nu=\left[\pi_{1}, \pi_{2}, \cdots, \pi_{m}\right]$ is a node then $v^{(i)}$ denotes the node $\left[\pi_{1}, \pi_{2}, \cdots, \pi_{i}\right]$, for $1 \leq i \leq m$. Thus $v^{(m)}=v$. If $m \geq 2$ then v is called a successor of $v^{(m-1)}$. Similarly, v is a descendant of $v^{(i)}$ $\left(\operatorname{and} v^{(i)}\right.$ is an ancestor of $\left.v\right)$ if $1 \leq i<m$. The root mode $\left[\pi_{1}\right]$ is an ancestor of every node other than itself. The set of all nodes equal to or descended from a node v constitutes the subtree of $\mathbb{T}(G, \pi)$
rooted at v, and is denoted by $T(G, \pi, v)$. If the last partition in a node is discrete, v will be called a terminal node.

Suppose that v_{1} and ν_{2} are distinct nodes, neither of which is a descendant of the other. Then for some $i, v_{1}{ }^{(i)}=v_{2}{ }^{\text {(i) }}$ but $v_{1}^{(i+1)} \neq v_{2}^{(i+1)}$. The node $v_{1}^{(i+1)}$ will be denoted by $v_{1}-v_{2}$ and $v_{2}(i+1)$ by $v_{2}-v_{1}$.

The natural linear ordering of V can be used to provide an ordering < of the nodes of $T(G, \pi)$. Let ν_{1} and ν_{2} be distinct nodes. If v_{1} is an ancestor of v_{2} then $v_{1}<v_{2}$. If neither of v_{1} or v_{2} is an ancestor of the other, there is a node $\left[\pi_{1}, \pi_{2}, \cdots, \pi_{m}\right]$ and vertices $v_{1} \neq v_{2}$ such that $\nu_{1}-v_{2}=\left[\pi_{1}, \pi_{2}, \cdots, \pi_{m}, \pi_{m} \perp v_{1}\right]$ añ $\nu_{2}-v_{1}=\left[\pi_{1}, \pi_{2}, \cdots, \pi_{m}, \pi_{m} \perp v_{2}\right]$. Then we have $v_{1}<v_{2}$ if $\nu_{1}<\nu_{2}$. If $\nu_{1}<\nu_{2}$, we say that v_{1} is earlier than ν_{2}, and that v_{2} is Zater than v_{1}.

Some of the obvious properties of this ordering of $T(G, \pi)$ are listed in the next lemma.

2•11 LEMMA Let $G \in G(V), \pi \in \underset{\sim}{I}(V)$ and $v_{1}, \nu_{2}, v_{3} \in T(G, \pi)$. Then
(a) Exactly one of $v_{1}<v_{2} v_{1}=v_{2}$ and $v_{2}<v_{1}$ is true.
(b) If $v_{1}<v_{2}$ and $v_{2}<v_{3}$ then $v_{1}<v_{3}$.
(c) If $\nu_{1}<\nu_{2}, \nu_{1}^{\prime} \in \mathbb{T}\left(G, \pi, \nu_{1}\right)$ and $\nu_{2}^{\prime} \in T\left(G, \pi, \nu_{2}\right)$ then $v_{1}^{\prime}<v_{2}^{\prime}$, except possibly if v_{1} is an ancestor of v_{2}.

If $v_{1} \neq v_{2}$ and neither of v_{1} and v_{2} is an ancestor of the other, then $v_{1}<v_{2}$ if and only if $v_{1}-v_{2}<v_{2}-v_{1}$.

Given $G \in \underset{\sim}{G}(V)$ and $\pi \in \underset{\sim}{\mathbb{N}}(V)$ we can generate the elements of $T(G, \pi)$ in the order given by <, with the simple backtrack algorithm given below.
2.12 ALGORITHM Generate $T(G, \pi)$ in the order earliest to Zatest, given $G \in \underset{\sim}{G}(V)$ and $\pi \in \underset{\sim}{\mathbb{T}}(V)$.
(1) $\mathrm{k} \leftarrow 1$
$\pi_{1} \leftarrow R(G, \pi, \pi)$
Output [π_{1}]
(2) If (π_{k} is discrete) go to (4)
$W_{k} \leftarrow$ first non-trivial cell of π_{k} of the smallest size
(3) If $\left(W_{k}=\varnothing\right)$ go to (4)
$\mathrm{v} \leftarrow \min W_{k}$
$W_{k} \leftarrow W_{k} \backslash v$
$\pi_{k+1} \leftarrow \pi_{k} \perp v$
$k \leftarrow k+1$
Output $\left[\pi_{1}, \pi_{2}, \cdots, \pi_{k}\right]$
Go to (2)
(4) $k \leftarrow k-1$

If ($k \geq 1$) go to (3)
Stop: All the nodes of $T(G, \pi)$ have been output in the proper order.
2.13 Group actions on $T(G, \pi)$

If $\nu=\left[\pi_{1}, \pi_{2}, \cdots, \pi_{m}\right] \in \underset{\sim}{\mathbb{N}}(V)$ and $\gamma \in S_{n}$, then we can define $v^{\gamma}=\left[\pi_{1}{ }^{\gamma}, \pi_{2}{ }^{\gamma}, \cdots, \pi_{m}^{\gamma}\right]$. Obviously $v^{\gamma} \in \underset{\sim}{\mathbb{N}}(V)$. The property of Algorithm 2.5 described in Lemma 2.8 has immediate consequences for $T(G, \pi)$, as we describe in the next theorem.
2. 14 THEOREM Let $G \in \underset{\sim}{G}(V), \pi \in \underset{\sim}{I I}(V)$ and $\gamma \in S_{n}$.
(a) $T\left(G^{\gamma}, \pi^{\gamma}\right)=T(G, \pi)^{\gamma}$.
(b) If $\nu \in T(G, \pi)$, then $T\left(G^{\gamma}, \pi^{\gamma}, \nu^{\gamma}\right)=T(G, \pi, \nu)^{\gamma}$.

The map from $T(G, \pi)$ to $T(G, \pi)^{Y}$ will not in general preserve the ordering < .

We will be particularly interested in permutations $\gamma \in S_{n}$ such that $G^{\gamma}=G$ and $\pi^{\gamma} \in \pi$. In other words, $\gamma \in \operatorname{Aut}(G) \pi$. If $\nu_{1}, \nu_{2} \in T(G, \pi)$ and $\nu_{2}=\nu_{1} \gamma$ for some $\gamma \in \operatorname{Aut}(G)$ we write $\nu_{1} \sim \nu_{2}$ and say that v_{1} and ν_{2} are equivalent. By Theorem 2.14, \sim is an equivalence relation on $\mathbb{T}(G, \pi)$. If ν is a terminal node of $\mathbb{T}(G, \pi)$ then v is called an identity node if there is no earlier node of $T(G, \pi)$ which is equivalent to v.

The following theorem is fundamental to our treatment of group actions on $T(G, \pi)$.
2. 15 THEOREM Let $G \in \underset{\sim}{G}(V), \pi \in \underset{\sim}{J}(V)$ and $\gamma \in \operatorname{Aut}(G)$. Then
(a) $T(G, \pi)^{\gamma}=T(G, \pi)$.
(b) If $\nu \in \mathbb{T}(G, \pi)$, then $T\left(G, \pi, \nu^{\gamma}\right)=T(G, \pi, \nu)^{\gamma}$.
(c) If $v_{1}, v_{2} \in T(G, \pi), v_{1}<v_{2}$ and $v_{1} \sim v_{2}$, then $T\left(G, \pi, \nu_{2}-\nu_{1}\right)$ contains no identity nodes.

Proof: Assertions (a) and (b) are immediate consequences of Theorem 2.14, so we consider only assertion (c). If $v_{1} \sim v_{2}$, there is some $\gamma \in \operatorname{Aut}(G)_{\pi}$ such that $\nu_{2}=\nu_{1}{ }^{\gamma}$. But then $\nu_{2}-\nu_{1}=\left(\nu_{1}-\nu_{2}\right)^{\gamma}$ and so $T\left(G, \pi, \nu_{2}-\nu_{1}\right)=T\left(G, \pi, \nu_{1}-\nu_{2}\right)^{\gamma}$ by (b). However $\nu_{1}<\nu_{2}$ and so $v_{1}-v_{2}<v_{2}-v_{1}$, by Lemma 2.11. Therefore, every terminal node in $T\left(G, \pi, \nu_{2}-v_{1}\right)$ is equivalent to an earlier terminal node in $T\left(G, \pi, v_{1}-\nu_{2}\right)$, which proves (c).
2.16 Indicator functions

Let \triangle be any linearly ordred set. An indicator function
is a map $\Lambda: \underset{\sim}{G}(V) \times \underset{\sim}{\pi}(V) \times \underset{\sim}{\mathbb{N}}(V) \rightarrow \Delta$
such that $\Lambda\left(G^{\gamma}, \pi^{\Upsilon}, \nu^{\gamma}\right)=\Lambda(G, \pi, \nu)$ for any $G \in \underset{\sim}{G}(V), \pi \in \underset{\sim}{\pi}(V)$, $\nu \in \mathbb{T}(G, \pi)$ and $\gamma \in S_{n}$.

Given one indicator function Λ, we can define another indicator function $\underset{\sim}{A}$ by:

$$
\Lambda(G, \pi, v)=\left(\Lambda\left(G, \pi, v^{(1)}\right), \Lambda\left(G, \pi, v^{(2)}\right), \cdots, \Lambda\left(G, \pi, v^{(k)}\right)\right),
$$

where $k=|v|$, with the lexicographic ordering induced from the ordering of Δ.
2.17 Definition of $C(G, \pi)$

If $\nu=\left[\pi_{1}, \pi_{2}, \cdots, \pi_{m}\right]$ is a terminal node of $T(G, \pi)$ then π_{m} is a discrete ordered partition, by definition. This means that π_{m} defines an ordering of the elements of V. We can define a graph $G(v)$ isomorphic to G by relabelling the vertices of G in the order that they appear in π_{m}. More precisely, if $\pi_{m}=\left(v_{1}\left|v_{2}\right| \cdots \mid v_{n}\right)$, and $\delta \in S_{n}$ is the permutation taking v_{i} onto i for $l \leq i \leq n$, then $G(\nu)=G^{\delta}$. The following lemma is an immediate consequence of the definitions.
2.18 LEMMA If $G \in \underset{\sim}{G}(V), \pi \in \underset{\sim}{\pi}(V), \gamma \in S_{n}$ and $\nu \in \mathbb{T}(G, \pi)$ is a terminal node, then $G\left(\nu^{\gamma}\right)=G(v)$ if and only if $\gamma \in \operatorname{Aut}(G)$.

Proof: Let $v=\left[\pi_{1}, \pi_{2}, \cdots, \pi_{m}\right]$, where $\pi_{m}=\left(v_{1}\left|v_{2}\right| \cdots \mid v_{n}\right)$, and take the permutation $\delta \in S_{n}$ which takes v_{i} onto i for $l \leq i \leq n$. Then $G(v)=G^{\delta}$ by definition. Also by definition, $\pi_{m}^{\gamma}=\left(v_{1}^{\gamma}\left|v_{2}^{\gamma}\right| \cdots \mid v_{n}^{\gamma}\right)$, and so $G\left(\nu^{\gamma}\right)=G_{G} \gamma^{-1} \delta$. Therefore $G(\nu)=G\left(\nu^{\gamma}\right)$ if and only if $G^{\delta}=G^{\gamma^{-1} \delta}$, which is possible if and only if $\gamma \in \operatorname{Aut}(G)$.

Our next requirement is a linear ordering of $\underset{\sim}{G}(V)$. Any such ordering will do, but it will be convenient for us to use an ordering defined using the adjacency matrices of elements of $\underset{\sim}{G}(V)$. Given $G \in \underset{\sim}{G}(V)$ we can define an integer $n(G)$ by writing down the
elements of the adjacency matrix in a row-by-row fashion, and interpreting the result as an n^{2}-bit binary number. If $G_{1}, G_{2} \in \underset{\sim}{G}(V)$ we can then define $G_{1} \leq G_{2}$ if and only if $n\left(G_{1}\right) \leq n\left(G_{2}\right)$.

We can at last define $C(G, \pi)$. Let $X(G, \pi)$ be the set of all terminal nodes of $T(G, \pi)$. Choose an arbitrary (but fixed) indicator function Λ. Let $\Lambda^{*}=\max \{\Lambda(G, \pi, v) \mid \nu \in X(G, \pi)\}$. Then we define $C(G, \pi)=\max \left\{G(\nu) \mid \nu \in X(G, \pi)\right.$ and $\left.\Lambda(G, \pi, \nu)=\Lambda^{*}\right\}$.
2.19 THEOREM 6 is a canonical labelling map.

Proof: We show that C has Properties Cl - C3 (Section 2•1). Property Cl is true because $G(\nu) \cong G$ for any $v \in X(G, \pi)$. Now let $\gamma \in S_{n}$. By Theorem 2.14 $T\left(G^{\gamma}, \pi^{\gamma}\right)=T(G, \pi)^{\gamma}$ and so $X\left(G^{\gamma}, \pi^{\gamma}\right)=X(G, \pi)^{\gamma}$. Also, by the definition of indicator function, $\underset{\sim}{A}\left(G^{\gamma}, \pi^{\gamma}, v^{\gamma}\right)=\underset{\sim}{\Lambda}(G, \pi, v)$ for any $v \in X(G, \pi)$. Finally, by the definition of $G(\nu)$, we find that $G^{\gamma}\left(\nu^{\gamma}\right)=G(\nu)$. Therefore C has Property C2.

In order to prove Property C3 we must recall Lemma 2•8(a). Together with the fact that any $v \in X(G, \pi)$ is a partition nest, this implies that $C(G, \pi)=G^{\delta}$ for some $\delta \in S_{n}$ such that $\pi^{\delta}=\pi$.

Now suppose that $C\left(G, \pi^{\gamma}\right)=C(G, \pi)$ for some $\gamma \in S_{n}$. Since C satisfies Property $C 2, C\left(G, \pi{ }^{\gamma}\right)=C\left(G^{\gamma^{-1}}, \pi\right)$. Therefore there are $\alpha, \beta \in S_{n}$ such that $\pi^{\alpha}=\pi^{\beta}=\pi, C\left(G, \pi^{\gamma}\right)=G^{\gamma^{-1} \alpha}$ and $C(G, \pi)=G^{\beta}$. The assumption that $C\left(G, \pi^{\gamma}\right)=C(G, \pi)$ thus implies that $G^{\gamma}{ }^{-1} \alpha=G^{\beta}$ and so $\beta \alpha^{-1} \gamma \in \operatorname{Aut}(G)$. Finally, $\pi^{\beta \alpha^{-1} \gamma}=\pi^{\gamma}$ since $\pi^{\beta}=\pi^{\alpha}=\pi$. Therefore 6 has Property C3.

An elementary means of computing $C(G, \pi)$ is now apparent. Using Algorithm $2 \cdot 12$ we can generate every element of $X(G, \pi)$. We
can then identify those $\nu \in X(G, \pi)$ for which $\AA(G, \pi, V)$ is maximum and so find $C(G, \pi)$ from its definition. It is not necessary to store all of $X(G, \pi)$ simultaneously; its elements can be processed as they are generated and then discarded. However, this process is not practical for use with a great many graphs because of the size of $\mathrm{X}(\mathrm{G}, \pi)$. One problem is with graphs having large automorphism groups. Since Aut(G) acts semi-regularly on $X(G, \pi),|X(G, \pi)|$ must be a multiple of \mid Aut(G)|, and so can be impossibly large, even for moderate n. Secondly, there are graphs for which $|X(G, \pi)|$ is very large, even if $|A u t(G)|$ is small. We will meet some of these graphs in the next chapter.

The method which we will use to attack these difficulties is a process of pruning $\mathbb{T}(G, \pi)$. Let us say that $\nu \in X(G, \pi)$ is a canonical node if $C(G, \pi)=G(\nu)$. Obviously, any part of $T(G, \pi)$ can be ignored if the remainder is known to contain a canonical node. Our guiding light is the following theorem, which is already implicit in the foregoing.
$2 \cdot 20$ THEOREM Let $G \in \underset{\sim}{G}(V), \pi \in \underset{\sim}{I}(V)$, and $\Lambda^{*}=\max \{\Lambda(G, \pi, \nu) \mid \nu \in X(G, \pi)\}$. Let $X^{*}(G, \pi)$ be any subset of $X(G, \pi)$ which contains those identity nodes ν for which $A(G, \pi, V)=\Lambda^{*}$. Then $X^{*}(G, \pi)$ contains a canonical node.

In the terms of Theorem $2 \cdot 20$ our aim will be to reduce the size of $X^{*}(G, \pi)$ as much as possible. We will reduce the number of elements of $X^{*}(G, \pi)$ which are not identity nodes by searching for automorphisms of G and employing any we find to delete subtrees of $T(G, \pi)$. We will reduce the number of identity nodes in $X^{*}(G, \pi)$ by using Λ.

The existence of one or more automorphisms of G can be inferred during the generation of $T(G, \pi)$ in at least two different ways.
(1) We may find two terminal nodes $\nu_{1}, \nu_{2} \in X(G, \pi)$ such that $G\left(\nu_{1}\right)=G\left(v_{2}\right)$.
(2) We can sometimes infer the presence of automorphisms from the structure of an equitable partition.

The first case is the more important and will be treated
first. The second case can wait until Section $2 \cdot 24$.
Suppose then that during the generation of $T(G, \pi)$ we encounter a terminal node $\nu_{2} \in X(G, \pi)$, compute $G\left(\nu_{2}\right)$, and discover that it is the same as $G\left(\nu_{1}\right)$ for some earlier terminal node v_{1}. Since v_{1} and v_{2} are terminal nodes, there is a unique permutation $\gamma \in S_{n}$ such that $v_{2}=v_{1}{ }^{\gamma}$. It then follows from Lemma 2.18 that $\gamma \in \operatorname{Aut}(G)$. We will call γ an $\operatorname{explicit}$ automorphism.

Once we have found an explicit automorphism there are several ways we can put it to work. These are based on Theorem 2•15. The immediate outcome of Theorem $2 \cdot 15$ is that we may ignore the remainder of the subtree $T\left(G, \pi, \nu_{2}-\nu_{1}\right)$. However, we can do better than that. Since Aut(G) is a group, not only γ but all its powers are in $\operatorname{Aut}(G)$. Moreover, if we have found several automorphisms of G, any permutation which is generated by these is also in Aut(G). The following scheme for handling this mass of information is not always the best, but has been found to work very well in many circumstances.

Let $\varepsilon \in X(G, \pi)$ be the earliest terminal node. We will need the following lemma.
$2 \cdot 22$ LEMMA Let $\nu_{1}<\nu_{2} \in X(G, \pi)$. Then $\left|\varepsilon-\nu_{2}\right| \leq\left|\nu_{1}-\nu_{2}\right|$. Proof: If $\left|\nu_{1}-\nu_{2}\right|<\left|\varepsilon-\nu_{2}\right|$, then $\nu_{2} \in T\left(G, \pi, \varepsilon-\nu_{1}\right)$, which contradicts the assumption that $v_{1}<v_{2}$.

We next introduce an auxiliary partition $\theta \in \Pi(V)$. We initially set θ to the discrete partition of V, and whenever we obtain an explicit automorphism γ, we update $\theta \leftarrow \theta \vee \theta(\gamma)$. This means, by Lemma $1 \cdot 13$, that θ is at every stage the orbit partition of the group generated by all the explicit automorphisms so far discovered. It also means that $\theta \leq \theta\left(\operatorname{Aut}(G)_{\pi_{m}}\right)$, where $\left[\pi_{1}, \pi_{2}, \cdots, \pi_{m}\right]$ is any common ancestor of all the terminal nodes we have yet considered. This is because a permutation taking one node to another fixes their common ancestors.

Now consider a node $v=\left[\pi_{1}, \pi_{2}, \cdots, \pi_{m}\right]$ which is an ancestor of ε. Because of the definition of ε, v is also an ancestor of all the terminal nodes generated so far. Let $W=\left\{v_{l}, v_{2}, \cdots, v_{k}\right\}$ be the first non-trivial cell of smallest size of π_{m}, where $v_{l}<v_{2}<\cdots<v_{k}$. Since $\theta \leq \pi_{m}$, θ induces a partition of W. Now the successors of v, in the order earliest to latest, are $v\left(v_{1}\right), v\left(v_{2}\right), \cdots, v\left(v_{k}\right)$, where $v\left(v_{i}\right)=\left(\pi_{1} \geq \pi_{2} \geq \cdots \geq \pi_{m} \geq \pi_{m} \perp v_{i}\right)$. If $v_{i}<v_{j}$ are in the same cell of θ, there is some automorphism γ, generated by the explicit automorphisms so far discovered, such that $v\left(v_{j}\right)=\nu\left(v_{i}\right)^{\gamma}$. Therefore we can exclude the subtree $T\left(G, \pi, v\left(v_{j}\right)\right)$ from further examination. There are two ways of doing this. The first is that, as we generate successive subtrees $T\left(G, \pi, v\left(v_{1}\right)\right)$, $T\left(G, \pi, v\left(v_{2}\right)\right), \cdots$ we only consider those for which $v_{i} \in \operatorname{mcr}(\theta)$. The second is that, upon discovering an explicit automorphism γ during the generation of $T\left(G, \pi, v\left(v_{i}\right)\right)$, and updating θ, we check to
see if it is still true that $v_{i} \in \operatorname{mcr}(\theta)$. If not, we have found proof (namely γ) that $T\left(G, \pi, \nu\left(v_{i}\right)\right.$) only contains terminal nodes equivalent to the terminal nodes of some subtree we have already examined. Therefore we can return at once to v and consider $v\left(v_{i+1}\right)$.

The technique just described often allows us to jump all the way back to an ancestor ν of ε after only generating one terminal node of a subtree rooted at a successor of v. Unfortunately this is not always possible, for example when a new terminal node is not recognized as being equivalent to an earlier one. It will also be possible (due to the use of Λ - see later) for a whole subtree to be ignored without knowing it to be equivalent to anything else. In order to put our automorphisms to work in such cases we have devised the following scheme.

Firstly, we maintain a store $\underset{\sim}{S}$ which contains (fix $(\gamma), \operatorname{mcr}(\gamma))$ for every explicit automorphism γ so far discovered (or some subset of them). Then, with each non-terminal node $\nu \in \mathbb{T}(G, \pi)$ we associate a set $W(\nu) \subseteq V$. The first time (if any) we encounter v in the search of $T(G, \pi), W(\nu)$ is set equal to the first smallest non-trivial cell of π_{m}, where $v=\left[\pi_{1}, \pi_{2}, \cdots, \pi_{m}\right]$ 。 The next time we encounter v (if any), we redefine
$W(\nu) \leftarrow W(\nu) \cap \operatorname{mcr}\left(\gamma_{1}\right) \cap \operatorname{mcr}\left(\gamma_{2}\right) \cap \cdots \cap \operatorname{mcr}\left(\gamma_{r}\right)$, where $\gamma_{1}, \gamma_{2}, \cdots, \gamma_{r}$ are those previously encountered explicit automorphisms which fix ν. From then on we can ignore subtrees $T(G, \pi, \nu(v)$) for which $v \notin W(v)$. This is justified by Lemma 1•14. The reasons for deferring the modification of $W(v)$ until the second encounter with v are (i) that the subtree rooted at the earliest successor of v has to be examined anyway (since the smallest element of $W(v)$ before the
modification remains in $W(\nu)$ after the modification) and (ii) that there is ofter no second encounter with v (we may find an automorphism allowing us to jump back to an ancestor of v). The next lemma shows that we can determine whether γ fixes ν by looking at fix (γ).
2.23 LEMMA Let γ be an explicit automorphism. Let $v=\left[\pi_{1}, \pi_{2}, \cdots, \pi_{m}\right\rfloor \in T(G, \pi)$ be derived from G, π and $\mathrm{v}_{1}, \mathrm{v}_{2}, \cdots, \mathrm{v}_{\mathrm{m}-1}$. Then γ fixes v if and only if $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \cdots, \mathrm{v}_{\mathrm{m}-1}\right\} \subseteq \mathrm{fix}(\gamma)$. Proof: The necessity is obvious. To prove the sufficiency we use induction on the ancestors of v. We know that γ fixes π_{1}, because π_{1} is an ancestor of the two equivalent terminal nodes via which γ was discovered. Now suppose that $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \cdots, \mathrm{v}_{\mathrm{m}-1}\right\} \subseteq \mathrm{fix}(\gamma)$ and that γ fixes $\left(\pi_{1} \geq \pi_{2} \geq \cdots \geq \pi_{r}\right)$ for some $r(1 \leq t \leq m-1)$. Thus $\gamma \in \operatorname{Aut}(G) \pi_{r}$. Furthermore, γ fixes V_{r} and π_{r+1} is the coarsest equitable partition finer than π_{r} which fixes v_{r}. Therefore γ fixes π_{r+1}.

There is one other circumstance under which we may wish to change $W(\nu)$. If we find two equivalent terminal nodes ν_{1}, v_{2} where $v_{2}=v_{1}^{\gamma}$ and where v is the longest common ancestor of v_{1} and v_{2}, we can set $W(\nu) \leftarrow W(\nu) \quad n \operatorname{mer}(\gamma)$.
2.24 Implicit automorphisms

There are occasions when we can infer the presence of one or more automorphisms without generating any of them explicitly. These are based on the following lemma.
2.25 LEMMA Let $G \in \underset{\sim}{G}(V)$ and let $\pi \in \underset{\sim}{\pi}(V)$ be equitable with respect to G. If π has m non-trivial cells and either $n \leq|\pi|+4$, $\mathrm{n}=|\pi|+\mathrm{m}$ or $\mathrm{n}=|\pi|+\mathrm{m}+1$, then $\pi_{1}=\theta\left(\operatorname{Aut}(\mathrm{G}) \pi_{1}\right.$) for any equitable $\pi_{1} \leq \pi$.

Proof: Let $\pi_{1}=\left\{V_{1}, V_{2}, \cdots, V_{k}\right\}$, where $\left|V_{i}\right|>1$ for $I \leq i \leq m$ and $\left|V_{i}\right|=1$ for $m<i \leq k$. Since π_{1} is equitable, there is a set of numbers $e_{i j}(1 \leq i, j \leq k)$ such that each vertex in V_{i} is adjacent to $e_{i j}$ vertices in V_{j}. Counting the edges between V_{i} and V_{j} we find that

$$
\begin{equation*}
\left|V_{i}\right| e_{i j}=\left|V_{j}\right| e_{j i} \tag{*}
\end{equation*}
$$

Since $0 \leq e_{i j} \leq\left|V_{j}\right|,(*)$ implies that $e_{i j}=0$ or $e_{i j}=\left|V_{j}\right|$ whenever $\left(\left|v_{i}\right|,\left|v_{j}\right|\right)=1$.

If $\pi_{1}{ }^{\gamma}=\pi_{1}$ for some $\gamma \in S_{n}$ and $\left(\left|V_{i}\right|,\left|V_{j}\right|\right)=1$, the permutation γ will preserve the set of edges between V_{i} and V_{j}. Therefore, in determining whether or not $\gamma \in \operatorname{Aut}(G)$ we can ignore such edges. In particular we can ignore any edge incident with a vertex in a trivial cell.

If π satisfies the requirements of the theorem, there are seven possibilities for the sizes of the non-trivial cells of π_{1}. We will treat these separately.
(a) $\left|V_{i}\right|=2$ for $I \leq i \leq m$.

Let $V_{i}=\left\{v_{i}, w_{i}\right\}$ for $l \leq i \leq m$. For $I \leq i<j \leq m$ there are four possibilities for the edges between V_{i} and V_{j}. Either there are no such edges, all possible such edges or two such edges. In the last case the edges are either $\left\{v_{i}, v_{j}\right\}$ and $\left\{w_{i}, w_{j}\right\}$ or $\left\{v_{i}, w_{j}\right\}$ and $\left\{\mathrm{w}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right\}$. Therefore the permutation $\gamma=\left(\mathrm{v}_{1} \mathrm{w}_{1}\right)\left(\mathrm{v}_{2} \mathrm{w}_{2}\right) \cdots\left(\mathrm{v}_{\mathrm{m}} \mathrm{w}_{\mathrm{m}}\right)$ is in $\operatorname{Aut}(G)$, and since $\theta(\gamma)=\pi_{1}, \pi_{1}=\theta\left(\operatorname{Aut}(G)_{\pi_{1}}\right)$.
(b) $\left|v_{1}\right|=3,\left|v_{i}\right|=2$ for $2 \leq i \leq m$.

Let $\mathrm{V}_{1}=\left\{\mathrm{v}_{1}, \mathrm{w}_{1}, \mathrm{x}_{1}\right\}$ and $\mathrm{V}_{\mathrm{i}}=\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}}\right\}$ for $2 \leq \mathrm{i} \leq \mathrm{m}$.
Since $(2,3)=I$ we can ignore the edges between V_{1} and $V_{i}(2 \leq i \leq m)$. Furthermore, V_{1} itself either contains no edges or a triangle. Therefore the permutation $\gamma=\left(v_{1} w_{1} x_{1}\right)\left(v_{2} w_{2}\right)\left(v_{3} w_{3}\right) \cdots\left(v_{m} w_{m}\right)$ is in Aut (G).
(c) $m=1$ and $\left|V_{1}\right|=3,4$ or 5 .

In any of these cases the required result is a simple corollary of the fact that all regular graphs with 3, 4 or 5 vertices are transitive.
(d) $m=2,\left|V_{1}\right|=4$ and $\left|V_{2}\right|=2$.
(e) $m=2,\left|V_{1}\right|=\left|V_{2}\right|=3$.

Each of these cases is easily settled by considering every possibility for the edges inside or between V_{1} and V_{2}.

The most commonly occurring case of Lemma $2 \cdot 25$ is when $n=|\pi|+m$, which corresponds to π_{1} only having cells of size 1 or 2.

Lemma 2.25 can be put to several uses. The most immediate application is that whenever we encounter a node $v=\left[\pi_{1}, \pi_{2}, \cdots, \pi_{m}\right]$ for which π_{m} satisfies the requirements of Lemma $2 \cdot 25$, we can infer that all the terminal nodes descended from v are equivalent, and so at most one of them is an identity node (the earliest one, if any). A less direct technique is to store the pair $\left(\operatorname{fix}\left(\pi_{m}\right), \operatorname{mor}\left(\pi_{m}\right)\right)$ in the list $\underset{\sim}{S}$, along with the similar pairs derived from explicit automorphisms. It can then become useful in pruning later parts of the search tree.

The techniques of the last few sections are generally quite efficient in removing terminal nodes which are not identity nodes. However, there are occasions when the number of identity nodes is unmanageably large. Examples of these will be given in the next chapter. Some of these can be eliminated by means of an indicator function Λ.

Suppose that during the search of $T(G, \pi)$ we maintain a node variable ρ. When the first terminal node ε is generated, we initialize $\rho \leftarrow \varepsilon$. Thereafter we update $\rho \leftarrow \nu$ whenever we find a terminal node v such that $\underset{\sim}{\Lambda}(G, \pi, v)>\underset{\sim}{\Lambda}(G, \pi, \rho)$ or $\Lambda \sim(G, \pi, \nu)=\Lambda(G, \pi, \rho)$ and $G(\nu)>G(\rho)$. The definition of $\boldsymbol{C}(G, \pi)$ ensures that by the time we have finished searching $T(G, \pi)$ we have $G(\rho)=C(G, \pi)$, provided the set of terminal nodes examined includes all the identity nodes. Now suppose that at some instant during our search we have $\rho=\left[\pi_{1}, \pi_{2}, \cdots, \pi_{m}\right]$ and encounter a node $\nu=\left[\pi^{\prime}{ }_{1}, \pi^{\prime}{ }_{2}, \cdots, \pi_{k}^{\prime}\right]^{\prime}$, not necessarily terminal. Let $r=\min (m, k)$. Then, if $\underset{\sim}{\Lambda}\left(G, \pi, v^{(r)}\right)<\Lambda\left(G, \pi, \rho^{(r)}\right)$, the definition of an indicator function tells us that $\Lambda\left(G, \pi, \nu^{\prime}\right)<\Lambda(G, \pi, \rho)$ for every terminal node ν^{\prime} of $T(G, \pi, \nu)$. Therefore we can safely ignore $T(G, \pi, \nu)$ without miscalculating $C(G, \pi)$.

The efficiency of this technique depends mainly on two factors. One is the power of \AA in distinguishing between nonequivalent nodes. This, of course, can only be improved by changing Λ, which will generally involve a power/computation-time trade-off. The other factor depends on the initial labelling of G. Suppose that we wish to search the subtree $T(G, \pi, V)$. We do this by successively searching the subtrees $T\left(G, \pi, \nu_{1}\right), T\left(G, \pi, \nu_{2}\right), \cdots, T\left(G, \pi, \nu_{r}\right)$,
where $\nu_{1}, \nu_{2}, \cdots, \nu_{r}$ are the successors of ν, in the order earliest to latest. We can use the information provided by Λ by ignoring the subtree $T\left(G, \pi, \nu_{i}\right)$ if $\Lambda\left(G, \pi, \nu_{i}\right)<\Lambda\left(G, \pi, \nu_{j}\right)$ for some $j<i$. The number of subtrees which are thus ignored could vary from none (if the $\Lambda\left(G, \pi, \nu_{i}\right)$ are in non-decreasing order) to the maximum number possible (if $\Lambda\left(G, \pi, \nu_{i}\right) \leq \Lambda\left(G, \pi, \nu_{1}\right)$ for $\left.l \leq i \leq r\right)$. While there is no efficient way of ensuring that the best case always occurs we can arrange for the worst case to be very unlikely. The simplest way of doing this (but not the one we will adopt) is to label G in a random fashion before commencing the generation of $T(G, \pi)$. A precise statistical analysis of how this effects the overall efficiency would be very difficult, but a rough idea can perhaps be gained from the following two theorems. We will use $E(X)$ to denote the expectation of a random variable X, and $P(x)$ to denote the probability of an event x. The first theorem suggests that the number of ignored subtrees will not usually be much less than the maximum number possible.
$2 \cdot 27$ THEOREM Let $\delta_{1}<\delta_{2}<\cdots<\delta_{k}$ be elements of a linearly ordered set Δ. Let $m_{1}, m_{2}, \cdots, m_{k}$ be positive integers, and put $\ell=m_{1}+m_{2}+\cdots+m_{k}$. Let $x_{1}, x_{2}, \cdots, x_{l}$ be elements of Δ, exactly m_{j} of which are equal to δ_{j} for $1 \leq \mathrm{j} \leq \mathrm{k}$. Now permute the x_{i} at random to get $\mathrm{x}^{(1)}, \mathrm{x}^{(2)}, \cdots, \mathrm{x}^{(\ell)}$, each of the l ! possible permutations being equally likely. For $1 \leq i \leq \ell$, mark (i) $^{\text {(if }}$ $x^{(i)} \geq x^{(j)}$ for $j<i$, but $x^{(i)} \neq \delta_{k}$. Let M be the number of marked elements. Then $E(M)=\sum_{j=1}^{k-1} \frac{m_{j}}{1+m_{j+1}+m_{j+2}+\cdots+m_{k}}$, where the sum is taken as 0 if $k=1$.

In particuzar, if $m_{j}=m$ for $I \leq j \leq k$, then
$E(M)=\sum_{j=1}^{k-1} \frac{m}{m j+1} \leq \log (2 k)$.

Proof: By the additivity of expectation,
$E(M)=\sum_{i=1}^{\ell} P\left(x_{i}\right.$ is marked $)$
$=\sum_{j=1}^{k} m_{j} p_{j}$, where $p_{j}=P(a$ given element equal to δ, is marked $)$
$=\sum_{j=1}^{k-1} m_{j} p_{j}$, since $p_{k}=0$.
Now suppose $x^{(i)}=\delta_{j}$, where $j \neq k$. Let $x_{(1)}, x_{(2)}, \cdots, x_{(t)}$ be the $t=m_{j+1}+m_{j+2}+\cdots+m_{k}$ elements greater than δ_{j}. Then each of the $(t+1)!$ possible relative orders in which the elements $x^{(i)}, x_{(1)}, \cdots, x_{(t)}$ occur in the sequence $x^{(1)}, x^{(2)}, \cdots, x^{(\ell)}$ are equally likely, but only the t ! orders for which $x^{(i)}$ is first result in $x^{(i)}$ being marked. Therefore $p_{j}=\frac{t!}{(t+1)!}=\frac{1}{t+1}$, as required.

The second theorem concerns the number of different values of $\Lambda\left(G, \pi, \nu_{i}\right)$ amongst those $T\left(G, \pi, \nu_{i}\right)$ which are not ignored. It therefore has a bearing on the number of identity nodes which are excluded by means of Λ.
$2 \cdot 28$ THEOREM Under the conditions of Theorem 2.27, let \mathbb{N} be the number of different values amongst the marked elements. Then

$$
\begin{aligned}
E(N) & =\sum_{j=1}^{k-1} \frac{m_{j}}{m_{j}+m_{j+1}+\cdots+m_{k}} \text {, where the sum is } 0 \text { if } k=1 . \\
& \leq \log \ell
\end{aligned}
$$

In particular, if $m_{i}=m$ for $1 \leq i \leq k$, then

$$
E(N)=\sum_{j=2}^{k} \frac{1}{j} \leq \log k
$$

Proof:
The proof of the exact expression for $E(N)$ is nearly
the same as the proof of Theorem 2.27 and so will be omitted.
We will prove the bound $E(N) \leq \log \ell$ by induction on k. It is obviously true for $k=1$. Now let $k>1$.

Then $E(N)=\sum_{j=1}^{k-1} \frac{m_{j}}{m_{j}+m_{j+1}+\cdots+m_{k}}=\frac{m_{1}}{\ell}+\sum_{j=2}^{k-1} \frac{m_{j}}{m_{j}+m_{j+1}+\cdots+m_{k}}$
$\leq \frac{m_{1}}{\ell}+\log \left(\ell-m_{1}\right)$, by the induction hypothesis
$=\log \ell+\frac{m_{1}}{\ell}+\log \left(1-\frac{m_{1}}{\ell}\right)$
$\leq \log \ell$, since $0<\frac{m_{1}}{\ell}<1$.

An alternative to this technique for using Λ is to compute $\Lambda\left(G, \pi, \nu_{i}\right)$ for $1 \leq i \leq r$ and then only $\operatorname{search} T\left(G, \pi, \nu_{i}\right)$ for those v_{i} for which $\Lambda\left(G, \pi, v_{i}\right)$ is the largest. This is undoubtedly the best approach in many cases. However we are not adopting this method because it severely degrades the average-case behaviour. This is because the discovery of automorphisms frequently allows us to reject a subtree $T\left(G, \pi, v_{i}\right)$ without ever computing v_{i}.

The theorems above relate to the effect of performing an initial random relabelling of G. The reasons we are not adopting this approach are, firstly, that this relabelling may almost double the total execution time (for a very large random graph; see Chapter 3) and, secondly, that in order to make some of the output useful (e.g. the list of automorphisms produced) it may be necessary to translate it back to the original labelling, which is inconvenient. We will describe an alternative, but will only justify it qualitatively. A more precise analysis would be impossibly difficult to perform.

Let $\Lambda^{\prime}: \underset{\sim}{G}(V) \times \underset{\sim}{\pi}(V) \times \underset{\sim}{\mathbb{N}}(V) \rightarrow \Delta$ be any convenient indicator function. Now devise a map $f: \Delta \rightarrow \Delta$ with the property that for pairs $x, y \in \Delta, x-y$ is very poorly correlated with $f(x)-f(y)$. (This is not meant to be a rigorous definition). For example, take $\Delta=[-1,1]$ and $f(x)=\sin \left(10^{10} x\right)$; knowledge of $x-y$ tells us almost
nothing about $f(x)$ - $f(y)$ except in special circumstances. Now define $\Lambda: \underset{\sim}{G}(V) \times \underset{\sim}{I}(V) \times \underset{\sim}{\mathbb{N}}(V) \rightarrow \Delta$ by $\Lambda(G, \pi, v)=f\left(\Lambda^{\prime}(G, \pi, v)\right)$. The hope is that any tendency to an unfavourable ordering of the values of $\Lambda^{\prime}\left(G, \pi, \nu_{1}\right)$, $\cdots, \Lambda^{\prime}\left(G, \pi, \nu_{r}\right)$ will not occur for $\Lambda\left(G, \pi, \nu_{1}\right), \cdots, \Lambda\left(G, \pi, \nu_{r}\right)$. However, as we have stated, there is little hope of an exact statistical analysis. The best we can say is that the computational experience is favourable.

2.29 Storage of identity nodes

Up to this point we have been tacitly assuming that we are keeping a record of all those identity nodes so far generated, so that we can recognize later terminal nodes which are equivalent to any of them. In practice this can cause a severe storage problem, since the number of identity nodes can be very large, even if we don't count those which are eliminated by use of an indicator function. Therefore it is necessary to put a limit on the number of identity nodes (strictly, terminal nodes not known to be equivalent to an earlier node) to be stored. The optimum strategy is not clear. On the one hand, storing more identity nodes improves our chances of detecting automorphisms, which can be put to use as we have seen. On the other hand, testing two terminal nodes for equivalence is quite time consuming (especially for large graphs), and having to do a lot of these tests would have a very bad effect on the overall execution time.

The technique which we have adopted, without a great deal of theoretical justification, is to store two identity nodes at a time. The earliest terminal node ε is always stored. The other terminal node (which may be the same as the first) is our best guess so far at the identity node corresponding to $\mathcal{C}(G)$. This is the node ρ
referred to in Section $2 \cdot 26$. We also permit the algorithm to search for terminal nodes equivalent to ε, with the aim of using the automorphisms thus discovered to shorten the total amount of work. This will sometimes degrade the performance somewhat, but on the average it works very well.

We are now able to summarize the way in which terminal nodes are processed. Suppose that we have just created a node v, not necessarily terminal, which is not an ancestor of ε (i.e. is later than ε).

The node ρ and the partition θ have the same interpretation as before. Suppose that v is the node $\left[\pi_{1}, \pi_{2}, \cdots, \pi_{m}\right]$ so that $|\nu|=k$. Also define $m=|\varepsilon|$ and $r=|\rho|$, and define variables as follows.
$h h: \quad$ If π_{k} satisfies the requirements of Lemma 2.25 , then hh is the smallest value of $i, l \leq i \leq k$, for which π_{i} satisfies these requirements.

Otherwise, hh $=k$.
ht: This is the smallest value of $i, l \leq i \leq m$, for which all the terminal nodes descended from or equal to $\varepsilon^{(i)}$ have been shown to be equivalent.
h : The longest common ancestor of ε and v is $v^{(h)}$.
$\mathrm{v}: \quad \pi_{\mathrm{h}+1}=\pi_{\mathrm{h}} \perp \mathrm{v}$
$h b: \quad$ The longest common ancestor of ρ and v is $v^{(h b)}$.
hzb: This is the maximum value of $i, l \leq i \leq \min \{k, r\}$, such that $\Lambda\left(G, \pi, \nu^{(i)}=\Lambda\left(G, \pi, \rho^{(i)}\right)\right.$.

By returning to $v^{(i)}$ we mean backtracking in the search tree to $v^{(i)}$ and proceeding with the next successor of $v^{(i)}$ not yet generated, if any. If there are no such successors, we return to $v^{(i-1)}$, and so forth. "Return to $v^{(0)}$ " is equivalent to "stop". Now suppose we have just created $\nu=\nu^{(k)}$. Let $\Lambda=\Lambda(G, \pi, \nu)$
(1) If (k>mor $\underset{\sim}{\wedge} \neq \underset{\sim}{\Lambda}\left(G, \pi, \varepsilon^{(k)}\right)$
and ($k>r$ or $\underset{\sim}{\Lambda}<\underset{\sim}{\Lambda}\left(G, \pi, \rho^{(k)}\right)$), go to (B).
(2) If v is non-terminal, proceed to search $\mathbb{T}(G, \pi, v)$.
(3) If $(k>m$ or $\underset{\sim}{\wedge} \neq \underset{\sim}{\Lambda}(G, \pi, \varepsilon))$ go to (4).

If the permutation γ taking ε onto v is an automorphism, go to (A).
(4) If (k>ror $\underset{\sim}{\wedge}<\underset{\sim}{\Lambda}(G, \pi, \rho)$ or
$(\Lambda=\Lambda(G, \pi, \rho)$ and $G(\nu)<G(\rho)))$ go to (B).
If $(\underset{\sim}{\Lambda}>\underset{\sim}{A}(G, \pi, p)$ or $(\underset{\sim}{\Lambda}=\underset{\sim}{\Lambda}(G, \pi, p)$ and
$G(\nu)>G(\rho)))$ set $\rho \leftarrow v$ then go to (B).
If $(\Lambda=A(G, \pi, \rho)$ and $G(\nu)=G(\rho))$, let γ be the permutation taking ρ onto v and go to (A).
(A) \{At this stage we have found an automorphism γ.
(A•1) Add (fix(γ), $\operatorname{mcr}(\gamma)$) to $\underset{\sim}{S}(i f$ there is room) Set $\theta \leftarrow \theta \vee \theta(\gamma)$.
($A \cdot 2$) If $v \notin \operatorname{mcr}(\theta)$, return to $v^{(h)}$. Otherwise, return to $v^{(h b)}$.
(B) \{At this stage we have a terminal node v not known to be equivalent to an earlier terminal node.\}
(B.I) If $h h<k$, add $\left(\operatorname{fix}\left(\pi_{h h}\right), \operatorname{mcr}\left(\pi_{h h}\right)\right)$ to $\underset{\sim}{S}$ (if there is room).
$(B \cdot 2)$ Return to $v^{(i)}$, where $i=\min \{h h-1, \max \{h t-1, h z b\}\} . \square$

The only feature in the foregoing informal algorithm which we have not already justified is the use of the variable ht in Step $(B \cdot 2)$. What we want to do in Step $(B \cdot 2)$ is to return to the longest ancestor v_{i} of v which may conceivably have a terminal descendant which is either equivalent to ε or improves on ρ as the "best canonical label so far". All the terminal nodes in $T\left(G, \pi, v^{(h h)}\right)$ are known to be equivalent to v, so we can assume that $i<h h$. Furthermore, if $i>h z b$, none of the descendants of $v^{(i)}$ can improve on ρ. Finally, if $i \geq h t$, and one of the descendants of $v^{(i)}$ was equivalent to ε then $\nu^{(i)}$ would be equivalent to $\varepsilon^{(i)}$. However, all the terminal nodes descended from $\varepsilon^{(i)}$ are equivalent, and so all those descended from $v^{(i)}$ are equivalent, giving a contradiction. 2.30 We will now give a complete formal description of the whole algorithm.

Notes: (i) \quad Iab and $d i g$ are boolean variables. If $Z a b=f a l s e$, ρ is not used, and the algorithm only searches for terminal nodes equivalent to ε. We will show in Theorem 2.33 that useful information about $A u t(G)$ is still obtained. If $d i g=$ true, the algorithm will not use Lemma 2.25, and will be valid for digraphs and graphs with loops (for which Lemma 2.25 does not hold).
(ii) The variable v refers everywhere to the node $\left[\pi_{1}, \pi_{2}, \cdots, \pi_{k}\right]$. It thus changes value if $\pi_{i}(1 \leq i \leq k)$ or k changes value.
(iii) $L \geq 1$ is an integer specifying a limit on the number of pairs $(\operatorname{fix}(x), \operatorname{mcr}(x))$ to be stored at one time. The result computed by the algorithm is independent of the choice of L, although the efficiency in general may not be.
(iv) $P \subseteq \underset{\sim}{\mathbb{I}}(\mathrm{~V})$ is the set of all ordered partitions of V which satisfy the requirements of Lemma $2 \cdot 25$.
(v) We are assuming for convenience that $\Lambda(G, \pi, \nu)$ is real in value. If this is not the case replace

$$
\begin{aligned}
& \text { "qzb } \leftarrow \mathrm{A}_{\mathrm{k}}-\mathrm{zb}_{\mathrm{k}}{ }^{\prime} \text { by } \\
& q z b \leftarrow\left\{\begin{aligned}
&-1 \text { if } \Lambda_{k}<z b_{k} \\
& 0 \text { if } \Lambda_{k}=z b_{k} \\
& \text { I if } \Lambda_{k}>z b_{k}
\end{aligned}\right.
\end{aligned}
$$

2•31 ALGORITHM
(1) $k \leftarrow$ size $\leftarrow 1$
$\mathrm{h} \leftarrow \mathrm{hzb} \leftarrow$ index $\leftarrow \ell \leftarrow 0$
$\theta \leqslant$ discrete partition of V
$\pi_{1} \leftarrow \boldsymbol{R}(\mathrm{G}, \pi, \pi)$
If $\left(\pi_{1} \in P\right.$ and not $\left.d i g\right)$ hh $\leftarrow 1$, otherwise $h h \leftarrow 2$
If (π_{1} is discrete) go to (18)
$W_{1} \leftarrow$ first smallest cell of π_{1}
$v_{1} \leftarrow \min W_{1}$
$e_{1} \leftarrow 0$
$\Lambda_{1} \leftarrow 0$
(2) $k \leftarrow k+1$
$\pi_{k} \leftarrow \pi_{k-1} \perp v_{k-1}$
$\Lambda_{k} \leftarrow \Lambda(G, \pi, v)$
If ($\mathrm{h}=0$) go to (5)
If (hzf $=k-I$ and $\left.A_{k}=z f_{k}\right) h z f \leftarrow k$
If (not lab) go to (3)
$\mathrm{qzb} \leftarrow \Lambda_{\mathrm{k}}-\mathrm{zb}_{\mathrm{k}}$
If ($\mathrm{hzb}=\mathrm{k}-1$ and $\mathrm{qzb}=0$) $\mathrm{hzb} \leftarrow \mathrm{k}$
If $\left(q_{z b}>0\right) \mathrm{zb}_{k} \leftarrow \Lambda_{k}$
(3) If (hzb $=k$ or ($2 a b$ and $q z b \geq 0$)) go to (4)

Go to (6)
(4) If (π_{k} is discrete) go to (7)
$W_{k} \leftarrow$ first smallest cell of π_{k}
$\mathrm{v}_{\mathrm{k}} \leftarrow \min W_{\mathrm{k}}$
If (dig or $\pi_{k} \notin P$) hh $\leftarrow k+1$
$\mathrm{e}_{\mathrm{k}} \leftarrow 0$
Go to (2)
(5) $\mathrm{Zf}_{\mathrm{k}} \leftarrow \mathrm{zb} \mathrm{k}_{\mathrm{k}} \leftarrow \mathrm{M}_{\mathrm{k}}$

Go to (4)
(6) $\mathrm{k}^{\prime} \leftarrow \mathrm{k}$
$\mathrm{k} \leftarrow \min (\mathrm{hh}-1, \max (\mathrm{ht}-1, \mathrm{hzb}))$
If ($\mathrm{K}^{\prime}=\mathrm{hh}$) go to (13)
$\ell \leftarrow \min (\ell+1, L)$
$\Lambda_{\ell} \leftarrow \operatorname{mcr}\left(\pi_{h h}\right)$
$\Phi_{\ell} \leftarrow f i x\left(\pi_{h h}\right)$
Go to (12)
(7) If $(h=0)$ go to (18)

If ($k \neq h z f$) go to (8)
Define $\gamma \in S_{n}$ by $\varepsilon^{\gamma}=\nu$
If ($G^{\gamma}=G$) go to (10)
(8) If (not lab or $q z b$ < 0) go to (6)

If ($q z b>0$ or $\mathrm{k}<|\rho|$) go to (9)
If $(G(v)=G(\rho))$ go to (9)
If $(G(v)<G(\rho))$ go to (6)
Define $\gamma \in S_{n}$ by $\nu^{\gamma}=\rho$
Go to (10)
(9) $\rho \leftarrow v$
$q z b \leftarrow 0$
$h b \leftarrow h z b \leftarrow k$
$\mathrm{zb}_{\mathrm{k}+1} \leftarrow \infty$
Go to (6)
(10) $\ell \nleftarrow \min (\ell+1, L)$
$\Omega_{\ell} \leftarrow \operatorname{mcr}(\gamma)$
$\Phi_{\ell} \leftarrow \operatorname{inx}(\gamma)$
If $\left(\theta^{\gamma}=\theta\right)$ go to (II)
Output γ
If (tve $\epsilon \operatorname{mer}(\theta)$) go to (11)
$\mathrm{k} \leftarrow \mathrm{h}$
Go to (13)
(11) $k \leftarrow h b$
(12) If $\left(e_{k}=1\right) W_{k} \cap \Omega_{\ell}$
(13) If $(\mathrm{k}=0)$ Stop

If (k $>\mathrm{h}$) go to (17)
If $(k=h)$ go to (14)
$h \leftarrow k$
$\mathrm{tvc} \leftarrow \min \left(\mathrm{W}_{\mathrm{k}}\right)$
tvh $\leftarrow \mathrm{tvc}$
(14) If $\left(v_{k}\right.$ and tvh are in the same cell of $\left.\theta\right)$ index \leftarrow index +1
$\mathrm{v}_{\mathrm{k}} \leftarrow \min \left\{\mathrm{v} \in \mathrm{W}_{\mathrm{k}} \mid \mathrm{v}>\mathrm{v}_{\mathrm{k}}\right\}$
$\operatorname{If}\left(v_{k}=\infty\right)$ go to (16)
If $\left(v_{k} \notin \operatorname{mcr}(\theta)\right)$ go to (14)

```
(15) \(h h \leftarrow \min (h h, k+1)\)
    \(h z f \leftarrow \min (h z f, k)\)
    If (not \(2 a b\) or \(h z b<k\) ) go to (2)
    \(h z b \leftarrow k\)
    \(q z b \leftarrow 0\)
    Go to (2)
(16) If \(\left(\left|W_{k}\right|=\right.\) index and \(\left.h t=k+1\right)\) ht \(\leftarrow k\)
    size \(\leftarrow\) size \(\times\) index
    index \(\leftarrow 0\)
    \(\mathrm{k} \leftarrow \mathrm{k}-1\)
    Go to (13)
(17) If \(\left(e_{k}=0\right) \operatorname{set} W_{k} \leftarrow W_{k} \cap \Omega_{i}\) for each \(i, 1 \leq i \leq \ell\),
                                    such that \(\left\{v_{1}, v_{2}, \cdots, v_{k-1}\right\} \subseteq \Phi_{i}\)
    \(e_{k} \leftarrow I\)
    \(\mathrm{v}_{\mathrm{k}} \leftarrow \min \left\{\mathrm{v} \in \mathrm{W}_{\mathrm{k}} \mid \mathrm{v}>\mathrm{v}_{\mathrm{k}}\right\}\)
    If \(\left(v_{k} \neq \infty\right)\) go to (15)
    \(k \leftarrow k-1\)
    Go to (13)
(18) \(h \leftarrow h t \leftarrow h z f \leftarrow k\)
    \(z f_{k+1} \leftarrow \infty\)
    \(\varepsilon \leftarrow \nu\)
    \(k \leftarrow k-1\)
    If (not Zab) go to (13)
    \(\rho \leftarrow v\)
    \(h z b \leftarrow h b \leftarrow k+1\)
    \(z_{k+2} \leftarrow \infty\)
    \(q z b \leftarrow 0\)
    Go to (13)
```

2.32 Consider the stage during the execution of Algorithm 2.31 that we pass the point marked B (in Step (18)). At this instant define $K=k-I$ and $w_{i}=v_{i}(I \leq i \leq K)$.

Now let $\Gamma(0)=\Gamma=\operatorname{Aut}(G)_{\pi}$, and define
$\left.\Gamma^{(i)}=\Gamma_{\left\{W_{1}\right.}, W_{2}, \ldots, w_{i}\right\}$ (point-wise stabiliser) for $1 \leq i \leq K$. Since ε is a terminal node, the coarsest equitable partition which is finer than π and fixes $w_{1}, w_{2}, \cdots, w_{k}$ is discrete. Therefore $\Gamma^{(K)}=1$.
2.33 THEOREM During the execution of AIgorithm 2.31, each time we pass point A (in Step (16)) or point B (in Step (18)) the following are true:
(i) index $=\left|\Gamma^{(k-1)}\right| /\left|\Gamma^{(k)}\right|$ (point A only)
(ii) size $=\left|\Gamma^{(k-I)}\right|$
(iii) $\theta=\theta\left(\Gamma^{(k-1)}\right)$
(iv) $\Gamma^{(k-1)}=\langle Y\rangle$, where Y is the set of aZZ automorphisms "output" up to the present stage (in Step (10)).
(v) $\quad|Y| \leq n-|\theta|$

Proof: The theorem follows readily from the theory that we have already discussed, so we will only describe briefly how this needs to be assembled.

Point B is only passed once, when ε is created, and $k=K+1$ at this stage. Point A is then passed K times, at which stages k has the values $K, K-1, \cdots, 1$ in that order.

We prove the theorem by backward induction on k. For $k=K+1$ it is obvious. Now assume it for k^{\prime}, for some k^{\prime}, $2 \leq k^{\prime} \leq K+1$, and let $k=k^{\prime}-1$.

Consider $v=\left[\pi_{1}, \pi_{2}, \cdots, \pi_{k}\right]$. The successors of v, in the order earliest to latest are $\nu_{1}, v_{2}, \cdots, v_{m}$ where $v_{i}=v\left(w_{i}\right)$, and $W_{k}=\left\{w_{1}, W_{2}, \cdots, w_{m}\right\}$. The previous time we passed point A (or B) was when we completed our examination of the subtree $T\left(G, \pi, v_{1}\right)$. We now claim that, for $1 \leq i \leq m$, by the time we have completed examination of $T\left(G, \pi, \nu_{i}\right), W_{i}$ is in the same cell of θ as ν_{1} if and only if $\nu_{i} \sim \nu_{1}$.

Suppose on the contrary that there is an earliest ν_{i} for which our assertion is not true. If v_{i} is not equivalent to ν_{1} then w_{i} and w_{l} are obviously in different cells of θ, since θ is the orbit partition of some subgroup of $\operatorname{Aut}(G) \pi_{k}$. On the other hand, if $\nu_{i} \sim \nu_{1}, T\left(G, \pi, \nu_{i}\right)$ contains one or more terminal nodes equivalent to ε. The nature of the algorithm is such that if one of these nodes is generated, it will be recognized as being equivalent to ε, and if it is not generated this will only be because it has been shown to be equivalent to an earlier terminal node. Furthermore, implicit automorphisms are never used to reduce W_{k}, and during the examination of $T\left(G, \pi, \nu_{i}\right)$, if any, the only stored pairs $\left(\Phi_{j}, \Omega_{j}\right)$ which are used to reduce any W_{r} have $W_{i} \in \Phi_{j}$. Therefore, either w_{i} is already in the same cell of θ as w_{1} or we are sure to discover some automorphism γ such that $v_{i}{ }^{\gamma}<\nu_{i}$. By the induction hypothesis $w_{i}{ }^{\gamma}$ is the same of θ as W_{1}, and so the update $\theta \leftarrow \theta \vee \theta(\gamma)$ merges the cells of θ containing w_{1} and W_{i}, contrary to hypothesis. Note also that we have just proved that $\gamma \in Y$.

We have thus concluded that the cell of θ containing w_{1} is the orbit of $\Gamma^{(k-1)}$ containing w_{1}. Since $\theta=\theta(Y)$ by construction, and $\Gamma^{(k)} \leq\langle Y\rangle$ by the original induction hypothesis, we must have $\Gamma^{(k-1)}=\langle Y\rangle$, since $\langle Y\rangle$ contains a full set of coset-
representatives for $\Gamma^{(k)}$ in $\Gamma^{(k-1)}$. This proves that $\theta=\theta\left(\Gamma^{(k-1)}\right)$. The variable index merely counts the number of elements in the cell of θ containing W_{1}, so claims (i) and (ii) follow immediately.

Claim (v) follows from the simple observation that the number of cells of θ starts at n and decreases by at least one for each new element of Y.

In closing we note a few simple properties of the set of generators of Γ found by Algorithm $2 \cdot 31$. These are essentially the same as those given in Theorems $36-38$ in [27] and the proofs given there apply with only notational changes. Let Y be the full set of automorphisms "output" by Algorithm 2•31, and let $\Gamma=\operatorname{Aut}(G)$.
2. 34 THEORFM (1) Y does not contain any element of the form $\gamma \delta$, where $\gamma, \delta \in \Gamma, \operatorname{supp}(\gamma) \cap \operatorname{supp}(\delta)=\emptyset$ and $\gamma \neq(1) \neq \delta$.
(2) Suppose that for some subset $Y^{*} \subseteq Y$, we have $\left\langle Y^{*}\right\rangle=\Lambda^{(1)} \oplus \Lambda^{(2)}$, where $\Lambda^{(1)}$ and $\Lambda^{(2)}$ are non-trivial subgroups of Γ. Then $Y^{*}=Y^{(1)} \cup Y^{(2)}$ where $Y^{(1)} \cap Y^{(2)}=\varnothing,\left\langle Y^{(1)}\right\rangle=\Lambda^{(1)}$ and $\left\langle Y^{(2)}\right\rangle=\Lambda^{(2)}$.
(3) Suppose that for some subset $W \subseteq V$ the point-wise stabiliser Γ_{W} has exactly one non-trivial orbit. Then some subset of Y generates a conjugate of Γ_{W} in Γ.

CHAPTER THREE

IMPLEMENTATION CONSIDERATIONS

In this chapter we will discuss some of the problems that arise in the implementation of Algorithm $2 \cdot 31$ and how these have been approached. We will then examine the theoretical and empirical performance of our implementation. Finally, we will mention a few of practical uses to which our implementation has been put. The notation we have devised in Chapter 2 will continue to apply here.

3•1 Time versus storage
The program described in McKay [28] worked so efficiently for many classes of graphs that the practical limit on the size of graph that could be processed was set by the amount of storage available, rather than by execution time considerations. Consequently the present implementation places considerably more emphasis on storage conservation, in some places to the slight detriment of time efficiency.

The variable types used by Algorithm $2 \cdot 31$ include graphs, sets, partitions and partition nests. We will now describe the data structures used in our implementation for each of these variable types.

3-2 Partition nests
Let $v=\left[\pi_{1}, \pi_{2}, \cdots, \pi_{k}\right] \in \underset{\sim}{\mathbb{N}}(V)$. Then v can be represented by two arrays a and b of length n as follows. Define $\pi_{0}=(V)$.
(i) The array a contains the elements of V in any order consistent with π_{k}. Precisely, if $u\left(a(i), \pi_{k}\right)<u\left(a(j), \pi_{k}\right)$ then $i<j$, for any i, $j \in V$.
(ii) Each entry of b is an integer in the interval $[0, \mathrm{n}+1]$ chosen thus:
(a) If $u\left(a(i), \pi_{k}\right)=u\left(a(i+1), \pi_{k}\right)$, then
$b(i)=n+1 \quad(1 \leq i \leq n-1)$.
(b) If $u\left(a(i), \pi_{j-1}\right)=u\left(a(i+1), \pi_{j-1}\right)$ but
$u\left(a(i), \pi_{j}\right)<u\left(a(i+1), \pi_{j}\right)$, then
$b(i)=j \quad(1 \leq j \leq k, I \leq i \leq n-1)$.
(c) $b(n)=0$.

The three main operations on a partition nest that are required by Algorithm $2 \cdot 31$ can be performed as follows.
(1) To determine $\pi_{j}(I \leq j \leq k)$: Let $i_{1}<i_{2}<\cdots<i_{r}$ be all the values of i such that $b(i) \leq j$. Define $i_{0}=0$. Then $\pi_{j}=\left(V_{1}, V_{2}, \cdots, V_{r}\right)$, where $V_{\ell}=\left\{a(i) \mid i_{\ell-1}+I \leq i \leq i_{\ell}\right\}$.
(2) To replace v by $v^{(j)}(1 \leq j<k)$: Change each $b(i)>j$ to $n+1$, for $l \leq i \leq n$.
(3) To extend v by cell subdivision: Suppose we wish to upabate v to $\left[\pi_{1}, \pi_{2}, \cdots, \pi_{k+1}\right]$, where π_{k+1} is formed from π_{k} by subdividing a cell $V_{i} \in \pi_{k}$ into disjoint subsets $W_{1}, W_{2}, \cdots, W_{S}$. The elements of V_{i} are $a(j), a(j+1), \cdots, a(j+t-1)$ for some j, where $t=\left|V_{i}\right|$. Permute these t elements of a into any order consistent with π_{k+1} and then set the appropriate $t-1$ elements of b to $k+1$ (so that the result is a correct representation of $\left.\left[\pi_{1}, \pi_{2}, \cdots, \pi_{k+1}\right]\right)$.

The only unordered partition used by Algorithm $2 \cdot 31$ is θ. For any $\mathrm{v} \in \mathrm{V}$ let θ_{V} denote the cell of θ containing v and let $p(v)=\min \theta_{v}$. Clearly θ can be uniquely represented by the array p, and most of the necessary questions about θ can be answered very quickly by reference to p . For example, if v , $\mathrm{w} \in \mathrm{V}$ then v and w are in the same cell of θ if and only if $p(v)=p(w)$, and $v \in \operatorname{mer}(\theta)$ if and only if $p(v)=v$.

This representation of θ suffers from the disadvantage that updates of the form $\theta \leftarrow \theta \vee \theta(\gamma)$, for $\gamma \in S_{n}$, are quite expensive in terms of computation time. This problem has been considerably alleviated by the use of a second array q which "chains together" the elements of each cell. More precisely, if i $\epsilon \operatorname{mcr}(\theta)$, then $\theta_{i}=\{i, q(i), q(q(i)), q(q(q(i))), \cdots\}$, where the sequence terminates on the term before the first zero.

Suppose that we wish to merge the cells $\theta_{i} \neq \theta_{j}$ of θ, where we can assume that $p(i)<p(j)$. This operation can easily be performed as follows.
(a) $\mathrm{i}^{\prime} \leqslant i$
(b) Repeat i^{\prime} \& $\mathrm{q}\left(\mathrm{i}^{\prime}\right)$ until $\mathrm{q}\left(\mathrm{i}^{\prime}\right)=0$.
(c) $q\left(i^{\prime}\right) ~ \leftarrow j^{\prime} \leqslant p(j)$
(d) Repeat $p\left(j^{\prime}\right) \leftarrow p(i)$ and $j^{\prime} \leftarrow q\left(j^{\prime}\right)$ until $j^{\prime}=0$.

The representation we have chosen for θ may not be the most efficient possible but, since we know of no graphs for which our implementation of Algorithm 2.31 spends more than a small fraction of the total time in manipulating θ, we have felt no need to improve it.

3•4 Sets
The sets used by Algorithm 2•31 are all subsets of V , namely W_{i}, Φ_{i} and Ω_{i} for each i. These can be represented in the computer by bit-vectors. A bit-vector is a set of n (generally contiguous) machine bits designated bit(1) to bit(n). A set $W \subseteq V$ can be represented by a bit-vector with bit(i) = 1 if i $\epsilon \mathrm{W}$ and bit(i) $=0$ otherwise ($1 \leq i \leq n$). The most obvious advantage of this representation is its storage economy. The other main advantage is that many elementary set operations (such as intersection) and relational tests (such as subset) can be done very quickly using the bit-wise boolean operations available on most machines. On the other hand testing whether i $\epsilon \mathrm{W}$ can be annoyingly awkward, especially if the bit-vector extends over more than one machine word, since several arithmetic operations may be required to locate bit(i).

3.5 Graphs

Algorithm $2 \cdot 31$ requires the input graph G and, for reasonably efficient operation, requires the graph variable $G(\rho)$. From the great number of possible ways of representing these graphs in the computer, we have chosen an adjacency matrix representation because of its greater storage economy. More precisely, Gis stored as a list of n bit-vectors representing $\mathbb{N}(1, G), \mathbb{N}(2, G), \cdots, \mathbb{N}(n, G)$, and so requires around n^{2} bits of storage. Since Algorithm $2 \cdot 31$ is valid also for digraphs, it is clearly not possible to reduce this storage requirement in general. However if the program was only intended to be applied on graphs with very low degree, a different sort of representation would save space, and probably time as well.

Algorithm 2.5 can easily be implemented using the data structures above. We will now consider the efficiency which can be achieved in such an implementation, but first we need to consider an associated sorting problem.

Suppose that we have an array $a(1), a(2), \cdots, a(m)$ taking values from V and a map $f: V \rightarrow\{0,1,2, \cdots, k\}$. We wish to sort the values of the array a so that $f(a(1)) \leq f(a(2)) \leq \cdots \leq f(a(m))$. This can be done by the following algorithm, using an auxiliary array $c(0), c(1), \cdots, c(k)$. The time requirement of the algorithm is clearly $O(\mathrm{~m}+\mathrm{k})$.

```
(I) \(c(j) \leftarrow 0\) for \(0 \leq j \leq k\)
    \(c(f(a(i))) \leftarrow c(f(a(i)))+1\) for \(1 \leq i \leq m\)
    i \(\leftarrow 1\)
    For \(j=0,1, \cdots, k\) do \(i^{\prime} \leftarrow i+c(j), c(j) \leftarrow i\) and \(i \leftarrow i^{\prime}\)
    \(i \leftarrow 1\)
    (2) \(x \leftarrow a(i)\)
    (3) If \((x<0)\) go to (4)
    \(i^{\prime} \leftarrow c(f(x))\)
    \(c(f(x)) \leftarrow c(f(x))+1\)
    \(x^{\prime} \leftarrow a\left(i^{\prime}\right)\)
    \(a\left(i^{\prime}\right) \leftarrow-x\)
    \(x \leftarrow x^{\prime}\)
    Go to (3)
    (4) \(i \leftarrow i+1\)
    If (i \(\leq m\) ) go to (2)
    \(a(i) \leftarrow-a(i)\) for \(1 \leq i \leq m\)
```

The following complexity result was suggested by a related result in Gries [16]. For the necessary definitions, refer back to Section 2•9.
3.7 THEOREM For any $G \in \underset{\sim}{G}(V), \pi \in \underset{\sim}{\mathbb{I}}(V)$ and distinct $v_{1}, v_{2}, \cdots, v_{m-1} \in V$, the derived partition nest $\left[\pi_{1}, \pi_{2}, \cdots, \pi_{m}\right]$ can be computed in $O\left(n^{2} \log n\right)$ time, assuming an implementation in which $\mathrm{d}(\mathrm{v}, \mathrm{W})$ can be computed in time proportional to $|\mathrm{W}|$, for any $\mathrm{V} \in \mathrm{V}, \mathrm{W} \subseteq \mathrm{V}$.

Proof: It is obvious that the time occupied in the computation of $\pi_{i} \circ v_{i}$ for $1 \leq i \leq m-1$ and in Step (1) of Algorithm 2.5 will be easily $O\left(n^{2} \log n\right)$. Since each execution of Step (2) of Algorithm 2.5 requires only a fixed amount of time and leads to an execution of Step (3), we are justified in restricting our attention to Step (3). For any given W, the necessary r executions of step (3) can be performed in $O(n|W|)$ time. This follows from the assumption about the computation of $d(v, W)$ and from the algorithm in Section $3 \cdot 6$. Therefore the total time for the computation of $\left[\pi_{1}, \pi_{2}, \cdots, \pi_{m}\right]$ is $O\left(n^{2} \log n+n \Sigma|W|\right)$, where the sum is over all sets assigned to W during any execution of Step (2) (for any execution of Algorithm 2.5). Let $x \in V$ and consider the real variable q_{x}, defined at any point of time during any execution of Algorithm 2.5 by $q_{x}=h_{x}+\log _{2} l_{x}$ Here h_{x} is the number of sets containing x which have been previously assigned to W during an execution of Step (2), plus the number of sets $W_{j}(m \leq j \leq M)$ which contain x, plus one for the set $\{x\}=\left\{v_{i}\right\}$ created by the operation $\pi_{i} \circ v_{i}$, if it exists and has not already been counted. Also l_{x} is the current size of the cell of $\tilde{\pi}$ which contains x. Note that h_{x}, ℓ_{x} and q_{x} are variables which frequently change value during Algorithm $2 \cdot 5$.

The value of q_{x} clearly remains constant or decreases between different executions of Algorithm 2.5. The only other place where it can change is during Step (3), when h_{x} remains fixed while ℓ_{x} decreases, or h_{x} increases by one. In the latter case ${ }_{x}$ decreases by at least a factor of two, so that q_{X} does not increase. Therefore q_{X} is non-increasing throughout the computation, implying that its last value is bounded above by its first, which is bounded above by $2+\log _{2} n$. Therefore the final value \bar{h}_{x} of h_{x} is at most $2+\log _{2} n$.

We conclude that the total time required for the computation of $\left[\pi_{1}, \pi_{2}, \cdots, \pi_{m}\right]$ is $O\left(n^{2} \log n+n \underset{x \in V}{ } \bar{h}_{x}\right)=O\left(n^{2} \log n\right)$, as required.

For our particular choice of data structures, and our particular implementation environment, we have found that the fastest way to compute $d(v, W)$ for $n / 30 \leq|W| \leq n$ approximately is to represent W as a bit-vector and to count the number of one-bits in the bit-vector representing $\mathbb{N}(v, G) \cap W$. Although this technique (used for $|W|>1)$ appears to reduce the total time in "the majority" of cases, it has the unfortunate side-effect of invalidating the premises of Theorem $3 \cdot 7$. The best replacement for the bound $O\left(n^{2} \log n\right)$ which we have been able to prove is $O\left(n^{3}\right)$. Since the time required for the computation of $d(v, W)$ is now essentially independent of $|W|$, Step (3) of Algorithm 2.5 can be simplified by using $t=1$. This is especially convenient if the sequence α is represented as a set of pointers to the array a (see Section $3 \cdot 2$).
3.8 Efficiency of Algorithm 2.31

Let $T^{*}(G, \pi)$ be the portion of the search tree $T(G, \pi)$ which is examined by Algorithm 2.31. Let m_{1} be the number of terminal nodes of $T^{*}(G, \pi)$ which are equivalent to the earliest terminal node ε (including ε itself). Let m_{2} be the number of nodes of $T^{*}(G, \pi)$ which are not equivalent to ε and which do not have any descendants in $T^{*}(G, \pi)$. Let I be the constant defined in Section 2•30. Then the total time required by Algorithm $2 \cdot 31$ is $O\left(m_{1} n^{2} \log n+m_{2} n^{2}(L+\log n)\right)$, under the conditions of Theorem $3 \cdot 7$, where m_{2} may depend on L. For our implementation, this must be increased to $O\left(n^{3}\left(m_{1}+m_{2}\right)+m_{2} n^{2} L\right)$. By Theorem 2.33, $m_{1} \leq n$, but we have not found any reasonable bound on m_{2}. It varies in a very complicated manner with the initial labelling of the input graph and the value of L.

3.9 Other implementation details

Algorithm 2-31 has been implemented on a Cyber 170 computer, mainly in Fortran. Because of the difficulty in manipulating bit-vectors efficiently in Fortran, several small subroutines are coded in assembler language.

The indicator function Λ is evaluated by the subroutine which implements Algorithm 2•5. It is formed by taking cell sizes, relative vertex degrees and other information which is computed in the course of Algorithm 2.5, and merging these into a single integer value in a "pseudo-random" fashion (see Section 2.28).

A technique which produced considerable improvements in efficiency in some cases involves the updating of the graph $G(\rho)$ when ρ is updated. The computation of $G(\rho)$ is quite time-consuming
(up to about 6 seconds for $n=1000$), so this computation is delayed for as long as possible, in case it is not necessary.

3•10 Storage requirements
Let m be the number of machine-words required to hold a bit-vector of size n. Let K be the maximum length of a node of $T^{*}(G, \pi)$. Obviously $K \leq n$, but very much smaller values are normal. Define L as before. The total amount of storage required by our implementation, ignoring a minor amount independent of n, is $2 m n+10 n+m+(m+4) K+2 m L$ words. This figure includes $2 m n$ words for the storage of G and $G(\rho)$. If $Z \alpha b=$ false (see Algorithm 2•31), the storage requirement can be reduced by $m n+2 n$ words.

3.11 Experimental performance

In Figure 3•l we give the execution time required for several families of graphs. In each description below, β gives the approximate slope of the curve in the region $50 \leq n \leq 200$. Although the results of Section $3 \cdot 8$ predict a value of $\beta \geq 4$, even when $m_{2}=0$, the experimental value of β is less than 3 in each of these classes.
(i) E : empty graph on n vertices $(\beta=2.8)$.
(ii) Q : m-dimensional cube, where $n=2^{m}(\beta=2 \cdot 3)$.
(iii) C : random circulant graph of degree $10(\beta=2 \cdot 2)$. This is defined by $V(G)=V$ and $E(G)=\{x y| | x-y \mid \in W(\bmod n)\}$, where W is a random subset of $\{1,2, \cdots,[(n-1) / 2]\}$ of size 5.
(iv) R_{6} : "random" regular graph of degree $6(\beta=2 \cdot 9)$. There is no known practical algorithm for randomly generating regular
60.

Figure $3 \cdot 1$
graphs so that each graph appears with equal frequency. The graphs represented by the curve R_{6} were made by randomly generating three permutations γ_{1}, γ_{2} and γ_{3} such that $x^{\delta} \neq x, \delta \in\left\{\gamma_{1}{ }^{2}, \gamma_{2}{ }^{2}, \gamma_{3}{ }^{2}\right\}$, and $x^{\gamma_{i}} \neq x^{\gamma_{j}}$, $I \leq i<j \leq 3$, for each $x \in V$. Define G by $V(G)=V$ and $E(G)=\left\{x x^{\gamma} \mid x \in V, 1 \leq i \leq 3\right\}$. For $n \geq 40$ all those graphs constructed had trivial automorphism groups, and produced search trees with maximum depth 2.
(v) $\quad R_{20}$: same as R_{6} but with degree $20(\beta=2 \cdot 6)$.
(vi) G_{1} : random graph. Each possible edge is independently chosen or not chosen with probability $\frac{1}{2}$. The dashed line marked P in Figure 5-1 gives the average time required for the computation of $G(\rho)$ for some ρ. At least one such step is essential for any program which computes $C(G, \pi)$ from G using an adjacency matrix representation. Therefore Figure 5•1 suggests that the performance of our program is close to optimal for large random graphs.
(vii) G_{2} : same as (vi) but with Zab = false.
3.12 Harder Examples

We have also tested our program on a number of graphs which have traditionally been regarded as difficult cases for graph isomorphism programs.
(i) The strongly regular graphs with 25 vertices required between $0 \cdot 1$ and $2 \cdot 4$ seconds, with the average time being 1.0 seconds.
(ii) A strongly regular graph G with 35 vertices can be formed from a Steiner Triple System (STS) with 15 points. The vertices of G are the blocks of the STS, and two vertices are adjacent if the corresponding blocks overlap. For the 80 graphs so formed, our program required between $0 \cdot 3$ and 7 seconds, with an average of $4 \cdot 8$ seconds. Most of these graphs have a trivial automorphism group.

Certain strongly regular graphs G with n vertices can be extended to graphs $\mathbb{E}(G)$, having $2 n+2$ vertices, which are 2 -level regular. See Mathon [24] for the necessary definitions. There are good theoretical reasons to expect 2 -level regular graphs to be particularly difficult to process, and this is borne out by experience. The graphs A_{60} and B_{60} (60 vertices; see [24]) required 79 and 180 seconds respectively, while the graphs $A_{72}-D_{72}(72$ vertices) required about 500 seconds each.

3.13 Design isomorphism

A design D (also known as a hypergraph) is a pair of sets (P, B), where B is a collection of subsets of P . The elements of P are called points and the elements of B are called blocks. Two designs $D_{1}=\left(P_{1}, B_{1}\right)$ and $D_{2}=\left(P_{2}, B_{2}\right)$ are isomorphic if there are bijections $f_{1}: P_{1} \rightarrow P_{2}$ and $f_{2}: B_{1} \rightarrow B_{2}$ such that $x \in X$ implies $f_{1}(x) \in f_{2}(X)$ for all $x \in P_{1}, X \in B_{1}$.

Given a design $D=(P, B)$ we can construct a graph $G=G(D)$, where $V(G)=P \cup B$ and $E(G)=\{x X \mid x \in P, X \in B, x \in X\}$. It is easy to prove $([6],[30])$ that two designs $D_{1}=\left(P_{1}, B_{1}\right)$ and $D_{2}=\left(P_{2}, B_{2}\right)$
are isomorphic if and only if there is an isomorphism $f: G\left(D_{1}\right) \rightarrow G\left(D_{2}\right)$ such that $f\left(P_{1}\right)=P_{2}$ and $f\left(B_{1}\right)=B_{2}$. Therefore Algorithm 2.31 can be used for design isomorphism.

If D is a balanced incomplete block-design (BIBD) then $G(D)$ is known to present difficulties for many graph isomorphism programs, and ours is no exception. Two 50 -vertex graphs $G(D)$, named A_{50} and B_{50} in [24], required about 60 seconds each. In another experiment [33], we established the isomorphism of six BIBDs with 36 points and 36 blocks (so $n=72$) using about $6 \cdot 6$ seconds of machine time each. The smallness of this figure is principally due to the reasonably rich automorphism groups of the designs.

A much more difficult problem was posed by two BIBDs, D_{1} and D_{2}, with 126 points and 525 blocks [30]. This problem was solved using an ancestor of Algorithm 2•31 implemented on an IBM 370/168 computer. The graph $G\left(D_{2}\right)$ was processed in 582 seconds, and has an automorphism group of size 756000 with two orbits (the points and the blocks). The graph $G\left(D_{1}\right)$ was similarly tackled, but the execution had not finished before it was aborted after 1200 seconds. We then constructed the strongly regular graphs S_{1} and S_{2} of order 525 and degree 144 whose edges are the intersecting blocks of D_{1} and D_{2}. The graph S_{2} had a transitive automorphism group of order 756000 (running time 66 seconds) and S_{1} had an automorphism group of order 1000 and three orbits (running time 461 seconds). The orbits of S_{l} were then used to provide an initial partitioning of the vertices of $G\left(D_{1}\right)$ into four cells (the point cell and three block cells). It was then processed in 227 seconds, and found to have an automorphism group of order 1000. Thus D_{1} and D_{2} are not isomorphic.
3.14 Hadamard equivalence

Let M_{1} and M_{2} be two $m \times n$ matrices with ± 1 entries. We say that M_{1} and M_{2} are Hadamard equivalent if M_{2} can be obtained from M_{1} by applying an element of the group Γ generated by the following operations.
p_{α} : Permute the rows according to $\alpha \in S_{m}$.
q_{β} : Permute the columns according to $\beta \in S_{n}$.
$r_{i}:$ Multiply row i by $-1(I \leq i \leq m)$.
$c_{j}:$ Multiply column j by $-1(1 \leq j \leq n)$.
Suppose that M is any $m \times n$ matrix with ± 1 entries. Define
$G=G(M)$ to be the graph with $V(G)=\left\{v_{i}, \bar{v}_{i}, w_{j}, \bar{w}_{j} \mid I \leq i \leq m\right.$, $I \leq j \leq n\}$ and $E(G)=\left\{v_{i} W_{j}, \bar{v}_{i} \bar{W}_{j} \mid 1 \leq i \leq m, I \leq j \leq n, M_{i j}=I\right\} \cup$ $\left\{\mathrm{v}_{i} \overline{\mathrm{w}}_{j}, \overline{\mathrm{v}}_{\mathrm{i}} \mathrm{w}_{j} \mid I \leq i \leq \mathrm{m}, \mathrm{I} \leq j \leq \mathrm{n}, \mathrm{M}_{i j}=-I\right\}$. We will refer to the vertices v_{i} and $\overline{\mathrm{v}}_{i}$ as v-type vertices. The following theorem first appeared in McKay [31].
3.15 THEOREM Let $G_{1}=G\left(M_{1}\right)$ and $G_{2}=G\left(M_{2}\right)$. Then M_{1} and M_{2} are Hadamard equivalent if and only if there is an isomorphism from G_{1} to G_{2} which maps the v-type vertices of G_{1} onto those of G_{2}. Proof: Let $\bar{\Gamma}$ be the set of permutations of $V\left(G_{1}\right)$ generated by the following elements:
\bar{p}_{α} : For each i, $\operatorname{map} v_{i}$ onto $v_{i} \alpha$ and \bar{v}_{i} onto $\bar{v}_{i} \alpha\left(\alpha \in S_{m}\right)$.
$\overline{\mathrm{q}}_{\beta}:$ For each j, map w_{j} onto $\mathrm{w}_{j} \beta$ and $\overline{\mathrm{w}}_{j}$ onto $\overline{\mathrm{w}}_{j} \beta\left(\beta \in \mathrm{~S}_{\mathrm{n}}\right)$.
\bar{r}_{i} : Interchange v_{i} and $\overline{\mathrm{v}}_{\mathrm{i}}(1 \leq i \leq m)$.
$\bar{c}_{i}: \quad$ Interchange w_{j} and $\bar{w}_{j}(1 \leq j \leq n)$.
Define ϕ to be the homomorphism from Γ into $\bar{\Gamma}$ which takes p_{α} onto $\bar{p}_{\alpha}, q_{\beta}$ onto \bar{q}_{β}, r_{i} onto \bar{r}_{i} and c_{j} onto \bar{c}_{j} for each $\alpha \in S_{m}$, $\beta \in S_{n}, l \leq i \leq m$ and $l \leq j \leq n$. It is easily verified that ϕ is a
group isomorphism and that $G\left(M_{1}{ }^{\gamma}\right)=G\left(M_{1}\right)^{\gamma \phi}$ for each $\gamma \in \Gamma$. Therefore, the Hadamard equivalence of M_{1} and M_{2} implies the presence of an isomorphism from G_{1} to G_{2} which maps the v-type vertices of G_{1} onto those of G_{2}.

Suppose conversely that there is an isomorphism θ of the required type from G_{1} to G_{2}. Let e_{1} be any edge of G_{1} and let $e_{2}=e_{1}{ }^{\theta}$ be its image in G_{2}. For $k \in\{1,2\}$, define H_{k} to be the subgraph of G_{k} induced by those vertices adjacent to either end of e_{k}. The structure of G_{k} ensures that H_{k} has three important properties.
(i) Exactly one of v_{i} and $\overline{\mathrm{v}}_{\mathrm{i}}$ is in $\mathrm{H}_{\mathrm{k}}(\mathrm{I} \leq \mathrm{i} \leq m)$.
(ii) Exactly one of w_{j} and $\overline{\mathrm{w}}_{\mathrm{j}}$ is in $\mathrm{H}_{\mathrm{k}}(1 \leq \mathrm{j} \leq \mathrm{n})$.
(iii) H_{k} completely determines G_{k}.

To explain (iii), suppose for example that $\mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{j}} \in \mathbb{E}\left(\mathrm{H}_{\mathrm{K}}\right)$. Then $\overline{\mathrm{v}}_{\mathrm{i}} \overline{\mathrm{w}}_{j} \in \mathbb{E}\left(\mathrm{G}_{\mathrm{k}}\right)$ but $\mathrm{v}_{\mathrm{i}} \overline{\mathrm{w}}_{j}, \overline{\mathrm{v}}_{\mathrm{i}} \mathrm{w}_{j} \notin \mathbb{E}\left(\mathrm{G}_{\mathrm{k}}\right)$.

Since θ is an isomorphism, it maps H_{1} onto H_{2}. By properties (i) and (ii) we can find $\bar{\gamma} \in \bar{\Gamma}$ whose restriction to H_{1} is the same as that of θ. But then $\bar{\gamma}$ is an isomorphism from G_{1} to G_{2}, by property (iii). Therefore $M_{2}=M_{1} \bar{\gamma}^{-1}$.

If M is a Hadamard matrix ($m=n$ and $M^{\top} M=n I$) then the graph $G(M)$ may prove exceedingly difficult for Algorithm 2•31. This was discovered when our implementation was applied to a collection of 126 Hadamard matrices of order 24 , produced by C. Dibley and W.D. Wallis, in an attempt to determine the equivalence classes. Several of the graphs, having very large automorphism groups, were processed in about 300 seconds, but some of those smaller automorphism groups would require more than 1800 seconds

- the program was not run to completion. These graphs are all

2-level regular in the sense of Mathon [24], but are very much harder than those given in [24], even though they have larger groups. The reason for this is that the search tree $\mathbb{T}^{*}(G, \pi)$ has depth 7 or 8 (compared with 4 for the graphs in [24]), although only 2 or 3 vertices generally need to be fixed in order to eliminate any non-trivial automorphisms. This means that the automorphism group is of no use for a large part of $T^{*}(G, \pi)$.

Other workers (see [8] for example) have found that a count of small subgraphs (e.g. cliques) can often be used to provide an initial partitioning of the vertices of a difficult graph, which greatly speeds up a subsequent isomorphism test. Similar techniques can be used here, but they are of no use in many cases. Some of the hardest graphs amongst the 126 mentioned above have only two orbits (the v-type vertices and the others) - the initial partitioning which we were using anyway (because of Theorem 3•15). However we have devised a method based on a generalisation of the profile defined in [7] which can be used to refine the partitions at the immediate successors of the root node in $T^{*}(G, \pi)$. With this improvement, we can now process these graphs in about 20 seconds on the average. More details will be given in a future paper.

An algorithm specifically for equivalence of Hadamard matrices has been devised by Leon [22]. The details given in [22] are insufficient to permit a direct comparison with our technique, but a cursory examination suggests that Leon's technique may be competitive with ours for this particular problem.

3.16 Examples

Some examples of the automorphism group generators produced by Algorithm 2.31 are given in Appendix 3.

CHAPTER FOUR

TRANSITIVE GRAPHS - MISCELIANEOUS THEORY

In this chapter we present a miscellaneous collection of theoretical results concerning the structure of transitive graphs. Most of these results are required for use in Chapter 5. Anything not attributed to another author is new.

```
4•1 Lexicographic Products
Sections 4•1 - \(4 \cdot 5\) were inspired by unpublished work by
``` C. Godsil, who proved Theorem 4.5 (a) \(\Longleftrightarrow\) (e) without the use of Lemma 4•4.

A graph \(G \in G(V)\) is called a non-trivial lexicographic product (NTIP) if \(G=H[J]\), where \(H\) and \(J\) have at least two vertices.

A subset \(W \subseteq V\) is called extemally-related (ER) in a graph \(G\) if each vertex in \(V \backslash W\) is either adjacent to every vertex of W or to no vertex of \(W\). Subsets of size 0,1 or \(n\) are necessarily \(E R\), so we will call \(W\) a non-trivial \(E R\) subset if \(2 \leq|W|<n\).
4.2 LEMMA Let \(W_{1}, W_{2} \subseteq V\) be ER. Then
(a) \(W_{1} \cap W_{2}\) is \(E R\),
(b) if \(W_{1} \cap W_{2} \neq \emptyset\) then \(W_{1} \cup W_{2}\) is \(E R\), and
(c) if \(W_{1} \cap W_{2} \neq \emptyset, W_{1} \backslash W_{2} \neq \emptyset\) and \(W_{1} \backslash W_{2} \neq \emptyset\) then \(W_{1} \backslash W_{2}\) and \(W_{1} \backslash W_{2}\) are ER.

Proof: Part (a) is trivial. For part (b), any vertex not in \(W_{1} \cup W_{2}\) but adjacent to some vertex of \(W_{1} \cup W_{2}\) is adjacent to every vertex in \(W_{1} \cap W_{2}\) and therefore to every vertex of \(W_{1} U W_{2}\). Now consider part (c). Suppose some vertex \(x \notin W_{1} \backslash W_{2}\) is adjacent to some vertex \(y \in W_{1} \backslash W_{2}\). If \(x \notin W\), then \(x\) is adjacent to every vertex in \(W_{1} \backslash W_{2}\), since \(W_{1}\) is \(E R\). Suppose that \(x \in W_{1} \cap W_{2}\), and
let \(z\) and \(w\) be arbitrary vertices in \(W_{1} \backslash W_{2}\) and \(W_{2} \backslash W_{1}\) respectively. Since \(W_{2}\) is \(E R, y\) is adjacent to \(w\). Since \(W_{1}\) is \(E R\), \(w\) is adjacent to z. Finally, since \(W_{2}\) is \(E R, ~ z\) is adjacent to \(x\). Therefore \(W_{1} \backslash W_{2}\) is \(E R\), and similarly \(W_{2} \backslash W_{1}\) is ER.
4.3 LEMMA If \(W\) is an \(E R\) subset of \(V\), then \(\operatorname{Aut}(G)_{\{W\}}=\operatorname{Aut}(W) \oplus \operatorname{Aut}(V \backslash W)\).
Proof: obvious.
4.4 LEMMA Let G be any groph with at least one non-trivial ER subset, such that \(\Gamma=A u t(G)\) contains no transpositions. Then a non-trivial ER subset of minimum size is a block for \(\Gamma\).

Proof: Let \(B\) be a non-trivial ER subset of minimum size. If \(B=\{x, y\}\) then \((x y) \in \Gamma\) obviously, so \(|B| \geq 3\). Now suppose that \(B \cap B^{\gamma} \neq \emptyset\) for some \(\gamma \in T\). Then \(B=B^{\gamma}\), since otherwise either \(B \cap B^{\gamma}\) or \(B \backslash B^{\gamma}\) is a non-trivial ER subset smaller than \(B\), by Lemma \(4 \cdot 2\). Thus \(B\) is a block for \(\Gamma\).
4.5 THEOREM Let G be a transitive graph which is neither empty nor complete. Then the following are equivalent.
(a) G is a NTPL.
(b) \(G=G_{1}\left[G_{2}\right]\), where \(G_{1}\) and \(G_{2}\) are non-trivial and transitive.
(c) G has a non-trivial ER subset.
(d) Aut(G) has a non-trivial ER block.
(e) Aut(G) has an intransitive subgroup with exactly one orbit of size greater than one.

Proof: Obviously, \((b) \Rightarrow(a) \Rightarrow(c)\) and \((d) \Rightarrow(e) \Rightarrow(c)\), so it will
suffice to prove that \((d) \Rightarrow(b)\) and \((c) \Rightarrow(d)\).

Suppose that Aut(G) has a non-trivial ER block B, and let \(B_{1}, B_{2}, \ldots, B_{r}\) be the complete block system containing \(B\). For \(i \neq j\), \(B_{i}\) and \(B_{j}\) are trivially joined, since \(B_{i}\) and \(B_{j}\) are ER. Furthermore, the subgraphs \(B_{i}\) are isomorphic and transitive, and Aut(G) acts transitively on \(\left\{\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{r}}\right\}\). Therefore condition (b) is satisfied.

Suppose now that \(G\) has a non-trivial ER subset. Then, by Lemma \(4 \cdot 4\), either condition (d) is satisfied or Aut (G) contains a transposition (x y). In the latter case, we can assume without loss of generality (replace \(G\) by \(\bar{G}\) if necessary) that \(\mathbb{N}(x, G)=\mathbb{N}(y, G)\). Now define \(B=\{V \in V \mid N(v, G)=\mathbb{N}(x, G)\}\). Then \(B \neq V\), since otherwise \(G\) is empty. Therefore \(B\) is a non-trivial ER block of Aut(G). \(\square\)

\subsection*{4.6 Vertex-connectivity}

Sections \(4 \cdot 6-4 \cdot 8\) are adapted from Watkins [42].
Let \(G\) be a transitive graph with degree \(k\) (\(1 \leq k \leq n-2\)) and vertex-connectivity \(k \geq 1\). Obviously, \(k \leq k\). A part of \(G\) is a component of the subgraph \(V \backslash X\), for some minimum cutset \(X\). The parts of \(G\) of the smallest size are the atomic parts of \(G\).
4.7 THEOREM Suppose that \(\kappa<k\) and that the atomic parts of \(G\) have size a. Then
(1) \(2 \leq a \leq \frac{n}{4}\).
(2) The atomic parts of G are disjoint and form a block system for Aut(G).
(3) The minimum cutset defined by an atomic part is a union of at least two atomic parts.
(4) \(k \geq k-a+1\)

Proof: See [42].
4.8 COROLLARY \(\kappa>2 \mathrm{k} / 3\).

Proof: This follows from (1) and (4) above.
4.9 THEOREM If \(k<k\) and equality holds in Theorem \(4 \cdot 7(4)\), then Gis a NTLP.

Proof: Let \(W\) be an atomic part. Since the cutset determined by \(W\) has \(k=k-a+l\) vertices, each vertex in \(W\) must be adjacent to every vertex in the cutset. In other words, \(W\) is \(\mathbb{E R}\). Since \(W\) is a block, by Theorem \(4 \cdot 7, G\) is a NTLP by Theorem \(4 \cdot 5\).

4•10 Edge-connectivity
Sections 4•10-4•14 are extracted from McKay [29].
Theorem \(4 \cdot 14\) has also been proved by Lovasz [23], by very similar means.

Let \(G\) be a graph with edge-connectivity \(\eta \geq 1\). For \(X, Y \subseteq V\) let \(e(X, Y)\) denote the number of edges of the form \(x y\), where \(x \in X, y \in Y\). A non-empty proper subset \(W \subset V\) is an edge-part of \(G\) if \(e(W, V \backslash W)=\eta\). The edge-parts of minimum size are called edge-atoms.
4.11 LEMMA Let X and Y be edge-parts and suppose that \(\mathrm{A}=\mathrm{X} \cap \mathrm{Y}\), \(B=X \backslash Y, C=Y \backslash X\) and \(D=V \backslash(X \cup Y)\) are non-empty. Then \(A, B\), \(C\) and \(D\) are edge-parts.

Proof: Since \(X\) and \(Y\) are edge-parts,
\[
\begin{aligned}
& e(A, C)+e(A, D)+e(B, C)+e(B, D)=\eta, \text { and } \\
& e(A, B)+e(A, D)+e(B, C)+e(C, D)=\eta
\end{aligned}
\]

Since \(\emptyset \neq A, B, C, D \neq V\),
\[
\begin{aligned}
& e(A, B)+e(A, C)+e(A, D) \geq \eta, \\
& e(A, B)+e(B, C)+e(B, D) \geq \eta, \\
& e(A, C)+e(B, C)+e(C, D) \geq \eta, \text { and } \\
& e(A, D)+e(B, D)+e(C, D) \geq \eta,
\end{aligned}
\]

Adding the two equations and subtracting half the sum of the four inequalities, we obtain \(e(A, D)+e(B, C) \leq 0\). Consequently, \(e(A, D)=e(B, C)=0\), and the four inequalities are equalities. 4.12 COROLLARY Distinct edge-atoms are disjoint.
4.13 LEMMA Suppose that \(G\) is reguzar with degree k. Let \(W\) be an edge-part. Then if \(|W| \leq k\) we have \(\eta=k\) and either \(|W|=1\) or \(|W|=k\).

Proof: Let \(\&\) be the average degree of the subgraph W. Counting the edges of \(G\) adjacent to elements of \(W\) we have
\[
\begin{aligned}
\ell|W| & =k|W|-n \\
& \geq k \ell+k-n, \text { since } \ell \leq|W|-1
\end{aligned}
\]

Therefore \(k-\eta \leq 0\), since \(|W| \leq k\), and so \(k=\eta\), since \(\eta \leq k\) obviously. Therefore the inequality above becomes \(\ell|W| \geq \ell k\) which implies that \(|W|=k\) or \(\ell=0\). In the latter case, \(|W|=1\), since edge-parts are connected.
4. 14 THEOREM Let \(G\) be a connected transitive graph with degree \(k\). Then \(\eta=k\).

Proof: Suppose \(n<k\) and that \(W\) is an edge-atom of \(G\). By Lemma \(4 \cdot 13,|W|>k\). Also, \(W^{\gamma}\) is an edge-atom for any \(\gamma \in \operatorname{Aut}(G)\), and so \(W\) is a block of \(\operatorname{Aut}(W)\), by Corollary 4•12. However, the condition \(|W|>\eta\) implies that the set-wise stabiliser \(\operatorname{Aut}(G)_{\{W\}}\) cannot act transitively on \(W\), since otherwise \(e(W, V \backslash W)\) would be a multiple of \(|W|\). This is a contradiction.

We remark that Theorem \(4 \cdot 14\) is also true for infinite transitive graphs, if \(\eta\) is defined as min\{e(W,V \(\mid W)|W \subseteq V, 0<|W|<\infty\}\) See MicKay [29] for this and many related results.

4•15 Other connectivity results
The first theorem in this section was proved by Gardiner [11], and independently by Ashbacher [1].
4.16 THEOREM Let \(G\) be a graph with \(n \geq 3\) vertices such that for any two vertices \(\mathrm{v} \neq \mathrm{w}\) we have \(\mathbb{N}(\mathrm{v}, \mathrm{G}) \neq \mathbb{N}(\mathrm{w}, \mathrm{G})\) and \(\overline{\mathrm{N}}(\mathrm{v}, \mathrm{G}) \cong \overline{\mathrm{N}}(\mathrm{w}, \mathrm{G})\). Then either \(\overline{\mathbb{N}}(\mathrm{V}, \mathrm{G})\) is connected for each \(\mathrm{V} \in \mathrm{V}\) or \(\operatorname{Aut}(\mathrm{G})\) has a non-trivial ER block.
4.17 COROLLARY Let G be a non-complete connected transitive graph. If \(\overline{\mathrm{N}}(\mathrm{v}, \mathrm{G})\) is disconnected for some \(\mathrm{v} \in \mathrm{V}, \mathrm{G}\) is a NTLP. Proof: If \(\mathbb{N}(v, G)=\mathbb{N}(w, G)\) for some \(v \neq w\) or \(n=2\), Aut \((G)\) contains a transposition, and so is a NTLP by Theorem \(4 \cdot 5\). Otherwise, \(G\) satisfies the requirements of Theorem \(4 \cdot 16\), and is thus a NTLP by Theorem \(4 \cdot 5\).

4•18 Sections \(4 \cdot 18\) to \(4 \cdot 21\) are due to Godsil [14].
A regular graph \(G\) is called an (\(s, t\))-graph if the graphs
\(\mathbb{N}(\mathrm{v}, \mathrm{G})\) and \(\mathbb{N}(\mathrm{v}, \overline{\mathrm{G}})\) have exactly s and t isolated vertices, respectively, for each \(\mathrm{v} \in \mathrm{V}\).
4.19 THEOREM Let \(\mathrm{s}, \mathrm{t} \geq 1\). Then a regular graph \(G\) is an (\(\mathrm{s}, \mathrm{t}\))-graph if and only if it is \(\mathrm{C}_{5}\) a switching graph of the form \(\operatorname{Sw}\left(H\left[\overline{\mathrm{~K}}_{\mathrm{t+1}}\right]\right)\), where \(\mathbb{N}(\mathrm{v}, \mathrm{H}) \neq \mathbb{N}(\mathrm{w}, \mathrm{H})\) for \(\mathrm{v} \neq \mathrm{w}\), or the complement of such a switching graph.

4-20 THEOREM Let G be a regular graph of degree \(k\) such that \(\mathbb{N}(\mathrm{v}, \mathrm{G})=\mathbb{N}(\mathrm{w}, \mathrm{G})\) for all \(\mathrm{v}, \mathrm{w} \in \mathrm{V}\), and suppose that \(\mathbb{N}(\mathrm{v}, \mathrm{G})\) has a component of size \(c\), where \(1<c \leq \frac{k}{2}\). Then \(\mathrm{n} \geq 2 \mathrm{k}+1\). If \(\mathrm{n}=2 \mathrm{k}+1\), G is one of the two graphs shown in Figure \(4 \cdot 1\).

Figure 4.1
4.21 THEOREM Let G be a transitive graph such that both \(N(v, G)\) and \(N(v, \bar{G})\) are disconnected. Then \(G\) is either \(C_{3} \times C_{3}\) or an \((s, t)\)-graph, with \(s, t \geq 1\).
4.22 THEOREM Let G be a connected transitive graph such that for each \(V \in V\) there is a unique vertex \(V^{\prime} \in V\) at distance 3 from \(V\). Suppose G has degree k , where \(\mathrm{n}=2 \mathrm{k}+2\). Then G is a switching graph. Proof: Since \(A u t(G)\) is transitive, the set of \(\frac{n}{2}\) pairs \(\left\{v, v^{\prime}\right\}\) form a block system for Aut(G). Since the two vertices in one block are at distance 3 from each other, no vertex is adjacent to both vertices of a block. However the number of blocks is \(k+1\), so every vertex is adjacent to exactly one element of the blocks it does not itself lie in. Therefore \(G \cong \operatorname{Sw}(H)\), where \(H\) is the subgraph of \(G\) induced by any set of vertices containing exactly one element of each block.
4.23 THEOREM Let \(G\) be a transitive graph with \(k=k\) and \(n=2 k+2\). Then either G has diameter 2 or G is a switching graph.

Proof: Every vertex adjacent to a given vertex vis adjacent to at least one vertex at distance 2 from \(v\), since otherwise \(k<k\). Therefore, if the diameter of \(G\) is greater than 2 , there is a unique
vertex \(v^{\prime}\) at distance 3 from \(v\). Thus \(G\) is a switching graph, by Theorem 4.22.

4•24 THEOREM Let G be a connected non-complete transitive graph with \(n \geq 7\) and odd. Let \(D(G)\) be the set of elements of Aut(G) of the form \((\mathrm{a} b)(\mathrm{c} a)\). If \(D(G) \neq \varnothing\), then \(G\) is \(a \operatorname{NTLP}\).

Proof: Since \(A u t(G)\) is transitive, every \(v \in V\) is contained in supp \((\gamma)\) for some \(\gamma \in D(G)\). Thus \(|D(G)| \geq 2\). Since \(n\) is odd and \(|\operatorname{supp}(\gamma)|\) is even for all \(\gamma \in D(G)\), we can find distinct \(\gamma, \delta \in D(G)\) such that \(\operatorname{supp}(\gamma) \cap \operatorname{supp}(\delta) \neq \varnothing\).

There are essentially seven different ways in which \(\gamma\) and \(\delta\) can overlap. In the first six cases, we can identify an intransitive subgroup \(\Lambda\) having exactly one non-trivial orbit. Therefore \(G\) is a NTPL in these cases, by Theorem 4•5. Let \(\gamma=(a b)(c d)\)
(i) If \(\delta=(\mathrm{d}\) e) \((f \mathrm{~g})\), take \(\Lambda=\langle\gamma \delta \gamma \delta\rangle\).
(ii) If \(\delta=\left(\begin{array}{c}\text { e }\end{array}\right)\left(\begin{array}{l}\text { e } f\end{array}\right)\), take \(\Lambda=\langle(\mathrm{c} d)\rangle\). \(\Lambda \subseteq \operatorname{Aut}(G)\) because \(\{c, d\}\) is ER.
(iii) If \(\delta=(a c)(e f)\), take \(\Lambda=\langle\gamma, \delta \gamma \delta\rangle\).
(iv) If \(\delta=(\mathrm{a} b)(\mathrm{c} e)\), take \(\Lambda=\langle\gamma \delta\rangle\).
(v) If \(\delta=(\mathrm{ac})(\mathrm{d} e)\), take \(\Lambda=\langle\gamma, \delta\rangle\).
(vi) If \(\delta=(\mathrm{a} c)(\mathrm{b}\) d), take \(\Lambda=\langle\gamma, \delta\rangle\).

If none of the cases above occurs, the only type of
overlap is as for \(\gamma=(a b)(c d)\) and \(\delta=(a \operatorname{l})(c f)\); call this type (vii). Now define a relation \(\sim\) on \(V\).
(a) \(x \sim x\) for all \(x \in V\)
(b) If \(x \neq y \in V, x \sim y\) if and only if there are automorphisms \(\gamma=\left(\begin{array}{ll}x & a\end{array}\right)(y \quad b)\) and \(\delta=\left(\begin{array}{ll}x & c\end{array}\right)\left(\begin{array}{ll}y & d\end{array}\right)\) such that \(a \neq c\) and \(b \neq d\).

Clearly \(\sim\) is symmetric. Now suppose that \(s \neq y, x \sim y\) and there
 only overlaps of type (vii) are allowed, \(e \in\{a, b, c, d, y\}\), and either \(z=y\) or \(\{z, f\}=\{v, d\}\). However, in the latter case, \(\alpha\) and \(\delta \gamma \delta=(a c)(b d)\) have an overlap of type (ii). Therefore \(z=y\).

We conclude that \(\sim\) is an equivalence relation with classes of size 2, contradicting the assumption that \(n\) is odd.
4.25 THEOREM Let G be a connected non-complete transitive graph with n odd and \(\mathrm{n} \geq\) 7. If G has an automorphism of the form \((\mathrm{abc})(\mathrm{d} \in \mathrm{f})\), then \(G\) is \(\alpha\) NTLP.

Proof: If \((\mathrm{a} \mathrm{b} \mathrm{c})(\mathrm{d} e \mathrm{f}) \in \operatorname{Aut}(\mathrm{G})\) we find, by considering the edges between \(\{a, b, c\}\) and \(\{d, e, f\}\) that \((a b)(d e) \in \operatorname{Aut}(G)\). The result now follows from Theorem \(4 \cdot 26\).

Theorems \(4 \cdot 24\) and \(4 \cdot 25\) undoubtedly have a common generalization, but we have made no serious attempt to find it.
4.26 Let \(G\) be a transitive graph and let \(\Gamma=\operatorname{Aut}(G)\). Let
\(\{(1)\}<\Lambda \leq \Gamma\). Then \(\Lambda\) has a unique representation
\[
\Lambda=\Lambda^{(1)} \oplus \Lambda^{(2)} \oplus \cdots \oplus \Lambda^{(r)}
\]
where the supports of the \(\Lambda^{(i)}\) are non-empty and disjoint, and \(r\) is maximum. The subgroups \(\Lambda^{(i)}\) are called the fragments of \(\Lambda\).

Define a graph \(H=H(G, \Lambda)\) as follows. \(V(H)\) is the set of non-trivial orbits of \(\Lambda\). Two distinct vertices of \(H\) are adjacent if and only if the corresponding orbits are non-trivially joined in G.
4.27 LEMMA If \(\Phi\) is a fragment of \(\Lambda\) and \(\gamma \in \Gamma\), then \(\Phi^{\gamma}\) is a fragment of \(\Lambda^{\gamma}\).

Proof: obvious.

4-28 LEMMA Let \(1 \neq P \in \operatorname{SyI}_{p}\left(\Gamma_{1}\right)\) for some prime \(p\). Then the supports of the fragments of \(P\) are the components of \(H(G, P)\).

Proof: Let \(\Phi\) be a fragment of \(P\). Any orbit of \(P\) in \(\operatorname{supp}(\Phi)\) is trivially joined to each orbit not in \(\operatorname{supp}(\Phi)\), and so \(\operatorname{supp}(\Phi)\) is a union of components \(V_{1}, V_{2}, \cdots, V_{r}\) of \(H(G, P)\). Suppose \(r \geq 2\), let \(\pi \in \pi(V)\) have non-trivial cells \(V_{1}, V_{2}, \cdots, V_{r}\) and fix any point not in \(\operatorname{supp}(\Phi)\). Then \(\Gamma_{\pi}=\left.\stackrel{r}{i=1}{ }_{i} \Gamma_{\pi}\right|_{C_{i}}\), and \(\Phi \in \operatorname{Syl} l_{p}\left(\Gamma_{\pi}\right)\), so that \(\Phi=\Phi^{(I)} \oplus \Phi^{(2)} \oplus \cdots \oplus \Phi^{(r)}\), where \(\Phi^{(i)} \in \operatorname{Syl}_{p}\left(\left.\Gamma_{\pi}\right|_{C_{i}}\right)\) by Lemma \(1 \cdot 9\), contradicting the assumption that \(\Phi\) is a fragment of \(P\).

4•29 LEMMA Let \(1 \neq P \in \operatorname{Syl}_{p}\left(\Gamma_{I}\right)\) for some prime \(p\). Let \(\Phi\) be a fragment of \(P\) and let \(\gamma \in \Gamma\). Then if \(\Phi^{\gamma} \leq P\) and \(\operatorname{supp}(\Phi)\) is a union or orbits of \(\mathrm{P}, \Phi^{\gamma}\) is a fragment of P .

Proof: \(\quad\) Since \(\operatorname{supp}\left(\Phi^{\gamma}\right)\) is a component of \(H\left(G, P^{\gamma}\right)\) and the non-trivial orbits of \(\Phi^{\gamma}\) are orbits of \(P, \operatorname{supp}\left(\Phi^{\gamma}\right)=\operatorname{supp}\left(\Phi^{\prime}\right)\) for some fragment \(\Phi^{\prime}\) of \(P\). But then \(\Phi^{\gamma} \leq \Phi^{\prime}\), since \(\Phi^{\gamma} \leq P\) and so \(\Phi^{\gamma}=\Phi^{\prime}\), since both \(\Phi^{\gamma}\) an \(\bar{\alpha} \Phi^{\prime}\) are in \(\operatorname{Sy} \mathcal{l}_{p}\left(\Gamma_{\theta\left(\Phi^{\prime}\right)}\right)\). \(4 \cdot 30\) THEOREM Let \(P \in \operatorname{SyI}_{p}\left(\Gamma_{1}\right)\) have fragments \(\Phi^{(1)}, \Phi^{(2)}, \cdots, \Phi^{(r)}\). suppose that some \(\Phi^{(i)}\) is uniquely identified amongst \(\left\{\Phi^{(1)}, \Phi^{(2)}, \cdots, \Phi^{(r)}\right\}\) by the sizes of its orbits and that, for every \(\gamma \in \Gamma, \Phi^{(i)} \gamma \leq P\) only if the non-trivial orbits of \(\Phi^{(i) \gamma}\) are orbits of P. Then \(\left|\operatorname{supp}\left(\Phi^{(i)}\right)\right| \geq \frac{1}{2} n\).

Proof: By Lemma \(4 \cdot 29, \bar{\Phi}^{(i)}\) is weakly closed in P with respect to \(\Gamma\). The theorem now follows from Theorem \(1 \cdot 20\).

As an example of the use of Theorem \(4 \cdot 30\), the automorphism group of a transitive graph \(G\) with 15 vertices cannot have a Sylow
 since the fragment \(\langle(23)(45)(67)\rangle\) has a support which is too small.

4•31 Eigenvalue Techniques
The results described in Sections \(4 \cdot 31\) - \(4 \cdot 39\) are special
cases of more general results developed by Godsil and McKay [13].
Let \(G \in G(V)\) and let \(\pi=\left(V_{1}, V_{2}, \cdots, V_{m}\right) \in \underset{\sim}{\mathbb{I}}(V)\) be
equitable. The mxn matrix \(T=T(\pi)\) is defined by
\[
T_{i j}= \begin{cases}k_{i}{ }^{-\frac{1}{2}} & \text { if } j \in v_{i} \\ 0 & \text { otherwise }\end{cases}
\]
where \(\mathrm{k}_{\mathrm{i}}=\left|\mathrm{V}_{\mathrm{i}}\right|\). Using T we define the quotient matrix of G by \(\pi\) to be \(Q=Q(G, \pi)=T A T^{\top}\), where \(A\) is the adjacency matrix of \(G\). Note that \(Q\) is symmetric.
4.32 LEMMA For \(1 \leq i, j \leq m\), let \(e_{i j}\) be the number of vertices in \(\mathrm{V}_{\mathrm{j}}\) to which each vertex in \(\mathrm{V}_{\mathrm{i}}\) is adjacent in G . Then \(T \mathrm{~A}=\mathrm{QT}\) and \(Q_{i j}=\left(k_{j} / k_{i}\right)^{\frac{1}{2}} e_{j i}\), for \(I \leq i, j \leq m\).
Proof:
For \(1 \leq i, j \leq m\),
\[
\begin{aligned}
Q_{i j}=\left(\operatorname{TAT}^{\top}\right)_{i j} & =\sum_{r=1}^{n} k_{i}^{-\frac{1}{2}} d\left(v, V_{i}\right) T_{j v} \\
& =\sum_{r \in V_{j}}\left(k_{i} k_{j}\right)^{-\frac{1}{2}} e_{j i} \\
& =\left(k_{j} / k_{i}\right)^{\frac{1}{2}} e_{j i} .
\end{aligned}
\]

The equation \(T A=Q T\) can now be verified directly.

For any square matrix \(M\), let \(\sigma M\) denote the set of (distinct) eigenvalues of \(M\). If \(\lambda \in \sigma M\), define \(\mu_{M}(\lambda)\) to be the multiplicity of \(\lambda\). If \(\lambda \notin \sigma \mathrm{M}\) define \(\mu_{M}(\lambda)=0\).
4.33 Lemma For any m-vector \(\underset{\sim}{x}\) and scalar \(\lambda, Q \underset{\sim}{x}=\lambda \underset{\sim}{x}\) if and only if \(A\left(T^{\top} \underset{\sim}{x}\right)=\lambda\left(T^{\top} \underset{\sim}{x}\right)\).
\[
\text { If } Q \underset{\sim}{x}=\lambda \underline{\sim} \text { then } T^{\top} Q \underset{\sim}{x}=\lambda T^{\top} \underset{\sim}{x} \text { and so } A T^{\top} \underset{\sim}{x}=\lambda T^{\top} \underset{\sim}{x} \text {, by }
\]

Lemma 4•32. If \(A T^{\top} \underset{\sim}{x}=\lambda T^{\top} \underset{\sim}{x}\), then \(T A T^{\top} \underset{\sim}{x}=\lambda T T^{\top} \underset{\sim}{x}\) and so \(Q \underset{\sim}{x}=\lambda \underset{\sim}{x}\), since \(T T^{\top}=I\).

4•34 COROLLARY The characteristic polynomial of Q divides that of A . Proof: Suppose that \(\lambda \in \sigma Q\). Then \(\lambda \in \sigma A\) by the Lemma. Let \(\left\{{\underset{\sim}{x}}_{1},{\underset{\sim}{x}}_{2}, \cdots,{\underset{\sim}{x}}^{x}\right\}\) be a full set of orthonormal eigenvectors of \(Q\) for \(\lambda\). Then for \(l \leq i, j \leq r\) we find \(\left(T^{\top}{\underset{x}{i}}\right)^{\top}\left(T^{\top} x_{j}\right)=x_{i}{ }^{\top} T T^{\top} x_{j}=x_{i}{ }^{\top} x_{j}\), since \(T T^{\top}=I\). Therefore \(\left\{T^{\top} x_{1}, T^{\top} x_{2}, \cdots, T^{\top} x_{r}\right\}\) is a set of orthornormal eigenvectors of \(A\) for \(\lambda\). Therefore \(\mu_{Q}(\lambda) \leq \mu_{A}(\lambda)\).
4.35 LEMMA \(\quad Q^{r}=T A^{r} T^{\top}\) for \(r=0,1,2, \cdots\).

Proof: \(\quad\) This is an easy consequence of the fact that \(T^{\top} T=I \cdot \square\)

From now on we will assume that \(\mathrm{V}_{1}=\{\mathrm{w}\}\), for some \(\mathrm{w} \in \mathrm{V}\). The next lemma follows immediately from Lemma \(4 \cdot 35\).
\(4 \cdot 36\) LEMMA \(\quad\left(A^{r}\right)_{W W}=\left(Q^{r}\right)_{11}\), for \(r=0,1,2, \cdots\).

We next recall two standard matrix theory results. Their proofs may be found in Lancaster [20], for example.
4.37 LEMMA Let \(M\) be any real symmetric matrix, and let \(r \in\{0,1,2, \cdots\}\). For \(\lambda \in \sigma M \operatorname{let}\left\{{\underset{\sim}{x}}_{1}(\lambda),{\underset{\sim}{x}}_{2}(\lambda), \cdots,{\underset{\sim}{x}}^{x}(\lambda)\right\}\) be a full set of orthonormal eigenvectors of \(M\) for \(\lambda\), where \(s_{\lambda}=\mu_{M}(\lambda)\).

Then
(a) \(\operatorname{trM}^{\mathrm{r}}=\sum_{\lambda \in \sigma \mathbb{M}^{s} \lambda^{\lambda^{r}}}\)
(b) \(\quad M^{r}=\sum_{\lambda \in \sigma M} \lambda^{r} \sum_{i=1}^{S}{\underset{\sim}{x}}^{x_{i}}(\lambda){\underset{\sim}{x}}_{i}(\lambda)^{\top}\).
4.38 THEOREM Let G be a transitive graph, and let
\(\pi=\left(\mathrm{V}_{1}, \mathrm{~V}_{2}, \cdots, \mathrm{~V}_{\mathrm{m}}\right)\) be an equitable partition, such that \(\mathrm{V}_{1}=\{\mathrm{w}\}\). Let \(Q=Q(G, \pi)\). For any real number \(\lambda\), define \(\rho(Q, \lambda)\) as follows.
(i) If \(\lambda \notin \sigma Q\), define \(\rho(\mathrm{Q}, \dot{\lambda})=0\).
(ii) If \(\lambda \in \sigma Q\), let \(\left\{{\underset{\sim}{x}}_{1}, x_{2}, \cdots,{\underset{\sim}{x}}\right\}\) be a full set of orthonormal eigenvectors of \(Q\) for \(\lambda\). Then define \(\rho(Q, \lambda)=\sum_{i=1}^{S}\left(x_{i}\right)_{1}^{2}\),
where \(\left(x_{i}\right)_{1}^{2}\) denotes the square of the first entry of \({\underset{\sim}{i}}^{1}\). Then for any real number \(\lambda, \mu_{A}(\lambda)=n \rho(Q, \lambda)\).

Proof:
\[
\text { For } r \in\{0,1,2, \cdots\} \text {, }
\]
\[
\begin{align*}
\operatorname{tr} A^{r} & =n\left(Q^{r}\right)_{11}, \text { by Lemma } 4 \cdot 36, \\
& =n \sum_{\lambda \in \sigma Q} \lambda^{r} \rho(Q, \lambda), \text { by Lemma } 4 \cdot 37(b), \\
& =n \sum_{\lambda \in \sigma A} \lambda^{r} \rho(Q, \lambda), \text { by Corollary } 4 \cdot 32 . \tag{1}
\end{align*}
\]

Alternatively,
\[
\begin{equation*}
\operatorname{tr} A^{r}=\sum_{\lambda \in \sigma A} \mu_{A}(\lambda) \lambda^{r}, \text { by Lemma 4•37(a). } \tag{2}
\end{equation*}
\]

Since the elements of \(A\) are distinct (by definition), the claimed result follows on comparing (1) with (2).
4.39 COROLLARY Under the conditions of the Theorem, \(\sigma A=\sigma Q\).

The usefulness of Theorem \(4 \cdot 38\) is that it provides a necessary condition on a matrix \(Q\) in order that it be a quotient matrix of some transitive graph \(G\). If the computed values \(n \rho(Q, \lambda)\), for \(\lambda \in \sigma Q\), are not positive integers, then \(G\) does not exist. We will find in Chapter 5 that this condition is very strong.

Theorem \(4 \cdot 38\) can in fact be proved under the weaker assumption that \(G\) is walk-regular, and a generalized version holds for any graph G at all. (See Godsil and McKay [13] for further details.) We also note that the case of Theorem \(4 \cdot 38\) for \(\mu_{Q}(\lambda)=1\) has recently been proved independently by Rees [39], who has used it in the search for symmetric graphs of degree three.
4.40 THEOREM [36] Let G be a transitive graph with degree k and adjacency matrix A. If \(\lambda\) is a simple eigenvalue of A , then \(\lambda \in\{-k,-k+2, \cdots, k-2, k\}\) 。

Proof: Let \(\underset{\sim}{x}\) be an eigenvector of \(A\) corresponding to \(\lambda\). Since \(G\) is transitive, the entries of \(\underset{\sim}{x}\) have equal absolute value. The theorem now follows on considering the first row of the equation \(A x=\lambda \underset{\sim}{x}\).
4.41 THEOREM Let \(G\) be a transitive graph with adjacency matrix A. Let \(s\) be the number of simple eigenvalues of \(A\). Then \(n\) is even if \(s \geq 2\) and divisible by 4 if \(s \geq 3\).

Proof: \(\quad\) Since \(G\) is regular, \(\underset{\sim}{c}\) is an eigenvector of \(A\) corresponding to the eigenvalue \(k\), where \(k\) is the degree of \(G\) and \(c\) is the n-vector with each entry 1 . Suppose that \(\lambda\) is a simple eigenvalue of A other than k , and let \(\underset{\sim}{\mathrm{y}}\) be a corresponding eigenvector. Since the entries of \(\underset{\sim}{y}\) have equal absolute value, and \(\underset{\sim}{y}\) is orthogonal to \(\underset{\sim}{c}, n\) must be even.

Suppose that \(\underset{\sim}{z}\) is one eigenvector corresponding to a simple eigenvalue other than \(k\) or \(\lambda\). Then, as before, the entries of \(\underset{\sim}{z}\) have equal absolute value. The mutual orthogonality of \(\underset{\sim}{c}, X\) and \(\underset{\sim}{z}\) now implies that \(n\) is divisible by 4 .

\section*{CHAPTER FIVE}

\section*{CONSTRUCTION OF TRANSITIVE GRAPHS}

In this chapter we describe the construction of all the transitive graphs with 19 or fewer vertices. This can be seen as an application of Algorithm 2.31, although we actually used an ancestor of that algorithm.

Since many of the steps of the construction required extensive computation, it is necessary to present them in the order in which they were actually performed. Not to do so would mean that we could not present intermediate results. The outcome of this is that the order in some places does not appear particularly sensible, since a few of the techniques used for eliminating subcases were not invented until after the optimum point for their application had passed.

The transitive graphs up to order 11 and some of those of order 12 were found previously by Yap [46]. To the best of our knowledge, ours is the first attempt to exhaustively catalogue the transitive graphs of any higher order, except when the order is prime (see Turner [9]).
5.1 An overview

Throughout this chapter, \(G\) is a transitive graph with \(V(G)=V=\{1,2, \cdots, n\}\), degree \(k\) and automorphism group \(\Gamma\).

Define \(G\) to be a set containing one graph isomorphic to each transitive graph \(G\) which satisfies the following conditions.
(i) \(n \in\{8,9,10,12,14,15,16,18\}\)
(ii) \(3 \leq k \leq(n-1) / 2\)
(iii) \(G\) is not a NTLP.
(iv) G is not a switching graph.
(v) \(\quad \Gamma\) is not regular.
(vi) G has connectivity \(k\).

In Sections 5•2-5•3 we will identify all those transitive graphs of order 19 or less which are not isomorphic to a member of \(G\). In Sections \(5 \cdot 4-5 \cdot 24\) we will seek a collection \(\underset{\sim}{Q}\) of 962131 matrices such that for each \(G \in G\) and some \(\Lambda \in J(\Gamma), Q(G, \theta(\Lambda)) \in \underset{\sim}{Q}\) (for some labelling of G). In Sections 5.25-5.30 we will use a battery of tests to identify a subset \({\underset{\sim}{*}}^{*}\) of 709 elements of \(\underset{\sim}{Q}\) with the same property as \(\underset{\sim}{Q}\). In Sections 5.31-5.36 we will use \({\underset{\sim}{*}}^{*}\) to construct \(G\). 5.2 Identification of transitive graphs not in \(G\).

A basic source of data was the catalogue of 9-vertex graphs produced by Baker, Dewdney and Szilard [2]. A direct search produced a list of all transitive graphs with nine or fewer vertices. The results coincided with the list of Yap [46]. By Theorem 4.5, the transitive NTLPs with \(\mathrm{n} \leq 18\) are all lexicographic products of these graphs. The transitive switching graphs with \(n \leq 18\) were found with the help of Theorem 1•3. The transitive strongly regular graphs were extracted from Weisfeiler [43].

In order to construct those graphs with regular automorphism group a list of all the groups of order up to 19 was prepared, with help from C. Godsil. This list appears in Appendix I. A complete list of all the Cayley graphs for each group was computed and those with regular groups selected.

Suppose that \(G\) is a transitive graph with a prime number of vertices, \(p\). Since \(p||\Gamma|, \Gamma\) contains an element of order \(p\), which clearly must be a single p-cycle. Therefore \(G\) is a Cayley graph of the cyclic group \(Z_{p}\).

Finally, we can investigate the transitive graphs with connectivity less than their degree.
5.3 THEOREM Let G be a transitive graph, not a NTPL, with n vertices, degree \(k\) and connectivity \(k\). If \(n \leq 19,3 \leq k \leq(n-1) / 2\) and \(\mathrm{k}<\mathrm{k}\), then G is isomorphic to the graph drown in Figure 5.1. Proof: Let a be the size of the atomic parts of \(G\). The conditions on \(n\) and \(k\) ensure that \(k \leq 8\) and, since \(k\) is non-prime (Theorem 4•7(3)), the only possibilities are \(\kappa=4\) and \(\kappa=6\). By Theorem 4.9, \(k \leq k+a-2\) and by Theorem \(4 \cdot 7(2)\) a|k. If \(a=2\), then \(k \leq \kappa\), so \(a=3\) and therefore \(\kappa=6\). This gives \(k \leq 7\) and so \(\mathrm{k}=7\). By the conditions on n and k we have \(\mathrm{n}=18, \mathrm{k}=7, \mathrm{a}=3\) and \(k=6\).

Since the atomic parts are connected and transitive, they must be triangles. Call them \(A_{1}, A_{2}, \ldots, A_{6}\). Let \(H\) be the graph with vertices \(A_{1}, A_{2}, \cdots, A_{6}\) and with \(A_{i}\) adjacent to \(A_{j}\) if and only if the corresponding atomic parts are joined in \(G\) by at least one edge. By Theorem \(4 \cdot 7(3), H\) is regular with degree 2 and since \(G\) is connected, \(H\) is connected. Therefore \(H\) is a hexagon. Assume for convenience that \(A_{1}, A_{2}, \cdots, A_{6}\) are the vertices of the hexagon in cyclic order.

Now consider a vertex \(v\) in \(A_{1}\). Since \(k=7\), \(v\) must be adjacent to every vertex in \(A_{6}\) and to two vertices in \(A_{2}\) (without loss of generality). Since the total number of edges leaving \(A_{1}\) is odd, and \(A_{2}\) and \(A_{6}\) are blocks, the set-wise stabiliser \(\Lambda\) of \(A_{1}\) in \(\Gamma\)
fixes \(A_{2}\) and \(A_{6}\) set-wise. Since also \(\Lambda\) acts transitively on \(A_{1}\), every vertex in \(A_{1}\) is adjacent to all of \(A_{6}\) and to two vertices in \(A_{2}\). Considering the other atomic parts in similar fashion, we conclude that the pairs \(A_{1} A_{6}, A_{2} A_{3}\) and \(A_{4} A_{5}\) are joined by every possible edge and that the pairs \(A_{1} A_{2}, A_{3} A_{4}\) and \(A_{5} A_{6}\) are each joined in an equitable fashion by six edges. It is easy to see that this can be done in essentially only one way, yielding the graph in Figure 5•1.

Figure 5•1
5.4 Numerical partitions

A numerical partition of \(n\) is a sequence \(\sigma\) of the form \(\left(n ; n_{1}{ }^{m_{l}}, n_{2} m_{2}, \ldots, n_{r}^{m_{r}}\right)\) such that \(I \leq n_{1}<n_{2}<\ldots<n_{r}, m_{i}>0\) for \(1 \leq i \leq i\) and \(\sum_{i=}^{r} m_{i} n_{i}=n\). Superscripts equal to one are
usually omitted. Define \(r_{n_{i}}(\sigma)=m_{i}\) for \(l \leq i \leq r\) and \(r_{j}(\sigma)=0\) if \(j \notin\left\{n_{1}, n_{2}, \cdots, n_{r}\right\}\). Also define \(R(\sigma)=\left\{j \mid j \geq 2, r_{j}(\sigma) \neq 0\right\}\).

A partition \(\pi \in \Pi^{*}(V)\) has an associated numerical partition \(\sigma(\pi)=\left(n ; n_{1}^{m_{l}}, \cdots, n_{r}^{m_{r}}\right)\), where \(m_{i}\) is the number of cells of \(\pi\) of size \(n_{i}\), for \(l \leq i \leq r\). If \(\Lambda\) is a permutation group of degree \(n\), then \(\sigma(\theta(\Lambda))\) will be abbreviated to \(\sigma(\Lambda)\).

The first step in the construction of \(\underset{\sim}{Q}\) will be to find a set \(\Sigma\) of numerical partitions with the following property. For every \(G \in G\) there is some \(\Lambda \in J(\Gamma)\) such that \(\sigma(\Lambda) \in \Sigma\). Such a set \(\Sigma\) will be called sufficient.

The first theorem identifies a number of types of numerical partition which can be eliminated from any sufficient set without destroying the sufficiency.
5.5 THEOREM Let \(G \in G, \Lambda \in J(\Gamma)\), and \(\sigma=\sigma(\Lambda)\). For each i, define \(r_{i}=r_{i}(\sigma)\). Also define \(R=R(\sigma), T=\sum_{i \in R} r_{i}\) and \(m=\max \left\{r_{i} \mid i \in R\right\}\). Then none of the following conditions are satisfied.
(RI) \(r_{1} \geq 2\) and \(m=1\).
(R2) \(t=1\).
(R3) \(r_{1}=1\) and \(t=2\).
(R4) For some \(i \geq 2, r_{i}=1\) and \((i, j)=1\) for all \(i \neq j \in R\).
(R5) For some prime \(\mathrm{p}, \mathrm{r}_{1}=\mathrm{p}\) and \(\mathrm{m}<\mathrm{p}\).
(R6) \(\max R>10\).
Proof: By Theorem 4.5, we know that \(G\) cannot have any non-trivial ER subsets, since \(G\) is not a NTLP. If RI is satisfied, fix \((\Lambda)\) is \(E R\), since \(N_{\Gamma}(\Lambda)\) fixes each of the non-trivial orbits of \(\Lambda\). If \(R 2\) is satisfied, the non-trivial orbit of \(\Lambda\) is \(\mathbb{E R}\). If \(R 3\) is satisfied, \(G\) is strongly regular. If \(R 4\) is satisfied, the orbit of size \(i\) is \(E R\), since the coprimality condition ensures that it is trivially joined to every other orbit.

Suppose R5 is satisfied. Then by Theorem 1•16, a Sylow p-subgroup \(P\) of \(\mathbb{N}_{\Gamma}(\Lambda)\) acts transitively on \(\operatorname{fix}(P)\). Also, \(P\) permutes the non-trivial orbits of \(\Lambda\), by Theorem \(1 \cdot 15(a)\), and so \(P\) fixes each non-trivial orbit of \(\langle\Lambda\rangle\) set-wise, since \(m<p\). Therefore fix \((\Lambda)\) is ER.

Suppose R6 is satisfied. Let \(\ell \geq 11\) be the length of the longest orbit of \(\Lambda\). Since \(n \leq 18\), condition \(R 4\) is satisfied if \(\ell=11,13,15,16\) or 17. If \(\ell=14\), either R1 or \(R 4\) is satisfied. So suppose \(\ell=12\). The only possibilities for \(\sigma\) which do not satisfy any of the conditions RI - R5 are (18; \(1^{2}, 2^{2}, 12\)) and (18; 1, 2, 3, 12).

Suppose \(\sigma=\left(18 ; I^{2}, 2^{2}, 12\right)\). Since the neighbourhood of any fixed point is a union of orbits, the degree of \(G\) is at most 5. Now, if any point in a 2-orbit is adjacent to a point in the 12-orbit, it is adjacent to at least six such points. Therefore the 12-orbit is ER.

Suppose \(\sigma=(18 ; 1,2,3,12)\). Then the degree of \(G\) is at most 5, as before. Therefore the 2-orbit is not joined at all to the 12-orbit, as before, and is trivially joined to the 3-orbit, since \((2,3)=1\). Therefore the 2-orbit is \(E R\).
5.6 THEOREM Let \(\Sigma^{l}\) be the set of all numerical partitions \(\sigma\) of \(n\), where \(n \in\{8,9,10,12,14,15,16,18\}, 1 \leq r_{1}(\sigma)<n, r_{1}(\sigma) \mid n\) and which satisfy none of the conditions R1 - R6. Then \(\Sigma^{1}\) is sufficient.

Proof: Let \(G \in G\). Then by Theorems \(1 \cdot 15,1 \cdot 16\) and \(5 \cdot 5\), \(\Gamma_{I} \in J(\Gamma)\) and \(\sigma\left(\Gamma_{I}\right) \in \Sigma^{I}\).

Altogether, \(\Sigma^{l}\) contains 154 numerical partitions, as detailed below.
\begin{tabular}{lc}
\(\underline{n}\) & partitions \\
8 & 3 \\
9 & 3 \\
10 & 4 \\
12 & 13 \\
14 & 14 \\
15 & 23 \\
16 & 39 \\
18 & 55
\end{tabular}

Since the total number of numerical partitions of elements of \(\{8,9,10,12,14,15,16,18\}\) is 1098 , we have made considerable progress. However, if the computation of \(\mathbb{Q}\) is to be made feasible, the size of \(\Sigma^{l}\) must be reduced much further.

Let \(J^{*}(\Gamma)\) denote the set of subgroups \(\Lambda \in J(\Gamma)\) which satisfy the additional property that \(\operatorname{fix}(\Lambda)\) is a block for \(\Gamma\). Recall from Chapter 1 that \(\Gamma_{1} \in J^{*}(\Gamma)\) and \(\left\langle\operatorname{Sy} I_{p}\left(\Gamma_{1}\right)\right\rangle \in J^{*}(\Gamma)\) if \(p\left|\left|\Gamma_{1}\right|\right.\).
\(5 \cdot 7\) LEMMA Let \(G \in G\), and let \(I \neq P \in S y I_{p}\left(\Gamma_{1}\right)\) for some prime \(p\). If \(f i x\left(P^{\prime}\right)=f i x(P)\) for every \(P^{\prime} \in \operatorname{Syl}_{p}\left(\Gamma_{1}\right), P \in J^{*}(\Gamma)\).

Proof: We already know that \(P \in J(\Gamma)\). Furthermore, fix \((P)=f i x\left(\left\langle\operatorname{SyI}_{p}\left(\Gamma_{1}\right)\right\rangle\right)\) and so \(P \in J^{*}(\Gamma)\) since \(\left.\langle\operatorname{Sy}]_{p}\left(\Gamma_{1}\right)\right\rangle \in J^{*}(\Gamma)\).
5.8 LEMMA Let \(G \in G\), and let \(p \| \Gamma_{1} \mid\) be prime. Suppose that \(\Gamma_{1}\) has a non-trivial orbit \(W\) of length \(l\). Then the orbits of \(\left\langle S y Z_{p}\left(\Gamma_{1}\right)\right\rangle\) on \(W\) are of equal size \(r\), where \(r=1\) or \(r \geq p\). Also, if \(p \mid \ell\) then \(r>1\).

Proof: The equality of the orbit sizes follows from Theorem \(1 \cdot 15(e)\), since \(\left\langle\operatorname{Syl}_{p}\left(\Gamma_{1}\right)\right\rangle \leq \Gamma_{1}\). Now suppose that \(r>1\). Then any \(x \in W\) is moved by some \(P \in S y l_{p}\left(r_{1}\right)\), so that \(r \geq p\). The final assertion follows from Theorem 1.15(c).

Let \(\sigma\) be a numerical partition. For prime p, we will say that \(\sigma\) satisfies condition \(A_{p}\) if
(i) for every \(\ell \in R(\sigma)\), either \(\ell<p\) or \(p \mid \ell\),
(ii) for some \(\ell \in \mathbb{R}(\sigma)\), \(\ell\) is not a power of \(p\), and
(iii) for some \(\ell \in R(\sigma), p \mid \ell\).

Similarly, \(\sigma\) satisfies condition \(B_{p}\) if
(iv) for some \(\ell \in R(\sigma), 1<\ell<p\), and
(v) for some \(\ell \in R(\sigma), p \mid \ell\).
5.9 LEMMA Let \(G \in G, p \geq 2\) be prime and \(P \in \operatorname{Syl}_{p}\left(\Gamma_{1}\right)\). Then if \(\sigma\left(\Gamma_{1}\right)\) satisfies condition \(A_{p}, P \in J^{*}(\Gamma)\) and \(P \neq \Gamma_{1}\). Proof: \(\quad \mathrm{P} \neq 1\) by (iii) and \(P \neq \Gamma_{1}\) by (ii). Furthermore, any \(P^{\prime} \in \operatorname{Syl}_{p}\left(\Gamma_{1}\right)\) fixes each orbit of size less than \(P\) and moves each point in each orbit of size divisible by \(p\). Therefore \(P \in J^{*}(\Gamma)\) by Lemma \(5 \cdot 7\).
5.10 LEMMA Let \(G \in G, p \geq 3\) be prime and \(\Lambda=\left\langle\operatorname{SyI}_{p}\left(\Gamma_{1}\right)\right\rangle\). If \(\sigma\left(\Gamma_{1}\right)\) satisfies condition \(B_{p}\) then \(\Lambda \in J *(\Gamma)\) and \(\Lambda \neq \Gamma_{1}\). Proof: \(\quad|\Lambda|>1\) by (v) and \(\Lambda \neq \Gamma_{1}\) by (iv). Therefore \(\Lambda \in J^{*}(\Gamma)\).
5.11 THEOREM Let \(\Sigma^{2}\) be the set of numerical partitions formed from \(\Sigma^{1}\) by deleting any member satisfying \(A_{2}, A_{3}, A_{5}, B_{3}\) or \(B_{5}\). Then \(\Sigma^{2}\) is sufficient.

Proof: Notice firstly that, due to the definition of \(\Sigma^{1}\), \(\sigma(\Lambda) \in \Sigma^{l}\) for any \(\Lambda \in J^{*}(\Gamma)\), for any \(G \in G\).
(a) Suppose that \(\sigma=\sigma\left(\Gamma_{1}\right)\) and that \(\sigma\) satisfies \(A_{p}\), for some \(p \in\{2,3,5\}\). Let \(P \in \operatorname{Sy} l_{p}\left(\Gamma_{1}\right)\). Then \(\sigma(P) \in \Sigma^{1}\), by Lemma 5.9. Furthermore the orbit lengths of \(\sigma(\mathrm{P})\) are all powers of \(P\), so that \(\sigma(P)\) satisfies no \(A_{q}\) or \(B_{q}\). Therefore \(\sigma(P) \in \Sigma^{2}\).
(b) Suppose that \(\sigma=\sigma\left(\Gamma_{1}\right)\) and that \(\sigma\) satisfies \(B_{3}\). Let \(\Lambda=\left\langle\operatorname{Syl}{ }_{3}\left(\Gamma_{1}\right)\right\rangle\) and \(\sigma^{\prime}=\sigma(\Lambda)\). Then \(\sigma^{\prime} \epsilon \Sigma^{1}\) by Lemma \(5 \cdot 10\), and so \(\sigma^{\prime} \in \Sigma^{2}\) unless \(\sigma^{\prime}\) satisfies \(A_{2}, A_{3}, A_{5}, B_{3}\) or \(B_{5}\). By its definition, \(\Lambda\) has at least three fixed points and no 2-orbits.
(i) Suppose \(\sigma^{\prime}\) satisfies A . Then the possible non-trivial orbit lengths of \(\Lambda\) are 4, 6, 8 and 10, with at least one orbit of size 6 or 10 . The only such partitions in \(\sum^{1}\) are (\(16 ; 1^{4}, 6^{2}\)) and (\(18 ; 1^{6}, 6^{2}\)). Both of these satisfy \(A_{3}\) and so are treated below.
(ii) Suppose \(\sigma^{\prime}\) satisfies \(A_{3}\). Then since \(\operatorname{Syl}_{3}(\Lambda)=\operatorname{SyI}_{3}\left(\Gamma_{1}\right)\) all the elements of \(\operatorname{Syl}_{3}\left(\Gamma_{1}\right)\) have the same fixed points, and so \(\sigma(P) \in \Sigma^{2}\) for \(P \in \operatorname{Syl}_{3}\left(\Gamma_{1}\right)\), as in case (a).
(iii) Suppose \(\sigma^{\prime}\) satisfies \(A_{5}\) or \(B_{5}\). Then we find that \(\Sigma^{l}\) does not contain any such partitions.
(iv) Suppose \(\sigma^{\prime}\) satisfies \(B_{3}\). Then \(\Lambda\) has a 2-orbit, which is impossible.
(c) Suppose that \(\sigma=\sigma\left(\Gamma_{1}\right)\) and that \(\sigma\) satisfies \(B_{5}\). Let \(\Lambda=\left\langle\operatorname{Syl}_{5}\left(\Gamma_{1}\right)\right\rangle\) and \(\sigma^{\prime}=\sigma(\Lambda)\). Then \(\Lambda\) has at least 3 fixed points and no orbits of size 2, 3 or 4 . The only such partitions in \(\Sigma^{1}\) which satisfy \(A_{2}, A_{3}, A_{5}, B_{3}\) or \(B_{5}\) are (16; \(1^{4}, 6^{2}\)) and (\(18 ; 1^{6}, 6^{2}\)). In either case Lemma 5.8 and condition \(R 6\) prove that the two 6 -orbits are orbits of \(\Gamma_{1}\). However, \(\sigma\) satisfies \(B_{5}\) and so \(\Gamma_{1}\) has an orbit of length 5 or 10. For \(\sigma^{\prime}=\left(16 ; 1^{4}, 6^{2}\right)\) this is impossible, and for \(\sigma^{\prime}=\left(18 ; 1^{6}, 6^{2}\right)\) we get \(\sigma=\left(18 ; 1,5,6^{2}\right)\), which violates \(R^{4}\). Therefore \(\sigma^{\prime} \in \Sigma^{2}\).

The definition of \(\Sigma^{2}\) ensures that, for any \(G \in G\), there is some \(\Lambda \in J^{*}(\Gamma)\) such that \(\sigma(\Lambda) \in \Sigma^{2}\). Moreover, we can assume that \(\Lambda=\Gamma_{1}\) unless \(\sigma\left(\Gamma_{1}\right)\) satisfies \(A_{2}, A_{3}, A_{5}, B_{3}\) or \(B_{5}\). In the latter case, we can assume that either \(\Lambda \in \operatorname{Sy} \mathcal{I}_{p}\left(\Gamma_{1}\right)\) or \(\Lambda=\left\langle\operatorname{Sy} \mathcal{I}_{p}\left(\Gamma_{1}\right)\right\rangle\) for some \(p \in\{2,3,5\}\).
5.12 THEOREM FORM the set \(\Sigma^{3}\) from \(\Sigma^{2}\) by removing the numerical partitions (\(14 ; 1,3,4,6),\left(15 ; 1,3^{2}, 4^{2}\right),\left(16 ; 1^{2}, 3^{2}, 4^{2}\right)\), \((18 ; 1,3,6,8),\left(18 ; 1,3,4^{2}, 6\right),\left(18 ; 1,3^{3}, 4^{2}\right)\) and (\(18 ; 1,3^{2}, 4,6\)). Then \(\Sigma^{3}\) is sufficient.

Proof: In each case there are less than three fixed points, and the orbit sizes are not powers of the same prime. Therefore, by the preceding remarks, we can assume that we are dealing with \(\sigma\left(\Gamma_{1}\right)\) in each case.

Suppose \(\sigma\left(\Gamma_{1}\right)=(18 ; 1,3,6,8)\). Then the degree \(k\) of \(G\) is either 3,6 or 8 . Let \(\theta\left(\Gamma_{1}\right)=\left\{V_{1}, V_{2}, V_{3}, V_{4}\right\}\), where \(\left|V_{1}\right|=1\), \(\left|v_{2}\right|=3,\left|v_{3}\right|=6\) and \(\left|v_{4}\right|=8\), and let each vertex in \(v_{i}\) be adjacent to \(e_{i j}\) vertices of \(v_{j}\), for \(1 \leq i, j \leq 4\). Now \(e_{34}=0,4\) or 8 and \(e_{24}=0\) or 8. Hence \(k \neq 3\), or else \(V_{4}\) is ER. Suppose instead that \(k=6\). Then \(e_{24}=0\), which implies that \(e_{34}=4\) since otherwise \(V_{4}\) would be ER. Similarly, since \(V_{2}\) cannot be \(\mathbb{E R}\), \(e_{23}>0\). The only other possibility is \(e_{23}=2\) since otherwise the vertices in \(V_{3}\) would have degree greater than 6 . (They are all adjacent to \(V_{1}\) as well.) But then we must have \(e_{22}=3\), which is impossible. Therefore \(k=8\). However we must then have \(e_{24}=0\) (or \(V_{2}\) is \(E R\)), and so \(e_{22}=2\) and \(e_{23}=6\), making \(V_{2} E R\) anyhow. Therefore (\(18 ; 1,3,6,8\)) cannot occur at all.

For each of the other numerical partitions, note that \(\operatorname{Syl}_{3}\left(\Gamma_{1}\right) \neq\{1\}\). Let \(\sigma^{\prime}=\sigma(P)\) for some \(P \in \operatorname{Syl}_{3}\left(\Gamma_{1}\right)\), and let \(f\) be the
number of fixed points of \(\Lambda=\left\langle\operatorname{Syl}_{3}\left(\Gamma_{1}\right)\right\rangle\). Recall from Lemma 5•8 that \(\Lambda\) either fixes a 4-orbit point-wise or is transitive on it, and from Corollary \(1 \cdot 18\) that \(f \mid n\). In each case we will show that \(\sigma^{\prime} \in \Sigma^{3}\).

Say \(\sigma\left(\Gamma_{1}\right)=(14 ; 1,3,4,6)\). Since \(f \mid 14, \Lambda\) is transitive on the 4-orbit. Therefore \(\sigma^{\prime}=\left(14 ; 1^{2}, 3^{4}\right) \in \Sigma^{3}\).

Say \(\sigma\left(\Gamma_{1}\right)=\left(15 ; 1,3^{2}, 4^{2}\right)\). Since \(f \mid 15, \Lambda\) cannot fix both
4-orbits. If it fixes exactly one, \(\sigma(\Lambda)=\left(15 ; 1^{5}, 3^{2}, 4\right)\), which violates \(R^{4}\). Hence \(\sigma^{\prime}=\left(15 ; 1^{3}, 3^{4}\right) \in \Sigma^{3}\).

Say \(\sigma\left(\Gamma_{1}\right)=\left(16 ; 1^{2}, 3^{2}, 4^{2}\right)\). Since \(f \mid 16, \Lambda\) is transitive on both 4-orbits. Therefore \(\sigma^{\prime}=\left(16 ; 1^{4}, 3^{4}\right) \in \Sigma^{3}\).

Say \(\sigma\left(\Gamma_{1}\right)=(18 ; 1,3,42,6)\) or \(\left(18 ; 1,3^{3}, 42\right)\). Since f|18, \(\Lambda\) cannot fix exactly one 4-orbit. Therefore \(\sigma^{\prime}=\left(18 ; 13,3^{5}\right)\) or \(\left(18 ; 1^{9}, 3^{3}\right)\), both of which are in \(\Sigma^{3}\). If \(\sigma\left(\Gamma_{1}\right)=\left(18 ; 1^{2}, 3^{2}, 4,6\right)\) then \(\sigma^{\prime}=\left(18 ; 1^{3}, 3^{5}\right)\) or \(\left(18 ; 1^{6}, 3^{4}\right)\), both of which are in \(\Sigma^{3}\).

The reason we went to the trouble of eliminating the seven numerical partitions in Theorem 5.12 is that in each of the remaining partitions, the cell sizes are all powers of the same prime. Theorem 1. \(15(c)\) and the fact that \(\operatorname{Sy} I_{p}\left(\left\langle\operatorname{Sy} I_{p}\left(\Gamma_{1}\right)\right\rangle\right)=\operatorname{Sy} I_{p}\left(\Gamma_{1}\right)\), immediately imply the following theorem.
5. 13 THEOREM For any \(G \in G\), there is \(p \in\{2,3,5,7\}\) such that \(\sigma(P) \in \Sigma^{3}\) for \(P \in \operatorname{Syl}_{p}\left(\Gamma_{1}\right)\).

The only numerical partition in \(\Sigma^{3}\) which actually involves \(p=7\) is \(\left(16 ; 1^{2}, 7^{2}\right)\). We will eliminate this partition and a few other potentially troublesome partitions in the next theorem.
5. 14 THEOREM Form \(\Sigma^{4}\) from \(\Sigma^{3}\) by deleting the numerical partitions \(\left(8 ; 1^{2}, 3^{2}\right),\left(10 ; 1^{2}, 4^{2}\right),\left(12 ; 1^{2}, 5^{2}\right),\left(16 ; 1^{2}, 7^{2}\right),\left(18 ; 1^{2}, 8^{2}\right)\), \(\left(16 ; 1^{8}, 2^{2}, 4\right),\left(14 ; 1^{2}, 2^{2}, 8\right),\left(16 ; 1^{4}, 2^{2}, 8\right)\) and \(\left(18 ; 1^{6}, 2^{2}, 8\right)\).

Then \(\Sigma^{4}\) is sufficient.
Proof: In each case we can assume that \(\sigma=\sigma(P)\) for
\(P \in \operatorname{Sy}_{p}\left(\Gamma_{1}\right)\), where \(p \in\{2,3,5,7\}\).
Suppose firstly that \(\sigma\) is of the form \(\left(2 r+2 ; 1^{2}, r^{2}\right)\).
Since \(G \in G, G\) has degree \(r\) and the two fixed points are not adjacent. If they are adjacent to the same r-orbit, \(f i x(P)\) is \(E R\). On the other hand, if the fixed points are adjacent to different r-orbits, \(G\) has diameter greater than two, and so is a switching graph, by Theorem 4.23.

Suppose \(\sigma(P)=\left(16 ; 1^{8}, 2^{2}, 4\right)\). From the remark preceding Theorem \(5 \cdot 12\), we can assume that \(f i x(P)\) is a block of F . (This may not be true for some of the partitions involved in the proof of Theorem 5-12.) Therefore there is an element \(\gamma \in \Gamma\) such that \(\operatorname{supp}\left(P^{\gamma}\right) \cap \operatorname{supp}(P)=\varnothing . \quad\) Let \(P^{\prime}=\left\langle P^{\gamma}, P\right\rangle . \quad\) Then \(\sigma\left(P^{\prime}\right)=\left(16 ; 2^{4}, 4^{2}\right)\). Let \(v\) be a vertex in one of the 2-orbits. Then \(P_{v}^{\prime}\) is a 2-group fixing a vertex, but strictly larger than P , contradicting the assumption that \(P \in \operatorname{SyI}_{2}\left(\Gamma_{1}\right)\).

Suppose now that \(\sigma(P)=\left(12+2 r ; 1^{2 r}, 2^{2}, 8\right)\), for \(r \in\{1,2,3\}\). Since \(\mathbb{N}_{\Gamma}(P)\) acts transitively on \(\operatorname{fix}(P)\), and there are no non-trivial ER subsets, half of the fixed points are adjacent to one 2-orbit and half to the other, and each point in a 2-orbit is adjacent to 4 points in the 8 -orbit. Therefore a point in a 2-orbit has degree at least \(4+r\). Also, a fixed point has degree at most \(2 r+1\). Therefore \(r \geq 3\). For the case (18; \(1^{6}, 2^{2}, 8\)) we infer from the foregoing that each fixed point is adjacent to the other five fixed points and to one of the 2-orbits. However, this implies that fix(P) can be partitioned into two ER subsets.

Our final attack on the number of numerical partitions \(\sigma \in \Sigma\) is aimed at those with \(r_{1}(\sigma)=1\). The reason is that for these partitions the property that \(N_{\Gamma}(\Lambda)\) acts transitively on fix \((\Lambda)\) is trivial, and so of no use in reducing the number of quotient matrices.

5-15 LEMMA Let \(G \in G\) and \(P \in S y l_{p}\left(\Gamma_{1}\right)\) for some prime \(p\). Suppose that \(|f i x(P)|=1\) and that \(P\) has an orbit \(W\) of length \(p\). Let \(w \in W\). Then, if \(\left|P_{W}\right|>1, P_{W} \in J(\Gamma)\).

Proof: Since \(|f i x(P)|=1, P \in \operatorname{Syl}_{p}(\Gamma)\). Furthermore \(P_{W}=P \cap P^{\prime}\), where \(P^{\prime} \in S y l_{p}\left(\Gamma_{W}\right)\), and is of the largest size possible for any intersection of two distinct Sylow p-subgroups of \(\Gamma\), since \(\left[P: P_{W}\right]=p\). Let \(\gamma \in \Gamma\) be such that \(P_{W}^{\gamma} \leq \Gamma_{1}\). Since \(P_{W}^{\gamma}\) is a p-group, \(P_{W}^{\gamma \delta} \leq P\) for some \(\delta \in \Gamma_{1}\). By Lemma 1.10, \(P_{W}^{\gamma \delta}=P_{W}^{\beta}\) for some \(\beta \in \mathbb{N}_{\Gamma}(P)\). But \(|f i x(P)|=1\) and so \(\beta \in \Gamma_{1}\). Hence \(P_{W}^{\gamma}=P_{W}^{\alpha}\) where \(\alpha=\beta \delta^{-1} \in \Gamma_{1}\). Therefore \(P_{W} \in J(\Gamma)\) by Theorem 1.16.
5.16 THEOREM Form the set \(\Sigma\) of numerical partitions by deleting \(\left(9 ; 1,2^{2}, 4\right),(15 ; 1,2,4,8),(15 ; 1,2,43),\left(15 ; 1,2^{3}, 8\right)\), \(\left(15 ; 1,2^{3}, 4^{2}\right),\left(15 ; 1,2^{5}, 4\right)\) and \(\left(16 ; 1,3^{2}, 9\right)\) from \(\Sigma^{4}\). Then \(\Sigma\) is sufficient.

Proof: In each case we can assume (as shown earlier) that the partition \(\sigma\) to be deleted is \(\sigma(P)\) for some \(P \in \operatorname{SyI} p_{p}\left(\Gamma_{1}\right)\), where \(p=2\) or 3 . In each case let \(\sigma^{\prime}=\sigma\left(P_{W}\right)\), where \(w\) is a vertex in an orbit of length p. Since there is at least one orbit of length greater than \(p,\left|P_{W}\right|>1\).

For each \(\sigma\) we consider all the possible values of \(\sigma^{\prime}\). Apparent possibilities not mentioned violate either R1 or R5, and so cannot actually occur.

If \(\sigma=\left(9 ; 1,2^{2}, 4\right)\) then \(\sigma^{\prime}=\left(9 ; 1^{3}, 2^{3}\right)\), which is in \(\Sigma\). If \(\sigma=(15 ; 1,2,4,8)\) then \(\sigma^{\prime}=\left(15 ; 1^{3}, 2^{6}\right),\left(15 ; 1^{3}, 2^{4}, 4\right)\) or (15; \(1^{3}, 43\)), all of which are in \(\Sigma\). If \(\sigma=\left(15 ; 1,2,4^{3}\right)\) then \(\sigma^{\prime}=\left(15 ; 1^{3}, 2^{6}\right),\left(15 ; 1^{3}, 2^{4}, 4\right)\) or \(\left(15 ; 1^{3}, 4^{3}\right)\), all of which are in \(\sum\). If \(\sigma=\left(15 ; 1,2^{3}, 8\right)\) then \(\sigma^{\prime}=\left(15 ; 1^{3}, 2^{6}\right)\) or \(\left(15 ; 1^{5}, 2^{5}\right)\), both of which are in \(\Sigma\). If \(\sigma=\left(15 ; 1,2^{3}, 4^{2}\right)\) then \(\sigma^{\prime}=\left(15 ; 1^{3}, 2^{6}\right)\), \(\left(15 ; 1^{3}, 2^{4}, 4\right)\) or \(\left(15 ; 1^{5}, 2^{5}\right)\), all of which are in \(\Sigma\). If \(\sigma=\left(15 ; 1,2^{5}, 4\right)\) then \(\sigma^{\prime}=\left(15 ; 1^{3}, 2^{6}\right),\left(15 ; 1^{3}, 2^{4}, 4\right)\), \(\left(15 ; 1^{5}, 2^{5}\right)\) or \(\left(15 ; 1^{9}, 2^{3}\right)\). The first three are in \(\Sigma\). For the case \(\sigma^{\prime}=\left(15 ; 1^{9}, 2^{3}\right)\) see below. If \(\sigma=\left(16 ; 1,3^{3}, 9\right)\) then \(\sigma^{\prime}=\left(16 ; 1^{4}, 3^{4}\right)\), which is in \(\Sigma\).

Suppose that \(\sigma(P)=\left(15 ; 1,2^{5}, 4\right)\), where the 2 -orbits of \(P\) are \(V_{1}, V_{2}, \cdots, V_{5}\), and suppose that \(\sigma\left(P_{W}\right)=\left(15 ; 1^{9}, 2^{3}\right)\) for any \(w \in V_{1} \cup V_{2} \cup \cdots \cup V_{5}\). In each case two of the 2-orbits of \(P_{W}\) are in the 4-orbit of \(P\), since \(\left[P: P_{W}\right]=2\). Without loss of generality then, fixing \(V_{1}\) leaves \(V_{2}\) unfixed, and fixing \(V_{2}\) leaves either \(V_{1}\) or \(V_{3}\) unfixed. But then fixing \(V_{4}\) leaves either \(V_{1}\) and \(V_{2}\) or \(V_{2}\) and \(V_{3}\) unfixed, contrary to hypothesis. Therefore we can find \(w \in V_{1} \cup V_{2} \cup \cdots \cup V_{5}\) such that \(\sigma\left(P_{W}\right) \neq\left(15 ; 1^{9}, 2^{3}\right)\).

The set \(\Sigma\) comprises the 57 numerical partitions given in Table 5•1.

\section*{5-17 Neighbourhood partitions}

Let \(G \in G\) and \(\Lambda \in J(\Gamma)\). Since \(\Lambda \leq \Gamma_{1}, \theta(\Lambda)\) induces a partition \(\theta^{\prime}\) on \(\mathbb{N}(1, G)\). The associated numerical partition \(\sigma=\sigma\left(\theta^{\prime}\right)\) is called the neighbourhood partition corresponding to the pair (G, \(\Lambda\)). In other words, o specifies the sizes of the orbits of \(\Lambda\) to which a fixed point is adjacent. Since \(\Lambda \in J(\Gamma), \sigma\) is independent of the choice of fixed point.
\begin{tabular}{|c|c|}
\hline \(\left(8 ; 1^{2}, 2^{3}\right)\) & \(\left(16 ; 1^{2}, 2,4^{3}\right)\) \\
\hline (\(8 ; 1^{4}, 2^{2}\)) & (16; \(\left.1^{2}, 2^{3}, 8\right)\) \\
\hline (\(9 ; 1,2^{4}\)) & (\(\left.16 ; 1^{2}, 2^{3}, 4^{2}\right)\) \\
\hline (9; \(1^{3}, 2^{3}\)) & (\(\left.16 ; 1^{2}, 2^{5}, 4\right)\) \\
\hline & \(\left(16 ; 1^{2}, 2^{7}\right)\) \\
\hline \(\left(10 ; 1^{2}, 2^{2}, 4\right)\) & (\(16 ; 1^{4}, 4^{3}\)) \\
\hline \(\left(10 ; 1^{2}, 2^{4}\right)\) & \(\left(16 ; 1^{4}, 2^{2}, 4^{2}\right)\) \\
\hline (\(10 ; 1,3^{3}\)) & \(\left(16 ; 1^{4}, 2^{4}, 4\right)\) \\
\hline (12; \(1^{2}, 2,4^{2}\)) & (\(16 ; 1^{4}, 2^{6}\)) \\
\hline (12; \(\left.1^{2}, 2^{3}, 4\right)\) & \(\left(16 ; 1^{8}, 4^{2}\right)\) \\
\hline (12; \(1^{2}, 2^{5}\)) & (\(16 ; 1^{8}, 2^{4}\)) \\
\hline (12; \(1^{4}, 4^{2}\)) & (16; 1, \(3^{5}\)) \\
\hline (12; \(\left.1^{4}, 2^{2}, 4\right)\) & (16; \(\left.1^{4}, 3^{4}\right)\) \\
\hline (12; \(\left.1^{4}, 2^{4}\right)\) & (16; 1, \(5^{3}\)) \\
\hline (\(\left.12 ; 1^{6}, 2^{3}\right)\) & (\(\left.18 ; 1^{2}, 4^{2}, 8\right)\) \\
\hline \(\left(12 ; 1^{3}, 3^{3}\right)\) & \(\left(18 ; 1^{2}, 4^{4}\right)\) \\
\hline (12; \(\left.1^{6}, 3^{2}\right)\) & (18; \(\left.1^{2}, 2^{2}, 4,8\right)\) \\
\hline (\(14 ; 1^{2}, 4^{3}\)) & (\(\left.18 ; 1^{2}, 2^{2}, 4^{3}\right)\) \\
\hline (\(\left.1.4 ; 1^{2}, 2^{2}, 4^{2}\right)\) & (\(\left.18 ; 1^{2}, 2^{4}, 8\right)\) \\
\hline (\(\left.14 ; 1^{2}, 2^{4}, 4\right)\) & (\(\left.18 ; 1^{2}, 2^{4}, 4^{2}\right)\) \\
\hline (\(14 ; 1^{2}, 2^{6}\)) & (\(18 ;]^{2}, 2^{6}, 4\)) \\
\hline (\(\left.14 ; 1^{2}, 3^{4}\right)\) & (\(18 ; 1^{2}, 2^{8}\)) \\
\hline (\(15 ; 1,2^{7}\)) & \(\left(18 ; 1^{6}, 4^{3}\right)\) \\
\hline (15; \(\left.1^{3}, 4^{3}\right)\) & (\(\left.18 ; 1^{6}, 2^{2}, 4^{2}\right)\) \\
\hline \(\left(15 ; 1^{3}, 2^{4}, 4\right)\) & (\(\left.18 ; 1^{6}, 2^{4}, 4\right)\) \\
\hline (\(15 ; 1^{2}, 2^{6}\)) & (18; \(\left.1^{6}, 2^{6}\right)\) \\
\hline (15; \(\left.1^{5}, 2^{5}\right)\) & (\(\left.18 ; 1^{3}, 3^{5}\right)\) \\
\hline \(\left(15 ; 1^{3}, 3^{4}\right)\) & \(\left(18 ; 1^{6}, 3^{4}\right)\) \\
\hline & (18; \(\left.1^{9}, 3^{3}\right)\) \\
\hline & (18; \(\left.1^{3}, 5^{3}\right)\) \\
\hline
\end{tabular}

5-18 LEMMA Let \(G \in G, \Lambda \in J(\Gamma)\) and \(\sigma_{1}=\sigma(\Lambda)\). Then the corresponding neighbourhood partition \(\sigma_{2}\) satisfies the following conditions, where k is the degree of G .
(a) \(\sigma_{2}\) is a numerical partition of \(k\).
(b) For all i, \(r_{i}\left(\sigma_{2}\right) \leq r_{i}\left(\sigma_{1}\right)\).
(c) \(r_{1}\left(\sigma_{2}\right)<r_{1}\left(\sigma_{1}\right)\).
(d) \(r_{1}\left(\sigma_{2}\right)<k\).
(e) \(r_{1}\left(\sigma_{1}\right) r_{1}\left(\sigma_{2}\right)\) is even.
(f) If \(r_{1}(\sigma) \geq 2\), there is some \(i \geq 2\) such that
\(0<r_{i}\left(\sigma_{2}\right)<r_{i}\left(\sigma_{1}\right)\).
Proof: Conditions (a), (b) and (c) are obvious. Condition
(d) is necessary to prevent G from being disconnected. Condition
(e) follows from the fact that the subgraph \(f i x(\Lambda)\) is regular.

Finally, if condition (f) was not satisfied, fix(\(\Lambda\)) would be ER.

Let \(T\) be the set of all partition pairs \(\left(\sigma_{1}, \sigma_{2}\right)\) such that \(\sigma_{1} \in \Sigma\) and \(\sigma_{2}\) satisfies conditions (a) - (f) of Lemma 5.18. Then for each \(G \in G\), there is some \(\Lambda \in J(\Gamma)\) such that \(\left(\sigma_{1}, \sigma_{2}\right) \in T\), where \(\sigma_{1}=\sigma(\Lambda)\) and \(\sigma_{2}\) is the corresponding neighbourhood partition. We can further assume that \(\Lambda \in \operatorname{Syl}_{p}\left(\Gamma_{1}\right)\) for some \(p \in\{2,3,5\}\), except possibly when \(\sigma_{1}\) is one of the partitions \(\left(9 ; 1^{3}, 2^{3}\right),\left(15 ; 1^{3}, 2^{6}\right)\), \(\left(15 ; 1^{3}, 4^{3}\right),\left(15 ; 1^{5}, 2^{5}\right)\) and (16; \(\left.1^{4}, 3^{4}\right)\).
5.19 Complete-join matrices

Let \(G\) be any graph and let \(\pi=\left(V_{1}, V_{2}, \cdots, V_{m}\right)\) be a partition of \(V\). Define \(K(G, \pi)\) to be the graph whose vertices are \(V_{1}, V_{2}, \cdots, V_{m}\) and where \(V_{i}\) is adjacent to \(V_{j}\) if either \(i \neq j\) and \(V_{i}\) is completely joined to \(V_{j}\) in \(G\) or \(i=j\) and the subgraph \(V_{i}\) is complete. Thus \(K(G, \pi)\) may have loops on some vertices.

We will also regard the vertices of \(K(G, \pi)\) to be labelled with the size of the corresponding cell of \(\pi\), and will refer to this label as the size of the vertex. The set of size-preserving automorphisms of \(K(G, \pi)\) will be denoted by \(\operatorname{Auts}(K(G, \pi))\). Subgraphs of \(K(G, \pi)\) will be considered to inherit their vertex sizes from \(K(G, \pi)\).

If \(\Lambda \leq \Gamma, K(G, \theta(\Lambda))\) will be abbreviated to \(K(G, \Lambda)\). Note that if \(\Lambda \in J(\Gamma), K(G, \Lambda)\) determines both \(\sigma(\Lambda)\) and the corresponding neighbourhood partition.

The next major step in the construction of \(\underset{\sim}{Q}\) will be to find a family \(\underset{\sim}{K}\) of graphs such that, for any \(G \in G\), there is some \(\Lambda \in J(\Gamma)\) such that \(K(G, \Lambda) \in \underset{\sim}{K}\).

Let \(f \geq 1, r \geq 1\) and \(s \geq 0\). Define \(F(f, r, s)\) to be the set of all. fx . O-1 matrices \(F\) with the following properties.
(a) Each row of \(F\) has exactly \(s\) ones.
(b) The columns of \(F\) are in lexicographic order.
(c) Let \(H\) be the graph with adjacency matrix \(\left[\begin{array}{c:c}0 & F \\ \hdashline F & 0\end{array}\right]\). Then the group of automorphisms of \(H\) which fix the partition \(\{1,2, \cdots, f \mid f+1, f+2, \cdots, f+r\}\) acts transitively on \(\{1,2, \cdots, f\}\).

In Table \(5 \cdot 2\) we give the size of \(\bar{F}(f, r, s)\) for various \(\mathrm{f}, \mathrm{r}\) and s . Obviously, \(|F(f, r, 0)|=1\) for any \(\mathrm{f}, \mathrm{r}\).

The reason for our interest in \(F(f, r, s)\) is revealed in the following theorem.
\(5 \cdot 20\) THEOREM Let \(G \in G\), and \(\Lambda \in J(\Gamma)\). Let \(\sigma_{1}=\sigma(\Lambda)\) and Let \(\sigma_{2}\) be the corresponding neighbourhood partition. Let \(I=\ell_{1}<\ell_{2}<\cdots<\ell_{t}\) be the different orbit sizes of \(\Lambda\). Then for some ordering of the orbits of \(\Lambda\) in non-decreasing order of size and some matrix \(M\), the adjacency matrix of \(K(G, \Lambda)\) is
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(r\)} & \multirow[b]{2}{*}{s} & \multirow[b]{2}{*}{1} & \multicolumn{7}{|c|}{f} \\
\hline & & & 2 & 3 & 4 & 5 & 6 & 8 & 9 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & & 1 & & \\
\hline \multirow[t]{2}{*}{2} & 1 & 1 & 2 & 1 & 4 & & 11 & 36 & \\
\hline & 2 & 1. & 1 & 1 & 1 & & 1 & & \\
\hline \multirow[t]{3}{*}{3} & 1 & 1 & 2 & 2 & 4 & & 26 & & 281 \\
\hline & 2 & 1 & 2 & 2 & 4 & & 26 & & 281 \\
\hline & 3 & 1 & 1 & 1 & 1 & & 1 & & \\
\hline \multirow[t]{4}{*}{4} & 1 & 1 & 2 & 2 & 5 & & 26 & 141 & \\
\hline & 2 & 1 & 3 & 3 & 10 & & 81 & 386 & \\
\hline & 3 & 1 & 2 & 2 & 5 & & 26 & 141 & \\
\hline & 4 & 1 & 1 & 1 & & & 1 & & \\
\hline \multirow[t]{4}{*}{5} & 1 & 1 & 2 & 2 & & 2 & & & \\
\hline & 2 & 1 & 3 & 3 & & 13 & & & \\
\hline & 3 & 1 & 3 & 3 & & 13 & & & \\
\hline & 4 & 1 & 2 & 2 & & & & & \\
\hline \multirow[t]{4}{*}{6} & 1 & 1 & 2 & 2 & 5 & & 27 & & \\
\hline & 2 & 1 & 3 & 4 & 14 & & 226 & & \\
\hline & 3 & 1 & 4 & 4 & 22 & & 436 & & \\
\hline & 4 & 1 & 3 & 4 & & & 226 & & \\
\hline \multirow[t]{4}{*}{7} & 1 & 1 & 2 & & & & & & \\
\hline & 2 & 1 & 3 & & & & & & \\
\hline & 3 & 1 & 4 & & & & & & \\
\hline & 4 & 1 & 4 & & & & & & \\
\hline \multirow[t]{4}{*}{8} & 1 & 1 & 2 & & & & & & \\
\hline & 2 & 1 & 3 & & & & & & \\
\hline & 3 & 1 & 4 & & & & & & \\
\hline & 4 & 1 & 5 & & & & & & \\
\hline
\end{tabular}

Table \(5 \cdot 2\)

where I is the adjacency matrix of a transitive graph of order \(r_{1}\left(\sigma_{1}\right)\) and degree \(r_{1}\left(\sigma_{2}\right)\), and \(F_{i} \in F\left(r_{1}\left(\sigma_{1}\right), r_{l_{i}}\left(\sigma_{1}\right), r_{l_{i}}\left(\sigma_{2}\right)\right)\), for \(2 \leq i \leq t\).

Moreover, let H be the graph whose adjacency matrix A(H) is formed from \(K(G, \theta(\Lambda))\) by setting \(M=0\). Let \(m\) be the order of \(H\).
(i) The maximum degree of \(H\) is less than the degree of \(G\).
(ii) Auts(H) acts transitively on the set \(\left\{1,2, \cdots, r_{1}\left(\sigma_{1}\right)\right\}\), and
(iii) Auts(H) does not have a subgroup which fixes \(\left\{r_{1}\left(\sigma_{1}\right), r_{1}\left(\sigma_{1}\right)+1, \cdots, m\right\} \quad\) point-wise and has exactly one non-trivial orbit.

Proof: \(\quad T\) is the subgraph induced by \(\operatorname{fix}(\Lambda)\) and so is transitive since \(\Lambda \in J(\Gamma)\). Each \(F_{i}\) depicts the way in which each fixed point is joined to the orbits of size \(\ell_{i}\). Condition (b) (of the definition of \(\boldsymbol{F}(f, r, s)\) above) can be satisfied by simply permuting the columns of each \(F_{i}\). Condition (c) follows from condition (ii) above, which follows from the observation that Auts \((H)\) contains the representation of \(N_{\Gamma}(\Lambda)\) on the orbits of \(\Lambda\). Condition (iii) is necessary to prevent \(G\) from containing a nontrivial ER subset. Finally, if any vertex of \(H\) has degree equal to the degree of \(G\), the corresponding orbit of \(\Lambda\) is non-trivial and ER.
5.21 LEMMA Assume the notation of Theorem 5.20. If H and \(\mathrm{H}^{*}\) correspond to the same partition pair \(\left(\sigma_{1}, \sigma_{2}\right)\) and are isomorphic via a mapping preserving the vertex sizes, they correspond to the same family of graphs in G.

Proof: obvious.
\(5 \cdot 22\)
Construction of \(\underset{\sim}{K}\)
Let \(K^{l}\) be the set of the 650 graphs \(H\), as defined in Theorem 5•19, which correspond to some \(\left(\sigma_{1}, \sigma_{2}\right) \in T\) and satisfy all the requirements of Theorem 5.18. Only one member of each isomorphism class (defined Lemma 5-21) is included. The following table gives the size of \(K^{l}\) for each order \(n\) and degree \(k\).
\begin{tabular}{rrrrrrr}
\(n \backslash k\) & 3 & 4 & 5 & 6 & 7 & 8 \\
8 & 2 & & & & & \\
9 & & 3 & & & & \\
10 & 3 & 2 & & & & \\
12 & 7 & 13 & 17 & & & \\
14 & 4 & 7 & 6 & 10 & & \\
15 & & 11 & & 19 & & \\
16 & 13 & 24 & 45 & 63 & 73 & \\
18 & 10 & 30 & 46 & 57 & 89 & 96
\end{tabular}

Let \(G \in G\). Then there is some \(\Lambda \in J(\Gamma)\) such that the graph \(H\) corresponding to \(K=K(G, \Lambda)\) is in \(K^{l}\). Let \(F\) be the set of vertices of \(K\) (or \(H\)) of size one, and let \(\mathbb{N}\) be the set of vertices of \(K\) (or \(H\)) of size greater than one which are adjacent in \(H\) to at least one vertex of size one. The corresponding subsets of \(G\) will be denoted by \(F\) and \(N^{*}\) respectively.

Suppose now that \(\left|\mathbb{N}^{*}\right|<k\). Since \(k<\frac{n}{2}\) and \(|F| \leq \frac{n}{2}\), \(\mathbb{N}^{*}\) is a cutset of \(G\) of size less than \(k\). Since this is not possible for
\(G \in G\), the corresponding \(H\) can be eliminated. Altogether 43 graphs are thus eliminated from \(K^{1}\) giving a new set \(K^{2}\) containing 607 graphs.

The next step is to determine the possible induced subgraphs \(\mathbb{N}\) of \(K\). This computation is quite complicated and so will only be described in broad outline.

For each \(V \in F\) let \(\mathbb{N}_{V}\) be the subgraph of \(K\) induced by those vertices in \(\mathbb{N}\) which are adjacent to v. Since Auts(K) acts transitively on F , the \(\mathrm{N}_{\mathrm{V}}\) are all isomorphic. Each possible subgraph \(\mathbb{N}_{\mathrm{V}}\) can be determined, and then the possible imbeddings of these subgraphs in \(\mathbb{N}\) can be enumerated by a backtrack procedure, subject to the requirements of correct overlap and to degree restrictions (non-trivial ER orbits are avoided). The resulting graphs \(H^{\prime}\) (presumably subgraphs of \(K\) containing all the edges within F UN) can be eliminated if Auts (\(H^{\prime}\)) does not act transitively on \(F\). The set \(K^{3}\) of all generated \(H\) ' has 946 members distributed as below. Many members of \(K^{2}\) yielded no members of \(K^{3}\).
\begin{tabular}{rrrrrrr}
\(n \backslash k\) & 3 & 4 & 5 & 6 & 7 & 8 \\
8 & 2 & & & & & \\
9 & & 4 & & & & \\
10 & 3 & 3 & & & & \\
12 & 7 & 14 & 18 & & & \\
14 & 4 & 9 & 8 & 20 & & \\
15 & & 13 & & 24 & & \\
16 & 13 & 26 & 44 & 74 & 132 & \\
18 & 10 & 34 & 48 & 79 & 134 & 223
\end{tabular}

The next step is to determine which vertices of each \(H^{\prime} \in K^{3}\) could have loops in some \(K \in \underset{\sim}{K}\) which has \(H^{\prime}\) as a subgraph. This produces a set \(K^{4}\) of 8088 graphs distributed as below. At this
stage we can say that for each \(K \in \underset{\sim}{K}\), the subgraph of \(K\) containing all loops and all edges in \(F \cup \mathbb{N}\) is in \(K^{4}\).
\begin{tabular}{rrrrrrr}
\(n: \backslash k\) & 3 & 4 & 5 & 6 & 7 & 8 \\
8 & 5 & & & & & \\
9 & & 16 & & & & \\
10 & 11 & 12 & & & & \\
12 & 20 & 54 & 64 & & & \\
14 & 21 & 63 & 72 & 163 & & \\
15 & & 75 & & 178 & & \\
16 & 53 & 174 & 256 & 534 & 810 & \\
18 & 51 & 248 & 352 & 728 & 1083 & 3045
\end{tabular}

Because of the large size of \(K^{4}\) an effort will be made to reduce it before proceding further. The following techniques can be applied.
(a) Let \(G \in G\) correspond to some \(H^{\prime \prime} \in K^{4}\). Then \(G\) has \(n k / 2\) edges altogether. Let \(\ell\) be the number of edges of \(G\) represented by edges of \(H^{\prime \prime}\), and let \(p \in\{2,3,5\}\) be the prime dividing the vertex sizes of \(H^{\prime \prime}\). Then \(p \mid(n k / 2-\ell)\), since the remaining edges of \(G\) are between non-trivial orbits of \(\Lambda\) and in non-complete subgraphs within the orbits of \(\Lambda\). This requirement eliminates 3040 cases.
(b) Let \(H^{\prime \prime} \in K^{4}\) and let \(J\) be the subgraph of \(H^{\prime \prime}\) induced by these vertices adjacent to a given vertex \(v \in F\). If \(\bar{J}\) is disconnected, where \(G\) is any graph in \(G\) which corresponds to \(H^{\prime \prime}\). Therefore \(\bar{G}\) is a NTLP, by Corollary 4•17, and so \(G\) is a NTLP, contrary to the assumption that \(G \in G\). This requirement eliminates 258 graphs \(H^{\prime \prime}\).

Let \(K^{5}\) be the set of graphs in \(K^{4}\) which have not been eliminated in (a) or (b) above. Then \(K^{5}\) contains 4790 graphs, distributed as below.
\begin{tabular}{rrrrrrr}
\(n \backslash k\) & 3 & 4 & 5 & 6 & 7 & 8 \\
8 & 3 & & & & & \\
9 & & 7 & & & & \\
10 & 9 & 7 & & & & \\
12 & 12 & 32 & 40 & & & \\
14 & 15 & 38 & 48 & 109 & & \\
15 & & 35 & & 85 & & \\
16 & 34 & 107 & 170 & 340 & 497 & \\
18 & 34 & 141 & 230 & 452 & 640 & 1705
\end{tabular}

A complex breadth-first process has been used to fill in any extra edges necessary to make up each \(H^{\prime \prime} \in K^{5}\) to the possible graphs \(K(G, \Lambda)\) from which it could be derived.

The possible sites for a new edge e of \(H^{\prime \prime}\) were broken into a number of classes which are necessarily invariant under Auts \((K(G, \Lambda))\). For example, the sizes of the end-vertices and whether one or both of these vertices was in \(\mathbb{N}\) were used. The resulting classes were then arranged in a convenient order. The program was designed to insert the edges only in order of class and, once the program had decided that no more edges of a given class were appropriate, it tested whether or not the size-preserving automorphism group was still transitive on \(F\). The answer was almost always "yes", testifying to the success of the following theorem, which was used repeatedly. A method of isomorph-rejection was also used, ensuring that no subcase was ever considered more than once.
5.23 THEOREM Let \(\Lambda\) and \(\Phi \leq \Lambda\) be permutation groups acting on a set X. Suppose \(\Phi\) and \(\Lambda\) have a common orbit W and let \(\mathrm{W} \in \mathrm{W}\). If \(\mathrm{Y} \subseteq \mathrm{X}\) is fixed set-wise by \(\Lambda_{W}\), and \(\gamma \in \Lambda\), then \(Y^{\gamma}=Y^{\phi}\) for some \(\phi \in \Phi\). Proof: Since \(W\) is a common orbit of \(\Lambda\) and \(\Phi\), there is an element \(\phi \in \Phi\) such that \(W^{\phi}=W^{\gamma}\). Then \(\gamma \in \Lambda_{W} \phi\). Since \(Y\) is fixed by \(\Lambda_{W}\), we must have \(Y^{\gamma}=Y^{\phi}\).

Let \(K \in \underset{\sim}{K}\) and let \(L\) be a spanning subgraph of \(K\) for which we know that \(A u t s(K) \leq \operatorname{Auts}(L)\) and that Auts(I) acts transitively on F. Suppose that \(\{x, y\} \subseteq V(K)\) is fixed by Auts \((L){ }_{V}\), where \(v \in F\). Then Theorem \(5 \cdot 23\) tells us that the orbit of \(\{x, y\}\) under Auts (K) is the same as the orbit of \(\{x, y\}\) under \(\operatorname{Auts}(L)\).

EXAMPLE: \(\quad K^{5}\) contains the following graph \(L\).

Here \(F=\{1,2\}\), vertices \(3-8\) have size 2 and Auts \((L)=\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{l}3\end{array}\right),\left(\begin{array}{ll}6 & 8\end{array}\right)\right\rangle\). The pair \(\{3,7\}\) is fixed by Auts(I) \({ }_{1}\), and so its orbit under Auts(K) is the same as under Auts(L), namely \(\{\{3,7\},\{5,7\}\}\). Therefore if we insert one of these edges we must insert the other one also.

The computation just described produced a set \(K^{6}\) of 223159 graphs and required about \(3 \frac{1}{2}\) hours of computer time on a Cyber 73 computer. \(K^{6}\) satisfies the requirements for the set \(\underset{\sim}{K}\), but we will first attempt to reduce its size (with only slight success).
(a) For each \(K \in K^{6}\), each 2-orbit was examined to determine whether its degree in \(K\) was impossibly low. For example,
if \(\sigma=\left(18 ; 1^{2}, 2^{8}\right)\) and \(k=8\), no 2 -orbit can have degree 0 in \(K\), since its vertices cannot possibly be given degree more than seven by adding non-complete joins between orbits. This process eliminates 18555 cases.
(b) Let \(K \in K^{6}\), and let \(c\) be the size of a component of the subgraph \(\mathbb{N}(1, \bar{K})\). Then by Theorem \(4 \cdot 20\) applied to \(\bar{G}\), either \(n \leq 9\) or \(2 c>n-k-1\). This test eliminates only 1556 cases.
(c) Suppose \(n=2 k+2\) and \(v, w \in F\). Then if \(v\) and \(w\) are not adjacent, \(\mathbb{N}(v, K) \cap \mathbb{N}(w, K) \neq \emptyset\), since otherwise \(G\) would be a switching graph, by Theorem 4•23. This test eliminates 3447 cases.

Let \(\underset{\sim}{K}\) denote the set of all elements of \(K^{6}\) not eliminated by the tests above. Then \(\underset{\sim}{K}\) has 199601 elements distributed as below.
\begin{tabular}{rr}
\(\underline{n}\) & graphs \\
8 & 2 \\
9 & 13 \\
10 & 14 \\
12 & 140 \\
14 & 976 \\
15 & 4452 \\
16 & 12355 \\
18 & 181649
\end{tabular}
5.24 \(\quad\) Construction of \(\underset{\sim}{\sim}\)

We are now in a position to construct a family of quotient matrices satisfying the requirements for \(\mathbb{Q}\).

For each \(K \in \underset{\sim}{K}\), a simple backtrack program has been used to list all feasible ways of joining each orbit (vertex of \(K\)) to the other orbits or to itself. Having done this, another backtrack scheme produced 962131 possible quotient matrices. This scheme made
considerable use of Theorem 5.23, and also used its knowledge of Auts(K) to eliminate isomorphs.

This set of possible quotient matrices is much too large, so we will expend considerable effort in reducing its size.
5.25 Necessary conditions on \(Q \in \underset{\sim}{Q}\)

We have computed a set \(\underset{\sim}{Q}\) of 962131 matrices with the following property. For each \(G \in G\) there is some \(\Lambda \in J(\Gamma)\) such that \(Q(G, \theta(\Lambda)) \in \mathbb{Q}\). For the remainder of the chapter, \(F=f i x(\Lambda)\). Quotient matrices are somewhat awkward for exact computation, since their entries are sometimes irrational. Consequently we have devised a somewhat different representation. Let \(G \in G, \Lambda \in J(\Gamma), \theta(\Lambda)=\left(V_{1}, V_{2}, \ldots, V_{m}\right)\) and \(Q=Q(G, \theta(\Lambda))\). Define the symmetric mxm matrix \(R=R(G, \Lambda)\) by
 If \(\left|V_{i}\right| \leq\left|V_{j}\right|\), then \(R_{i j}\) is the number of vertices in \(V_{i}\) adjacent to each vertex in \(V_{j}\). The quotient matrix \(Q\) is represented in the computer by \(R\).

We now describe in detail a battery of tests which can be applied to each element of \(\mathbb{Q}\). These tests are so successful that all but 709 matrices can be eliminated. In other words, 961422 of them proved to be not equal to \(Q(G, \theta(\Lambda))\) for any \(G \in G\) and \(\Lambda \in J(\Gamma)\). 5.26 The tests described in this section are only employed if there are no orbits of size greater than 4. Since G is transitive, each vertex lies on the same number of triangles. Call this number t. A triangle of \(G\) can appear in \(Q\) in seven different ways as indicated below, where the open circles represent non-trivial orbits of \(\Lambda\).
(a)

(b)

(c)

(d)

(e)

(f)

(g)

107.

The exact number of triangles of types (a) - (e) can be calculated from Q. For types (f) and (g) a table (165 entries) can be constructed by hand giving upper and lower bounds on the number of triangles, for each possible combination of the appropriate entries of R. For example, if \(\left|v_{i}\right|=\left|V_{j}\right|=\left|V_{\ell}\right|=4, R_{i j}=R_{i \ell}=3\) and \(R_{j \ell}=2\), there are either 16 or 20 triangles of type (g). This table, plus the calculations for types (a) - (e), can be used to calculate the exact number \(t\) of triangles on a vertex \(v \in F\) and bounds on the number of triangles on every other vertex of \(G\).

NCI : \(t\) is independent of the choice of \(v \in F\).

NC2 : The upper and lower bounds for each \(\mathrm{V} \notin \mathrm{F}\) include t .

NC3 : nt is divisible by 3.

The justification for NC3 is that nt/3 is the number of triangles in \(G\).
Tests NC1 - \(\mathbb{N C} C 3\) are remarkably successful, eliminating all but 62818 elements of Q.
5.27 Consider the graph \(H=H(G, \Lambda)\) defined in Section 4.26. Obviously, \(H\) can be determined from \(Q(G, \theta(\Lambda))\). The nature of the components of H will be indicated by a symbol such as \(\mathrm{H} \sim(24,222)\), which indicates that there are two components, one corresponding to a

2-orbit and a 4-orbit, and the other to three 2-orbits.

NC4 : If \(H\) has a component of type 22,33 or 24 , \(n\) is even.

The cases 22 and 33 are justified by Theorems \(4 \cdot 24\) and \(4 \cdot 25\). For the case 24, an examination of the possible ways of joining the two orbits, and the possible contents of the orbits, reveals that \(\Gamma\) has an element of the form (a b) (c a), whose support is the 4 -orbit. Therefore, \(n\) is even by Theorem 4.25.

Recall from the remark following Lemma \(5 \cdot 18\) that we can assume \(\Lambda \in \operatorname{Syl}_{p}\left(\Gamma_{1}\right)\), for some \(p \in\{2,3,5\}\), unless \(\sigma(\Lambda)\) is one of \(\left(9 ; 1^{3}, 2^{3}\right),\left(15 ; 1^{3}, 2^{6}\right),\left(15 ; 1^{3}, 2^{4}, 4\right),\left(15 ; 1^{3}, 4^{3}\right),\left(15 ; 1^{5}, 2^{5}\right)\) and \(\left(16 ; 1^{4}, 3^{4}\right)\). Many possible component types for \(H\) can be immediately eliminated by the use of Theorem \(4 \cdot 30\).

NC5 : The following possibilities for \(H\) are impossible.
\[
\begin{aligned}
\mathrm{n}= & 12, \mathrm{H} \sim \\
\mathrm{n}= & (22,222) \\
\mathrm{n}= & (\mathrm{H} \sim \\
\mathrm{H} & (22,2222),(222,24) \\
\mathrm{n}= & (26, \\
& (222,2222) \\
\mathrm{H} \sim & (22,22,222),(22,22,24),(22,222), \\
& (22,2222),(22,22222),(222,2222), \\
& (222,24),(2222,24),(33,333),(224,24) \\
& (24,44) \\
\mathrm{n}=18, \mathrm{H} \sim & (22,22,2222),(22,22,224),(22,22,44), \\
& (22,222,222),(22,222,24),(22,2222), \\
& (22,222222),(22,224),(22,44),(222,22222), \\
& (222,24),(2222,224),(2222,44),(22222,24), \\
& (224,44),(33,333),(2224,24),(24,244)
\end{aligned}
\]
5.28 Let \(J\) be the graph whose adjacency matrix is obtained from \(Q\) by changing every non-zero entry to one. If \(\overline{\mathbb{N}}(1, J)\) is disconnected, then so is \(\overline{\mathbb{N}}(1, G)\). Consequently, by Corollary \(4 \cdot 17\) we have

NC6 : \(\overline{\mathbb{N}}(1, J)\) is connected.
5.29 For each orbit \(V_{i}\) of \(\Lambda\), we can divide the vertices of \(G\) into classes according to their distance from \(V_{i}\). This division can be determined from Q. Suppose that for each \(d\), there are \(\Delta(d)\) vertices at distance \(d\) or more from vertex 1 .

NC7 : For each orbit \(V_{i}\) and each \(d\), there are at most \(\Delta(d)\) vertices at distance \(d\) or more from \(V_{i}\).

NC8 : For any \(V_{i}\), let \(d_{i}\) be the maximum distance of any vertex of \(G\) from \(V_{i}\). Then if \(0<d<d_{i}\), there are at least \(k\) vertices of \(G\) at distance \(d\) from \(C_{i}\)

Condition NC8 follows from the assumption that \(G\) has connectivity \(k\).

Tests \(\mathbb{N C 4}\) - NC8 are not very successful, eliminating only 4365 cases, leaving 58454 cases remaining.
5.30 By far the most powerful necessary conditions which we have applied to \(Q \in \underset{\sim}{Q}\) are based on the eigenvalue techniques described in Sections 4•31-4.40.

These computations were different from any of the earlier computations in that they necessitated the use of floating-point arithmetic, with its associated rounding error problems. The eigenvalues and eigenvectors of each \(Q\) were computed using adapted
versions of routines from the IMSL library. These use Householder's method for reduction to tridiagonal form and the \(Q R\) method for completing the diagonalisation. Since \(Q\) is real and symmetric, high accuracy eigenvalues can be expected (see Wilkinson [45]). The eigenvector problem is not so well conditioned, especially when there are eigenvalues which are close together. However, if we have a collection of eigenvalues, each significantly different in value from any eigenvalue not in the collection, the space spanned by all the corresponding eigenvectors will be found quite accurately (see [45]).

Since our largest \(Q\) has order 12, and the computations used approximately 14 decimal digit accuracy, the eigenvalues computed generally had errors of \(10^{-11}\) or less. However we assumed only that their errors were less than \(10^{-3}\). We also checked that the computed set of eigenvectors was orthonormal to high accuracy (inner products less than \(10^{-9}\) from their proper value). The latter check never failed.

Suppose that \(\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{m}\) are the computed eigenvalues, and \(\underset{\sim}{x}, \underset{\sim}{x}, \underset{\sim}{x}, \underset{\sim}{x} \underset{m}{x}\) are the corresponding computed (orthonormal) eigenvectors. Let \(\lambda_{i} \leq \lambda_{i+1} \leq \cdots \leq \lambda_{i+r-1}\) be a contiguous subsequence of \(\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{m}\) such that \(\lambda_{j+1}-\lambda_{j} \leq 10^{-3}\) for \(i \leq j \leq i+r-2\), \(\lambda_{i}-\lambda_{i-1}>10^{-3}(\) or \(i=1)\) and \(\lambda_{i+r}-\lambda_{i+r-1}>10^{-3}(\) or \(i+r-1=m)\). It is possible that these \(r\) computed eigenvalues actually represent more than one eigenvalue of \(Q\). However, the validity as opposed to the strength) of the tests described below will not suffer if we assume that we are considering an eigenvalue of \(Q\) with multiplicity r. In fact this assumption reduces the probability of a matrix Q being rejected accidentally due to errors in the computed eigenvectors
(for the reasons noted above).
Now let \(v \in F\) and compute \(\rho(v)=\sum_{j=i}^{i+r-1}\left(x_{j}\right)_{v}^{2}\), where
\(\left(x_{j}\right)_{v}^{2}\) denotes the square of the \(v\)-th entry of \({\underset{\sim}{j}}_{j}\). From Corollary
1:34, Theorem \(4 \cdot 38\) and Theorem \(4 \cdot 40\) we obtain the following conditions.

NC9 : \(\rho(\mathrm{v})\) is independent of the choice of \(\mathrm{v} \in \mathrm{F}\) (verified within \(10^{-3}\)).

NC10 : \(n p(1)\) is an integer (verified within \(10^{-2}\)).

NC11 : The integer nearest to \(n \rho(1)\) is at least \(r\).

NC12 : If \(r=1\) then \(\lambda_{i}\) is an integer (verified within \(10^{-2}\)).

The wide deviation from integer allowed in NC1O and NC12 was designed to eliminate any chance of a matrix \(Q\) being rejected solely because of rounding error. It is highly likely that a number of matrices were passed when they should have been failed, but this is of minor importance.

Tests NC9 - \(\mathbb{N C} C 12\) eliminate all but 709 of the 58454 matrices
to which they have been applied. The remaining matrices are distributed as below.
\begin{tabular}{cc}
\(\underline{\mathrm{n}}\) & matrices \\
8 & 1 \\
9 & 5 \\
10 & 5 \\
12 & 45 \\
14 & 17 \\
15 & 38 \\
16 & 263 \\
18 & 335
\end{tabular}

\section*{Generation of \(G\)}

In the previous section we have constructed a family \(Q^{*}\) of 709 matrices, such that for any \(G \in G\) there is some \(\Lambda \in J(\Gamma)\) such that \(Q(G, \theta(\Lambda)) \in \mathbb{Q}^{*}\). The problem now is to use \(\mathbb{Q}^{*}\) to construct \(G\).

The quotient matrices \(Q\) for which \(\Lambda\) has an orbit of size 5 or more will be investigated by hand (see Section 5.32). There are only 7 of these. The remaining cases have been processed by a program which we now describe.

The edges of \(G\) which correspond to completely joined orbits are determined trivially. It is also possible to fill in the contents of each orbit, since for each order up to four there is only one transitive graph of each degree. The main difficulty is in making the non-complete joins between orbits.

For each of the pairs \(\left(m_{1}, m_{2}\right)=(2,2),(2,4),(4,2)\), (4, 4) and (3, 3) a table \(T_{1}\) was constructed (by machine) giving every possible equitable means of joining an orbit of length \(\mathrm{m}_{1}\) to an orbit of length \(m_{2}\). This was indexed by \(m_{1}, m_{2}\) and the number of edges between the orbits. A second table \(\mathbb{T}_{2}\) contained one member of each equivalence class in \(T_{1}\), where two members of \(T_{1}\) are equivalent if one can be obtained from the other by performing allowable permutations of the second orbit. For \(m_{2}=2\) or 3, any permutation is allowable, but for \(m_{2}=4\) only the eight automorphisms of a square are allowable, since a 4-orbit may contain a square or its complement.

For example, for \(m_{1}=2, m_{2}=4\) and 4 edges between the orbits, \(\mathrm{T}_{1}\) contains six entries as below. For convenience we have drawn a square in each 4-orbit. \(\mathrm{T}_{2}\) contains just the first and fifth entries of \(T_{1}\).
(a)

(b)

(c)

(d)

(e)

(f)

Now define the graph \(H=H(G, \Lambda)\) as in Section \(4 \cdot 26\), but with loops omitted. As we noted earlier, \(H\) can be determined from Q. Each edge of \(H\) thus indicates a non-complete join in \(G\) between orbits of \(\Lambda\). The edges of \(H\) were then labelled with weights, roughly indicating the complexity of the necessary join in \(G\). More precisely, the higher an edge weight the greater the advantage in using \(T_{2}\) rather than \(T_{1}\) as the source of possible joins. The method of Prim [38] was then used to find a spanning forest of maximum total weight. The program MAXSPF in Nijenhuis and Wilf [35] was adapted for this purpose. Suppose that \(H\) has \(s\) vertices, \(t\) edges and \(c\) components. Prim's method produces a sequence \(e_{i}, e_{2}, \ldots, e_{s-c}\) of edges of \(H\) with the property that at least one end-vertex of each edge is not an end-vertex of any earlier edge in the sequence.

The remaining \(t-s+c\) edges of \(H\) were arranged in a sequence \(e_{s-c+1}, e_{s-c+2}, \cdots, e_{t}\). The order was fairly arbitrary, except that edges which completed a neighbourhood (i.e. after insertion of the appropriate edges in \(G\), the neighbourhood of some vertex of \(G\) would be known for the first time) were given precedence.

The complete list of possible transitive graphs \(G\) for each quotient matrix \(Q\) was then constructed using a backtrack program
which inserted non-complete joins in \(G\) in the order \(e_{1}, e_{2}, \cdots, e_{t}\). For \(1 \leq i \leq s-c\) at least one of the orbits involved was only trivially joined to other orbits (before the join represented by \(\mathrm{e}_{\mathrm{i}}\) was inserted) and so could be subject to any allowable permutation without changing the graph at that stage. Therefore the list of possible joins could be drawn from \(\mathrm{T}_{2}\) rather than \(\mathrm{T}_{1}\). Joins corresponding to later edges of \(H\) were drawn from \(T_{1}\). The only other non-trivial means of shortening the search was to keep track of the neighbourhoods of the vertices of \(G\). Each time a new neighbourhood was completed, it was examined to see if its vertices had the same degree sequence as those of any earlier neighbourhoods. Any completed graphs generated by the program were tested to see if they were transitive, and if so whether they were isomorphic to any earlier generated graph (for the same quotient matrix). The program which tested the transitivity kept an eye open for transpositions in the automorphism group (none were ever found) but otherwise no effort was made to identify transitive graphs not in \(G\). Despite the elaborate preparations, it was expected that this computation would occupy the computer for several hours at least. In fact it was all over in 12 minutes. More than half that time was taken up by the ten largest cases, each of which had two or more 4-orbits.

For the 702 quotient matrices processed, a total of 8584 graphs were produced. Of these, 7863 were intransitive and 127 were isomorphs, so that 594 transitive graphs were produced altogether. Out of the 702 quotient matrices, 120 produced no transitive graph, 584 produced one each, and 5 produced two each. In Figure \(5 \cdot 2\) we give an example of a quotient matrix (actually \(R(G, \Lambda\)) - see
\[
R(G, \Lambda)=\left[\begin{array}{lllllll}
0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 2 & 1 & 1 \\
0 & 0 & 0 & 2 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
\]
\[
\sigma(\Lambda)=\left(16 ; 1^{2}, 2^{3}, 4^{2}\right)
\]

Figure \(5 \cdot 2\)

Section 5.25) having two transitive realisations. The two graphs drawn are strongly regular and so not actually in \(G\), but this was not noticed at the time. The labelling on each determines the orbit of \(\Lambda\) to which each vertex belongs.
5.32 Special Cases

We will now consider the seven quotient matrices in Q \(^{*}\) which have not been processed by the program described in the previous section. In this section " \(x \sim y\) " means " \(x\) is adjacent to \(y\) in \(G\) " and "without loss of generality" is assumed at each step. Also, \(\mathbb{N}(x, G)\) will be abbreviated to \(\mathbb{N}(x)\) and \(\overline{\mathbb{N}}(x, G)\) to \(\bar{N}(x)\).
\[
\text { (a) } \begin{aligned}
& \sigma(\Lambda)=\left(16 ; 1,5^{3}\right), \\
& R(G, \Lambda)=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 2 & 2 \\
0 & 2 & 0 & 3 \\
0 & 2 & 3 & 0
\end{array}\right]
\end{aligned}
\]

Any realisation is clearly strongly regular, and so not in \(G\).
\[
\text { (b) } \begin{aligned}
& \sigma(\Lambda)=\left(16 ; 1,5^{3}\right), \\
& R(G, \Lambda)=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 2 & 2 \\
0 & 2 & 2 & 1 \\
0 & 2 & 1 & 2
\end{array}\right]
\end{aligned}
\]

Any realisation is strongly regular and so not in \(G\).
(c) \(\sigma(\Lambda)=\left(18 ; 1^{2}, 2^{2}, 4,8\right)\),
\[
R(G, \Lambda)=\left[\begin{array}{llllll}
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 2 & 1 \\
0 & 0 & 1 & 1 & 1 & 3
\end{array}\right]
\]

Let \(\theta(\Lambda)=(1|2| 3,4|5,6| 7,8,9,10 \mid 11,12, \cdots, 18) . \mathbb{N}(1)\) is clearly isomorphic to \(\mathrm{C}_{4} \cup \overline{\mathrm{~K}}_{2}\). In order that \(\mathbb{N}(3), \mathbb{N}(4), \mathbb{N}(5)\) and \(\mathbb{N}(6)\) be isomorphic to \(\mathbb{N}(1)\), we must have the situation below.

Now \(\overline{\mathbb{N}}(1)\) has the form

where each of \(\{11,12,13,14\}\) is adjacent to one of \(\{15,16,17,18\}\), and vice-versa. Without loss of generality, \(11 \sim 7\) and \(11 \sim 15\). In order that \(\overline{\mathrm{N}}(11) \cong \overline{\mathrm{N}}(1)\) we must have \(13 \sim 9\) and \(13 \sim 17\). The graph we have at the moment has automorphisms (8 10), (12 14) and (16 18). Therefore we can say \(12 \sim 8\) and \(12 \sim 16\) which forces \(14 \sim 10\) and \(14 \sim 18\). Considering \(\overline{\mathrm{N}}(11)\) and \(\overline{\mathrm{N}}(8)\) we must have \(8 \sim 18\) and \(10 \sim 16\). Similarly \(7 \sim 17\) and \(9 \sim 16\). The resulting graph is indeed transitive.
(d) \(\sigma(\Lambda)=(18 ; 1,2,4,8)\),
\[
R(G, \Lambda)=\left[\begin{array}{llllll}
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 2 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 3
\end{array}\right]
\]

Let \(\theta(\Lambda)=(1|2| 3,4|5,6| 7,8,9,10 \mid 11,12, \cdots, 18)\). Obvious 1 y \(\mathbb{N}(1)\) is isomorphic to \(C_{4} \cup K_{2}\). Since \(\mathbb{N}(3) \cong \mathbb{N}(4) \cong \mathbb{N}(1)\) we have the following situation.

By considering vertex 1 we see that each vertex has two adjacent vertices at distance 3. Considering vertex 3 similarly, we have \(5 \sim 11,12,13,14\) and \(6 \sim 15,16,17,18\). To get \(\mathbb{N}(11) \cong \mathbb{N}(1)\) we must have a triangle equivalent to \(7 \sim 15 \sim 11 \sim 7\). Considering the vertices at distance 3 from 11 and 15 and then \(\mathbb{N}(9)\), we have another triangle \(9 \sim 13 \sim 17 \sim 9\). Similarly we have \(8 \sim 12 \sim 16 \sim 8\) and \(10 \sim 16 \sim 18 \sim 10\). The resulting graph is transitive and can be identified as the cartesian product of a triangle and an octahedron.
\[
\text { (e) } \sigma(\Lambda)=\left(18 ; 1^{2}, 2^{2}, 4,8\right) \text {, } \quad\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 3 & 1 \\
0 & 0 & 1 & 1 & 1 & 4
\end{array}\right]
\]

This case can be handled in a way similar to case (d). However it is clear that the neighbourhood of vertex 1 is isomorphic to \(\mathrm{K}_{5} \cup \mathrm{~K}_{2}\), and it is very easy to see that the only 18-vertex graph with each vertex having this neighbourhood is \(K_{3} \times K_{6}\). This graph is transitive, of course, and does have a quotient matrix of the form above (take \(\Lambda\) to be the stabiliser of two vertices in the same 6-clique).
\[
\text { (f) } \begin{aligned}
& \sigma(\Lambda)=\left(18 ; 1^{2}, 2^{2}, 4,8\right) \\
& R(G, \Lambda)=\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 2 & 0 & 1 \\
0 & 1 & 2 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 3 & 1 \\
0 & 0 & 1 & 1 & 1 & 4
\end{array}\right]
\end{aligned}
\]

Let \(\theta(\Lambda)=(1|2| 3,4|5,6| 7,8,9,10 \mid 11,12, \cdots, 18)\). Obviously \(\mathbb{N}(1)\) is isomorphic to \(K_{5} \cup \bar{K}_{2}\). Since \(G\) is transitive it must contain 3 disjoint 6-cliques, forming a block-system for \(\Lambda\), with 3 blocks of size 6. Now consider the spanning subgraph \(E\) of \(G\) containing just those edges not in any 6-clique. Then E is a transitive graph with degree two, and so is isomorphic to either \(6 \mathrm{C}_{3}, 3 \mathrm{C}_{6}, 2 \mathrm{C}_{9}\) or \(\mathrm{C}_{18}\). In the present case, E contains a hexagon
(say \(1 \sim 3 \sim 5 \sim 2 \sim 6 \sim 4 \sim 1\)) and so is isomorphic to \(3 C_{6}\). We can also see that this hexagon (and thus the other two) has two vertices in each 6-clique. The only possibility is the graph drawn schematically below, where it is to be understood that any two vertices in the same row are adjacent.

\[
(g) \quad \sigma(\Lambda)=\left(18 ; 1^{3}, 5^{3}\right)
\]
\[
R(G, \Lambda)=\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 4 & 1 & 1 \\
0 & 1 & 0 & 1 & 4 & 1 \\
0 & 0 & 1 & 1 & 1 & 4
\end{array}\right]
\]

The neighbourhood of each vertex is clearly isomorphic to \(K_{5} \mathrm{UK}_{2}\), and so this is the same graph as in case (e), namely \(K_{3} \times K_{6}\).

\subsection*{5.33 Consolidation}

A file has been constructed containing all the transitive graphs of order at most 19 which are not in \(G\) (see Section 5.1). This file has been merged with the collection of 594 graphs described in Section 5.31 and the extra handful of graphs constructed in the previous section. Isomorphic copies of the same graph have been eliminated. For convenience, every transitive graph up to order 9 has been retained, while those of order greater than 9 with \(k>(n-1) / 2\) have been deleted. The result is a set of 546
non-isomorphic transitive graphs. As this number indicates, many of the elements of \(G\) have been constructed via more than one quotient matrix. The total number of transitive graphs of order \(\leq 19\) and degree \(\leq 8\) can be found in Table 5.3. The same information restricted to connected graphs is given in Table 5.4. The entries for the remaining degrees are easily deduced, since the number of transitive graphs of order \(n\) and degree \(k\) is equal to the number with order \(n\) and degree \(n-k-1\), and all transitive graphs with \(k \geq(n-1) / 2\) are connected.

Where there is any overlap, our results have been compared with those of Yap [46], who considered transitive graphs of order up to 12 (except for those of degree 5), Rees [39] who constructed the symmetric graphs of degree 3 up to 40 vertices, and Hall [18] who constructed all the graphs up to order 11 with isomorphic neighbourhoods. The only discrepancy found is with Yap's catalogue, which omits two transitive graphs on 12 vertices.

Another check on our results has been carried out by generating all the Cayley graphs of every group of order 19 or less, and verifying that each is present in the catalogue. Since the bulk of transitive graphs seem to be Cayley graphs (all but 9 of our 546 are) this is probably quite a good check. A further test has been to generate transitive graphs from those in the catalogue using unary and binary operations, and to check that the resulting graphs are present. An example is the \(D(G)\) construction defined in Theorem 1-22.

The complete list of 546 transitive graphs is given in Appendix 2 together with many of the properties of each graph, and representations of each graph as Cayley graphs or products of other graphs.

Table \(5 \cdot 3\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{order} & \multicolumn{9}{|c|}{degree} & \multirow[b]{2}{*}{total} \\
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \\
\hline 1 & 1 & & & & & & & & & 1 \\
\hline 2 & 0 & 1 & & & & & & & & 1 \\
\hline 3 & 0 & 0 & 1 & & & & & & & 1 \\
\hline 4 & 0 & 0 & 1 & 1 & & & & & & 2 \\
\hline 5 & 0 & 0 & 1 & 0 & 1 & & & & & 2 \\
\hline 6 & 0 & 0 & 1 & 2 & 1 & 1 & & & & 5 \\
\hline 7 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & & & 3 \\
\hline 8 & 0 & 0 & 1 & 2 & 3 & 2 & 1 & 1 & & 10 \\
\hline 9 & 0 & 0 & 1 & 0 & 3 & 0 & 2 & 0 & 1 & 7 \\
\hline 10 & 0 & 0 & 1 & 3 & 3 & 4 & 3 & 2 & 1 & 18 \\
\hline 11 & 0 & 0 & 1 & 0 & 2 & 0 & 2 & 0 & 1 & 7 \\
\hline 12 & 0 & 0 & 1 & 4 & 10 & 12 & 13 & 11 & 7 & 64 \\
\hline 13 & 0 & 0 & 1 & 0 & 3 & 0 & 4 & 0 & 3 & 13 \\
\hline 14 & 0 & 0 & 1 & 3 & 5 & 6 & 8 & 9 & 6 & 51 \\
\hline 15 & 0 & 0 & 1 & 0 & 7 & 0 & 12 & 0 & 12 & 44 \\
\hline 16 & 0 & 0 & 1 & 4 & 13 & 25 & 39 & 47 & 48 & 272 \\
\hline 17 & 0 & 0 & 1 & 0 & 4 & 0 & 7 & 0 & 10 & 35 \\
\hline 18 & 0 & 0 & 1 & 5 & 12 & 23 & 36 & 45 & 53 & 365 \\
\hline 19 & 0 & 0 & 1 & 0 & 4 & 0 & 10 & 0 & 14 & 59 \\
\hline
\end{tabular}

Table \(5 \cdot 4\)

The group information given for each graph was computed using the algorithm described in McKay [26]. Those graphs in the catalogue which are planar were identified in the list of Imrich [10] (we did not ourselves test any graphs for planarity). Those graphs with primitive automorphism groups were found with the help of the simple lemma below. The algorithms used for the other given properties of each graph do not deserve special mention, except that for chromatic number we used Miller's method [34].
5.34 Let \(\Gamma\) be a transitive group acting on V. For each pair \(\mathrm{e}=\{\mathrm{x}, \mathrm{y}\}\), where \(\mathrm{x} \neq \mathrm{y} \in \mathrm{V}\), define the graph \(\mathrm{G}_{\mathrm{e}}\) with vertex set \(V\) and edge set \(\left\{x^{\gamma} y^{\gamma} \mid \gamma \in \Gamma\right\}\). Then \(\Gamma\) is primitive if and only if each \(G_{e}\) is connected.

Proof: If \(B\) is a non-trivial block of \(\Gamma\), and \(x \neq y \in B\), then \(G_{e}\) is disconnected obviously. Conversely, if \(G_{e}\) is disconnected, then \(\Gamma\) is imprimitive, since \(\Lambda \leq \operatorname{Aut}\left(G_{e}\right)\) and \(A u t\left(G_{e}\right)\) is imprimitive.

\subsection*{5.35 Concluding remarks}

The computation described in this chapter occupied a Cyber 73 computer for a total of about 14 hours, of which probably 80\% was taken up with the 18 -vertex transitive graphs. With the experience thus gained, the computer time required could be considerably reduced, but it would seem unlikely that the transitive graphs on 20 vertices could be found in less than 20 hours, using the same techniques.

On the other hand Cayley graphs are easy to generate. Those up to order 19 were generated and sorted according to isomorphism type in less than 15 minutes. There is no reason why all the Cayley graphs cannot be found for most groups for which the
number of different Cayley graphs is not too large (less than a million say). The major problem is in the construction of those transitive graphs which are not Cayley graphs. As we have already stated, there are only 9 such graphs in our catalogue (not counting complements). A few of these are well-known (Petersen's graph, its linegraph, and the linegraph of \(\mathrm{K}_{6}\)) but the others appear here for the first time. If we had some way of constructing these graphs separately, our labour would be very greatly reduced. One approach would be to use Theorem 1.23, but we would need to know the possible orders of minimum transitive subgroups of Aut(G). As C. Godsil has shown [12], these can have orders much larger than \(n\), in general.

An alternative approach to the generation of transitive graphs would be to generate those with primitive automorphism groups separately. This could be done using similar methods to the ones used here, using the primitivity assumption to limit the number of subcases. For example, \(\Gamma_{1}\) and \(\left\langle\operatorname{Sy} l_{p}\left(\Gamma_{1}\right)\right\rangle\) either have 1 or \(n\) fixed points. The graphs with imprimitive groups could be constructed via a block system (each block contains the same transitive graph and the action of the group on the blocks is transitive).

Yet another technique is based on the following lemma. The proof is elementary but we will omit it anyway.
5.36 LEMMA Let \(\Gamma\) be a transitive group with degree \(\mathrm{n}=\mathrm{pm}\), Where p is a prime and \(1 \leq \mathrm{m} \leq \mathrm{p}\). Then r has an element of order p without fixed points.

By a stroke of luck, the requirements of the lemma are met by \(n=20,21\) and 22. Of these, \(n=20\) should be the hardest case
(since \(m\) is the largest) but initial investigations suggest that the generation of the transitive graphs for \(20 \leq n \leq 22\) by this method is probably a practical proposition. We hope to be able to give more details, and the results of the computation, in a future paper.

\section*{APPENDIX ONE}

\section*{GROUPS OF ORDERS 5 TO 19}

In this Appendix we present a list of the groups of order \(n\), for \(5 \leq \mathrm{n} \leq 19\), together with various items of data on each. This information is required for Appendix 2, in which we will list the Cayley graphs for each group

On the first line of the description for each group, we give the identification number of the group, a common name (if any) and an abstract presentation. The second line has the following information.
inv \(=\) number of elements of order two
\(\max =\) maximum order of an element
cntr \(=\) size of centre
corm \(=\) size of commutator subgroup

The next few lines contain generators for a regular
permutation representation of the group. The last line gives a list of elements of the group. The first \(i n v\) elements are the elements of order two, if any. The remaining elements constitute one member of each pair \(\left\{\gamma, \gamma^{-1}\right\}\), where \(\gamma\) is an element of order greater than two. Each element is given as a word of minimum length in the generators and their inverses.
```

Group 5-1 $\quad Z_{5}=\left\langle\alpha \mid \alpha^{5}=1\right\rangle$
inv = $\quad \max =5 \quad$ cntr $=5 \quad$ comm $=1$
$\alpha=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right)$
elements: , $\alpha \alpha^{2}$
Group 6-1 $\quad Z_{6}=\left\langle\alpha \mid \alpha^{6}=1\right\rangle$
inv = 1 $\quad \max =6 \quad$ cntr $=6 \quad$ comm $=1$
$\alpha=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}\right)$
elements: $\alpha^{3}, \alpha \alpha^{2}$
Group 6-2 $D_{6}=\left\langle\alpha, \beta \mid \alpha^{2}=\beta^{3}=(\alpha, \beta)^{2}=1\right\rangle$
inv $=3 \quad \max =3 \quad$ entr $=1 \quad$ comm $=3$
$\alpha=(12)(36)(45)$
$\beta=\left(\begin{array}{lll}1 & 3 & 4\end{array}\right)\left(\begin{array}{ll}2 & 5\end{array}\right)$
elements: $\alpha \alpha \beta \alpha \beta^{-1}, \beta$
Group 7-1 $\quad Z_{7}=\left\langle\alpha \mid \alpha^{7}=1\right\rangle$
inv = $0 \quad \max =7 \quad$ entr $=7 \quad$ comm $=1$
$\alpha=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}\right)$
elements: , $\alpha \alpha^{2} \alpha^{3}$
Group 8-1 $\quad Z_{8}=\left\langle\alpha \mid \alpha^{8}=1\right\rangle$
inv =1 $\quad \max =8 \quad$ entr $=8 \quad$ comm $=1$
$\alpha=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}\right)$
elements: $\alpha^{4}, \alpha \alpha^{2} \alpha^{3}$
Group 8-2 $\quad Z_{2} \otimes Z_{4}=\left\langle\alpha, \beta \mid \alpha^{4}=\beta^{2}=1, \alpha \beta=\beta \alpha\right\rangle$
inv $=3 \quad \max =4 \quad$ entr $=8 \quad$ corm $=1$
$\alpha=\left(\begin{array}{llll}1 & 2 & 5 & 3\end{array}\right)\left(\begin{array}{llll}4 & 6 & 8 & 7\end{array}\right)$
$\beta=(14)(26)(37)(58)$
elements: $\beta \alpha^{2} \alpha^{2} \beta, \alpha \alpha \beta$

```

Group 8-3 \(\quad Z_{2}{ }^{3}=\left\langle\alpha, \beta, \gamma \mid \alpha^{2}=\beta^{2}=\gamma^{2}=1, \alpha \beta=\beta \alpha, \alpha \gamma=\gamma \alpha, \beta \gamma=\gamma \beta\right\rangle\)
inv \(=7 \quad \max =2 \quad\) entr \(=8 \quad\) comm \(=1\)
\(\alpha=(12)(35)(46)(78)\)
\(\beta=(13)(25)(47)\left(\begin{array}{ll}6 & 8\end{array}\right)\)
\(\gamma=(14)(26)(37)(58)\)
elements: \(\quad \alpha \beta \gamma \alpha \beta \alpha \gamma \beta \gamma \alpha \beta \gamma\)

Group 8-4 \(\quad D_{8}=\left\langle\alpha, \beta \mid \alpha^{4}=\beta^{2}=(\alpha \beta)^{2}=1\right\rangle\)
inv \(=5 \quad \max =4 \quad\) entr \(=2 \quad\) comm \(=2\)
\(\alpha=\left(\begin{array}{llll}1 & 2 & 5\end{array}\right)\left(\begin{array}{llll}4 & 7 & 6\end{array}\right)\)
\(\beta=(14)(26)(37)(58)\)
elements: \(\quad \beta \alpha^{2} \alpha \beta \beta \alpha \alpha^{2} \beta, \alpha\)

Group 8-5 \(\quad Q=\left\langle\alpha, \beta \mid \alpha^{4}=1, \alpha^{2}=\beta^{2}, \alpha \beta \alpha=\beta\right\rangle\)
inv \(=1 \quad \max =4 \quad\) cntr \(=2 \quad\) comm \(=2\)
\(\alpha=\left(\begin{array}{lll}1 & 2 & 6\end{array}\right)\left(\begin{array}{llll}4 & 8 & 5\end{array}\right)\)
\(\beta=\left(\begin{array}{llll}1 & 4 & 6 & 5\end{array}\right)\left(\begin{array}{llll}2 & 7 & 3 & 8\end{array}\right)\)
elements: \(\alpha^{2}, \alpha \beta \alpha \beta\)

Group 9-1 \(\quad Z_{9}=\left\langle\alpha \mid \alpha^{9}=1\right\rangle\)
inv \(=0 \quad \max =9 \quad\) cntr \(=9 \quad\) comm \(=1\)
\(\alpha=\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}\right)\)
elements: \(\quad \alpha \alpha^{2} \alpha^{3} \alpha^{4}\)

Group 9-2 \(\quad Z_{3}{ }^{2}=\left\langle\alpha, \beta \mid \alpha^{3}=\beta^{3}=1, \alpha \beta=\beta \alpha\right\rangle\)
inv \(=0 \quad\) max \(=3 \quad\) cntr \(=9 \quad\) comm \(=1\)
\(\alpha=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\left(\begin{array}{lll}4 & 6 & 8\end{array}\right)\left(\begin{array}{ll}5 & 7\end{array}\right)\)
\(\beta=(145)(267)(389)\)
elements:,\(\alpha \beta \alpha \beta \alpha \beta^{-1}\)

Group 10-1 \(\quad Z_{10}=\left\langle\alpha \mid \alpha^{10}=1\right\rangle\)
\(i_{n v}=1 \quad \max =10 \quad\) cntr \(=10 \quad\) comm \(=1\)
\(\alpha=\left(\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\right)\)
elements: \(\alpha^{5}, \alpha \alpha^{2} \alpha^{3} \alpha^{4}\)

Group 10-2 \(\quad D_{10}=\left\langle\alpha, \beta \mid \alpha^{5}=\beta^{2}=(\alpha \beta)^{2}=1\right\rangle\)
inv \(=5 \quad \max =5 \quad\) entr \(=1 \quad\) comm \(=5\)

\(\beta=(14)(26)(38)(59)(710)\)
elements: \(\quad \beta \alpha \beta \beta \alpha \alpha^{2} \beta \quad \beta \alpha^{2}, \alpha \alpha^{2}\)

Group 11-1 \(\quad Z_{11}=\left\langle\alpha \mid \alpha^{11}=1\right\rangle\)
inv = \(0 \quad \max =11 \quad\) cntr \(=11\) comm \(=1\)
\(\alpha=\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 9 & 10\end{array}\right.\) 11)
elements: , \(\alpha \alpha^{2} \alpha^{3} \alpha^{4} \alpha^{5}\)

Group 12-1 \(\quad Z_{12}=\left\langle\alpha \mid \alpha^{12}=1\right\rangle\)
\(i_{n v}=1 \quad \max =12 \quad\) cntr \(=12\) comm \(=1\)
\(\alpha=\left(\begin{array}{lllllllll}1 & 3 & 4 & 5 & 6 & 7 & 9 & 1011\end{array}\right)\)
elements: \(\alpha^{6}, \alpha \alpha^{2} \alpha^{3} \alpha^{4} \alpha^{5}\)

Group 12-2 \(\left.Z_{2} \otimes Z_{6}=\langle\alpha, \beta| \alpha^{6}=\beta^{2}=1, \alpha \beta=\beta \alpha\right\}\)
\(i n v=3 \quad \max =6 \quad\) cntr \(=12\) comm \(=1\)
\(\alpha=\left(\begin{array}{lllll}1 & 2 & 5 & 9 & 7\end{array}\right)\left(\begin{array}{llllll}4 & 6 & 10 & 12 & 11 & 8\end{array}\right)\)
\(\beta=(14)(26)(38)(510)(711)(912)\)
elements: \(\beta \alpha^{3} \alpha^{3} \beta, \alpha \alpha^{2} \alpha \beta \alpha^{2} \beta\)

Group 12-3 \(D_{12}=\left\langle\alpha, \beta \mid \alpha^{6}=\beta^{2}=(\alpha \beta)^{2}=1\right\rangle\)
\(i_{n v}=7 \quad \max =6 \quad\) cntr \(=2 \quad\) comm \(=3\)
\(\alpha=\left(\begin{array}{lllll}1 & 2 & 5 & 7\end{array}\right)\left(\begin{array}{lll}4 & 8 & 11 \\ 12 & 10\end{array}\right)\)
\(\beta=(14)(26)(38)(510)(711)(912)\)
elements: \(\quad \beta \alpha \beta \beta \alpha \alpha^{3} \alpha^{2} \beta \beta \alpha^{2} \alpha^{3} \beta, \alpha \alpha^{2}\)
```

Group 12-4 $\quad A_{4}=\left\langle\alpha, \beta, \gamma \mid \alpha^{2}=\beta^{2}=\gamma^{2}=1, \alpha \beta=\beta \alpha, \beta \gamma=\gamma \alpha \beta, \alpha \gamma=\gamma \beta\right\rangle$
inv $=3 \quad \max =3 \quad$ ontr $=1 \quad$ corm $=4$
$\alpha=(12)\left(\begin{array}{ll}3 & 6\end{array}\right)\left(\begin{array}{ll}4 & 11\end{array}\right)\left(\begin{array}{ll}510)(79)(812)\end{array}\right.$
$\beta=\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}2 & 6\end{array}\right)\left(\begin{array}{ll}4 & 7\end{array}\right)\left(\begin{array}{ll}5 & 12\end{array}\right)(810)(911)$
$\gamma=\left(\begin{array}{lll}1 & 4 & 5\end{array}\right)\left(\begin{array}{lll}2 & 7 & 8\end{array}\right)\left(\begin{array}{lll}3 & 9 & 10\end{array}\right)\left(\begin{array}{lll}6 & 11 & 12\end{array}\right)$
elements: $\alpha \beta \alpha \beta, \gamma \alpha \gamma \alpha \gamma^{-1} \beta \gamma$
Group 12-5
$\left\langle\alpha, \beta \mid \alpha^{6}=I, \alpha^{3}=\beta^{2}, \alpha \beta=\beta \alpha^{-1}\right\rangle$
inv = $1 \quad \max =6 \quad$ cntr $=2 \quad$ corm $=3$
$\alpha=\left(\begin{array}{llllll}1 & 2 & 6 & 12 & 9 & 3\end{array}\right)\left(\begin{array}{llllll}4 & 10 & 8 & 5 & 11 & 7\end{array}\right)$
$\beta=\left(\begin{array}{llll}1 & 4 & 12 & 5\end{array}\right)\left(\begin{array}{lll}279 & 7\end{array}\right)\left(\begin{array}{lll}3 & 10 & 611\end{array}\right)$
elements: $\beta^{2}, \alpha \beta \alpha^{2} \alpha \beta \beta \alpha$

```
Group 13-1 \(\quad Z_{13}=\left\langle\alpha \mid \alpha^{13}=1\right\rangle\)
 inv \(=0 \quad \max =13 \quad\) entr \(=13 \quad\) corm \(=1\)
 \(\alpha=\left(\begin{array}{lllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 10 & 11 & 12\end{array} 13\right)\)
 elements: \(\quad \alpha \alpha^{2} \alpha^{3} \alpha^{4} \alpha^{5} \alpha^{6}\)
Group.14-1 \(\quad Z_{14}=\left\langle\alpha \mid \alpha^{14}=1\right\rangle\)
 inv = \(1 \quad \max =14 \quad\) ontr \(=14 \quad\) comm \(=1\)

 elements: \(\alpha^{7}, \alpha \alpha^{2} \alpha^{3} \alpha^{4} \alpha^{5} \alpha^{6}\)
Group 14-2 \(\quad D_{14}=\left\langle\alpha, \beta \mid \alpha^{7}=\beta^{2}=(\alpha \beta)^{2}=1\right\rangle\)
 inv = \(7 \quad \max =7 \quad\) cntr \(=1 \quad\) comm \(=7\)

 \(\beta=(14)(26)(38)(510)(712)(913)(1114)\)
 elements: \(\beta \alpha \beta \beta \alpha \alpha^{2} \beta \beta \alpha^{2} \alpha^{3} \beta \beta \alpha^{3}, \alpha \alpha^{2} \alpha^{3}\)
Group 15-1 \(\quad Z_{15}=\left\langle\alpha \mid \alpha^{15}=1\right\rangle\)
 inv \(=0 \quad \max =15 \quad\) ontr \(=15 \quad\) comm \(=1\)
 \(\alpha=\left(\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}\right)\)
 elements:,\(\alpha \alpha^{2} \alpha^{3} \alpha^{4} \alpha^{5} \alpha^{6} \alpha^{7}\)

Group 16-1 \(\quad Z_{16}=\left\langle\alpha \mid \alpha^{16}=1\right\rangle\)
inv \(=1 \quad \max =16 \quad\) entr \(=16 \quad\) comm \(=1\)

elements: \(\alpha^{8}, \alpha \alpha^{2} \alpha^{3} \alpha^{4} \alpha^{5} \alpha^{6} \alpha^{7}\)

Group 16-2 \(\quad Z_{2} \otimes Z_{8}=\left\langle\alpha, \beta \mid \alpha^{8}=\beta^{2}=1, \alpha \beta=\beta \alpha\right\rangle\)
inv = \(3 \quad \max =8 \quad\) ontr \(=16 \quad\) comm \(=1\)

\(\beta=(14)(26)(38)(510)(712)(914)(1115)(1316)\)
elements: \(\beta \alpha^{4} \alpha^{4} \beta, \alpha \alpha^{2} \alpha \beta \alpha^{3} \alpha^{2} \beta \alpha^{3} \beta\)

Group 16-3 \(\quad \mathrm{Z}_{4}{ }^{2}=\left\langle\alpha, \beta \mid \alpha^{4}=\beta^{4}=1, \alpha \beta=\beta \alpha\right\rangle\)
inv \(=3 \quad \max =4 \quad\) entr \(=16 \quad\) corm \(=1\)
\(\alpha=\left(\begin{array}{lll}1 & 2 & 6\end{array}\right)\left(\begin{array}{llll}4 & 7 & 12\end{array}\right)\left(\begin{array}{llll}5 & 8 & 13 & 10\end{array}\right)\left(\begin{array}{llll}11 & 14 & 16\end{array}\right.\) 15)

elements: \(\alpha^{2} \beta^{2} \alpha^{2} \beta^{2}, \alpha \beta \alpha \beta \alpha \beta^{-1} \alpha^{2} \beta \alpha \beta^{2}\)

Group 16-4 \(\quad Z_{2}^{2} \otimes Z_{4}=\left\langle\alpha, \beta, \gamma \mid \alpha^{4}=\beta^{2}=\gamma^{2}=1, \alpha \beta=\beta \alpha, \beta \gamma=\gamma \beta, \alpha \gamma=\gamma \alpha\right\rangle\)
inv \(=7 \quad \max =4 \quad\) ontr \(=16 \quad\) comm \(=1\)

\(\beta=(14)(27)(39)(511)(612)(814)(1015)(1316)\)
\(\gamma=(15)(28)(310)(411)(613)(714)(915)(1216)\)
elements: \(\beta \gamma \alpha^{2} \beta \gamma \alpha^{2} \beta \alpha^{2} \gamma \alpha^{2} \beta \gamma, \alpha \alpha \beta \alpha \gamma \alpha \beta \gamma\)

Group 16-5 \(\quad \mathrm{Z}_{2}^{4}=\langle\alpha, \beta, \gamma, \delta| \alpha^{2}=\beta^{2}=\gamma^{2}=\delta^{2}=1, \alpha \beta=\beta \alpha, \alpha \gamma=\gamma \alpha\),
\[
\alpha \delta=\delta \alpha, \beta \gamma=\gamma \beta, \beta \delta=\delta \beta, \gamma \delta=\delta \gamma\rangle
\]
inv \(=15 \quad\) max \(=2 \quad\) entr \(=16 \quad\) comm \(=1\)
\(\alpha=(12)(36)(47)(58)(912)(1013)(1114)(1516)\)
\(\beta=(13)(26)(49)(510)(712)(813)(1115)(1416)\)
\(\gamma=(14)(27)(39)(511)(612)(814)(1015)(1316)\)
\(\delta=(15)(28)(310)(411)(613)(714)(915)(1216)\)
elements: \(\quad \alpha \beta \gamma \delta \alpha \beta \alpha \gamma \alpha \delta \beta \gamma \beta \delta \gamma \delta \alpha \beta \gamma \alpha \beta \delta \alpha \gamma \delta \beta \gamma \delta \alpha \beta \gamma \delta\)

Group 16-6 \(Z_{2} \otimes D_{8}=\left\langle\alpha, \beta, \gamma \mid \alpha^{4}=\beta^{2}=\gamma^{2}=(\alpha \beta)^{2}=1, \beta \gamma=\gamma \beta, \alpha \gamma=\gamma \alpha\right\rangle\)
inv = 11 max \(=4 \quad\) entr \(=4 \quad\) comm \(=2\)
\(\alpha=\left(\begin{array}{llll}1 & 2 & 6 & 3\end{array}\right)\left(\begin{array}{llll}4 & 9 & 12 & 7\end{array}\right)\left(\begin{array}{llll}5 & 8 & 13 & 10\end{array}\right)\left(\begin{array}{llll}11 & 15 & 16 & 14\end{array}\right)\)
\(\beta=(14)(27)(39)\left(\begin{array}{ll}511\end{array}\right)(612)(814)(1015)(1316)\)
\(\gamma=\left(\begin{array}{ll}1 & 5\end{array}\right)(28)(310)\left(\begin{array}{ll}4 & 11\end{array}\right)\left(\begin{array}{ll}6 & 13\end{array}\right)(714)(915)(1216)\)
elements: \(\quad \beta \gamma \alpha^{2} \alpha \beta \beta \alpha \beta \gamma \alpha^{2} \beta \alpha^{2} \gamma \alpha \beta \gamma \beta \alpha \gamma \alpha^{2} \beta \gamma, \alpha \alpha \gamma\)

Group 16-7 \(Z_{2} \otimes Q=\left\langle\alpha, \beta, \gamma \mid \alpha^{4}=\beta^{2}=1, \alpha^{2}=\gamma^{2}, \alpha \gamma=\gamma \alpha^{-1}, \gamma \beta=\beta \gamma, \alpha \beta=\beta \alpha\right\rangle\)
inv \(=3 \quad \max =4 \quad\) cntr \(=4 \quad\) comm \(=2\)
\(\alpha=\left(\begin{array}{llll}1 & 2 & 7 & 3\end{array}\right)\left(\begin{array}{llll}4 & 8 & 1\end{array} 411\right)\left(\begin{array}{llll}5 & 10 & 6 & 9\end{array}\right)\left(\begin{array}{llll}12 & 16 & 13 & 15\end{array}\right)\)
\(\beta=(14)(28)(311)(512)(613)(714)(915)(1016)\)
\(\gamma=\left(\begin{array}{llll}1 & 5 & 7 & 6\end{array}\right)\left(\begin{array}{llll}2 & 9 & 3 & 10\end{array}\right)\left(\begin{array}{llll}4 & 12 & 14 & 13\end{array}\right)\left(\begin{array}{llll}8 & 15 & 11 & 16\end{array}\right)\)
elements: \(\quad \beta \alpha^{2} \alpha^{2} \beta, \alpha \gamma \alpha \beta \alpha \gamma \beta \gamma \alpha \beta \gamma\)

Group 16-8 \(\left\langle\alpha, \beta, \gamma \mid \alpha^{4}=\beta^{2}=(\beta \gamma)^{2}=1, \alpha^{2}=\gamma^{2}, \alpha \gamma=\gamma \alpha^{-1}, \alpha \beta=\beta \alpha\right\rangle\)
inv \(=7 \quad \max =4 \quad\) cntr \(=4 \quad\) comm \(=2\)
\(\alpha=\left(\begin{array}{llll}1 & 2 & 7 & 3\end{array}\right)\left(\begin{array}{llll}4 & 8 & 14 & 11\end{array}\right)\left(\begin{array}{llll}5 & 10 & 6 & 9\end{array}\right)\left(\begin{array}{llll}12 & 16 & 13 & 15\end{array}\right)\)
\(B=(14)(28)(311)\left(\begin{array}{ll}513\end{array}\right)(612)(714)(916)(1015)\)
\(\gamma=\left(\begin{array}{llll}1 & 5 & 7 & 6\end{array}\right)\left(\begin{array}{llll}2 & 9 & 3 & 10\end{array}\right)\left(\begin{array}{llll}4 & 12 & 14 & 13\end{array}\right)\left(\begin{array}{llll}8 & 15 & 11 & 16\end{array}\right)\)
elements: \(\beta \alpha^{2} \beta \gamma \beta \gamma^{-1} \alpha^{2} \beta \alpha \beta \gamma \alpha \beta \gamma^{-1}, \alpha \gamma \alpha \beta \alpha \gamma\)

Group 16-9 \(\left\langle\alpha, \beta, \gamma \mid \alpha^{4}=\beta^{2}=1, \alpha \beta=\beta \alpha, \beta=\gamma^{2}, \alpha \gamma=\gamma \alpha^{-1} \beta\right\rangle\)
inv \(=7 \quad \max =4 \quad\) cntr \(=4 \quad\) conm \(=2\)
\(\alpha=\left(\begin{array}{llll}1 & 2 & 7 & 3\end{array}\right)\left(\begin{array}{llll}4 & 8 & 14 & 11\end{array}\right)\left(\begin{array}{llll}5 & 13 & 15 & 10\end{array}\right)\left(\begin{array}{llll}6 & 12 & 16 & 9\end{array}\right)\)
\(\beta=(14)(28)(311)\left(\begin{array}{ll}5 & 6\end{array}\right)(714)(910)(1213)(1516)\)
\(\gamma=\left(\begin{array}{llll}1 & 5 & 4 & 6\end{array}\right)\left(\begin{array}{llll}2 & 9 & 8 & 10\end{array}\right)\left(\begin{array}{llll}3 & 12 & 11 & 13\end{array}\right)\left(\begin{array}{llll}7 & 15 & 14 & 16\end{array}\right)\)
elements: \(\beta \alpha^{2} \alpha \gamma \alpha \gamma^{-1} \gamma \alpha \alpha^{-1} \gamma \alpha^{2} \beta, \alpha \gamma \alpha \beta \alpha^{2} \gamma\)

Group 16-10 \(\quad\left\langle\alpha, \beta \mid \alpha^{4}=\beta^{4}=1, \alpha \beta=\beta \alpha^{-1}\right\rangle\)
inv \(=3 \quad \max =4 \quad\) entr \(=4 \quad\) comm \(=2\)

\(\beta=\left(\begin{array}{lll}1 & 4 & 11\end{array}\right)\left(\begin{array}{llll}2 & 7 & 14 & 8\end{array}\right)\left(\begin{array}{llll}3 & 9 & 15 & 10\end{array}\right)\left(\begin{array}{lll}6 & 12 & 16\end{array} 13\right)\)
elements: \(\alpha^{2} \beta^{2} \alpha^{2} \beta^{2}, \alpha \beta \alpha \beta \beta \alpha \alpha^{2} \beta \alpha \beta^{2}\)

Group 16-11 \(\quad\left\langle\alpha, \beta \mid \alpha^{8}=\beta^{2}=1, \beta \alpha \beta=\alpha^{5}\right\rangle\)
\(i_{n v}=3 \quad \max =8 \quad\) entr \(=4 \quad\) comm \(=2\)

\(\beta=(14)(26)(38)(512)(713)(915)(1011)(1416)\)
elements: \(\beta \alpha \beta \alpha^{-1} \alpha^{4}, \alpha \alpha^{2} \alpha \beta \beta \alpha \alpha^{3} \alpha^{2} \beta\)

Group 16-12 \(\quad D_{16}=\left\langle\alpha, \beta \mid \alpha^{8}=\beta^{2}=(\alpha \beta)^{2}=1\right\rangle\)
inv \(=9 \quad \max =8 \quad\) cntr \(=2 \quad\) comm \(=4\)

\(\beta=(14)(26)(38)(510)(712)(914)(1115)(1316)\)
elements: \(\quad \beta \alpha \beta \beta \alpha \alpha^{2} \beta \beta \alpha^{2} \alpha^{4} \alpha^{3} \beta \beta \alpha^{3} \alpha^{4} \beta, \alpha \alpha^{2} \alpha^{3}\)

Group 16-13 \(\quad\left\langle\alpha, \beta \mid \alpha^{8}=\beta^{2}=1, \beta \alpha \beta=\alpha^{3}\right\rangle\)
\(i_{\text {nv }}=5 \quad \max =8 \quad\) entr \(=2 \quad\) comm \(=4\)

\(\beta=(14)(26)(38)(512)(714)(911)(1015)(1316)\)
elements: \(\beta \alpha^{2} \beta \alpha \beta \alpha \alpha \beta \alpha^{-1} \alpha^{4}, \alpha \alpha^{2} \alpha \beta \beta \alpha \alpha^{3}\)

Group 16-14 \(\quad\left\langle\alpha, \beta \mid \alpha^{8}=1, \alpha^{4}=\beta^{2}, \alpha \beta=\beta \alpha^{-1}\right\rangle\)
\(i_{n v}=1 \quad \max =8 \quad\) ontr \(=2 \quad\) comm \(=4\)

elements: \(\beta^{2}, \alpha \beta \alpha^{2} \alpha \beta \beta \alpha \alpha^{3} \alpha^{2} \beta\)

Group 17-1. \(\quad Z_{17}=\left\langle\alpha \mid \alpha^{17}=1\right\rangle\)
inv \(=0 \quad \max =17 \quad\) entr \(=17 \quad\) comm \(=1\)

elements: , \(\alpha \alpha^{2} \alpha^{3} \alpha^{4} \alpha^{5} \alpha^{6} \alpha^{7} \alpha^{8}\)

Group 18-1 \(\quad Z_{18}=\left\langle\alpha \mid \alpha^{18}=1\right\rangle\)
inv = \(\quad\) max \(=18 \quad\) cntr \(=18 \quad\) comm \(=1\)

elements: \(\alpha^{9}, \alpha \alpha^{2} \alpha^{3} \alpha^{4} \alpha^{5} \alpha^{6} \alpha^{7} \alpha^{8}\)

Group 18-2 \(Z_{3} \otimes Z_{6}=\left\langle\alpha, \beta \mid \alpha^{6}=\beta^{3}, \alpha \beta=\beta \alpha\right\rangle\)
inv \(=1 \quad \max =6 \quad\) entr \(=18 \quad\) comm \(=1\)

\(\beta=(145)(278)(31011)(61314)(91516)(121718)\)
elements: \(\alpha^{3}, \alpha \beta \alpha^{2} \alpha \beta \alpha \beta^{-1} \alpha^{2} \beta \alpha^{2} \beta^{-1} \alpha^{3} \beta\)

Group 18-3 \(\quad Z_{3} \otimes D_{6}=\left\langle\alpha, \beta \mid \alpha^{9}=\beta^{2}=1, \alpha \beta=\beta \alpha^{2}\right\rangle\)
\(i_{n v}=3 \quad \max =6 \quad\) entr \(=3 \quad\) comm \(=3\)
\(\alpha=(123)\left(\begin{array}{lll}3 & 8 & 6\end{array}\right)\left(\begin{array}{ll}5 & 9\end{array}\right)(101214)(111315)(161817)\)

elements: \(\quad \beta^{3} \alpha \beta^{3} \beta \alpha \beta^{2}, \alpha \beta \alpha \beta \beta \alpha \beta^{2} \alpha \beta^{2} \alpha \beta^{-2}\)

Group 18-4 \(\quad D_{18}=\left\langle\alpha, \beta \mid \alpha^{9}=\beta^{2}=(\alpha \beta)^{2}=1\right\rangle\)
inv \(=9 \quad \max =9 \quad\) entr \(=1 \quad\) comm \(=9\)

\(\beta=(14)(26)(38)(510)(712)(914)(1115)(1317)(1518)\)
elements: \(\beta \alpha \beta \beta \alpha \alpha^{2} \beta \beta \alpha^{2} \alpha^{3} \beta \beta \alpha^{3} \alpha^{4} \beta \beta \alpha^{4}, \alpha \alpha^{2} \alpha^{3} \alpha^{4}\)

Group 18-5 \(\quad Z_{3}\) wr \(Z_{2}=\left\langle\alpha, \beta, \gamma \mid \alpha^{3}=\beta^{3}=\gamma^{2}=(\alpha \gamma)^{2}=(\beta \gamma)^{2}=1, \alpha \beta=\beta \gamma\right\rangle\)
\(i_{n v}=9 \quad \max =3 \quad\) cntr \(=1 \quad\) comm \(=9\)
\(\alpha=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\left(\begin{array}{lll}4 & 7 & 10\end{array}\right)\left(\begin{array}{lll}5 & 8 & 11\end{array}\right)\left(\begin{array}{lll}6 & 12\end{array}\right)(131715)(141816)\)
\(\beta=(145)(278)(31011)(61413)(91615)(121817)\)
\(\gamma=(16)(29)(312)(413)(514)(715)(816)(1017)(1118)\)
elements: \(\gamma \alpha \gamma \beta \gamma \gamma \alpha \gamma \beta \alpha \beta \gamma \alpha \gamma \beta \beta \gamma \alpha \gamma \alpha \beta, \alpha \beta \alpha \beta \alpha \beta^{-1}\)

Group 19-1 \(\quad Z_{19}=\left\langle\alpha \mid \alpha^{19}=1\right\rangle\)
inv = \(\quad\) max \(=19 \quad\) ontr \(=19 \quad\) corm \(=1\)

elements: , \(\alpha \alpha^{2} \alpha^{3} \alpha^{4} \alpha^{5} \alpha^{6} \alpha^{7} \alpha^{8} \alpha^{9}\)

\section*{APPENDIX TWO \\ TRANSITIVE GRAPHS OF ORDER 2 TO 19}

In this appendix we give a complete list of the transitive graphs of order \(n\) for \(2 \leq n \leq 9\) and the transitive graphs of order \(n\) and degree \(k\), for \(10 \leq n \leq 19\) and \(k \leq(n-1) / 2\). This catalogue has been published in McKay [32]. Graph theoretic concepts not defined in this thesis have been defined in Behzad and Chartrand [4].

Throughout our description of the data given for each graph in the catalogue we will call the graph \(G\) and assume that \(V(G)=V=\{1,2, \cdots, n\}\). The degree of \(G\) will be denoted by \(k\) and the automorphism group of \(G\) by \(\Gamma\). Also define \(\alpha(G)=\theta\left(\Gamma_{1}\right)\) and let \(\partial(G)\) be the partition of \(V\) such that vertices \(v\) and \(w\) are in the same cell if and only if \(\partial(1, v)=\partial(1, W)\).
(a) Set Notation: A set of positive integers can be written as an octal integer by putting bit i equal to 1 if and only if i is in the set. The bits are numbered from 1 starting at the right hand (low order) end. For example, 251 (octal) is 10101001 (binary) and so represents the set \(\{1,4,6,8\}\).
(b) First Line of Data: The first item in this line is the name of \(G\), for example L20 or P16. The letter indicates the order of \(G\) (A for \(1, B\) for 2 , etc.), and the numbers are allotted sequentially within each order. Care must be taken to avoid confusing names like K3 with the commonly accepted notations for special graphs, for example \(K_{3}, C_{5}, K_{3,4}\). The latter notations will be used in this description of the catalogue, but never in the catalogue itself.

We now describe the other pieces of information which may occur on the first line.
(i) DEG: degree of \(G\).
(ii) F: flags associated with G. Each flag is a single letter whose presence indicates a special property. If no flags apply, the \(F\) is omitted. The flags used are listed below.
\(X=\) disconnected.
\(N=\) not a Cayley graph.
\(T=\) distance transitive \((\partial(G)=\alpha(G))\).
\(R=\) distance regular \((\partial(G)\) is equitable \()\) but not distance transitive fonly case is P84).
\(\mathrm{V}=\quad \mathrm{I}\) acts primitively on V .
\(I=\Gamma\) satisfies this condition: For any \(V, w \in V\) there is \(\gamma \in \Gamma\) such that \(v^{\gamma}=w\) and \(w^{\gamma}=v\).
\(A=\) antipodal \((\) if \(\partial(u, v)=\partial(u, w)=\Delta\) then \(\partial(v, w)=\Delta\), where \(\Delta\) is the diameter of \(G\)).
\(S=\operatorname{self}\)-complementary \((\bar{G} \cong G)\).
\(P=p l a n a r\).
(iii) AUT: order of \(\Gamma_{I}\).
(iv) P: partitions \(\partial(G)\) and \(\alpha(G)\). Each digit or letter gives the size of one cell of a partition \(\pi\) of \(V\). Letters are used for cell sizes over 9; A for 10, B for 11, etc.

Case 1: If \(n=2\) of \(G\) is not a GRR, then \(\pi\) is \(\alpha(G)\). The cells of \(\alpha(G)\) are grouped by commas into the cells of \(\partial(G)\). For example, \(P=(1,4,24,1)\) indicates that \(\alpha(G)\) has one 4-cell at distance 1 from vertex 1 , a 2-cell and a 4-cell at distance 2, and a single l-cell at distance 3 . If \(G\) is disconnected, only vertices in the component
containing vertex \(l\) are included; the presence of additional components is indicated by a "+" sign.

Case 2: If \(\mathrm{n} \neq 2\) and G is a GRR , then \(\pi\) is \(\partial(\mathrm{G})\). To avoid confusion with Case 1, the cells are separated by slashes. For example, \(P=(1 / 5 / 8 / 1)\) indicates 6 vertices at distance 1 from vertex 1, 8 vertices at distance 2, and 1 vertex at distance 3.
(v) GIR: girth of \(G\), unless \(G\) is acyclic.
(vi) CN: chromatic numbers of \(G\) and \(\bar{G}\), respectively.
(viì) \(T\) : arc-transitivity of \(G\), unless \(\Gamma\) is not transitive on l-arcs, or \(k=0\), or \(k=2\).
(viii) Any other text on the first line indicates a common name for \(G\), for example "PETERSEN GRAPH".
(c) Adjacency Matrix (omitted if \(\mathrm{d}=0\))
\[
A=a_{2} a_{3} a_{4} a_{5}, a_{6} \cdots a_{n} .
\]

Each \(a_{i}\) is an octal representation (see part (a)) of the set of vertices preceding vertex i which are adjacent to i. Note that \(a_{1}\) is omitted. The labelling of the vertices of \(G\) is consistent with the partition \(P\) described above. For example, if \(P=(1,4,24,1), \alpha(G)\) is \(\{1|2,3,4,5| 6,7|8,9,10,11| 12\}\) and \(\partial(G)\) is \(\{1|2,3,4,5| 6,7,8,9,10,11 \mid 12\}\).

Example:If A = 116 , we have 2 adjacent to 1,3 adjacent to 1 and 4 adjacent to 2 and 3.
(d) Eigenvalues of Adjacency Matrix (omitted if \(G\) is disconnected).
\[
\mathbb{E}=m_{1} \lambda_{1} m_{2} \lambda_{2} \cdots
\]

Fach field gives one eigenvalue of the adjacency matrix of G. If the eigenvalue has multiplicity other than one, this multiplicity is written immediately before the eigenvalue, using an intervening " + " for nonnegative eigenvalues. If the eigenvalues for \(G\) are \(\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}\), those for \(\bar{G}\) are \(-\lambda_{n-1}-1 \leq-\lambda_{n-2}-1 \leq \cdots \leq-\lambda_{1}-1 \leq n-k-1\).

Example: \(\mathrm{E}=-43-43912+01.34175\)
```

The eigenvalues are -0.4391 (3 times), 0 (twice)
and -4, 1.3417, 5 (once each).

```
(e) Independent Sets and Cliques
(omitted if \(G\) is disconnected).
\[
K=\left(\alpha_{3} \alpha_{4} \cdots, \beta_{3} \beta_{4} \cdots\right)
\]
\(\alpha_{i}\) is the number of independent sets of size i in \(G\), i.e. cliques of size i in \(\bar{G}\), which include vertex 1 .
\(\beta_{i}\) is the number of cliques of size \(i\) in \(G\) which include vertex 1 .
Those numbers before the comma are \(\alpha\) 's; those after the comma are \(\beta^{\prime}\) s. The total number of independent sets or cliques of size \(i\) in \(G\) is \(n \alpha_{i} / i\) or \(n \beta_{i} / i\), respectively.

Example: \(K=(, 41)\). G has no independent sets of size 3 or greater. Vertex 1 is contained in 4 triangles and 1 clique of size 4.
(f) Representations of \(G\).

The data provided about \(G\) contain a number of descriptors expressing \(G\) as a product etc. In explaining each descriptor type, \(H\) and J stand for the names of transitive graphs in the catalogue. As before, \(n\) and \(k\) are the order and degree of \(G\), respectively. The variable i indicates a positive integer.
(i) -H: complement of \(H\), unless \(G\) is self-complementary.
(ii) \(\mathrm{i}[\mathrm{H}]: \mathrm{G}\) is the disjoint union of i copies of H (\(\mathrm{i}>\mathrm{l}\)), unless \(\mathrm{k} \leq 1\).
(iii) \(\mathrm{L}(\mathrm{H})\) : linegraph of \(H\), unless \(k \leq 2\).
(iv) \(-\mathrm{L}(\mathrm{H})\) : complement of \(\mathrm{L}(\mathrm{H})\), unless \(\mathrm{k} \leq 2\) or G is complete.
(v) \(\mathrm{SW}(\mathrm{H}):\) switching graph of H .
(vi) \(\operatorname{SW}\left(\mathrm{H}^{+}\right)\): switching graph of the disjoint union \(\mathrm{H} \cup \mathrm{K}_{1}\), unless \(H\) is complete or empty. The only example is L37. A.l switching graphs in the catalogue are either type (v) or type (vi).
(vii) D(H): H plus diagonals (see Section 1.22), provided \(H\) has diameter at least 3 and is connected.
(viii) \(-\mathrm{D}(\mathrm{H})\) : complement of \(\mathrm{D}(\mathrm{H})\). This notation is omitted if \(H\) is bipartite and has diameter 3. In that case \(-D(H)\) is the disjoint union of two cliques. \(H\) is connected with diameter \(\geq 3\).
(ix) Wi(H): generalized linegraph of subdivision graph (\(1 \leq i \leq 9\)). Form a multigraph from \(H\) by replacing each edge by i parallel edges. Then subdivide each edge with a new vertex and take the linegraph of the result. Omitted if \(H\) has degree \(\leq 1\), or \(k=2\). Every linegraph in the catalogue is of type (iii) or type (ix) except these:
\[
\begin{array}{ll}
L\left(K_{1, m}\right)=K_{m} & (2 \leq m \leq 19), \\
L\left(K_{3, m}\right)=K_{3} \times K_{m} & (4 \leq m \leq 6) .
\end{array}
\]
(x) \(\quad-W i(H):\) complement of \(W i(H)(1 \leq i \leq g)\), unless \(H\) has degree \(\leq 1\), or Wi(H) has degree 2.
(xi) \(H[J]: \quad\) lexicographic product of \(H\) around \(J\), unless \(k \leq 1\). If \(H\) is empty (i.e. \(\bar{H}\) is complete), the notation (ii) is used instead.
(xii) \(H \times J\) : cartesian product of \(H\) and \(J\), unless either \(H\) or \(J\) is empty.
(xiii) \(-H \times J\) : complement of \(H \times J\), unless \(G\) is complete.
(xiv) \(H * J\) : tensor product of \(H\) and \(J\), unless \(k \leq 1\).
(xv) \(-H * J:\) complement of \(H * J\), unless \(G\) is either empty or complete.
(xvi) i/m: \(G\) is the Cayley graph \(C(\Lambda, \Omega)\), where \(\Lambda\) is the ith group of order \(n\), and the connection set \(\Omega\) is specified by the octal number \(m\) (see (a)). The groups and their elements are numbered in the order they are listed in Appendix I; an element and its inverse have the same ordinal. \(\Omega\) is not canonical in any sense.

Example: If \(\mathrm{n}=16\), the notation \(3 / 123\) represents \(C(\Lambda, \Omega)\), where \(\Lambda\) is group \(16-3\) and \(\Omega\) is \(\left\{\alpha^{2}, \beta^{2}, \beta^{ \pm 1},\left(\alpha \beta^{-1}\right)^{ \pm 1}\right\}\).

Cayley graph representation is only given if \(2 \leq k \leq(n-1) / 2\).
```

B1 DEG=0 F=XTVIAP AUT=1 P=(1,+) CN=1,2
-B2 SW(A1)
B2 DEG=1 F=TVIAP AUT=1 P=(1,1) CN=2,1 T=1
A=1 E=-1 1 K=(,) -B1

```

TRANSITIVE GRAPHS ON 3 VERTICES
```

C1 DEG=0 F=XTVIAP AUT=2 P=(1,+) CN=1,3

```
-C2 -L.(C2)
C2 DEG=2 F=TVIAP AUT=2 \(P=(1,2) \quad\) GIR=3 \(\quad\) CNl \(=3,1 \quad\) TRIANGLE
\(A=13 \quad E=2-12 \quad K=(, 1) \quad-C 1\)

TRANSITIVE GRAPHS ON 4 VERTICES
```

D1 DEG=0 F=XTVIAP AUT=6 P=(1,+) CN=1,4
-D4
D2 DEG=1 F=XTIP AUT=2 P=(1,1,+) CN=2,2 T=1
A=1 0 4 -D3 -L(D3) SW(B1) SW(B2) -B2XB2
D3 DEG=2 F=TIAP AUT=2 P=(1,2,1) GIR=4 CN=2,2 SQUARE
A=1 1 6 E=-2 2+0 2 K=(,) -D2 B2[B1] B2XB2 -B1XB2 -B2*B2
D4 DEG=3 F=TVIAP AUT=6 P=(1,3) GIR=3 CN=4,1 T=2 TETRAHEDRON
A=1 3 7 E=3-1 3 K=(,3 1) -D1 B2[B2]

```
 TRANSITIVE GRAPHS ON 5 VERTICES
\(E_{-E 3} \quad D E G=0 \quad F=X T V I A P \quad\) AUT \(=24 \quad P=(1,+) \quad C N=1,5\)
E2 \(\quad \mathrm{EEG}=2 \mathrm{~F}=\) TVISP \(\mathrm{AUT}=2 \quad \mathrm{P}=(1,2,2) \quad \mathrm{GIR}=5 \quad \mathrm{CN}=3,3 \quad\) PENTAGON
\(A=11412 \quad \mathrm{E}=2-1.618032+.618032 \mathrm{~K}=(\), \() \quad-\mathrm{L}(E 2) 1 / 1\)
E3 \(\quad D E G=4 \quad F=T V I A \quad A U T=24 \quad P=(1,4) \quad G I R=3 \quad C N=5,1 \quad T=2\)
\(A=13717 \quad E=4-14 \quad K=(, 641) \quad-E 1\)

TRANSITIVE GRAPHS ON 6 VERTICES
```

F1 DEG=0 F=XTVIAP AUT=120 P=(1,+) CN=1,6
-F8

```
F2 \(\quad D E G=1 \quad F=X T I P \quad\) AUT \(=8 \quad P=(1,1,+) \quad C N=2,3 \quad T=1\)
\(A=1040,20\)-F7 -L(D4)
F3 \(D E G=2 \quad F=X T I P \quad A U T=12 \quad P=(1,2,+) \quad G I R=3 \quad C N=3,2\)
A=1 3010,30 2[C2] -F5 SW(C2) \(1 / 42 / 10\)
F4 DEG=2 F=TIAP AUT=2 \(P=(1,2,2,1) \quad G I R=6 \quad C N=2,3\) HEXAGON
\(A=1142,30 \quad E=-22-12+12 \quad K=(1) \quad-,F 6 \quad S W(C 1)-B 2 X C 2 \quad B 2 * C 21 / 22 / 6\)
```

F5 DEG=3 F=TIA AUT=12 P=(1,3,2) GIR=4 CN=2,3 T=3
A=1 1 1 16,16 E=-3 4+0 3 K=(1,) -F3 -L(F3) D(F4) B2[C1] -B1XC2

```
F6 \(\quad \mathrm{DEG}=3 \quad \mathrm{~F}=\mathrm{IP} \quad \mathrm{AUT}=2 \quad \mathrm{P}=(1,12,2) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=3,2 \quad\) PRISM
\(A=11512,26 \quad E=2-22+013 \quad K=(, 1) \quad-F 4-L(F 4) W 3(B 2)-W 1(C 2) B 2 X C 2-B 2 * C 2\)
F7 \(D E G=4 \quad F=T I A P\) AUT \(=8 \quad P=(1,4,1) \quad G I R=3 \quad C N=3,2 \quad T=1 \quad\) OCTAHEDRON
\(A=1177,36 \quad E=2-23+04 \quad K=(, 4) \quad-F 2 L(D 4)-W 1(F 2) \quad C 2[B 1]-B 2 X C 1\)
F8 DEG=5 \(F=T V I A ~ A U T=120 \quad P=(1,5) \quad G I R=3 \quad C N=6,1 \quad T=2\)
\(A=13717,37 \quad E=5-15 \quad K=(, 101051) \quad-F 1 \quad B 2[C 2] \quad C 2[B 2]\)

TRANSITIVE GRAPHS ON 7 VERTICES
```

G1 DEG=0 F=XTVIAP AUT=720 P=(1,+) CN=1,7

```
-G4
G2 DEG=2 \(F=T V I P\) AUT \(=2 \quad \mathrm{P}=(1,2,2,2) \quad \mathrm{GIR}=7 \quad \mathrm{CN}=3,4\) HEPTAGON
\(A=1142,2050 \quad E=2-1.801942-.445042+1.246982 \quad K=(3) \quad-,G 3-D(G 2) 1 / 1\)
G3 \(D E G=4 \quad F=V I \quad A U T=2 \quad P=(1,22,2) \quad G I R=3 \quad C N=4,3\)
\(A=1353,3472 \quad E=2-2.246982-.554962+.801944 \quad K=(, 3) \quad-G 2-L(G 2) \quad D(G 2)\)
G4 DEG=6 F=TVIA AUT=720 \(P=(1,6) \quad G I R=3 \quad C N=7,1 \quad T=2\)
\(A=13717,3777 \quad E=6-16 \quad K=(, 15201561) \quad-G 1\)

TRANSITIVE GRAPHS ON 8 VERTICES
```

H1 DEG=0 F=XTVIAP AUT=5040 P=(1,+) CN=1,8
-H14
H2 DEG=1 F=XTIP AUT=48 P=(1,1,+) CN=2,4 T=1
A=1 0 4 0,20 0 100 -H13
H3 DEG=2 F=XTIP AUT=16 P=(1,2,1,+) GIR=4 CN=2,4
A=1 1 6 0,20 20 140 2[D3] -H11 D2[B1] B2XD2 B2*D3 1/4 2/5 3/104 4/22 5/2
H4 DEG=2 F=TIAP AUT=2 P=(1,2,2,2,1) GIR=8 CN=2,4 OCTAGON
A=1 1 4 2,20 10 140 E=-2 2-1.41421 2+0 2+1.41421 2 K=(6 1,) -H12 1/10 4/11
H5 DEG=3 F=XTIP AUT=144 P=(1,3,+) GIR=3 CN=4,2 T=2
A=1 3 7 0,20 60 160 2[D4] -H8 SW(D2) SW(D4) D2[B2] 1/5 2/22 3/70 4/42 5/3
H6 DEG=3 F=I AUT=2 P=(1,12,22) GIR=4 CN=3,4
A=1 1 1 10,24 52 26 E=2-2.41421 -1 2+.41421 2+1 3 K=(3,) -H10 D(H4) 1/11
4/26

```
H7 \(D E G=3 \quad F=T I A P\) AUT \(=6 \quad P=(1,3,3,1) \quad G I R=4 \quad C N=2,4 \quad T=2 \quad\) CUBE
\(A=11114,126160 \quad E=-3 \quad 3-13+13 \quad K=(31) \quad-,H 9 \operatorname{SW}(D 1) \operatorname{SW}(D 3)-W 4(B 2) B 2 X D 3\)
\(-B 2 \times D 4\) B2*D4 2/11 3/45 4/15
H8 \(\quad D E G=4 \quad F=T I A \quad A U T=144 \quad P=(1,4,3) \quad G I R=4 \quad C N=2,4 \quad T=3\)
\(A=1111,363636 \quad E=-46+04 \quad K=(31) \quad-,H 5 \quad D(H 7) \quad B 2[D 1] \quad D 3[B 1]-B 1 K D 4\)
```

H9 DEG=4 F=I AUT=6 P=(1,13,3) GIR=3 CN=4,2

```
\(A=11515,1262146 \quad \mathrm{E}=3-23+024 \mathrm{~K}=(, 31)-\mathrm{H} 7 \mathrm{~W} 4(\mathrm{~B} 2) \mathrm{B} 2 \times \mathrm{D} 4-\mathrm{B} 2 \times \mathrm{D} 3-\mathrm{B} 2 * D 4\)
H10 DEG=4 F=IP AUT=2 \(P=(1,22,12) \quad G I R=3 \quad C N=4,3 \quad\) ANTIPRISM
\(A=11513,654162 \quad E=2-2 \quad 2-1.4142102+1.414214 \quad \mathrm{~K}=(, 3) \quad-H 6-D(H 4)\)
H11 \(D E G=5 \quad F=1 \quad\) AUT \(=16 \quad P=(1,14,2) \quad G I R=3 \quad C N=4,2\)
\(A=1337,1374174 \quad E=-34-12+15 \quad \mathrm{~K}=(, 62) \quad-\mathrm{H} 3-\mathrm{L}(\mathrm{H} 3)-W 2(\mathrm{D} 2) \mathrm{B} 2[\mathrm{D} 2] \mathrm{D} 3[\mathrm{~B} 2]\)
-B1XD3 -B2XD2 -B2*D3
```

H12 DEG=5 F=I AUT=2 P=(1,122,2) GIR=3 CN=4,2
A=1 1 5 13,27 56 136 E=2-2.41421 2-1 2+.41421 1 5 K=(,6 1) -H4 -L(H4)
-W1(D3)

```
H \(13 \quad D E G=6 \quad F=T I A \quad A U T=48 \quad P=(1,6,1) \quad G I R=3 \quad C N=4,2 \quad T=1\)
\(A=1177,3737176 \quad \mathrm{E}=3-24+06 \mathrm{~K}=(, 128) \quad-\mathrm{H} 2-\mathrm{W} 1(\mathrm{H} 2) \mathrm{B} 2[\mathrm{D} 3] \quad \mathrm{D} 4[\mathrm{BI}]-\mathrm{B} 1 \mathrm{XD} 2\)
-B2XD1 -B2*D2
H14 DEG=7 F=TVIA AUT=5040 \(\mathrm{P}=(1,7) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=8,1 \quad \mathrm{~T}=2\)
\(A=13717,3777177 \quad \mathrm{E}=7-17 \quad \mathrm{~K}=(, 2135352171) \quad-\mathrm{H} 1 \quad \mathrm{~B} 2[\mathrm{D} 4] \quad \mathrm{D} 4[\mathrm{~B} 2]\)
TRANSITIVE GRAPHS ON 9 VERTICES
```

I1 DEG=0 F=XTVIAP AUT=40320 P=(1,+) CN=1,9
-19

```
I2 DEG=2 F=XTIP AUT=144 \(\mathrm{P}=(1,2,+) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=3,3\)
\(A=13010,030402403\) [C2] -17 \(1 / 42 / 4\)
\(13 \quad D E G=2 \quad F=T I P\) AUT \(=2 \quad P=(1,2,2,2,2) \quad G I R=9 \quad C N=3,5 \quad\) NONAGON
\(A=1142,2010100240 \quad E=2-1.879392-1 \quad 2+.347302+1.532092 \quad K=(104) \quad-\),
\(1 / 10\)
```

I4 DEG=4 F=TVIS AUT=8 P=(1,4,4) GIR=3 CN=3,3 T=1
A=1 3 1 11,24 12 154 162 E=4-2 4+1 4 K=(2,2) L(F5) -L(F5) C2XC2 -C2XC2 C2*C2
-C2*C2 2/12

```
I5 \(D E G=4 \quad F=1 \quad\) AUT \(=2 \quad P=(1,22,22) \quad G I R=3 \quad C N=3,3\)
\(A=1311,3432124252 \quad E=2-2.879392-.65270 \quad 2+.532092+14 \quad K=(3,1) \quad-16\)
-D(I3) \(1 / 14\)
I6 \(\quad D E G=4 \quad F=I \quad\) AUT \(=2 \quad P=(1,22,22) \quad G I R=3 \quad C N=3,3\)
\(A=113 \quad 15,2412144342 \quad E=2-2 \quad 2-1.532092-.34730 \quad 2+1.879394 \quad K=(1,3) \quad-15\)
D(I3) \(1 / 11\)
I7 \(\quad D E G=6 \quad F=T I A \quad\) AUT \(=144 \quad P=(1,6,2) \quad G I R=3 \quad C N=3,3 \quad T=1\)
\(A=11117,1717176176 \quad \mathrm{E}=2-36+0 \quad 6 \quad \mathrm{~K}=(1,9) \quad-\mathrm{I} 2-\mathrm{L}(\mathrm{I} 2) \mathrm{C} 2[\mathrm{C} 1]-\mathrm{C} 1 \mathrm{XC} 2\)
I8 \(\quad D E G=6 \quad F=1 \quad\) AUT \(=2 \quad P=(1,222,2) \quad G I R=3 \quad C N=5,3\)
\(A=13513,2717174372 \quad E=2-2.532092-1.347302+0 \quad 2+.879396 \quad K=(, 104) \quad-13\)
-L(I3)
I9 \(\quad \mathrm{DEG}=8 \mathrm{~F}=\mathrm{TVIA} \quad \mathrm{AUT}=40320 \quad \mathrm{P}=(1,8) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=9,1 \quad \mathrm{~T}=2\)
\(A=13717,3777177377 \quad \mathrm{E}=8-18 \quad \mathrm{~K}=(, 285670562881) \quad-\mathrm{Il}\) C2[C2]
```

31 DEG=0 F=XTVIAP AUT=362880 P=(1,+) CN=1,10
J2 DEG=1 F=XTIP AUT=384 P=(1,1,+) CN=2,5 T=1
A=1 0 4 0,20 0 100 0 400
J3 DEG=2 F=XTIP AUT=20 P=(1,2,2,+) GIR=5 CN=3,6
A=1 1 4 12,0 40 0 300 240 2[E2] 1/4 2/40
J4 DEG=2 F=TIAP AUT=2 P=(1,2,2,2,2,1) GIR=10 CN=2,5 POLYGON
A=11 1 2,20 10 10040 600 E=-2 2-1.61803 2-.61803 2+.61803 2+1.61803 2
K=(15 10 1,) B2*E2 1/10 2/24
J5 DEG=3 F=I AUT=2 P=(1, 12,22,2) GIR=4 CN=2,5
A=1 1 1 12,6 4 10 320 340 E=-3 2-1.61803 2-.61803 2+.61803 2+1.61803 3
K=(94 1,) D(J4) 1/3 2/7
J6 DEG=3 F=IP AUT=2 P=(1,12,22,2) GIR=4 CN=3,5 PRISM
A=1 1 1 12,6 10 104 240 520 E=2-2.61803 2-.61803 2-.38197 1 2+1.61803 3
K=(9 4,) B2XE2 1/21 2/41
J7 DEG=3 F=NTVI AUT=12 P=(1,3,6) GIR=5 CN=3,5 T=3 PETERSEN GRAPH
A=1 1 1 10,22 10102 144 224 E=4-2 5+1 3 K=(9 2,) -L(E3)
J8 DEG=4 F=XTI AUT=2880 P=(1,4,+) GIR=3 CN=5,2 T=2
A=1 3 7 17,0 40 140 340 740 2[E3] SW(E3) 1/24 2/140
J9 DEG=4 F=I AUT=32 P=(1,4,14) GIR=4 CN=3,5 T=1
A=1 1 1 1,36 30 106 106 630 E=2-3.23607 5+0 2+1.23607 4 K=(6 2,) E2[B1] 1/14
2/130
J10 DEG=4 F=TIA AUT=24 P=(1,4,4,1) GIR=4 CN=2,5 T=2
A=1 1 1 1,34 32 26 16 740 E=-4 4-1 4+1 4 K=(6 4 1,) SW(E1) -W5(B2) -B2XE3
B2*E3 1/12 2/33
J11 DEG=4 F=IAP AUT=2 P=(1,22,22,1) GIR=3 CN=4,4 ANTIPRISM
A=1 1 3 15,24 1244 302 740 E=2-2.23607 4-1 0 2+2.23607 4 K=(3,3) SW(E2)
-D(J11) -D(J6) 1/6 2/43

```

TRANSITIVE GRAPHS ON 11 VERTICES
\(K 1 \quad D E G=0 \quad F=X T V I A P \quad A U T=3628800 \quad P=(1,+) \quad C N=1,11\)
\(K 2\) DEG=2 F=TVIP \(A U T=2 \quad P=(1,2,2,2,2,2) \quad G I R=11 \quad C N=3,6 \quad\) POLYGON
\(A=1142,201010040400,1200\)
\(E=2-1.918992-1.309722-.284632+.830832+1.682512 \quad K=(21205) 1 /\),
K3 \(D E G=4 \quad F=V I \quad A U T=2 \quad P=(1,22,22,2) \quad G I R=3 \quad C N=4,4\)
\(A=1 \quad 1315,241210244640,1700\)
\(E=2-2.203622-1.594352-.478892-.236482+2.513344 \quad K=(6,3) \quad D(K 2)-D(K 3) 1 / 24\)
K4 \(\quad D E G=4 \quad F=V I \quad A U T=2 \quad P=(1,22,222) \quad G I R=4 \quad C N=3,6\)
\(A=1 \quad 1 \quad 1 \quad 1,3432104242424,1212\)
\(E=2-3.228712-1.08816 \quad 2+.37279 \quad 2+.546202+1.39788 \quad 4 \quad K=(94) \quad 1 /\),
\(11 \quad D E G=0 \quad F=X T V I A P \quad A U T=39916800 \quad P=(1,+) \quad C N=1,12\)
\(L 2 \quad D E G=1 \quad F=X T I P \quad A U T=3840 \quad P=(1,1,+) \quad C N=2,6 \quad T=1\)
\(A=1040,2001000400,02000\)
L3 \(D E G=2 F=X T I P\) AUT \(=2592 \quad P=(1,2,+) \quad G I R=3 \quad C N=3,4\)
\(A=13010,030400240,4002400 \quad 2[F 3] 4[C 2] 1 / 202 / 203 / 4004 / 405 / 10\)
14 DEG=2 \(F=X T I P \quad A U T=256 \quad P=(1,2,1,+) \quad G I R=4 \quad C N=2,6\)
\(A=1160,20020240100,10030003[D 3] \quad \mathrm{F} 2[\mathrm{~B} 1] \mathrm{B} 2 \times \mathrm{F} 21 / 102 / 53 / 1104 / 55 / 4\)
L5 DEG=2 \(F=X T I P \quad\) AUT \(=24 \quad P=(1,2,2,1,+) \quad G I R=6 \quad C N=2,6\)
\(A=1142,3001000400,12005002[F 4]\) B2*F3 B2*F4 C2*D2 \(1 / 42 / 103 / 1025 / 2\)
L6 DEG=2 F=TIAP AUT=2 \(P=(1,2,2,2,2,2,1) \quad G I R=12 \quad C N=2,6 \quad\) POLYGON
\(A=1142,201010040400,2003000 \quad E=-2 \quad 2-1.73205 \quad 2-1 \quad 2+0 \quad 2+1 \quad 2+1.732052\)
\(K=\left(\begin{array}{llll}28 & 35 & 15 & 1,\end{array}\right) \quad 1 / 23 / 120\)
\(L 7\) DEG=3 \(F=X T I P\) AUT \(=6912 \quad P=(1,3,+) \quad G I R=3 \quad \mathrm{CN}=4,3 \quad \mathrm{~T}=2\)
\(A=1370,20060260100,110031003[D 4] \quad \mathrm{F} 2[B 2] 1 / 112 / 73 / 344 / 75 / 21\)
\(L 8 \quad D E G=3 \quad F=X T I \quad\) AUT \(=864 \quad P=(1,3,2,+) \quad G I R=4 \quad C N=2,6 \quad T=3\)
\(A=11116,160100100100,160016002[F 5] \operatorname{D2}[C 1] \quad B 2 * F 51 / 52 / 123 / 1065 / 3\)
\(L 9 \quad D E G=3 \quad F=X I P \quad\) AUT \(=24 \quad P=(1,12,2,+) \quad G I R=3 \quad C N=3,4\)
\(A=11512,260100100200,150016002[F 6] W 3(D 2) \quad B 2 X F 3 C 2 X D 21 / 212 / 213 / 401\) 5/11
```

L.10 DEG=3 F=P AUT=2 P=(1,12,22,22) GIR=3 CN=3,4
A=1 1 5 10,4 2 102 240 120,440 3020 E=3-2 3-1 2+0 3+2 3 K=(18 10,1) W1(D4)

```
4/11
L11 DEG=3 \(\mathrm{AUT}=4 \quad P=(1,12,122,12) \quad G I R=4 \quad C N=2,6\)
\(A=11114,10422620,540340 \quad E=-32-1.732053-13+12+1.732053\)
\(K=\left(\begin{array}{llll}19 & 15 & 5 & 1,\end{array}\right) \quad 3 / 124\)
\(L 12 \quad D E G=3 \quad F=I \quad\) AUT \(=2 \quad P=(1,12,22,22) \quad G I R=4 \quad C N=3,6\)
\(A=111 \quad 12,6104200500,1240 \quad 520 \quad E=2-2.73205 \quad 3-1 \quad 2+0 \quad 2+.73205 \quad 2+23\)
\(K=(19165) \quad D,(L 6) 1 / 413 / 32\)
L13 \(D E G=3 \quad F=I A P\) AUT \(=2 \quad P=(1,12,22,12,1) \quad G I R=4 \quad C N=2,6 \quad\) PRISM
\(A=1116,12104300220,1403400 \quad E=-3 \quad 2-2 \quad-1 \quad 4+012+23 \quad K=(191651\),
B2XF4 B2*F6 2/14 3/122

L14 DEG=4 \(F=X T I P \quad A U T=384 \quad P=(1,4,1,+) \quad G I R=3 \quad C N=3,4 \quad T=1\)
\(A=1177,360100100700,70036002[F 7] L(H 5)-D(L 26) F 3[B 1] 1 / 242 / 120\)
3/600 5/12
L15 DEG \(=4\) AUT \(=4 \quad \mathrm{P}=(1,112,122,2) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=4,3\)
\(A=11515,62011042442,13002700 \quad E=4-2 \quad 2-.73205 \quad 3+0 \quad 2+2.732054 \quad K=(10,31)\) W2(C2) \(3 / 56\)

L16 \(D E G=4 \quad\) AUT \(=2 \quad P=(1,22,1222) \quad G I R=3 \quad C N=3,4\)
\(A=11111,6241260450,7021304 \quad E=3-2.561553-1 \quad 2+13+1.561554 \quad K=(124,1)\) 4/103
```

L17 DEG=4 F=I AUT=2 P=(1,22,122,2) GIR=4 CN=2,6
A=1 1 1 1,6 34 32 22 14,1540 1640 E=-4 2-1.73205 2-1 2+0 2+1 2+1.73205 4
K=(13 10 5 1, )
L18 DEG=4 F=I AUT=4 P=(1,22,14,2) GIR=3 CN=3,4
A=1 1 1 11,6 24 22 114 212,1440 2340 E=2-3 4-1 0 2+1 2+2 4 K=(12 6,1)
-D(L21) B2XF6 C2XD3 1/30 2/25 3/501 5/14

```
L19 DEG=4 \(F=I \quad\) AUT \(=12 \quad P=(1,13,23,2) \quad G I R=4 \quad C N=2,6\)
\(A=1111,343412226,17001640 \quad E=-4-24-14+124 \quad K=(131051) \quad B 2 X F\),
2/16 3/214
L20 DEG=4 \(F=I A P\) AUT \(=4 \quad P=(1,4,24,1) \quad G I R=3 \quad C N=3,4 \quad T=1 \quad\) CUBOCTAHEDRON
\(A=1153,3065030460,11023600 \quad E=5-23+0 \quad 3+24 \quad K=(113,2) \quad L(H 7)-D(L 10)\)
4/50
L21 \(D E G=4 \quad F=I P\) AUT \(=2 \quad P=(1,22,22,12) \quad G I R=3 \quad C N=3,4 \quad\) ANTIPRISM
\(A=111315,12 \quad 2410442600,14403300 \quad E=4-2 \quad 2-.732053+0 \quad 2+2.732054\)
\(K=(101,3) \quad-D(L 12) 1 / 443 / 205\)
L22 \(D E G=4 \quad F=I A \quad A U T=2 \quad P=(1,22,222,1) \quad G I R=3 \quad C N=3,4\)
\(A=11111,24124202454,322740 \quad E=2-2.73205 \quad 2-23+02+.732052+24\)
\(K=(125,1) \quad 1 / 223 / 403\)
\(L 23 \quad D E G=4 \quad F=1 \quad\) AUT \(=64 \quad P=(1,4,14,2) \quad G I R=4 \quad C N=2,6 \quad T=1\)
\(A=1111,36303066,17001700 \quad E=-4 \quad 2-26+0 \quad 2+24 \quad K=\left(\begin{array}{llllll}13 & 11 & 5 & 1,\end{array}\right) \quad F 4[B 1]\)
B2*F7 C2*D3 1/42 2/110 3/221 5/24
```

L24 DEG=4 F=I AUT=4 P=(1,22,124) GIR=4 CN=3,6
A=1 1 1 1,6 60 50 224 222,1114 512 E=2-3 2-2 0 6+1 4 K=(13 6,) D(L13) 1/14
2/43 3/132 5/42

```
L25 DEG=5 F=XTI AUT=86400 \(\mathrm{P}=(1,5,+) \quad \mathrm{GIR}=3 \mathrm{CN}=6,2 \quad \mathrm{~T}=2\)
\(A=13717,370100300700,170037002[F 8] \operatorname{SW}(F 3) \mathrm{SW}(\mathrm{F} 8) \mathrm{D} 2[\mathrm{C} 2] \mathrm{F} 3[\mathrm{~B} 2] 1 / 25\)
2/121 3/610 5/13
```

L26 DEG=5 F=I AUT=64 P=(1,14,4,2) GIR=3 CN=4,3
A=1 3 7 3,23 60 160 14 414,1700 3700 E=-3 8-1 2+3 5 K=(4,6 2) SW(F2) SW(F4)
-D(L18) -D(L35) F4[B2] 1/43 2/114 3/245 5/61
L27 DEG=5 AUT=1 P=(1/5/6) GIR=3 CN=3,4
A=1 1 1 15,11 50 66 306 412,1160 3106 E=-3 2-2.73205 2-1 2+0 2+.73205 2+2 5
K=(7 1,3) 3/225
L28 DEG=5 F=I AUT=2 P=(1, 122,222) GIR=3 CN=3,4
A=1 1 5 1,1 50 124 252 526,272 166 E=2-3.73205 2-1 2-. 26795 5+1 5 K=(9 4,1)
D(L22) 1/61 3/413

```
```

L29 DEG=5 F=I AUT=2 P=(1,122,222) GIR=3 CN=4,3
A=1 3 7 1,1 22 42 170 264,1350724 E=-3 2-2.73205 2-1 2+0 2+.73205 2+2 5
K=(7,3 1) 1/13 3/174
L30 DEG=5 F=I AUT=12 P=(1,23,6) GIR=3 CN=4,3
A=1 3 1 11,31 44 12 314 222,1524 1342 E=6-2 3+1 2+2 5 K=(6,4 1) C2XD4 -C2*D4
1/31 2/27 3/434 4/17 5/31

```
```

L31 DEG=5 AUT=1 P=(1/5/6) GIR=3 CN=3,4
A=1 1 1 15,15 74 42 210 702,622 3406 E=2-2.73205 2-2 -1 2+0 2+.73205 1 3 5
K=(6 1,4) 3/503
L32 DEG=5 F=I AUT=4 P=(1,122,24) GIR=3 CN=4,3
A=1 1 1 3,23 16 16 250 144,1630 1524 E=2-3 2-2 4+0 1 2+2 5 K=(7,3 1) 1/15
2/17 3/311 5/23
L33 DEG=5 F=I AUT=4 P=(1,14,24) GIR=3 CN=4,4
A=1 1 1 11,5 50 124 262 162,1216 516 E=3-3 2-1 6+1 5 K=(8 2,2) -L(F7) D(L20)
4/111
L34 DEG=5 F=TIA AUT=120 P=(1,5,5,1) GIR=4 CN=2,6 T=2
A=1 1 1 1, 1 74 72 66 56,36 3700 E=-5 5-1 5+1 5 K=(10 10 5 1,) SW(F1) SW(F5)
-W6(B2) -B2XF8 B2*F8 2/111 3/163
L35 DEG=5 F=IA AUT=8 P=(1,14,14,1) GIR=3 CN=3,4
A=1 1 1 15,15 74 42 206 212,1422 3700 E=2-3 5-1 3+1 3 5 K=(6 2,4) SW(F6)
SW(F7) -D(L15) B2XF7 2/124 3/416
L36 DEG=5 F=I AUT=2 P=(1,122,222) GIR=3 CN=4,4
A=1 1 1 5,31 50 124 216 116,642 3122 E=2-3 2-1.73205 2-1 3+1 2+1.73205 5
K=(7,3) 1/7 3/350
L37 DEG=5 F=TIAP AUT=10 P=(1,5,5,1) GIR=3 CN=4,4 T=1 ICOSAHEDRON
A=1 3 5 3,3150 114 22 560,606 3700 E=3-2.23607 5-1 3+2.23607 5 K=(5,5)
SW(E2+) -D(L37) 4/121

```

TRANSITIVE GRAPHS ON 13 VERTICES
```

M1 DEG=0 F=XTVIAP AUT=479001600 P=(1,+) CN=1,13

```
M2 \(D E G=2\) F=TVIP AUT \(=2 \quad P=(1,2,2,2,2,2,2) \quad G I R=13 \quad C N=3,7 \quad\) POLYGON
A=1 \(142,201010040400,20020005000\)
\(E=2-1.941882-1.497022-.709212+.241072+1.136132+1.770912 \quad K=(3656356\),
1/1
M3 \(\quad D E G=4 \quad F=V I \quad\) AUT \(=4 \quad P=(1,4,44) \quad G I R=4 \quad C N=4,7 \quad T=1\)
\(A=1111,201014214454,11222244412 \quad E=4-2.651094+.273894+1.377204\)
\(K=(1812) \quad 1 /\),
M4 \(D E G=4 \quad F=V I \quad\) AUT \(=2 \quad P=(1,22,22,22) \quad G I R=3 \quad C N=4,5\)
A=1 \(1315,241244102400,120035003240\)
\(E=2-2.20623\) 2-1.70081 2-1.25595 2-. \(17097 \quad 2+.426922+2.907044 \quad K=(154,3)\)
D(M2) 1/44
M5 \(D E G=4 \quad F=V I \quad\) AUT \(=2 \quad P=(1,22,222,2) \quad G I R=4 \quad C N=3,7\)
A=1 \(1111,34324202414,22225005240\)
\(E=2-3.438912-.805752-.468142-.360892+1.06170 \quad 2+2.011994 \quad K=(18165\),
-D(M4) \(1 / 5\)

M6 \(\quad \mathrm{DEG}=6 \quad \mathrm{~F}=\) TVIS AUT \(=6 \quad \mathrm{P}=(1,6,6) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=5,5 \quad \mathrm{~T}=1\)
\(A=13115,1143124312432,65430465360 \quad E=6-2.30278 \quad 6+1.30278 \quad 6 \quad K=(6,6)\) 1/15
```

M7 DEG=6 F=VIS AUT=2 P=(1,222,222) GIR=3 CN=5,5
A=1 3 3 15,5 3 132 74 244,1502 3350 3560
E=2-3.19783 2-1.96516 2-1.07010 2+.07010 2+.96516 2+2.19783 6 K=(6,6) 1/64
M8 DEG=6 F=VI AUT=2 P=(1,222,222) GIR=3 CN=4,5
A=1 3 5 3,1 1 174 172 164,1152 2524 5252
E=2-4.14811 2-.88018 2-.56468 2+.51496 2+.66799 2+1.41002 6 K=(9 4,3) -M9
D(M5) 1/16

```
```

M9 DEG=6 F=VI AUT=2 P=(1,222,222) GIR=3 CN=5,4

```
M9 DEG=6 F=VI AUT=2 P=(1,222,222) GIR=3 CN=5,4
A=1 1 1 3 5,33 75 124 52 412,1224 3604 7602
A=1 1 1 3 5,33 75 124 52 412,1224 3604 7602
E=2-2.41002 2-1.66799 2-1.51496 2-.43532 2-.11982 2+3.14811 6 K=(3,9 4) -M8
E=2-2.41002 2-1.66799 2-1.51496 2-.43532 2-.11982 2+3.14811 6 K=(3,9 4) -M8
-D(M5) 1/52
```

-D(M5) 1/52

```

TRANSITIVE GRAPHS ON 14 VERTICES
N1 \(D E G=0 \quad F=X T V I A P ~ A U T=6227020800 \quad P=(1,+) \quad C N=1,14\)
N2 \(\quad D E G=1 \quad F=X T I P \quad\) AUT \(=46080 \quad P=(1,1,+) \quad C N=2,7 \quad T=1\)
\(A=1040,2001000400,02000010000\)
N3 \(\quad D E G=2 \quad F=X T I P \quad\) AUT \(=28 \quad P=(1,2,2,2,+) \quad G I R=7 \quad C N=3,8\)
\(A=1142,205002000,0240012003000\) 2[G2] 1/20 2/200
N4 DEG=2 F=TIAP AUT=2 \(P=(1,2,2,2,2,2,2,1) \quad G I R=14 \quad C N=2,7 \quad\) POLYGON \(A=1142,201010040400,2002000100014000\)
\(E=-22-1.801942-1.246982-.445042+.445042+1.246982+1.801942\)
K=(45 8470211,) B2*G2 1/2 2/140
```

N5 DEG=3 F=I AUT=2 P=(1,12,22,22,2) GIR=4 CN=2,7
A=1 1 1 12,6 10 4 200 100,240 120 3400 5400
E=-3 2-2.24698 2-. 80194 2-. 55496 2+. 55496 2+. . }01942+2.24698 3
K=(33 44 25 6 1,) D(N4) 1/11 2/7

```
N6 \(\quad D E G=3 \quad F=I P \quad A U T=2 \quad P=(1,12,22,22,2) \quad G I R=4 \quad C N=3,7 \quad\) PRISM
\(A=11112,6104200500,240120500012400\)
\(\mathrm{E}=2-2.801942-1.445042-.801942+.246982+.5549612+2.246983 \quad \mathrm{~K}=(3344256\),
B2XG2 1/5 2/201
N7 \(\quad \mathrm{DEG}=3 \mathrm{~F}=\mathrm{TI}\) AUT \(=24 \quad \mathrm{P}=(1,3,6,4) \quad \mathrm{GIR}=6 \mathrm{CN}=2,7 \quad \mathrm{~T}=4 \quad\) HEAWOOD GRAPH
\(A=11110,224410,12401500460320 \quad E=-36-1.414216+1.414213\)
\(K=\left(\begin{array}{llll}33 & 42 & 20 & 6\end{array} 1\right.\),) 2/144
N8 \(\quad D E G=4 \quad F=X I \quad\) AUT \(=28 \quad P=(1,22,2,+) \quad G I R=3 \quad C N=4,6\)
\(A=1353,34720200200,400340036007200\) 2[G3] 1/104 2/1200
N9 \(\quad D E G=4 \quad F=I A P\) AUT \(=2 \quad P=(1,22,22,22,1) \quad G I R=3 \quad C N=4,5 \quad\) ANTIPRISM
\(A=11315,241244102500,2401400620017000\)
\(\mathrm{E}=2-2.246982-1.692022-1.356902-.5549602+.801942+3.048924 \mathrm{~K}=(21 \quad 10,3)\)
1/60 2/504
N10 \(\quad \mathrm{DEG}=4 \quad \mathrm{~F}=\mathrm{I} \quad \mathrm{AUT}=2 \quad \mathrm{P}=(1,22,222,12) \quad \mathrm{GIR}=4 \quad \mathrm{CN}=2,7\)
A=1 \(1111,323414222,4360033003440\)
\(E=-42-2.246982-.801942-.554962+.554962+.801942+2.246984\)
\(K=(24261561) \quad B 2 * G 31 / 122 /\),
```

N11 DEG=4 F=IA AUT=2 P=(1,22,2222,1) GIR=4 CN=3,7
A=1 111 ,24 1242414,12224504320740
$\mathrm{E}=2-3.048922-2.246982-.5549602+.801942+1.356902+1.692024 \mathrm{~K}=(24225$, 1/22 2/214

```
```

N12 DEG=4 F=I AUT=128 P=(1,4,14,4) GIR=4 CN=3,7 T=1
A=1 1 1 1,36 306 6 30,600 3100 4600 13100 E=2-3.60388 2-.89008 7+0 2+2.49396 4
K=(24 28 15 3,) -D(N14) G2[B1] 1/30 2/1005

```
N13 DEG=4 F=TI AUT=24 \(P=(1,4,6,3) \quad G I R=4 \quad C N=2,7 \quad T=2\) DUAL OF HEAWOOD
\(A=1111,302414126,22270032401540 \quad E=-4 \quad 6-1.41421 \quad 6+1.414214\)
\(K=\left(\begin{array}{lllll}24 & 24 & 15 & 6 & 1,\end{array}\right) \quad 2 / 154\)
N14 DEG=5 F=I AUT \(=128 \quad \mathrm{P}=(1,14,4,4) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=5,4\)
A=1 \(373,231460114260,12002500720016500\)
\(E=2-2.603887-12+.109922+3.493965 \quad K=(12,62) \quad-D(N 12) \quad G 2[B 2] 1 / 312 / 207\)
N15 \(\quad D E G=5 \quad F=I \quad\) AUT \(=2 \quad P=(1,122,2222) \quad G I R=3 \quad C N=4,5\)
A=1 155 , 11 5024242 122,1006 241233404720
\(E=2-2.692022-2.356902-1.24698-12+.445042+1.801942+2.048925 \quad K=(154,3)\)
D(N6) D(N9) 1/61 2/1114
N16 DEG=5 F=A AUT=1 \(P=(1 / 5 / 7 / 1) \quad G I R=3 \quad C N=4,5\)
A=11111,15606202530,406710 20667300
\(E=2-3.216152-1.85926-12-.387722-.167232+.969172+2.661195 \quad K=(158,3)\)
2/226
N17 DEG=5 F=I AUT=2 \(P=(1,122,222,2) \quad G I R=3 \quad C N=4,5\)
A=1 \(1 \begin{array}{llllll}5 & 11,5 & 70 & 16412406,1042422720016500\end{array}\)
\(\mathrm{E}=2-3.246982-1.554962-1.246982-.198062+.445042+1.8019435 \quad \mathrm{~K}=(158,3)\)
B2XG3 1/105 2/1201
\(N 18 \quad D E G=5 \quad F=1 \quad\) AUT \(=2 \quad P=(1,122,2222) \quad G I R=4 \quad C N=3,7\)
A=1 \(1111,1667252 \quad 26,11102604505012424\)
\(E=2-4.048922-1.24698-12+.356902+.445042+.692022+1.801945 \quad \mathrm{~K}=(18165\),
D(N11) D(N5) 1/23 2/541
```

N19 DEG=5 F=I AUT=2 P=(1,122,222,2) GIR=4 CN=2,7
A=1 1 1 1,1 72 66 54 34,26 52 7500 7600
E=-5 2-1.80194 2-1.24698 2-.44504 2+.44504 2+1.24698 2+1.80194 5
K=(18 20 15 6 1,) 1/13 2/172

```
N20 DEG=6 F=XTI AUT \(=3628800 \quad \mathrm{P}=(1,6,+) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=7,2 \quad \mathrm{~T}=2\)
\(A=13717,37770200600,16003600760017600\) 2[G4] SW(G4) 1/124 2/1600
N21 DEG=6 \(\quad\) UUT \(=1 \quad P=(1 / 6 / 7) \quad G I R=3 \quad C N=5,4\)
\(A=11111,5757046422,6301456330213206\)
\(E=2-3.21615-22-1.859262-.387722-.167232+.969172+2.661196 \quad K=(9,62)\)
2/233
W22 DEG=6 \(F=1 \quad\) AUT \(=2 \quad P=(1,222,1222) \quad G I R=3 \quad C N=4,5\)
A=1 \(3111,53170164552,12242612413412072\)
\(E=2-4.048922-1.801942-.445042+.356902+.692022+1.2469826 K=(126,3)\)
1/122 2/1206

TRANSITIVE GRAPHS ON 14 VERTICES (CONTD)
N23 \(\quad D E G=6 \quad F=I \quad\) AUT \(=2 \quad P=(1,222,1222) \quad G I R=3 \quad C N=4,5\)
\(A=1353,11170164152,1304264251342472\)
\(E=2-4.04892-22-1.246982+.356902+.445042+.692022+1.801946 \quad K=(126,3)\)
D(N16) 1/46 2/1017
```

N24 DEG=6 F=TIA AUT=720 P=(1,6,6,1) GIR=4 CN=2,7 T=2
A=1 1 1 1, 1 1 174 172 166, 156 136 76 17600 E=-6 6-1 6+1 6 K=(15 20 15 6 1,)
SW(G1) -W7(B2) -B2XG4 B2*G4 1/52 2/173

```
N25 DEG=6 F=I AUT=2 \(\quad \mathrm{P}=(1,222,1222) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=4,5\)
A=1 \(3111,152336214222,5443142545013520\)
\(E=2-2.692022-2.356902-1.801942-.445042+1.2469822+2.04892 \quad 6 \quad K=(92,6)\)
1/106 2/1203
N26 \(\quad D E G=6 \quad F=I \quad\) AUT \(=2 \quad P=(1,222,1222) \quad G I R=3 \quad C N=4,5\)
A=1 135 ,15 2336214222,5443142545013520
\(\mathrm{E}=2-2.692022-2.35690-22-1.246982+.445042+1.801942+2.04892 \quad 6 \quad K=(92,6)\)
1/54 2/570
```

N27 DEG=6 F=IA AUT=2 P=(1,222,222,1) GIR=3 CN=4,5
A=1 3 3 15,5 3 132 74 144,1142 2310 5460 17600
E=2-3.49396 6-1 2-.10992 2 2+2.60388 6 K=(9 4,6) SW(G3) -D(N28) 1/160 2/1214
N28 DEG=6 F=IA AUT=2 P=(1,222,222,1) GIR=3 CN=5,4
A=1 1 3 5,33 75 124 52 412,224 3204 7402 17600
E=2-2.60388 -2 6-1 2+.10992 2+3.49396 6 K=(6,9 4) SW(G2) -D(N17) -D(N27) 1/16
2/1055

```

TRANSITIVE GRAPHS ON 15 VERTICES
01 DEG=0 F=XTVIAP \(P=(1,+) \quad C N=1,15\)
02 DEG=2 F=XTIP AUT=62208 \(P=(1,2,+) \quad\) GIR \(=3 \quad C N=3,5\)
\(A=13010,030400240,400024004000240005\) [C2] 1/20
03 DEG=2 F=XTIP AUT=400 \(P=(1,2,2,+) \quad G I R=5 \quad C N=3,9\)
\(A=11412,04000500,44020001400010200\) 3[E2] 1/40
04 DEG=2 F=TIP AUT=2 \(P=(1,2,2,2,2,2,2,2) \quad G I R=15 \quad C N=3,8 \quad\) POLYGON
\(A=1142,201010040400,200200010001000024000\)
\(E=2-1.956302-1.618032-12-.209062+.618032+1.338262+1.827092\)
\(K=\left(\begin{array}{llllll}55 & 120 & 126 & 56 & 7,\end{array}\right) \quad 1 / 2\)
\(05 \quad \mathrm{DEG}=4 \quad \mathrm{~F}=\mathrm{XTI}\) AUT \(=691200 \quad \mathrm{P}=(1,4,+) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=5,3 \quad \mathrm{~T}=2\)
\(A=13717,0400140540,154020042001420034200\) 3[E3] 1/44
\(06 \quad \mathrm{DEG}=4 \quad \mathrm{~F}=\mathrm{I} \quad\) AUT \(=4 \quad \mathrm{P}=(1,22,24,4) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=3,5\)
A=1 \(1111,4422422214,41250010401424016100\)
\(E=4-2.618034-.381972+.381972+12+2.618034 \quad K=(303210,1) \quad\) C2XE2 \(1 / 60\)
07 DEG=4 \(\quad F=N T I A \quad\) AUT \(=8 \quad P=(1,4,8,2) \quad G I R=3 \quad C N=4,6 \quad T=1\)
\(A=13111,2041101442,21010603002530012440 \quad E=5-24-15+24\)
\(K=(29 \quad 242,2) \quad L(J 7)\)
```

08 DEG=4 F=I AUT=2 P=(1,22,22,22,2) GIR=3 CN=3,5
A=1 1 3 15,24 12 44 102 400,200 1500 2240 7000 33000
E=2-2.16535 2-2 4-1 2-.12920 2+1.12920 2+3.16535 4 K=(28 20 1,3) D(04) 1/12
09 DEG=4 F=1 AUT=2 P=(1,22,2222,2) GIR=4 CN=3,8
A=1 1 1 1,24 12 4 2 414,1222 410 4220 10540 4340
E=2-3.23607 2-1.82709 2-1.33826 2+.20906 2+1 2+1.23607 2+1.956304
K=(31 36 15 2,) 1/104

```
010 DEG=4 \(F=I \quad\) AUT \(=2 \quad P=(1,22,222,22) \quad G I R=3 \quad C N=3,5\)
\(A=11111,2412541222,4304031001140026200\)
\(E=2-2.956302-22-1.209062+.338262+.381972+.827092+2.618034 \quad K=(303211,1)\)
1/22
```

011 DEG=4 F=I AUT=2 P=(1,22,222,22) GIR=4 CN=3,8
A=1 1 1 1,34 32 4 202 14,22 2400 5200 12500 5240
E=2-3.57433 4-1 2-. 27977 2+.40898 2+1 2+2.44512 4 K=(31 40 25 6,) 1/140
0 1 2 ~ D E G = 4 ~ F = I ~ A U T = 4 ~ P = ( 1 , 4 , 2 2 4 , 2 ) ~ G I R = 4 ~ C N = 3 , 8 ~ T = 1
A=1 1 1 1,24 12 30 6 120,50 1042 2104 6600 11600
E=2-3.23607 2-2 4-.61803 2+1.23607 4+1.61803 4 K=(31 36 16 2,) C2*E2 1/11
013 DEG=6 F=I AUT=2 P=(1,222,2222) GIR=3 CN=5,3
A=1 3 7 17,1 1 50 320 344,542 2510 1260 16504 15242
E=2-2.95630 2-2.61803 2-1.20906 2-..38197 2+.33826 2+.82709 2+3 6 K=(13,6 4 1)
1Fj44

```
\(014 \quad D E G=6 \quad F=1 \quad A U T=2 \quad P=(1,222,2222) \quad G I R=3 \quad C N=3,5\)
\(A=135 \quad 3,14113472104,4234643312326023510\)
\(E=2-3.16535 \quad 2-3 \quad 2-1.12920 \quad 2+.129204+1 \quad 2+2.16535 \quad 6 \quad K=(1581,4) \quad 1 / 121\)
\(015 \quad D E G=6 \quad F=I \quad A U T=2 \quad P=(1,222,2222) \quad G I R=3 \quad C N=4,5\)
\(A=1 \quad 3 \quad 1 \quad 1,5 \quad 3 \quad 72334 \quad 64,1112 \quad 222414121616015150\)
\(E=2-3.783392-2.618032-.381972+02+.488832+1.547322+1.747246 \quad K=(168,3)\)
1/16
```

016 DEG=6 F=I AUT=4 P=(1,24,224) GIR=3 CN=3,5
A=1 3 5 13,5 43 146 36 30,140 3300 3420 17410 17240
E=2-3 4-1.61803 2-1.23607 4+.61803 2+3.23607 6 K=(12 4 1,7) 1/122
0 1 7 \quad D E G = 6 \quad F = I \quad A U T = 2 ~ P = ( 1 , 2 2 2 , 2 2 2 , 2 ) ~ G I R = 3 ~ C N = 5 , 4
A=1 1 3 5, 33 75 124 52 204,1402 2412 1224 17200 37400
E=2-2.61803 2-1.74724 2-1.54732 2-.48883 2-.38197 2+0 2+3.78339 6 K=(10,9 4)
-D(010) -D(011) 1/52
0 1 8 ~ D E G = 6 ~ F = I ~ A U T = 2 ~ P = ( 1 , 2 2 2 , 2 2 2 2 ) ~ G I R = 3 ~ C N = 4 , 5
A=1 11 3 5,23 55 164 152 204,402 3220 7410 13012 27024
E=2-2.82709 2-2.33826 2-1.23607 2-.79094 2+0 2+.95630 2+3.23607 6 K=(12 4,7)
-D(017) 1/124
019 DEG=6 F=I AUT=2 P=(1,222,2222) GIR=3 CN=3,5
A=1 1 1 11, 23 55 134 72 42,104 3404 7202 13214 7422
E=2-3 2-2.61803 2-.82709 2-.38197 2-.33826 2+1.20906 2+2.95630 6 K=(13 4 1,6)
D(08) 1/13

```

TRANSITIVE GRAPHS ON 15 VERTICES (CONTD)
```

020 DEG=6 F=I AUT=48 P=(1,24,8) GIR=3 CN=5,3
A=1 3 1 11,31 71 104 12 614,422 3224 2442 15244 12702 E=8-2 4+1 2+3 6
K=(12,7 4 1) C2XE3 -C2*E3 1/64
021 DEG=6 F=NTVI AUT=48 P=(1,6,8) GIR=3 CN=4,5 T=1
A=1 3 1 1, 21 11 124 142 654,54 2342 2524 15032 2632 E=5-3 9+1 6 K=(16 8 2,3)
-L(F8) D(07)
022 DEG=6 F=I AUT=2 P=(1,222,2222) GIR=3 CN=3,5
A=1 3 1 1,1 1 174 172 424,1212 2124 5052 12164 5152
E=2-4.57433 2-1.27977 2-.59102 2+0 4+1 2+1.44512 6 K=(18 16 5,1) 1/62
0 2 3 ~ D E G = 6 ~ F = I ~ A U T = 5 1 8 4 ~ P = ( 1 , 6 , 2 6 ) ~ G I R = 4 ~ C N = 3 , 8 ~ T = 1 ~
A=1 1 1 1, 1 1 176 176 160,1016 1016 1016 16160 16160
E=2-4.85410 10+0 2+1.85410 6 K=(19 20 10 2,) D(012) D(09) E2[C1] 1/51
024 DEG=6 F=I AUT=4 P=(1,24,224) GIR=3 CN=4,6
A=1 1 5 13,5 43 2 204 740,630 1262 1514 6464 12312
E=2-2.61803 4-2.23607 2-.38197 2+0 4+2.23607 6 K=(13 4,6) -D(06) 1/15
TRANSITIVE GRAPHS ON 16 VERTICES
P1 DEG=0 F=XTVIAP $P=(1,+) \quad C N=1,16$
P2 $\quad D E G=1 \quad F=X T I P \quad A U T=645120 \quad P=(1,1,+) \quad C N=2,8 \quad T=1$
$A=1040,2001000400,020000100000,40000$
P3 DEG=2 F=XTIP AUT=6144 $P=(1,2,1,+) \quad G I R=4 \quad C N=2,8$
$A=1160,20020240100,0100500020002000,60000$ 2[H3] 4[D3] H2[B1] B2XH2

```

``` \(12 / 240 \quad 13 / 5 \quad 14 / 4\)
```

P4 DEG=2 F=XTIP AUT $=32 \quad \mathrm{P}=(1,2,2,2,1,+) \quad$ GIR $=8 \quad \mathrm{CN}=2,8$
$A=1142,20101400400,00200050002400,140002[H 4] \quad B 2 * H 41 / 1002 / 400$ $6 / 1001$ 8/24 11/200 12/102 13/1000 14/100

P5 DEG=2 F=TIAP AUT=2 $P=(1,2,2,2,2,2,2,2,1) \quad G I R=16 \quad C N=2,8 \quad$ POLYGON $A=1142,201010040400,20020001000100004000,60000$
$E=-2 \quad 2-1.847762-1.414212-.765372+0 \quad 2+.765372+1.414212+1.847762$
$K=\left(\begin{array}{lllllll}66 & 165 & 210 & 126 & 28 & 1,\end{array}\right) \quad 1 / 10 \quad 12 / 210$
P6 DEG=3 F=XTIP AUT $=497664 \quad P=(1,3,+) \quad G I R=3 \quad C N=4,4 \quad T=2$
$A=1370,20060260100,011005100200022000,62000 \quad 2[H 5] \quad 4[\mathrm{D} 4] \mathrm{H} 2[\mathrm{~B} 2] 1 / 21$ $2 / 22 \quad 3 / 224 / 10045 / 60001 \quad 6 / 10004 \quad 7 / 22 \quad 8 / 1002 \quad 9 / 100210 / 2211 / 2412 / 204013 / 120$ 14/5

P7 DEG=3 $\mathrm{F}=\mathrm{XTIP}$ AUT $=288 \quad \mathrm{P}=(1,3,3,1,+) \quad \mathrm{GIR}=4 \quad \mathrm{CN}=2,8 \quad \mathrm{~T}=2$
$A=11114,1261600400,020005000240025000,12400 \quad 2[H 7]$ B2XH3 D2XD3 B2*H5
 13/16

P8 DEG=3 $F=X I \quad$ AUT $=32 \quad P=(1,12,22,+) \quad G I R=4 \quad C N=3,8$
$A=11112,6501240400,040010001600012400,7000 \quad 2[H 6] 1 / 101 \quad 2 / 426 / 2024$ $8 / 43 \quad 11 / 1412 / 4040 \quad 13 / 60 \quad 14 / 101$

```
P9 DEG=3 F=I AUT=2 P=(1,12,22,22,22) GIR=4 CN=3,8
A=1 1 1 12,6 10 4 240 120,200 100 5000 2400 24000,52000
E=2-2.84776 2-1.76537 -1 2-.41421 2-. 23463 2+.84776 2+1 2+2.41421 3
K=(51 96 85 36 7, ) D(P5) 1/11 12/54
```

P10 DEG=3 $F=I A P$ AUT $=2 \quad P=(1,12,22,22,12,1) \quad G I R=4 \quad C N=2,8 \quad$ PRISM
$A=11112,6104200100,240120140050002400,70000$
$E=-32-2.414213-12-.414212+.414213+12+2.414213 \quad K=\left(\begin{array}{lllllll}51 & 96 & 85 & 36 & 7\end{array}\right)$
B2XH4 B2*H6 2/11 6/1042 12/301
P11 $D E G=3$ AUT $=8 \quad P=(1,12,122,122,2) \quad G I R=4 \quad C N=2,8$
$A=11114,22104160,10040600600$ 26000, 16000
$E=-3 \quad 2-2.236075-15+1 \quad 2+2.236073 \quad K=\left(\begin{array}{lllll}51 & 95 & 80 & 33 & 7\end{array}\right.$, $) ~ 6 / 20119 / 44012 / 114$
13/404

```
P12 DEG=3 F=IA AUT=6 P=(1,3,6,23,1) GIR=6 CN=2,8 T=2
A=1 1 1 10,10424 2,620 1140 300 440 1020,70000
E=-3 4-1.73205 3-1 3+1 4+1.73205 3 K=(\begin{array}{lllllll}{51 75 27 7 1,)}\end{array})8/105 11/102 12/412
13/1001
```

P13 DEG=4 $F=X T I \quad A U T=165888 \quad P=(1,4,3,+) \quad G I R=4 \quad C N=2,8 \quad T=3$
$A=1111,3636360400,4004004001700017000,17000$ 2[H8] D2[D1] H3[B1]
B2*H8 D3*D3 1/104 2/205 3/140 4/2042 5/40034 6/11400 7/140 8/2140 9/2102 10/140
$11 / 140 \quad 12 / 5000 \quad 13 / 500 \quad 14 / 30$
P14 DEG=4 $F=X I \quad$ AUT $=288 \quad P=(1,13,3,+) \quad G I R=3 \quad C N=4,4$
$A=11515,22461520400,40010006400500032400,27000 \quad 2[H 9] W 4(D 2) B 2 X H 5$

13/121
P15 DEG=4 F=XIP AUT=32 $P=(1,22,12,+) \quad G I R=3 \quad C N=4,6$

$6 / 11100 \quad 8 / 2041 \quad 11 / 220 \quad 12 / 2011 \quad 13 / 10314 / 12$
P16 $\quad D E G=4 \quad F=I P \quad A U T=2 \quad P=(1,22,22,22,12) \quad G I R=3 \quad C N=4,6 \quad$ ANTIPRISM
$A=11315,241244102400,20015002240300032000,65000$
$E=2-2.179582-2 \quad 2-1.414212-.64885 \quad 2-.4335502+1.414212+3.261974$
$K=\left(\begin{array}{ll}36 & 35 \\ 5,3\end{array}\right) \quad 1 / 6 \quad 12 / 4404$

```
P17 DEG=4 F=I AUT=2 P=(1,22,1222,22) GIR=4 CN=3,8
```

$A=1111,3024124402,101442242402140 \quad 21200,50500$
$E=2-3.414212-1.84776 \quad 2-.76537 \quad 2-.58579 \quad 0 \quad 2+.76537 \quad 2+1.84776 \quad 2+24$
$K=(3956359) \quad 1 / 6012 /$,
$P 18 \quad D E G=4 \quad F=1 \quad$ AUT $=2 \quad P=(1,22,2222,12) \quad G I R=4 \quad C N=3,8$
$A=1111,242412122,105450120146004300,50440$
$E=2-3.261972-22-1.41421 \quad 0 \quad 2+.43355 \quad 2+.64885 \quad 2+1.414212+2.179584$
$K=\left(\begin{array}{lll}39 & 55 & 306,\end{array}\right) \quad 1 / 1412 / 4003$
P19 DEG=4 $F=I A \quad$ AUT $=2 \quad P=(1,22,222,22,1) \quad G I R=4 \quad C N=2,8$
$A=1111,32342414,221600260022401500,74000$
$E=-4 \quad 2-2.613132-1.08239 \quad 6+0 \quad 2+1.082392+2.613134 \quad K=(3959452171) \quad 1 /$,
12/512
$\mathrm{P} 20 \quad \mathrm{DEG}=4 \quad \mathrm{~F}=\mathrm{N} \quad \mathrm{AUT}=2 \quad \mathrm{P}=(1,112,111222,11) \quad \mathrm{GIR}=4 \quad \mathrm{CN}=3,8$
$A=11111,30242414,1002402 \quad 232043101540,6240$
$E=2-3.23607-24-1.4142102+1.236074+1.4142124 \quad K=(3954306$,

TRANSITIVE GRAPHS ON 16 VERTICES (CONTD)

```
P21 DEG=4 F=I AUT=2 P=(1,112,1222,22) GIR=4 CN=3,8
A=1 1 1 1,6 22 12 24 14,220 2110 1240 540 25000,52400
E=2-3.41421 -2 2-1.41421 2-.58579 3+0 2+1.41421 3+2 4 K=(39 56 35 9,) B2XH6
2/103 6/17 12/65
P22 DEG=4 AUT=8 P=(1,112,122,22,2) GIR=3 CN=4,4
A=1 1 5 15,6 42 142 20 410,1400 3400 200 10100 34000,72000
E=5-2 2-1.23607 5+0 2 2+3.23607 4 K=(36 34,3 1) W2(D3) 6/1250 9/2041 12/544
13/221
```

P23 DEG=4 $F=I \quad$ AUT $=256 \quad \mathrm{P}=(1,4,14,4,2) \quad \mathrm{GIR}=4 \quad \mathrm{CN}=2,8 \quad \mathrm{~T}=1$
$A=11111,36306630,6001100110060036000,36000$
$E=-4 \quad 2-2.8284310+02+2.828434 \quad K=(3961502471) \quad H ,4[B 1] 1 / 2022 / 410$
6/3011 9/230 10/240 12/134 13/412 14/44
P24 DEG=4 AUT $=2 \quad P=(1,112,11222,111) \quad G I R=4 \quad C N=3,8$
$A=1111,6302414402,2022060105070034000,43100$
$E=2-3.236073-25+02+1.236073+24 \quad K=(3955306) \quad 6 / 10549 /$,
P25 $D E G=4 \quad F=I \quad$ AUT $=4 \quad P=(1,22,124,22) \quad G I R=4 \quad C N=2,8$
A=1 $1111,30422412,1422264051406300,1700$
$\mathrm{E}=-42-24-1.414212+04+1.414212+24 \quad \mathrm{~K}=(3956402171) \quad ,\mathrm{D}(\mathrm{P} 10) \quad \mathrm{B} 2$ 채 10
$2 / 105$ 6/4401 8/441 11/103 12/4202 13/206 14/22

```
P26 DEG=4 AUT=1 P=(1/4/7/4) GIR=4 CN=2,8
A=1 1 1 1,30 6 14 2 22,10 24 6440 7100 3600,740
E=-4 -2 2-1.84776 2-1.41421 2-.76537 2+.76537 2+1.41421 2+1.84776 24
K=(39 56 40 21 7 1,) 12/35
```

P27 DEG=4 F=TIA AUT=24 $P=(1,4,6,4,1) \quad G I R=4 \quad C N=2,8 \quad T=2 \quad 4$-CUBE
$A=1111,1422241230,6150012402440 \quad 2300,74000 \quad E=-44-26+04+24$
$\mathrm{K}=(395740217 \mathrm{l}$,) B2XH7 D3XD3 B2*H9 3/210 4/2050 5/20620 6/1103 9/214
10/110 11/240 13/1014

```
P28 DEG=4 F=1 AUT=6 P=(1,13,36,2) GIR=4 CN=4,8
A=1 1 1 1,6 22 12 110 60,620 1104 50 10204 16000,61400
E=4-2.73205 -2 3+0 4+.73205 3+2 4 K=(39 54 25,) D(P12) 8/72 11/105 12/542
13/61
```

P29 DEG=5 F=XI AUT=2048 $P=(1,14,2,+) \quad G I R=3 \quad C N=4,4$

$1 / 105$ 2/442 3/407 4/2300 5/52402 6/3444 7/407 8/2402 9/2401 10/407 11/407
12/346 13/1060 14/31
P30 DEG=5 F=XI AUT=32 $P=(1,122,2,+) \quad$ GIR $=3 \quad C N=4,4$
 6/5044 8/432 11/224 12/2340 13/134 14/13

```
P31 DEG=5 F=1 AUT=256 P=(1,14,4,4,2) GIR=3 CN=4,4
A=1 3 7 3,23 14 60 114 260,1200 3200500 10500 36000,76000
E=-3 2-1.82843 8-1 2+1 2+3.82843 5 K=(24 8,6 2) H4[B2] 1/203 2/414 6/3122
9/1046 10/242 12/174 13/225 14/45
```

```
P32 DEG=5 AUT=1 P=(1/5/8/2) GIR=3 CN=4,4
A=1 1 5 15,150 2 344 206,1010 2022 560 1242 26100,56200
E=-3 2-2.84776 2-1.76537-1 2-.41421 2-.23463 2+.84776 2+2.41421 3 5
K=(27 20,3 1) 12/73
```

```
P33 DEG=5 AUT=1 P=(1/5/8/2) GIR=3 CN=4,4
A=1 1 5 15,1 50 2 344 206,1010 2022 560 1242 36000,46300
E=2-3 2-2.41421 3-1 2-.41421 2+.41421 1 2+2.41421 3 5 K=(27 20,3 1) 6/730
P34 DEG=5 F=A AUT=1 P=(1/5/9/1) GIR=3 CN=4,6
A=1 1 1 15,5 40 42 202 610,544 1204012 14406 1330,17100
E=-3 2-2.41421 2-2.23607 2-1 2-.41421 2+.41421 2+2.23607 2+2.41421 5
K=(27 19,3) 12/4124
P35 DEG=5 AUT=1 P=(1/5/8/2) GIR=3 CN=4,6
A=1 1 5 5,11 60 22 202 524,10 2406 1150 6042 22300,52600
E=2-3 2-2.23607 5-1 3+1 2+2.23607 3 5 K=(27 20,3) 6/12110
P36 DEG=5 F=I AUT=2 P=(1,122,2222,2) GIR=3 CN=4,6
A=1 1 5 5,11 50 24 220 540,1022 442 4012 12006 23300,14700
E=2-3.17958 2-1.64885 2-1.43355 2-1 2-.41421 1 2+2.26197 2+2.41421 5
K=(27 20 5, 3) 1/111 12/1064
```

P37 DEG=5 $\mathrm{AUT}=8 \quad \mathrm{P}=(1,122,1222,12) \quad \mathrm{GIR}=4 \quad \mathrm{CN}=2,8$
A=1 $1111,174706442,2216161710013600,7600$
$\mathrm{E}=-5$ 2-2.23607 5-1 $5+12+2.236075 \quad \mathrm{~K}=(3040352171) \quad 6 / 24319 / 206412 /$,
13/416

```
P38 DEG=5 AUT=1 P=(1/5/A) GIR=3 CN=4,6
A=1 3 1 11,21 14 12 6 104,1220 2242 440 13420 10710,15140
E=-3 2-2.23607 4-1.73205 2-1 4+1.73205 2+2.23607 5 K=(27 19,3) 13/241
```

P39 $\mathrm{DEG}=5 \mathrm{~F}=\mathrm{I} \quad \mathrm{AUT}=6 \quad \mathrm{P}=(1,23,16,3) \quad \mathrm{GIR}=4 \quad \mathrm{CN}=2,8$
A=1 $1111,16646254,3252347300$ 14700,13500

13/1007
P40 DEG=5 F=I AUT=2 $\quad \mathrm{P}=(1,122,1222,12) \quad \mathrm{GIR}=4 \quad \mathrm{CN}=2,8$
$A=1111,114324666,7244301470016300,15500$
$\mathrm{E}=-52-2.414213-12-.414212+.414213+12+2.414215 \mathrm{~K}=\left(\begin{array}{llllll}30 & 41 & 35 & 21 & 7 & 1,\end{array}\right)$
B2*배12 2/214 6/11240 12/436
P41 $\quad D E G=5 \quad F=I \quad$ AUT $=2 \quad P=(1,122,2222,2) \quad G I R=3 \quad C N=4,4$
$A=1113,2312610404,11306444224215021600,51500$
$E=2-2.847762-2.414212-1.765372-.234632+.414212+.8477612+35$
$K=(2720,31) 1 / 2312 / 2150$
P42 $\quad D E G=5 \quad F=1 \quad$ AUT $=2 \quad P=(1,122,2222,2) \quad G I R=4 \quad C N=3,8$
$A=1111,172663246,1010240440301204425200,52500$
$E=2-4.261972-12-.566452-.414212-.3511512+1.179582+2.414215$
$K=(3040256$,) $1 / 4512 / 4043$
P43 DEG=5 AUT=1 $\quad P=(1 / 5 / 7 / 3) \quad G I R=3 \quad C N=4,6$
A=1 $11115,11106202406,50 \quad 1066216012500 \quad 21300,42700$
$E=2-3.14625-34-12-.31784 \quad 2+.317842+12+3.146265 \quad K=(27245,3) \quad 12 / 1310$
P44 DEG=5 F=I AUT=12 $P=(1,23,16,3) \quad G I R=3 \quad C N=4,4$
$A=11111,3164442214,41212242422310034100,60700 \quad E=3-36-14+12+35$
$K=(2721,31) \quad$ B2XH9 D3XD4 3/242 4/1045 5/2341 6/2413 9/1062 10/52

```
P45 DEG=5 F=A AUT=2 P=(1,1112,111222,1) GIR=3 CN=4,4
A=1 1 1 11,31 14 12 6 242,1222 2104 5104 10440 24420,60700
E=2-3 2-2.23607 5-1 3+1 2+2.23607 3 5 K=(27 19,3 1) 6/643 9/1122
P46 DEG=5 F=A AUT=4 P=(1,122,1224,1) GIR=3 CN=4,6
A=1 1 5 3,3 14 2 202 120,140 2250 2444 5230 11424,3700
E=-3 4-2.23607 4-1 2+1 4+2. 23607 5 K=(27 20,3) 9/620 11/111
```

P47 DEG=5 $\mathrm{F}=\mathrm{I} \quad \mathrm{AUT}=4 \quad \mathrm{P}=(1,122,224,2) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=4,4$
$A=11113,23612110604,2501242230414431400,47400$
$E=-3 \quad 4-2.41421 \quad 2-1 \quad 4+.41421 \quad 2+1 \quad 2+3 \quad 5 \quad K=(27 \quad 20,31) \quad 2 / 602 \quad 6 / 60148 / 1112$
$11 / 207 \quad 12 / 4070 \quad 13 / 72 \quad 14 / 23$

```
P48 DEG=5 F=I AUT=144 P=(1,14,34,3) GIR=4 CN=2,8
A=1 1 1 1 1, 1 74 74 74 12,22 42 6 17200 17400,17100 E=-5 -3 6-1 6+1 3 5
K=(30 42 35 21 7 1,) B2XH8 B2*H11 2/111 4/1142 5/74400 6/2642 7/304 8/2114
9/2404 11/141 12/631 13/601
P49 DEG=5 F=I AUT=2 P=(1,122,1222,12) GIR=3 CN=4,6
A=1 1 1 11,25 14 12 6 442,1222 130 4144 700 31400,66200
E=2-3 2-2.41421 3-1 2-.41421 2+.41421 1 2+2.41421 3 5 K=(27 21,3) B2XH10
2/424 6/5240 12/2112
```

P50 DEG=5 $F=I A \quad A U T=16 \quad P=(1,14,144,1) \quad G I R=4 \quad C N=3,8$
$A=11111,1743024430,10442422124224121206,74100$
$E=2-3.82843-34-16+12+1.828435 \quad K=(3034153$,) 2/52 6/1154 9/1144 10/304
12/4700
P51 DEG=5 $F=I \quad A U T=2 \quad P=(1,122,22222) \quad G I R=4 \quad C N=4,8$
$A=11111,17064210104,121250640501202421442,11422$
$E=2-3.61313-32-2.082392+.082396+12+1.613135 \quad K=(303210) \quad D,(P 19) 1 / 13$
12/57
P52 $\quad \mathrm{DEG}=5 \quad \mathrm{~F}=\mathrm{N} \quad \mathrm{AUT}=2 \quad \mathrm{P}=(1,1112,1111222) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=4,4$
$A=1115,2562310 \quad 214,101030104640 \quad 12620 \quad 4122,42142$
$E=4-2.414212-2.23607-14+.4142112+2.2360735 \quad \mathrm{~K}=(2718,31)$
P53 DEG=5 $\mathrm{F}=\mathrm{A}$ AUT $=8 \quad \mathrm{P}=(1,122,12222,1) \quad \mathrm{GIR}=4 \quad \mathrm{CN}=3,8$
$A=1111,1747474402,2021261704017020,17100$
$E=2-4.236075-12+.236075+135 \quad K=\left(\begin{array}{lllll}3040 & 25 & 6,\end{array}\right) \quad D(P 11) 6 / 645 \quad 9 / 321 \quad 12 / 2405$
13/501
P54 DEG=5 $F=A \quad A U T=2 \quad P=(1,122,12222,1) \quad G I R=3 \quad C N=4,6$
$A=11155,3114126402,120214406220212421150,14700$
$E=2-3$ 4-1.73205 3-1 $14+1.7320535 \quad K=(27 \quad 19,3) \quad 8 / 46411 / 221 \quad 12 / 210313 / 141$
P55 DEG=5 F=TVI AUT=120 $P=(1,5, A) \quad G I R=4 \quad C N=4,8 \quad T=2 \quad$-CLEBSCH GRAPH
$A=11111,11414244522,22416064123050630,64006 \quad E=5-310+15$

P56 DEG=6 $\mathrm{F}=\mathrm{XTI} \mathrm{AUT}=18432 \quad \mathrm{P}=(1,6,1,+) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=4,4 \quad \mathrm{~T}=1$
$A=1 \quad 1 \quad 7 \quad 7,37 \quad 37 \quad 176 \quad 0 \quad 400,400 \quad 34003400 \quad 17400 \quad 17400,77000 \quad 2[H 13]-D(P 109)$

$10 / 143 \quad 11 / 160 \quad 12 / 7000 \quad 13 / 700 \quad 14 / 214$

P57 $\mathrm{DEG}=6 \mathrm{~F}=\mathrm{I}$ AUT $=2 \quad \mathrm{P}=(1,1122,12222) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=4,4$
$A=11515,116322652,110444441622152$ 26320,16250
$E=-4 \quad 2-3.414212-1.414212-.585793+02+1.41421 \quad 3+26 \quad K=(2114,31) \quad 2 / 243$
6/6214 12/4071
P58 DEG=6 F=I AUT=6 $P=(1,123,36) \quad G I R=3 \quad C N=4,4$
$A=1371,114222102,1550146447303324744,41270$
$E=-4 \quad 4-2.732053+04+.732053+26 \quad K=(2112,31) \quad D(P 28) 8 / 104711 / 44512 / 751$ 13/75

```
P59 DEG=6 AUT=4 P=(1,1122,1224) GIR=3 CN=4,6
A=1 1 1 11,5 5 36 26 416,342 342 5120 4510 33060, 32450
E=4-3.23607-2 4+0 4+1.23607 2+2 6 K=(21 14,3) D(P46) 9/1504 11/305
```

P60 $D E G=6 \quad F=A \quad A U T=1 \quad P=(1 / 6 / 8 / 1) \quad G I R=3 \quad C N=4,4$
A=1 $3515,21411506354,1500210244221043216240,66600$
$\mathrm{E}=2-3.236073-22-1.236074+02+1.236072+3.236076 \quad \mathrm{~K}=(189,61) \quad 9 / 3022$
P61 $D E G=6 \quad A U T=8 \quad P=(1,1122,1222,2) \quad G I R=3 \quad C N=4,4$
$A=11515,5456160550,30222422321023227400,57400$
$E=-4 \quad 4-2 \quad 2-1.236075+022+3.236076 \quad K=\left(\begin{array}{lllllllll}18 & 8,6 & 2\end{array}\right) 6 / 11631203512 / 37213 / 227$
P62 DEG=6 F=A AUT=1 $P=(1 / 6 / 8 / 1) \quad G I R=3 \quad C N=4,4$
$A=1151,35611342422,7344105006150425502,74600$
$E=2-3.41421-22-1.847762-.765372-.58579 \quad 2+.765372+1.8477646$
$K=(189,62) \quad 12 / 2107$
P63 $D E G=6 \quad F=A \quad A U T=1 \quad P=(1 / 6 / 8 / 1) \quad G I R=3 \quad C N=4,4$
$A=1 \quad 1 \quad 5 \quad 1,35 \quad 61 \quad 1342422,7344105102150425406,74600$
$E=2-3.414212-22-1.414212-.58579 \quad 3+02+1.41421246 \quad K=(189,62) \quad 6 / 365$
P64 $D E G=6 \quad F=A \quad A U T=1 \quad P=(1 / 6 / 8 / 1) \quad G I R=3 \quad C N=4,4$
$A=11115,35311542422,7344105006450235042,35600$
$E=2-3.236074-25+02+1.23607246 \quad K=(189,61) 6 / 5064$
P65 DEG=6 $F=I \quad$ AUT $=2 \quad P=(1,222,12222) \quad G I R=3 \quad C N=4,6$
$A=115 \quad 3,13256130470,3042423222461426500,57040$
$E=2-2.613135-22-1.082392+1.082392+2 \quad 2+2.613136 \quad K=(186,6) \quad 1 / 6212 / 2215$
P66 DEG=6 $F=I \quad$ AUT $=2 \quad P=(1,222,1222,2) \quad G I R=3 \quad C N=4,6$
$A=11111,2355613472,24223043022441434600,73200$
$E=2-3.414212-2.179582-.64885 \quad 2-.585792-.433552+022+3.261976 \quad K=(1810,6)$
-D(P77) 1/224 12/6402
P67 DEG=6 $F=A \quad$ AUT $=1 \quad P=(1 / 6 / 8 / 1) \quad G I R=3 \quad C N=4,6$
$A=1 \quad 1 \quad 5 \quad 1,151746212,16242050510615264162,55600$
$\mathrm{E}=2-4.14626-22-1.31784 \quad 2-.68216 \quad 4+0 \quad 2+2 \quad 2+2.14626 \quad 6 \quad K=(21 \quad 185,3) \quad 12 / 1245$

P68 DEG=6 F=I AUT=2 $P=(1,222,12222) \quad G I R=3 \quad C N=4,6$
$A=115 \quad 13,1114614422,1250 \quad 272051101246011146,20546$
$E=2-4 \quad 2-1.847762-1.41421 \quad 2-.76537 \quad 2+.76537 \quad 2+1.41421 \quad 2+1.8477626 \quad K=(21 \quad 15,3)$
$1 / 14412 / 5220$
P69 DEG=6 $F=1 \quad$ AUT $=2 \quad P=(1,222,1222,2) \quad G I R=4 \quad C N=2,8$
$A=111111,1136174172,1621541166636600,37200$
$E=-6 \quad 2-1.847762-1.414212-.765372+0 \quad 2+.765372+1.414212+1.84776 \quad 6$
$K=\left(\begin{array}{llllll}24 & 35 & 35 & 21 & 7 & 1,\end{array}\right) \quad 1 / 250 \quad 12 / 536$

TRANSITIVE GRAPHS ON 16 VERTICES (CONTD)
P70 $D E G=6 \quad F=I \quad A U T=256 \quad P=(1,24,144) \quad G I R=4 \quad C N=3,8$
A=1 $11111,11176120450,4503120312644563126,4456$
$E=2-4.82843-28+02+.828432+26 \quad K=\left(\begin{array}{llll}24 & 28 & 15 & 3,\end{array}\right) \quad D(P 20) D(P 23) D(P 50) D(P 53)$ $\begin{array}{lllllllllllllll}H 6[B 1] & 1 / 70 & 2 / 506 & 6 / 3324 & 9 / 516 & 10 / 305 & 12 / 4740 & 13 / 312 & 14 / 34\end{array}$

P71 DEG=6 AUT=2 $P=(1,1122,12222) \quad G I R=3 \quad C N=4,4$
$A=11515,21516164554,1002240242121222226300,56240$
$E=4-2.732052-23+04+.73205246 \quad K=\left(\begin{array}{lllllll}18 & 8,6 & 1\end{array}\right) \quad 8 / 2072 \quad 11 / 125 \quad 12 / 264413 / 1124$
P72 $D E G=6 \quad F=I \quad A U T=2 \quad P=(1,1122,1222,2) \quad G I R=3 \quad C N=4,4$
$A=11515,21516164554,222221241021204235200,72600$
$E=2-3.414212-22-1.41421 \quad 2-.585793+02+1.41421246 \quad K=(1810,61) \quad B 2 \times H 12$
2/63 6/4644 12/2047

```
P73 DEG=6 F=IA AUT=2 P=(1,222,2222,1) GIR=3 CN=4,6
A=1 3 3 5,1 1 132 74 144,142 2110 5060 12314 5462,17600
E=2-4.02734 3-2 4+0 2+.33182 2+1.19891 2+2.49661 6 K=(21 17 5,3) 1/214
12/1522
```

```
P74 DEG=6 F=I AUT=4 P=(1,24,1224) GIR=3 CN=4,6
A=1 1 5 5,13 23 170 340 230,1002 404 6502 7024 26442,17014
E=2-2.82843 3-2 4-1.41421 4+1.41421 2+2.82843 6 K=(18 7,6) 1/150 12/1603
13/245 14/320
P75 DEG=6 F=I AUT=16 P=(1,114,144) GIR=3 CN=4,4
A=1 1 5 5,25 15 6 60 510,460 3110 5242 2702 15222,22612
E=2-2.82843 5-2 4+0 2+2 2+2.82843 6 K=(18 2,6 2) 2/415 6/1352 9/2161 10/123
12/1234
```

P76 $\quad D E G=6 \quad F=A \quad$ AUT $=4 \quad P=(1,114,11114,1) \quad G I R=3 \quad C N=4,4$
$A=1155,25151702770,424426412 \quad 2502 \quad 22422,76200$
$E=-4 \quad 3-2 \quad 4-1.41421 \quad 2+04+1.4142146 \quad K=(18 \quad 9,62) \quad 6 / 2362 \quad 8 / 255$
P77 DEG=6 $F=I \quad A U T=2 \quad P=(1,222,222,12) \quad G I R=3 \quad C N=4,4$
$A=1135,33752412452,3241402 \quad 22041460036200,75400$
$E=2-2.496613-22-1.198912-.331824+0 \quad 2+4.027346 \quad K=(151,94) \quad 1 / 24412 / 1017$
P78 DEG=6 AUT=1 $P=(1 / 6 / 9) \quad G I R=3 \quad C N=4,6$
$A=1115,16130306116,6502024415252523422,54244$
$E=-4 \quad 2-3.23607 \quad 2-25+0 \quad 2+1.23607 \quad 3+26 \quad K=(21 \quad 14,3) \quad 6 / 6610$
P79 DEG=6 $F=A$ AUT $=1 \quad P=(1 / 6 / 8 / 1) \quad G I R=3 \quad C N=4,4$
$A=1 \quad 1 \quad 111,37513432442,314300241041142234500,57200$
$E=2-3.41421-22-1.414212-1.236072-.585792+02+1.414212+3.236076$
$K=(188,61) \quad 12 / 1642$
P80 DEG=6 AUT=1 $P=(1 / 6 / 9) \quad G I R=3 \quad C N=4,6$
$A=11111,1612425616,142304606250723702,13340$
$E=-42-3.26197-22-1.4142102+.433552+.64885 \quad 2+1.414212+2.17958 \quad 6$
$K=(2114,3) \quad D(P 34) 12 / 1303$
P81 DEG=6 $F=T V I \quad A U T=72 \quad P=(1,6,9) \quad G I R=3 \quad C N=4,4 \quad T=1$
$A=1 \quad 3 \quad 71,21 \quad 61 \quad 104 \quad 22430,16244425050162444702,51310 \quad E=9-2 \quad 6+26$

13/1403

P82 $D E G=6 \quad F=I \quad A U T=768 \quad P=(1,6,16,2) \quad G I R=4 \quad C N=2,8 \quad T=1$
$A=111111,11176170170,146146363637400,37400 \quad E=-6 \quad 3-28+0 \quad 3+2 \quad 6$

$7 / 310$ 8/1414 9/3200 10/540 11/213 12/707 13/417 14/142

```
P83 DEG=6 F=A AUT=1 P=(1/6/8/1) GIR=3 CN=4,4
A=1 1 1 5,35 51 130 6 402,1310 2640 1026 11036 5502,56600
E=-4 2-2.17958 -2 2-1.41421 2-.64885 2-.43355 0 2+1.41421 2+3.26197 6
K=(llll
```

P84 DEG=6 $F=R I$ AUT $=12 \quad P=(1,6,36) \quad G I R=3 \quad C N=4,6 \quad T=1 \quad$ SHRIKHANDE GRAPH $A=135 \quad 3,11613010442,61432221250114067540,30720 \quad E=9-26+26$ $K=(184,6) \quad 3 / 310 \quad 6 / 4550 \quad 11 / 640 \quad 13 / 1411$

P85 DEG=6 $F=I \quad A U T=2 \quad P=(1,222,12222) \quad G I R=3 \quad C N=4,6$
$A=11111,211114056526,2641231240441210230624,31212$
$E=2-3.414212-3.261972-.585792+02+.433552+.6488522+2.179586 \quad K=(2114,3)$
$1 / 12212 / 3022$
P86 $\mathrm{DEG}=6 \mathrm{AUT}=8 \quad \mathrm{P}=(1,1122,12222) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=4,4$
$A=11515,5456170570,120226022221021236100,76040$
$E=2-3.236074-25+02+1.23607246 \quad K=(188,62) \quad D(P 22) 6 / 2607$ 9/507 12/2072 $13 / 324$

P87 $D E G=6 \quad F=I \quad A U T=16 \quad P=(1,24,124,2) \quad G I R=4 \quad C N=2,8$
$A=1 \quad 1 \quad 1 \quad 1,111170174172,126 \quad 5614636 \quad 36600,37200$
$E=-6-24-1.414214+04+1.4142126 \quad K=\left(\begin{array}{llllllllll}24 & 35 & 35 & 21 & 7 & 1,\end{array}\right) \quad 2 / 3056 / 11718 / 2224$
$11 / 310 \quad 12 / 63513 / 61114 / 304$

```
P88 DEG=6 AUT=1 P=(1/6/7/2) GIR=3 CN=4,4
A=1 1 7 1,15 31 1606 412,1022 3120 1446 364 26600,56600
E=-4 4-2 2-1.23607 5+0 2 2+3.23607 6 K=(18 9,6 1) 6/5062
```

P89 DEG=6 $F=I \quad$ AUT $=16 \quad P=(1,114,124,2) \quad G I R=3 \quad C N=4,4$
$A=115 \quad 5,15256170570,24222123021022237000,76400 \quad E=-45-26+02+246$

12/746 13/1061

```
P90 DEG=6 F=I AUT=4 P=(1,222,1224) GIR=3 CN=4,6
A=1 1 1 11, 11 21 146 146 146,320 2250 5024 4422 32414,33012
E=2-4 -2 4-1.41421 2+0 4+1.41421 2+2 6 K=(21 15,3) D(P54) 2/125 6/10151 8/545
11/223 12/2407 13/540 14/52
```

P91 $D E G=6 \quad F=I A \quad$ AUT $=4 \quad P=(1,24,1124,1) \quad G I R=3 \quad C N=4,6$
$A=1135,23151706320,25024421504124125424,77000$ $E=2-2.82843 \quad 5-2 \quad 4+0 \quad 2+2 \quad 2+2.82843 \quad 6 \quad K=(18 \quad 8,6) \quad 2 / 610 \quad 6 / 11150 \quad 9 / 1430 \quad 10 / 310$ 12/3300

P92 $D E G=6 \quad A U T=1 \quad P=(1 / 6 / 9) \quad G I R=3 \quad C N=4,4$
$A=1151,311716416502,10402002626454127420,66220$
$E=4-2.73205-22-1.236072+04+.732052+3.236076 \quad \mathrm{~K}=(188,61) \quad 13 / 261$
P93 $\quad \mathrm{DEG}=6 \quad \mathrm{~F}=\mathrm{N} \quad \mathrm{AUT}=2 \quad \mathrm{P}=(1,11112,111222) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=4,6$
$A=13511,1130206762,5104506122606214344,22344$
$E=-42-3.236074-1.4142102+1.236074+1.4142126 \quad K=(2113,3)$

P94 DEG=6 F=I AUT=12 $P=(1,123,36) \quad G I R=3 \quad C N=4,4$
$A=1371,11162162162,4502306224644431110,47104 \quad E=2-43-26+04+26$ $K=(21 \quad 15,31) \quad D(P 45) 3 / 6054 / 21515 / 540646 / 2417 \quad 9 / 3101 \quad 10 / 605$

P95 DEG=6 \quad UUT $=2 \quad P=(1,11112,111222) \quad G I R=3 \quad C N=4,4$
$A=1371,1130224762,5505504304224434122,32062$
$E=-4 \quad 2-3.23607 \quad 2-2 \quad 5+0 \quad 2+1.236073+26 \quad K=(21 \quad 13,31) \quad 6 / 751 \quad 9 / 364$
P96 DEG=7 F=XTI AUT=203212800 $\mathrm{P}=(1,7,+) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=8,2 \quad \mathrm{~T}=2$
$A=13717,37771770400,1400340074001740037400,77400$ 2[H14] SW(H14) SW(H5) D2[D4] H5[B2] 1/125 2/132 3/147 4/2446 5/62311 6/14206 7/612 8/2602 9/2503 10/147 11/164 12/7040 13/720 14/215

```
P97 DEG=7 F=I AUT=4 P=(1,124,224) GIR=3 CN=4,4
A=1 3 7 11,5 51 25 60 700,1540 3620 5152 14546 2632,43226 E=4-3 5-1 4+1 2+3 7
K=(12 2,9 1) 3/311 6/4463 11/324 13/163
P98 DEG=7 AUT=1 P=(1/7/8) GIR=3 CN=4,4
A=1 1 5 11,5 75 45 330 426,1442 3102 74304252 26222,70246
E=2-3.14626 2-3 3-1 2-.31784 2+.31784 2+1 2+3.14626 7 K=(12 1,9 4) 12/1722
P99 DEG=7 AUT=1 P=(1/7/8) GIR=3 CN=4,4
A=1 3 7 11,5 61 45 324 430,1426 3140 5252 7102 24720,70252
E=3-3 2-2.23607 4-1 3+1 2+2.23607 3 7 K=(12 3,9 2) 6/13121
P100 DEG=7 AUT=1 P=(1/7/8) GIR=3 CN=4,4
A=1 1 7 1,15 61 123 124 606,1434 1246 2032 11512 16260,74540
E=2-3 2-2.23607 4-1.73205 -1 4+1.73205 2+2.23607 7 K=(12 2,9 2) 13/1413
P101 DEG=7 F=I AUT=2 P=(1,1222,2222) GIR=3 CN=4,4
A=1 1 5 7,33 11 105 350 324,1102 2602 4056 12036 17540,27620
E=2-3.17958 2-2.41421 2-1.64885 2-1.43355 2+.41421 2+1 2+2.26197 37
K=(12 4,9 1) 1/131 12/3043
P102 DEG=7 AUT=1 P=(1/7/8) GIR=3 CN=4,4
A=1 1 3 5,25 17 105 214 450,1542 3604 4260 13162 14232,51432
E=2-3.17958 -3 2-1.64885 2-1.43355 -1 2-.41421 1 2+2.26197 2+2.41421 7
K=(12 2,9 3) 12/4646
P103 DEG=7 F=I AUT=2 P=(1,1222,11222) GIR=3 CN=4,4
A=1 3 3 7,13 11 105 74 474,1110 3204 2342 14322 16540,66620
E=3-3 2-2.41421 2-1 2-.41421 2+.41421 1 2+2.41421 3 7 K=(12 4,9 2) 2/261
6/14013 12/2323
```

```
P104 DEG=7 AUT=2 P=(1,1222,11222) GIR=3 CN=4,4
A=1 3 3 7,13 5 111 74 474,142 2222 7104 17210 12740,64720
E=3-3 4-1.73205 2-1 1 4+1.73205 3 7 K=(12 2,9 2) 8/1245 11/622 12/2722 13/156
P105 DEG=7 F=I AUT=2 P=(1,1222,11222) GIR=3 CN=4,4
A=1 3 3 13,7 1 1 360 714,1502 1602 2354 4334 26270,16164
E=-5 -3 2-2.41421 2-1 2-.41421 2+.41421 3+1 2+2.41421 7 K=(15 8,6 2) D(P33)
D(P83) 2/541 6/3711 12/1706
P106 DEG=7 AUT=2 P=(1,1222,11222) GIR=3 CN=4,6
A=1 3 3 3,3 21 41 360 714,1406 1412 2354 4334 26264,16170
E=-5 -3 4-1.73205 2-1 3+1 4+1.73205 7 K=(15 8,6) 8/2524 11/341 12/5424 13/642
```

P107 $D E G=7 \quad F=I \quad A U T=8 \quad P=(1,124,44) \quad G I R=3 \quad C N=4,4$
$A=13711,53145252126,112665263001522032540,71460 \quad E=4-35-14+12+37$ $K=(124,93) \quad 3 / 6074 / 1076 \quad 5 / 3217 \quad 6 / 1725 \quad 9 / 31710 / 42711 / 24713 / 463$

```
P108 DEG=7 AUT=1 P=(1/7/8) GIR=3 CN=4,4
A=1 3 1 7,31 51 61 300 504,1414 3432 6132 646 23246,31710
E=3-3 2-2.41421 2-1 2-.41421 2+.41421 1 2+2.41421 3 7 K=(12 3,9 3) 6/12701
```

P109 DEG=7 $\mathrm{F}=\mathrm{I} \quad \mathrm{AUT}=768 \quad \mathrm{P}=(1,16,6,2) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=4,4$
$A=1373,233103360760,743142074431437400,77400 \quad E=-511-13+37$
$K=(128,93) \quad S W(H 11) \operatorname{SW}(H 2) \operatorname{SW}(H 7)-D(P 132)-D(P 44) H 7[B 2] 2 / 4473 / 3244 / 2067$
$5 / 72510 \quad 6 / 10307 \quad 7 / 512 \quad 8 / 742 \quad 9 / 3201 \quad 10 / 54111 / 14712 / 507013 / 126014 / 123$
P110 $D E G=7 \quad F=N \quad$ AUT $=2 \quad P=(1,111112,11222) \quad G I R=3 \quad C N=4,4$
$A=11715,23510556466,2302130530213302 \quad 26540,56640$
$E=-34-2.414212-2.236074+.4142112+2.2360737 \quad K=(122,92)$
P111 $D E G=7 \quad F=I \quad$ AUT $=256 \quad P=(1,124,44) \quad G I R=3 \quad C N=6,4$
$A=137 \quad 3,32343240520,152036403254453413254,24534$
$\mathrm{E}=2-3.82843$ 9-1 $2+1.828432+37 \quad \mathrm{~K}=(12,93) \quad \mathrm{D}(\mathrm{P} 31) \mathrm{H} 6[\mathrm{~B} 2] 1 / 2232 / 57$ 6/2627
$9 / 33310 / 30712 / 1741$ 13/525 14/251

```
P112 DEG=7 F=IA AUT=4 P=(1,124,124,1) GIR=3 CN=4,4
A=1 3 7 11,5 51 25 360 640,1520 2152 5146 2232 21226,77400
E=2-3.82843 9-1 2+1.82843 2+3 7 K=(12 6,9 1) SW(H12) SW(H6) -D(P138) -D(P49)
2/522 6/10564 9/2245 10/131 12/3340
```

```
P113 DEG=7 AUT=1 P=(1/7/8) GIR=3 CN=4,4
A=1 3 5 1,7 71 121 234 116,434 1152 3022 14640 33602,36260
E=3-3 2-2.23607 4-1 3+1 2+2.23607 3 7 K=(12 3,9 2) 6/11215
P114 DEG=7 AUT=1 P=(1/7/8) GIR=3 CN=4,4
A=1 1 1 15,15 75 75 374 202,1010 3402 3022 17006 17102,76042
E=2-2.84776 2-2.41421 2-1.76537 -1 2-.23463 2+.41421 2+.84776 1 5 7
K=(9 2,12 8) 12/2266
```

P115 DEG=7 $F=I \quad$ AUT $=2 \quad P=(1,1222,2222) \quad G I R=3 \quad C N=4,6$
$A=1 \quad 1 \quad 5 \quad 11,5111250524,1352726 \quad 5252125261372,766$
$E=2-5.027343-12-.668182+.198914+12+1.496617 \quad K=\left(\begin{array}{llll}18 & 16 & 5,3\end{array}\right) \quad D(P 18) \quad D(P 36)$
D(P42) D(P67) D(P73) 1/47 12/4057
P116 $\quad \mathrm{DEG}=7 \quad$ AUT $=4 \quad \mathrm{P}=(1,1114,11114) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=4,4$
$A=11115,355513537410,1402100671021702217042,67202$
$E=-34-2.414213-14+.414212+157 \quad K=(92,128) \quad-D(P 88) 6 / 36268 / 3013$
P117 $D E G=7 \quad A U T=1 \quad P=(1 / 7 / 8) \quad G I R=3 \quad C N=4,4$
$A=1111,156145314336,1322201644621241424472,34322$
$E=2-4.26197-3-12-.566452-.414212-.3511512+1.179582+2.414217$
$K=(158,61) \quad D(P 79) 12 / 1354$
P118 $\quad D E G=7 \quad A U T=2 \quad P=(1,111112,11222) \quad G I R=3 \quad C N=4,4$
$A=13117,31510556456,1340334042221212234610,72510$
$E=3-3 \quad 2-2.236074-13+1 \quad 2+2.2360737 \quad K=(122,93) \quad 6 / 5579 / 565$

P119 DEG=7 AUT=1 $P=(1 / 7 / 8) \quad G I R=3 \quad C N=4,6$
$A=1151,16545232122,5023654345437213232,23066$
$E=2-4.236072-2.41421-12-.414212+.236072+.414212+12+2.414217 \quad K=(158,6)$
12/3403

```
P120 DEG=7 AUT=1 P=(1/7/8) GIR=3 CN=4,4
A=11115,25 21 105 344 116,106 3430 6252 772 7252,13432
E=2-4.23607-3 4-1 2+. 23607 5+1 3 7 K=(15 8,6 1) D(P64) 6/5245
```

P121 $D E G=7 \quad F=I \quad A U T=4 \quad P=(1,1222,224) \quad G I R=3 \quad C N=4,4$
$A=11547,33310336456,360236046101510432510,73204$
$E=2-3 ~ 4-2.41421-14+.414212+12+37 \quad K=(124,92) \quad 2 / 6226 / 107068 / 1246$
11/624 12/2370 13/334 14/53
P122 $\mathrm{DEG}=7 \mathrm{~F}=\mathrm{I}$ AUT=2 $\mathrm{P}=(1,1222,2222) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=6,4$
$A=1 \quad 1 \quad 5 \quad 11,55535 \quad 12406,1230254432624562 \quad 25642,13522$
$E=2-3.496612-2.19891 \quad 2-1.331823-14+12+3.027347 \quad K=(12,94) \quad 1 / 31112 / 1552$
P123 $\mathrm{DEG}=7 \mathrm{~F}=\mathrm{I} \quad \mathrm{AUT}=2 \quad \mathrm{P}=(1,1222,2222) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=4,4$
$A=1 \quad 1 \quad 1 \quad 13,27 \quad 51 \quad 25 \quad 310704,115262654101340432132,34246$
$E=2-3.613132-2.082395-1 \quad 2+.082392+1.613132+37 \quad K=(124,91) \quad D(P 9) 1 / 33$
12/2255

```
P124 DEG=7 AUT=1 P=(1/7/8) GIR=3 CN=4,4
A=1 1 1 15,25 1 121 344 156,1252 2422 4116 4716 14342,53430
E=-5 -3 2-2.23607 4-1 5+1 2+2.23607 7 K=(15 8,6 1) 6/5252
```

P125 $\quad \mathrm{DEG}=7 \quad \mathrm{~F}=\mathrm{I} \quad \mathrm{AUT}=2 \quad \mathrm{P}=(1,1222,2222) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=4,4$
$A=13311,25713262562,314231450441243034620,73140$
$\mathrm{E}=2-32-2.847762-1.765372-.414212-.234632+.847762+2.4142137 \mathrm{~K}=(124,92)$
$1 / 30512 / 5260$

```
P126 DEG=7 AUT=1 P=(1/7/8) GIR=3 CN=4,6
A=1 3 5 1,21 1 125 340 526,474 434 5172 7202 22352,24552
E=2-4.23607 4-1.73205 -1 2+.23607 2+1 4+1.73205 7 K=(15 8,6) 13/1304
```

P127 $\mathrm{DEG}=7 \quad \mathrm{~F}=\mathrm{I} \quad \mathrm{AUT}=2 \quad \mathrm{P}=(1,1222,2222) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=4,4$
$A=1331,11372242,77013641670115645654,3534$
$E=-5 \quad 2-2.847762-1.765372-.414212-.23463 \quad 2+.84776 \quad 2+1 \quad 2+2.414217$
$K=\left(\begin{array}{ll}15 & 8,6\end{array}\right) \quad D(P 32) 1 / 5312 / 676$
P128 DEG $=7$ AUT $=1 \quad \mathrm{P}=(1 / 7 / 8) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=4,4$
$A=131111,15 \quad 21 \quad 127 \quad 350 \quad 36,4443122 \quad 6120 \quad 1301616642,31550$
$E=2-3 \quad 2-2.41421 \quad 2-2.23607-1 \quad 2-.414212+.414212+2.236072+2.414217$
$\mathrm{K}=\left(\begin{array}{ll}12 & 2,9\end{array}\right) \quad 12 / 1632$
$P 129 \quad D E G=7 \quad F=I \quad$ AUT $=4 \quad P=(1,124,1124) \quad G I R=3 \quad C N=4,6$
$A=1 \quad 1 \quad 1 \quad 11,5 \quad 5125360414,65252653123306 \quad 25072,13066$
$E=2-3.82843 \quad 2-3 \quad 3-1 \quad 6+1 \quad 2+1.828437 \quad K=(157,6) \quad D(P 91) 2 / 431 \quad 6 / 13013 \quad 9 / 2330$
10/644 12/4625

```
P130 DEG=7 F=TIA AUT=5040 P=(1,7,7,1) GIR=4 CN=2,8 T=2
A=1 1 1 1,11111 374 372,366 356 336 276 176,77400 E=-7 7-1 7+1 7
K=(21 35 35 21 7 1,) SW(H1) SW(H8) -W8(B2) - B2XH14 B2*H14 2/644 4/1231 5/2754
6/6262 7/644 8/2454 9/1254 11/541 12/736 13/607
P131 DEG=7 F=I AUT=2 P=(1,1222,2222) GIR=3 CN=4,4
A=1 3 7 1,1 11 105 262 162,352 2326 5450 13424 21270,50564
E=2-4.26197 2-2.41421 2-.56645 2-.35115 2+.41421 2+1 2+1.17958 3 7 K=(15 8,6 1)
D(P41) 1/321 12/6043
```

P132 DEG=7 F=IA AUT=48 $\mathrm{P}=(1,16,16,1) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=4,4$
$A=11115,157575374202,100610127022704236102,77400 \quad E=3-37-14+157$
$K=(93,128) \quad S W(H 13) S W(H 3) S W(H 9)-D(P 61)-D(P 89) \quad B 2 X H 132 / 4644 / 14545 / 65405$ 6/7604 7/461 8/1231 9/2443 11/231 12/2531 13/701

```
P133 DEG=7 F=I AUT=16 P=(1,124,224) GIR=3 CN=4,4
A=1 1 1 3,3 43 23 6 12,770 3364 1654 11534 1714,41474
E=-5 4-2.41421 -1 4+.41421 4+1 3 7 K=(15 8,6 2) D(P47) 2/217 6/5207 8/2512
11/154 12/5142 13/1074 14/305
```

```
P134 DEG=7 AUT=1 P=(1/7/8) GIR=3 CN=4,6
A=1 3 5 5,33 41 111 220 466,1700 2426 2510 17022 34710,10356
E=2-3.14626 2-3 3-1 2-. 31784 2+. 31784 2+1 2+3.14626 7 K=(12 5,9) 12/3026
```

P135 DEG=7 AUT=1 $P=(1 / 7 / 8) \quad G I R=3 \quad C N=4,4$
A=1 $151,351105350136,126224241321650617424,4732$
$\mathrm{E}=2-4.23607$ 2-2.23607 3-1 2+. $236074+12+2.236077 \quad \mathrm{~K}=\left(\begin{array}{ll}15 & 8,6 \\ 1) & \mathrm{D}(\mathrm{P} 60) \\ 9 / 712\end{array}\right.$
P136 $D E G=7 \quad$ AUT $=8 \quad P=(1,1222,11222) \quad G I R=3 \quad C N=4,4$
A=1 $11 \begin{array}{lllllllll} & 3,3 & 43 & 23 & 774,64 & 70 & 6314 & 6314 & 26416,16416\end{array}$
$E=2-4.23607-34-12+.236075+137 \quad K=(157,62) \quad D(P 24) \quad D(P 62) \quad D(P 63) 6 / 2566$
9/2136 12/2613 13/515

```
P137 DEG=7 AUT=8 P=(1,1222,11222) GIR=3 CN=4,6
A=1 3 3 1,1 43 23 314 774,406 4126360 6360 26074,16074
E=-5 -3 2-2.23607 4-1 5+1 2+2.23607 7 K=(15 9,6) 6/14450 9/1604 12/5203
13/1450
```

```
P138 DEG=7 F=IA AUT=4 P=(1,124,124,1) GIR=3 CN=4,4
A=1 1 1 13,7 73 67 14 132,246 1510 2604 15430 16444,77400
E=2-3 2-1.82843 7-1 2+1 2+3.82843 7 K=(9 1,12 6) SW(H10) SW(H4) -D(P112)
-D(P21) -D(P43) -D(P72) 2/614 6/6512 9/3015 10/132 12/3112
```

P139 DEG=7 F=I AUT=4 $\quad \mathrm{P}=(1,124,224) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=6,4$
A=1 $1113,2733147132246,101024046510720436430,37044$
$E=4-2.41421 \quad 2-1.82843 \quad 3-14+.41421 \quad 2+3.828437 \quad K=(9,126) \quad D(P 16)-D(P 17)$
-D(P66) 1/151 12/4174 13/1432 14/47

```
P140 DEG=7 F=I AUT=16 P=(1,124,1124) GIR=3 CN=4,4
A=1 1 1 3,3 43 23 360 774,406 412 6254 16134 6254,46134 E=-5 2-3 5-1 6+1 3 7
K=(15 9,6 2) D(P76) 3/614 4/616 5/3750 6/3534 7/621 8/634 9/1075 10/622
P141 DEG=7 AUT=1 P=(1/7/8) GIR=3 CN=4,4
A=1 1 1 5,31 21 121 344 356,1152 2422 4216 12424 24616,34152
E=-5 -3 2-2.41421 2-1 2-.41421 2+.41421 3+1 2+2.41421 7 K=(15 9,6 1) D(P35)
6/5072
```

```
P142 DEG=7 AUT=2 P=(1,1222,11222) GIR=3 CN=4,4
A=1 1 1 11,25 47 33 60 414,1112 3206 5524 3650 12532,24646
E=2-3 4-2.23607 3-1 2+1 4+2.23607 7 K=(12 3,9 2) 9/3007
P143 DEG=7 AUT=2 P=(1,1222,11222) GIR=3 CN=4,6
A=1 1 1 11,25 27 53 60 414,1212 3106 3544 5630 12532,24646
E=2-3 4-2.23607 3-1 2+1 4+2.23607 7 K=(12 1,9) 11/641
```

Q1 $D E G=0 \quad F=X T V I A P \quad P=(1,+) \quad C N=1,17$
Q2 DEG=2 F=TVIP AUT=2 $P=(1,2,2,2,2,2,2,2,2) \quad G I R=17 \quad C N=3,9 \quad$ POLYGON
$A=1142,201010040400,20020001000100004000,40000120000$
$E=2-1.96592-1.70042-1.20532-.54732+.18452+.89152+1.47802+1.86492$ $K=\left(\begin{array}{llllll}78 & 220 & 330 & 252 & 84 & 8,\end{array}\right) \quad 1 / 100$

Q3 $D E G=4 \quad F=V I \quad$ AUT $=4 \quad \mathrm{P}=(1,4,44,4) \quad \mathrm{GIR}=4 \quad \mathrm{CN}=3,9 \quad \mathrm{~T}=1$
$A=1111,2412050214,70122406404022200,30100141400$
$\mathrm{E}=4-2.905704$-. $487934+.344154+2.049484 \mathrm{~K}=(48805512$, $) 1 / 11$
Q4 $D E G=4 \quad F=V I \quad A U T=2 \quad P=(1,22,22,22,22) \quad G I R=3 \quad C N=4,6$
$A=11315,241244102500,24014002200120005000,70000164000$
$E=2-2.24782-1.78142-1.75262-.80902-.31382-.10102+1.66262+3.34304$
$K=(4556 \quad 15,3) \quad D(Q 2) 1 / 210$
Q5 $\quad D E G=4 \quad F=V I \quad$ AUT $=2 \quad P=(1,22,2222,22) \quad G I R=4 \quad C N=3,9$
$A=11111,242412122,1054501201440014200,40440120300$
$E=2-3.17122-2.51332-1.02072-.22242+.16452+1.07602+1.31762+2.36954$
$K=(48805512$,) $1 / 14$
Q6 $\quad \mathrm{EEG}=4 \quad \mathrm{~F}=\mathrm{VI} \quad \mathrm{AUT}=2 \quad \mathrm{P}=(1,22,222,222) \quad \mathrm{GIR}=4 \quad \mathrm{CN}=3,9$
$A=11111,34324214,224004200125005240,12400105200$
$E=2-3.666382-1.515902-1.074472-.362792+.272752+.659682+.930692+2.756424$
$K=\left(\begin{array}{lllll}48 & 84 & 75 & 36 & 7,\end{array}\right) \quad 1 / 300$
Q7 DEG=6 F=VI AUT=2 $P=(1,222,22222) \quad G I R=3 \quad C N=5,6$
A=1 $335,1170130212,142413442542103044442,61120162050$
$\mathrm{E}=2-3.48182-2.77492-2.06322-.27462+.79052+1.11522+1.55122+2.13776$
$K=(27 \quad 20,3) \quad 1 / 130$
Q8 $D E G=6 \quad F=V I \quad$ AUT $=2 \quad P=(1,222,222,22) \quad G I R=3 \quad C N=5,5$
$A=1135,33752412452,324140222041420034400,65400172200$
$\mathrm{E}=2-2.328742-2.279742-1.801442-.769742-.624422+.112352+.457292+4.234446$
$K=(214,94) \quad-D(Q 6) 1 / 61$
Q9 $\mathrm{DEG}=6 \mathrm{~F}=\mathrm{VI} \quad \mathrm{AUT}=2 \quad \mathrm{P}=(1,222,22222) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=5,6$
$A=1153,2513142344510,260302070101001424022,7220265404$
$\mathrm{E}=2-2.7212$ 2-2.1884 2-1.6932 2-1.6218 2-1.0408 2+1.5022 2+1.8222 2+2.9410 6
$K=\left(\begin{array}{ll}24 & 12,6\end{array}\right) \quad 1 / 141$
Q10 DEG=6 F=VI AUT=2 $P=(1,222,2222,2) \quad G I R=3 \quad C N=4,6$
$A=11111,2355134724,100222141422120425104,7340067200$
$E=2-3.45302-2.01422-1.35632-.86112-.30342+.08352+1.37702+3.52756$
$K=\left(\begin{array}{ll}24 & 16 \\ 5,6\end{array}\right) \quad 1 / 64$
Q11 DEG=6 F=VI AUT=2 $P=(1,222,2222,2) \quad G I R=3 \quad C N=4,6$
A=1 $3355,1113274462,31421025044415010160,65200172400$
$E=2-4.21372-1.56812-1.30632-.88992-.03792+1.05602+1.16422+2.79566$
$K=(272810,3) \quad-D(Q 8) 1 / 112$
Q12 $D E G=6 \quad F=V I \quad$ AUT $=2 \quad P=(1,222,22222) \quad G I R=4 \quad C N=3,9$
$A=1111,1117217464,1112220454021202425012,5016424152$
$E=2-4.871652-1.427692-1.035252+.349052+.403552+.528692+.844212+2.209106$
$K=(3040256$,) 1/51

Q13 $D E G=6 \quad F=V I \quad A U T=2 \quad P=(1,222,22222) \quad G I R=3 \quad C N=4,6$
$A=111111,21115632640,100306431121204425102,2322443412$
$E=2-3.718542-2.986682-.648332-.38282 \quad 2-.129262+.669062+1.642532+2.554036$
$K=(27245,3) \quad 1 / 106$
Q14 DEG=8 $F=V I S$ AUT $=4 \quad P=(1,44,44) \quad G I R=3 \quad C N=5,5$
$A=13513,3115237724,65225521364324232160,74510165604$
$E=4-3.393634-.856224-.143784+2.393638 \quad K=(124,124) \quad D(Q 3)-D(Q 3) 1 / 226$
Q15 DEG=8 $F=V I S$ AUT $=2 \quad P=(1,2222,2222) \quad G I R=3 \quad C N=5,5$
$A=1335,11612717660,1710253212741611415062,61544162342$
$E=2-3.53402-2.34882-2.09522-1.85362+.85362+1.0952 \quad 2+1.34882+2.53408$
$K=(124,124) \quad 1 / 56$
Q16 $\quad \mathrm{DEG}=8 \mathrm{~F}=\mathrm{VI} \quad \mathrm{AUT}=2 \quad \mathrm{P}=(1,2222,2222) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=6,5$
$A=11513,353321211122,1054270616461165026720,3350647246$
$E=2-3.98022-1.97502-1.61692-1.17172-.85072+1.00382+2.26852+2.32228$
$K=(12,124) \quad-Q 211 / 232$
Q17 $\mathrm{DEG}=8 \mathrm{~F}=\mathrm{VI}$ AUT $=2 \quad \mathrm{P}=(1,2222,2222) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=6,5$
$A=11315,373710543472,334240252041670035640,55412136224$
$E=2-3.00672-2.73572-1.43732-1.24312-.80172+.29692+1.24052+3.68718$
$K=(9,158)-Q 19-D(Q 5) 1 / 152$
Q18 DEG=8 $\mathrm{F}=\mathrm{TVIS}$ AUT $=8 \quad \mathrm{P}=(1,8,8) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=6,6 \quad \mathrm{~T}=1$
$A=1335,215543231624,1170243240661151433252,7306134740$
$E=8-2.561558+1.56155 \quad 8 \quad K=(12,12) \quad 1 / 213$
Q19 $\mathrm{DEG}=8 \mathrm{~F}=\mathrm{VI} \quad \mathrm{AUT}=2 \quad \mathrm{P}=(1,2222,2222) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=5,6$
$A=13135,2315531214,1422267457321562 \quad 22354,2375043760$
$E=2-4.68712-2.24052-1.29692-.19832+.24312+.43732+1.73572+2.00678$
$K=(158,9)-Q 17 \quad D(Q 5) \quad 1 / 143$
Q20 DEG=8 F=VIS AUT=2 $P=(1,2222,2222) \quad G I R=3 \quad C N=5,5$
$A=13513,21112717714,662236415521310427042,70560164350$
$E=2-4.029172-2.590372-.909962-.585212-.414792-.090042+1.590372+3.029178$
$K=(124,124) \quad 1 / 305$
Q21 $\quad \mathrm{DEG}=8 \mathrm{~F}=\mathrm{VI} \quad \mathrm{AUT}=2 \quad \mathrm{P}=(1,2222,2222) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=5,6$
$A=11315,156310543572,3743244452640631206,7561076620$
$E=2-3.322232-3.268492-2.003832-.149282+.171752+.616902+.975012+2.980178$
$K=(124,12) \quad-Q 161 / 145$
Q22 DEG=8 F=VI AUT $=2 \quad \mathrm{P}=(1,2222,2222) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=4,6$
$A=13513,5311774,7727647521072424652,52524125252$
$E=2-5.418982-1.121732-.676582-.536212+.508662+.588092+.829692+1.827068$ $K=(18165,6)-Q 23 \mathrm{D}(\mathrm{Q} 10) \mathrm{D}(\mathrm{Q} 11)-\mathrm{D}(\mathrm{Q} 4) 1 / 216$

Q23 DEG=8 F=VI AUT $=2 \quad \mathrm{P}=(1,2222,2222) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=6,4$
$A=1135,1365173 \quad 375 \quad 524,252 \quad 205211241601235024,77004177002$
$E=2-2.82712-1.82972-1.58812-1.50872-.46382-.32342+.12172+4.41908$
$K=(6,18165) \quad-Q 22 \quad D(Q 4)-D(Q 10)-D(Q 11) 1 / 126$

R1 DEG=0 $F=X T V I A P \quad P=(1,+) \quad C N=1,18$
R2 $D E G=1 \quad F=X T I P$ AUT $=10321920 \quad P=(1,1,+) \quad C N=2,9 \quad T=1$
$A=1040,2001000400,020000100000,400000200000$
R3 DEG=2 F=XTIP AUT=1866240 $P=(1,2,+) \quad G I R=3 \quad C N=3,6$
A=1 $3010,030400240,4000240040000,2400040000240000$ 2[I2] 3[F3]
6[C2] 1/100 2/100 3/200 4/4000 5/1000
R4 $\quad D E G=2 \quad F=X T I P$ AUT $=576 \quad P=(1,2,2,1,+) \quad G I R=6 \quad C N=2,9$
$A=1142,3001000400,0120050020000,4000012000042000$ 3[F4] B2*I2
C2*F2 1/10 2/20 3/6 4/14 5/12
R5 $\quad D E G=2 \quad F=X T I P$ AUT $=36 \quad P=(1,2,2,2,2,+) \quad G I R=9 \quad C N=3,10$
$A=1142,20101002400,100000012000,50003000024000 \quad 2[\mathrm{I} 3] 1 / 204 / 10000$
R6 $\quad \mathrm{DEG}=2 \mathrm{~F}=\mathrm{TIAP}$ AUT=2 $\mathrm{P}=(1,2,2,2,2,2,2,2,2,1) \quad \mathrm{GIR}=18 \mathrm{CN}=2,9 \quad$ POLYGON
$A=1142,201010040400,20020001000100004000,4000020000300000$
$E=-2$ 2-1. $879392-1.532092-12-.347302+.347302+12+1.532092+1.879392$ K=(91 28649546221036 1,) B2*I3 1/200 4/401

R7 DEG=3 F=XTI AUT=124416 $P=(1,3,2,+) \quad G I R=4 \quad C N=2,9 \quad T=3$
$A=11116,1601000100,10032003200400400,400160000160000$ 3[F5] F2[C1] 1/11 2/41 3/7 4/141 5/13

R8 $\quad \mathrm{DEG}=3 \mathrm{~F}=\mathrm{XI} \mathrm{P}$ AUT $=576 \quad \mathrm{P}=(1,12,2,+) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=3,6$
$A=11512,2601000200,10032003100400400,20000140400160000$ 3[F6]
W3(F2) B2XI2 C2XF2 1/101 2/11 3/201 4/4001 5/10040
R9 $D E G=3 \quad F=1 \quad$ AUT $=2 \quad P=(1,12,22,22,22,2) \quad G I R=4 \quad C N=2,9$
A=1 11 12,6 $104240120,200100500024002000,4000150000160000$
$\mathrm{E}=-32-2.532092-1.347302-.879394+02+.879392+1.347302+2.532093$
$K=\left(\begin{array}{lllllll}73 & 180 & 225 & 146 & 49 & 8 & 1,\end{array}\right) \quad D(R 6) 1 / 414 / 421$

```
R10 DEG=3 F=IP AUT=2 P=(1,12,22,22,22,2) GIR=4 CN=3,9 PRISM
A=1 \(1112,6104240120,200100500024004000,42000120000250000\)
\(\mathrm{E}=2-2.879392-22-.879392-.652702+02+.5320912+1.347302+2.532093\)
\(K=(73180225146498\),\() \quad B2XI3 1/5 4/10001\)
```

R11 DEG=3 F=TIA AUT=12 $P=(1,3,6,6,2) \quad G I R=6 \quad C N=2,9 \quad T=3 \quad$ PAPPUS GRAPH
$A=11110,424102,5004402201040$ 1020,300 32000144000
$E=-36-1.732054+06+1.732053 \quad K=(731782101163581$,$) 3/225/620$
R12 $\mathrm{DEG}=3 \quad \mathrm{AUT}=4 \quad \mathrm{P}=(1,12,22,24,4) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=3,6$
A=1 $152,221044020,1002002100420011000,2040045000102400$
$E=4-24-1.302784+014+2.30278 \quad 3 \quad K=(72166165$ 52,1) W1(F5) $3 / 401$
R13 DEG=3 AUT=1 $P=(1 / 3 / 6 / 6 / 2) \quad G I R=6 \quad C N=2,9$
$A=11110,102424,1100200420120640,104012400016000$
$E=-32-1.96962-1.73212-1.28562-.68402+.68402+1.28562+1.73212+1.96963$
$K=\left(\begin{array}{lllllll}73 & 178 & 210 & 117 & 35 & 8 & 1,\end{array}\right) 4 / 61$
R14 DEG=4 F=XTIP AUT=36864 $P=(1,4,1,+) \quad G I R=3 \quad C N=3,6 \quad T=1$
$A=1177,3601000100,130013007200400400,6040060400360000$ 3[F7] L(L7) I2[B1] $1 / 1102 / 123 / 2204 / 40145 / 10030$

```
R15 DEG=4 F=XTI AUT=576 P=(1,4,4,+) GIR=3 CN=3,6 T=1
A=1 3 1 11,24 12 154 162 0,1000 0 7000 2000 21000,74000 26000 245000 2[I4]
L(L8) C2XF3 C2*F3 2/300 3/410 5/6000
```

R16 $\quad D E G=4 \quad F=X I \quad A U T=36 \quad P=(1,22,22,+) \quad G I R=3 \quad C N=3,6$
$A=1311,34321242520,100002000100026000,350003600055000$ 2[I5] 1/120
4/5000

R17 DEG=4 F=XI AUT=36 $P=(1,22,22,+) \quad G I R=3 \quad C N=3,6$
$A=11315,12241443420,1000020001400036000,2500013000305000$ 2[16] 1/420 4/12000

R18 $D E G=4 \quad$ AUT $=72 \quad P=(1,13,233,23) \quad G I R=4 \quad C N=2,9$
A=1 111 , $343420410,2221610016040,1160036005600$
 5/720

```
R19 DEG=4 AUT=1 P=(1/4/8/5) GIR=4 CN=2,9
A=1 1 1 1,14 2 12 4 30,20 2 24 6440 5500,2700 12140 15200
E=-4 2-2.20893 2-1.62871 2-1.21157 2-1 2+1 2+1.21157 2+1.62871 2+2.20893 4
K=(58 112 105 62 28 8 1,) 4/621
R20 DEG=4 F=IAP AUT=2 P=(1,22,22,22,22,1) GIR=3 CN=3,6 ANTIPRISM
A=1 1 3 15,24 1244 102 500,240 1400 2200 12000 5000,30000 144000 360000
E=2-2.22668 2-2 2-1.53209 2-1.18479 2-.34730 3+0 2+1.87939 2+3.41147 4
K=(55 84 35 1,3) 1/6 4/1003
R21 DEG=4 AUT=2 P=(1,22,2222,122) GIR=3 CN=3,6
A=1 3 1 1,4 42 20 10 12,24 1010 2020 740 4240,10500 106400 51200
E=2-3 2-2 4-1.30278 3+0 2+1 4+2.30278 4 K=(57 102 75 21,1) 3/1020
R22 DEG=4 F=I AUT=2 P=(1,22,2222,122) GIR=4 CN=2,9
A=1 1 1 1,24 12 14 22 20,10 2 4 3140 11600,6600 16040 15100
E=-4 2-2 2-1.87939 2-1.53209 2-. 34730 2+. 34730 2+1.53209 2+1.87939 2+2 4
K=(58 112 105 63 28 8 1,) B2*I6 1/240 4/630
R23 DEG=4 F=I AUT=2 P=(1,22,2222,122) GIR=4 CN=3,9
A=1 1 1 1,2 4 24 12 120,50 122 4054 3000 20440,20300 102400 241200
E=2-3 2-2.87939 2-.87939 2-.65270 0 2+.53209 2+1 2+1.34730 2+2.53209 4
K=(58 112 95 29,) 1/30 4/1041
R24 DEG=4 F=1 AUT=2 P=(1,22,222,122,2) GIR=4 CN=2,9
A=1 1 1 1,32 34 4 2 14,22 600 2400 1200 2440,1300 74000 134000
E=-4 2-2.87939 2-1 2-.65270 2-.53209 2+.53209 2+.65270 2+1 2+2.87939 4
K=(58 116 120 71 28 8 1,) B2*I5 1/210 4/650
R25 DEG=4 F=I AUT=2 P=(1,22,2222,122) GIR=4 CN=3,9
A=1 1 1 1,24 12 4 2 14,22 2010 5020 740 10440,4300 102400 241200
E=2-3.41147 2-2 2-1.53209 2-.34730 3+0 2+1.18479 2+1.87939 2+2.22668 4
K=(58 112 100 43 7,) 1/22 4/1030
R26 DEG=4 F=IA AUT=2 P=(1,22,222,222,1) GIR=3 CN=3,6
A=1 1 1 11,24 1242 54,122 240 500 12400 5200,40400 120200 314000
E=2-2.87939 2-2.53209 2-1.34730 2-.65270 0 2+.53209 2+.87939 2+1 2+3 4
K=(57 104 80 21,1) 1/102 4/4600
```

R27 $\quad D E G=4 \quad F=1 \quad$ AUT $=4 \quad P=(1,22,24,14,2) \quad G I R=3 \quad C N=3,6$
A=1 $11111,422224212,4141401100204010300,20440144000234000$
$\mathrm{E}=2-34-25+04+1 \quad 2+34 \quad \mathrm{~K}=\left(\begin{array}{llllll}57 & 104 & 80 & 22,1\end{array}\right) \quad$ C2XF4 $2 / 6 \quad 3 / 505 / 1005$
R28 $D E G=4 \quad F=1 \quad$ AUT $=512 \quad P=(1,4,14,4,4) \quad G I R=4 \quad C N=3,9 \quad T=1$
A=1 $1111,36306630,6001100600110024000,52000124000252000$
$\mathrm{E}=2-3.758772-29+02+.694592+3.064184 \mathrm{~K}=(5811813082284$,$) \quad I3[B1] 1 / 402$ 4/2401

R29 $D E G=4 \quad F=I \quad$ AUT $=8 \quad P=(1,4,44,14) \quad G I R=4 \quad C N=2,9 \quad T=1$
$A=1111,10220430,6142274014500,1424033003440 \quad E=-44-24-14+14+24$

R30 DEG=5 F=XTI AUT $=124416000 \quad \mathrm{P}=(1,5,+) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=6,3 \quad \mathrm{~T}=2$
$A=13717,3701000300,13003300730040020400,60400160400360400$ 3[F8] F2[C2] [2[B2] 1/111 2/13 3/304 4/4414 5/1520

```
R31 DEG=5 F=I AUT=512 P=(1,14,4,4,4) GIR=3 CN=5,5
A=1 3 7 3,23 14 60 114 260,1200 500 3200 4500 24000,52000 164000 352000
E=2-2.75877 11-1 2+1.69459 2+4.06418 5 K=(40 32,6 2) I3[B2] 1/61 4/2106
R32 DEG=5 AUT=2 P=(1,122,22222,2) GIR=3 CN=3,6
A=1 1 5 1,21 50 24 330 344,104 2042 14022 2402,45002 116200 66100
E=2-3 4-2.30278 2-1 2+0 4+1.30278 2+2 3 5 K=(44 58 25 2,2) 3/411
R33 DEG=5 AUT=72 P=(1,23,233,13) GIR=4 CN=2,9
A=1 1 1 1,174 72 60 50,30 6666 34300,33400 27400 17400
E=-5 2-2.64575 6-1 6+1 2+2.64575 5 K=(46 78 80 57 28 8 1,)
R34 DEG=5 AUT=1 P=(1/5/A/2) GIR=3 CN=3,6
A=1 1 5 1,31 10 22 202 604,140 60 2006 16402 1214,44120 13100 304500
E=2-2.7321 2-2.5634 2-1.6223 2-1.1953 -1 2+.2465 2+.7321 2+2.3169 2+2.8177 5
K=(43 50 10 1,3) 4/2051
```

```
R35 DEG=5 F=I AUT=2 P=(1,122,2222,22) GIR=3 CN=3,6
A=1 1 1 11,25 10 104 12 6,330 344 1042 10422 1200,40500 155000 162400
E=2-3 2-2.53209 2-1.34730 2-1 2-.53209 2+.65270 2+.87939 2+2.87939 3 5
K=(43 52 15 2,3) B2XI6 1/405 4/3001
```

R36 $D E G=5 \quad F=I \quad$ AUT $=2 \quad P=(1,122,2222,22) \quad G I R=3 \quad C N=3,6$
A=1 $111,2150124254134,42202212624200,5210013500072400$
$\mathrm{E}=2-3.879392-1.879392-1.652702-.467912+02+.347302+1.532092+235$
$K=(456845 \quad 12,1) \quad$ B2XI5 $1 / 5014 / 14001$
R37 $D E G=5 \quad$ AUT $=1 \quad P=(1 / 5 / 8 / 4) \quad G I R=4 \quad C N=2,9$
A=1 $1111,15412634,7022446215300,316002650016600$
$\mathrm{E}=-5$ 2-2. $208932-1.628712-1.211572-12+12+1.211572+1.628712+2.208935$
$K=\left(\begin{array}{llllllll}46 & 76 & 75 & 56 & 28 & 8 & 1,\end{array}\right) 4 / 334$
R38 $\quad D E G=5 \quad F=N \quad A U T=8 \quad P=(1,14,444) \quad G I R=3 \quad C N=4,6$
$A=11111,560124150614,202240210021010214020,5204064004322010$
$\mathrm{E}=8-2.302788+1.3027835 \mathrm{~K}=\left(\begin{array}{ll}44 & 56 \\ 20,2\end{array}\right)$

R39 $\quad D E G=5 \quad F=I \quad A U T=8 \quad P=(1,14,44,4) \quad G I R=3 \quad C N=3,6$
A=1 $11111,560124150614,42222006401214200,22400171000146100$ $E=4-3 \quad 4-1 \quad 4+04+235 \quad K=(4460304,2) \quad$ B2XI4 C2XF6 $2 / 3013 / 2115 / 3001$

```
R40 DEG=5 F=I AUT=2 P=(1,122,2222,22) GIR=4 CN=2,9
A=1 1 1 1,1 66 72 32 46,4 10 44 30 36400,37000 26600 17100
E=-5 2-2.87939 2-1 2-.65270 2-.53209 2+.53209 2+.65270 2+1 2+2.87939 5
K=(46 80 80 56 28 8 1,) D(R9) 1/203 4/703
R41 DEG=5 F=I AUT=2 P=(1,122,22222,2) GIR=3 CN=3,6
A=1 1 1 1,21 24 50 206 112,510 1204 4042 12022 230,144 165000 152400
E=2-3.53209 2-2.34730 2-1.87939 -1 2-. 12061 2+. 34730 2+1.53209 4+2 5
K=(45 64 35 6,1) D(R26) 1/301 4/4700
```

R42 DEG=5 F=I AUT=2 $P=(1,122,2222,22) \quad G I R=4 \quad C N=3,9$
$A=1111,172664632,1020044030204424400,5300012460053100$
$E=2-4.411475-12-.532092+.184792+.652702+1.226682+2.879395$
$K=(468075367) \quad 1 / 454 /$,
R43 DEG=5 AUT=1 $\quad P=(1 / 5 / 7 / 5) \quad G I R=3 \quad C N=3,6$
A=1 $1115,11610250206,1010662460240022200,61100120300252400$
$E=2-3.16502-2.7321-12-.59382-.43752-.33672+.73212+1.03132+3.50175$
$K=\left(\begin{array}{llll}43 & 56 & 25 & 1,3\end{array}\right) \quad 4 / 1121$
R44 $\quad D E G=5 \quad F=I \quad A U T=6 \quad P=(1,23,226,2) \quad G I R=4 \quad C N=3,9$
$A=1111,17070104202,1024442501442221044,2412124200252100$
$E=2-44-1.87939-14+.347304+1.532092+25 \quad K=(46725014$,) 1/154/2222
R45 DEG=5 AUT=1 $\quad \mathrm{P}=(1 / 5 / 9 / 3) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=3,6$
$A=13511,21406340202,1020246014300210110,4170036000270100$
$E=2-2.732054-1.79129 \quad 5-1 \quad 2+.732054+2.79129 \quad 5 \quad K=\left(\begin{array}{lllllll}42 & 44 & 10 & 1,4\end{array}\right) \quad 3 / 1102$
R46 $\quad \mathrm{DEG}=5 \quad \mathrm{AUT}=1 \quad \mathrm{P}=(1 / 5 / 7 / 5) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=3,6$
A=1 1115,1521074 42, 2201102110620026200,3510022600262100
$\mathrm{E}=2-2.96962-2.28562-1.6840-12-.31602+.26792+.28562+.96962+3.73215$
$K=\left(\begin{array}{llll}42 & 48 & 20 & 3,4\end{array}\right) \quad 4 / 4620$
R47 $D E G=5 \quad F=I \quad$ AUT $=12 \quad P=(1,23,66) \quad G I R=3 \quad C N=3,6$
A=1 $311,14012031020,104030102422221421112,424214124101444$
$E=6-2.73205-16+.732054+25 \quad \mathrm{~K}=(4562306,1) \quad \mathrm{D}(\mathrm{R} 11) 3 / 1125 / 1026$
R48 DEG=5 F=I AUT=8 $\quad \mathrm{P}=(1,14,44,4) \quad \mathrm{GIR}=4 \quad \mathrm{CN}=2,9$
$A=11111,162161662,4450243035400,332002650016300$

R49 $\quad \mathrm{DEG}=5 \mathrm{~F}=\mathrm{I} \quad \mathrm{AUT}=2 \quad \mathrm{P}=(1,122,2222,22) \quad \mathrm{GIR}=4 \quad \mathrm{CN}=2,9$
A=1 $1111,170641616,4222304435200,325001660027100$
$E=-52-2 \quad 2-1.879392-1.532092-.347302+.347302+1.532092+1.879392+25$
$K=\left(\begin{array}{llllll}46 & 76 & 75 & 56 & 28 & 8 \\ 1,\end{array}\right) \quad 1 / 2114 / 615$
R50 DEG=5 F=I AUT=2 $P=(1,122,2222,22) \quad G I R=3 \quad C N=4,6$
$A=11111,25104244130,61220421402225200,1250010330044700$
$E=2-3.226682-2.184795-12-.532092+.652702+2.411472+2.879395$
$K=(435220,3) \quad D(R 10) \quad D(R 20) 1 / 74 / 1403$
R51 DEG=5 F=A AUT=1 $P=(1 / 5 / B / 1) \quad G I R=4 \quad C N=3,9$
$A=1111,124741104,160214424241100220050,4102212015056100$
$E=2-3.84902-2.7321-12-.93832+.09022+.73212+.84802+1.63292+2.21615$
$K=(467250$ 13,) $D(R 13) 4 / 2602$

R52 $\mathrm{DEG}=5 \quad$ AUT $=2 \quad \mathrm{P}=(1,122,1222,1112) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=3,6$
$A=1155,31742202412,12064040201400023600,14100130400324200$
$E=4-2.732055-1 \quad 2+.267954+.73205 \quad 2+3.73205 \quad 5 \quad K=(4248 \quad 202,4) \quad 3 / 2445 / 1007$
R53 $D E G=5 \quad F=I \quad$ AUT $=24 \quad P=(1,23,26,4) \quad G I R=3 \quad C N=3,6$
$A=1311,170704414,101222402444226100,5150026200211600$
$\mathrm{E}=2-4 \quad 9-1 \quad 6+25 \quad \mathrm{~K}=(45685014,1) \quad \mathrm{C} 2 \times F 5 \quad 2 / 5013 / 2075 / 2441$
R54 DEG=6 $F=X T I \quad A U T=186624 \quad \mathrm{P}=(1,6,2,+) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=3,6 \quad \mathrm{~T}=1$
$A=11117,17171761760,1000100010001700017000,17000176000176000$
2[I7] -D(R139) F3[C1] $1 / 4242 / 2143 / 16004 / 130005 / 15000$
R55 $\mathrm{DEG}=6 \quad \mathrm{~F}=\mathrm{XI} \quad \mathrm{AUT}=36 \quad \mathrm{P}=(1,222,2,+) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=5,6$
 1/504 4/15000

R56 $\quad \mathrm{DEG}=6 \quad \mathrm{AUT}=72 \quad \mathrm{P}=(1,123,233,3) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=6,3$
$A=11515,357512206100,102030406021060230602,27000147000317000$ $E=7-22-.645756+02+4.645756 \quad K=(27,101051) \quad W 3(C 2) 3 / 2464 / 45145 / 10071$

R57 DEG=6 $F=A \quad A U T=1 \quad P=(1 / 6 / A / 1) \quad G I R=3 \quad C N=4,6$
$A=1111,312144116402,12141624222010161320,3015250142276000$
$\mathrm{E}=2-4.088323-22-1.281422+02+.320522+.329552+1.976012+2.743666$
$K=(3438 \quad 15,3) \quad 4 / 1621$
R58 DEG=6 AUT $=1 \quad \mathrm{P}=(1 / 6 / 9 / 2) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=5,5$
$A=1115,11751002402,650640540622701026,4103654600227200$
$E=2-3.508103-22-.864282-.676842-.250672+02+1.558872+3.741026$
$K=(3124,62) \quad 4 / 10407$
R59 DEG=6 $F=1 \quad A U T=2 \quad P=(1,222,122222) \quad G I R=3 \quad C N=3,6$
$A=111315,1114612 \quad 24,501203504154425310,426606504207042$
$E=2-3.411472-32-1.879392-1 \quad 2+.347302+1.184792+1.5320922+2.22668 \quad 6$
$K=(343251,3) \quad 1 / 644 / 3204$
R60 DEG=6 $\mathrm{F}=\mathrm{I} \quad \mathrm{AUT}=2 \quad \mathrm{P}=(1,222,122222) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=3,6$
$A=11315,1114650120,1224704265045310,426601350425442$
$E=2-3.411472-3-22-1.532092-.347302+1 \quad 2+1.184792+1.879392+2.226686$
$K=(343251,3) \quad 1 / 4424 / 10630$
R61 $D E G=6 \quad F=A \quad A U T=4 \quad P=(1,24,2224,1) \quad G I R=3 \quad C N=5,6$
$A=13515,34330140660,71064006544012500,2522052210374000$ $E=9-2 \quad 4+04+36 \quad K=(3016,72) \quad L(I 4) 3 / 426$

R62 $\quad D E G=6 \quad$ AUT $=2 \quad P=(1,222,122222) \quad G I R=3 \quad C N=3,6$
$A=13111,21511701224,441026440710023414,1542223204214602$
$E=2-3 \quad 4-2.302784-1 \quad 4+1.30278 \quad 2 \quad 2+3 \quad 6 \quad K=\left(\begin{array}{lllllll}32 & 26 & 5 & 1,5\end{array}\right) 3 / 620$
R63 DEG=6 $\mathrm{F}=\mathrm{I} \quad$ AUT $=2 \quad \mathrm{P}=(1,222,12222,2) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=3,6$
$A=1 \quad 3 \quad 5 \quad 13,113650 \quad 520,544114241041204211110,20460162600155200$
$E=2-3.879392-1.879392-1.652702-12-.467912+.347302+1.5320922+36$
$K=\left(\begin{array}{llll}33 & 32 & 15 & 3,4\end{array}\right) \quad 1 / 5104 / 6404$
R64 DEG=6 $F=I \quad$ AUT $=2 \quad P=(1,222,12222,2) \quad G I R=3 \quad C N=3,6$
$A=13513,113650120,54411424504304211110,20460162600155200$
$E=2-3.87939-22-1.65270 \quad 2-1.532092-.46791 \quad 2-.34730 \quad 2+1 \quad 2+1.879392+36$
$K=\left(\begin{array}{llll}33 & 32 & 15 & 3,4\end{array}\right) \quad 1 / 1504 / 4017$
transitive graphs on 18 Vertices (CONTD)
R65 $\quad D E G=6 \quad F=I A \quad A U T=4 \quad P=(1,24,2224,1) \quad G I R=3 \quad C N=3,6$
$A=11111,211112452146,367406301210412042,4502425012360600$ E=2-4 2-3 2-1 6+0 $5+26 \quad K=(3542 \quad 20 \quad 3,2) \quad C 2 * F 62 / 1243 / 14065 / 5005$

R66 $D E G=6$ F $=1 \quad$ AUT $=2 \quad P=(1,222,222,122) \quad G I R=3 \quad C N=5,5$
$A=1135,337552124212,424240412021400031000,66000171200166400$ $E=2-2.532093-22-1.347302-1.226682-.184792+02+.879392+4.411476$ $K=(2810,94) \quad 1 / 2304 / 10074$

R67 $\quad \mathrm{DEG}=6 \quad \mathrm{~F}=1 \quad \mathrm{AUT}=2 \quad \mathrm{P}=(1,222,2222,12) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=4,6$
$A=1135,2355152164202,40420241012112106420,17000172000365000$ $\mathrm{E}=2-2.879392-2.53209-22-1.347302-.652702+02+.532092+.879392+46$ $K=(30225,7) \quad 1 / 1424 / 4303$

R68 DEG=6 $F=1 A \quad$ AUT $=2 \quad P=(1,222,22222,1) \quad G I R=3 \quad C N=5,6$
A=1 $153,251315036022,101414202210130027004,5024424502374000$ $\mathrm{E}=2-2.532092-2.411473-22-1.347302+02+.879392+2.184792+3.226686$ $K=\left(\begin{array}{ll}31 & 22,6\end{array}\right) \quad 1 / 6104 / 10146$

R69 DEG=6 F=I AUT=2 $P=(1,222,12222,2) \quad G I R=3 \quad C N=3,6$
A=1 $1513,5431701422,441023404154025320,2650126400257000$ $E=2-32-2.226682-1.879392-1.184792-12+.347302+1.5320922+3.411476$ $K=\left(\begin{array}{llll}31 & 24 & 5 & 1,6\end{array}\right) \quad 1 / 4064 / 3210$

R70 $\quad D E G=6 \quad F=I \quad$ AUT $=2 \quad P=(1,222,12222,2) \quad G I R=3 \quad C N=3,6$
 $E=2-32-2.22668-22-1.532092-1.184792-.347302+12+1.879392+3.411476$
$K=\left(\begin{array}{lll}31 & 24 & 5 \\ 1,6\end{array}\right) \quad 1 / 6024 / 10154$
R71 $\quad \mathrm{EEG}=6 \quad \mathrm{~F}=\mathrm{I} \quad$ AUT $=2 \quad \mathrm{P}=(1,222,2222,12) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=3,6$
$A=11111,23554210472,134604460224141222,74000151200326400$

R72 $\quad \mathrm{DEG}=6 \quad \mathrm{~F}=\mathrm{IA} \quad$ AUT $=2 \quad \mathrm{P}=(1,222,22222,1) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=3,6$
$A=1111,21517213442,10412046402130147022,24541322374000$
$E=2-3.758772-3-26+0 \quad 2+.694592+1 \quad 2+3.06418 \quad 6 \quad K=\left(\begin{array}{llllllll}34 & 38 & 15 & 1,3\end{array}\right) \quad 1 / 640$ 4/10123

R73 DEG=6 F=A AUT=1 $P=(1 / 6 / A / 1) \quad G I R=3 \quad C N=5,5$
A=1 $1111,3545302422,6302204504250421412,6070415102236200$
$E=2-3.090963-22-1.861642-.667812-.096622+02+2.556232+3.160806$ $K=(3118,62) \quad 4 / 1254$

R74 DEG=6 $F=I A \quad$ AUT $=2 \quad P=(1,222,22222,1) \quad G I R=3 \quad C N=4,6$
A=1 3111 , $11212412622,614214411421105026120,10304104442360600$
$E=2-3.226682-2.532092-2.184792-1.347302+02+.879393+22+2.411476$
$K=(33305,4) \quad 1 / 1064 / 6420$
R75 DEG=6 F=IA AUT=2 $P=(1,222,22222,1) \quad G I R=3 \quad C N=3,6$
A=1 $3111,11142144134,722644512222421412,50060124110303600$ $E=2-4.411472-2.532092-1.347302+02+.184792+.879392+1.226683+26$
$K=\left(\begin{array}{llll}36 & 46 & 25 & 6,1\end{array}\right) \quad 1 / 7004 / 14021$
R76 $\quad D E G=6 \quad F=I \quad$ AUT $=8 \quad P=(1,24,144,2) \quad G I R=3 \quad C N=3,6$
$A=1311,11170104422,4123044116421544072,532143200234600$
$E=2-4.758776-12-.305412+03+22+2.064186 \quad K=(3652359,1)-D(R 66) 1 / 160$ 4/6110

```
R77 DEG=6 AUT=2 P=(1,11112,122222) GIR=3 CN=3,6
A=1 3 3 15,1 1 36 60 120,1410 1410 4300 2240 22542,15142 32444 35104
E=2-3.64575 5-2 4+0 2+1 2+1.64575 2+3 6 K=(33 30 10 1,4) 3/33 5/2720
R78 DEG=6 F=I AUT=4 P=(1,24,224,12) GIR=3 CN=3,6
A=1 3 5 13,5 43 36 146 140,30 1500 2220 12210 5440,74000 163000 317000
E=2-3 5-2 6+0 2+1 2+4 6 K=(30 22 5 1,7) 2/640 3/70 5/4660
R79 DEG=6 AUT=1 P=(1/6/B) GIR=3 CN=3,6
A=1 1 1 1,31 21 120 12 426,504 214 2204 10152 4740,23212 17440 54026
E=2-3.6458 2-2.8794 -2 2-.8794 2-.6527 2+.5321 2+1.3473 2+1.6458 2+2.5321 6
K=(\begin{array}{llllll}{34}&{34}&{10}&{1,3}\end{array})\quad4/2143
R80 DEG=6 AUT=1 P=(1/6/8/3) GIR=4 CN=2,9
A=1 1 1 1 1,1 1 164 142 72,134 66 154 16 132,76400 71600 27600
E=-6 2-1.9696 2-1.7321 2-1.2856 2-.6840 2+.6840 2+1.2856 2+1.7321 2+1.9696 6
K=(37 60 70 56 28 8 1,) 4/475
R81 DEG=6 F=I AUT=8 P=(1,24,1244) GIR=4 CN=3,9
A=1 1 1 1,1 1 170 204 202,1104 2442 2422 15014 11154,20562 5134 2472
E=2-4.75877 3-2 2-.30541 2+0 6+1 2+2.06418 6 K=(37 52 35 9,) D(R24) D(R51)
1/214 4/2132
R82 DEG=6 AUT=1 P=(1/6/B) GIR=3 CN=3,6
A=1 1 5 11,21 41 24 106 422,1640 2214 1032 1240 16500,20306 134002 260150
E=2-3.64575 3-2 4-1.30278 2+0 2+1.64575 4+2.30278 6 K=(33 30 10 1, 4)
R83 DEG=6 F=A AUT=2 P=(1,222,22222,1) GIR=3 CN=3,6
A=1 1 1 11,1 41 120 50 246,506 664 712 1124 22052,1422 102214 374000
E=2-4 4-2.30278 4+0 4+1.30278 3+2 6 K=(35 40 15 2,2) 3/1030
R84 DEG=6 F=IA AUT=2 P=(1,222,22222,1) GIR=3 CN=3,6
A=1 1 1 11,21 11 56 326 40,1100 3064 3112 2044 21102,21224 42412 374000
E=2-4 2-2.53209 2-1.34730 2-.53209 2+0 2+.65270 2+.87939 2 2+2.879396
K=(34 38 15 2,3) 1/34 4/3014
R85 DEG=6 F=I AUT=2 P=(1,222,2222,12) GIR=4 CN=2,9
A=1 1 1 1,1 1 134 72 172,174 106 46 62 114,74600 76200 75400
E=--6 2-2.53209 2-1.34730 2-.87939 4+0 2+.87939 2+1.34730 2+2.53209 6
K=(37 62 70 56 28 8 1,) B2*I8 1/212 4/770
R86 DEG=6 F=I AUT=16 P=(1,24,18,2) GIR=3 CN=3,6
A=1 3 1 1,31 31 170 102 14,1412 422 4024 11044 26042,11504 46600 331200
E=4-3 6-1 2+0 3+2 2+3 6 K=(32 28 10 2,5) C2XF7 2/144 3/250 5/6014
```

R87 $D E G=6 \quad F=I \quad A U T=16 \quad P=(1,24,128) \quad G I R=3 \quad C N=3,6$
$A=1111,3131170204202,50210246412242221014,4510413044247044$
$E=4-3 \quad 3-2 \quad 2+0 \quad 6+1 \quad 2+3 \quad 6 \quad K=\left(\begin{array}{lllllllll}33 & 28 & 10 & 2,4\end{array}\right) \quad D(R 27) 2 / 5403 / 2265 / 1350$
R88 $D E G=6 \quad F=I \quad$ AUT $=12 \quad P=(1,6,26,3) \quad G I R=4 \quad C N=2,9 \quad T=1$
$A=11111,1152124154,1326674162116,336005660065600$
$E=-66-1.732054+06+1.732056 \quad K=(376070562881) 3 / 1235 /$,
R89 $D E G=6 \quad A U T=1 \quad P=(1 / 6 / B) \quad G I R=3 \quad C N=4,6$
$A=1 \quad 1 \quad 5 \quad 1,1145154102120,40420605006 \quad 262215430,15220102412223042$
$E=2-3.208932-2.628712-2.21157-22+.211572+.628712+12+1.208932+36$
$K=\left(\begin{array}{ll}33 & 28 \\ 5 & 4\end{array}\right) \quad 4 / 4407$

R90 DEG=6 F=1 AUT $=31104 \quad P=(1,6,26,3) \quad G I R=4 \quad C N=2,9 \quad T=1$
$A=111111,11176176160,160160161616,770007700077000$

3/125 4/636 5/752
R91 DEG=6 AUT=4 $P=(1,222,1244) \quad$ GIR $=3 \quad C N=3,6$
$A=13111,211136204202,10445023104444230520,3105010645047120$
$E=4-3 \quad-24-1.302784+14+2.30278 \quad 6 \quad K=\left(\begin{array}{lllll}33 & 30 & 10 & 2,4\end{array}\right) \quad 3 / 460$
R92 $\mathrm{DEG}=7 \mathrm{~F}=\mathrm{A}$ AUT=1 $\mathrm{P}=(1 / 7 / 9 / 1) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=3,6$
A=1 $1115,115137456,2142322252420433062,2234231162137400$
$E=2-4.84902-1.93832-.90982-.73212-.15202+.632912+1.21612+2.73217$ $K=\left(\begin{array}{llll}27 & 30 & 15 & 3,4\end{array}\right) \quad 4 / 14450$

R93 $D E G=7 \quad$ AUT $=72 \quad P=(1,223,133,3) \quad G I R=3 \quad C N=6,3$
$A=13513,74714736300,124031404301043030430,67000157000337000$ $E=-36-2 \quad 2-.64575 \quad 6+0 \quad 2+4.645757 \quad K=(18,131051) \quad 3 / 2614 / 45515 / 10466$

R94 $\mathrm{DEG}=7 \quad \mathrm{AUT}=1 \quad \mathrm{P}=(1 / 7 / \mathrm{A}) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=5,5$
A=1 $1515,5451270206,106214304342650210350,664063312271220$
$E=2-4.08832-32-22-1.281422+02+.320522+.329552+1.976012+2.743667$
$K=(2516,62) \quad D(R 73) 4 / 2247$
R95 $D E G=7 \quad$ AUT $=2 \quad P=(1,11122,112222) \quad G I R=3 \quad C N=3,6$
$A=1155,531516412,2541345700370026442,1642261262111162$
$E=2-3.64575-34-24+0 \quad 2+1 \quad 2+1.64575 \quad 2+3 \quad 7 \quad \mathrm{~K}=\left(\begin{array}{llllllll}24 & 14 & 5 & 1,7\end{array}\right) \quad 3 / 71 \quad 5 / 2271$
R96 DEG=7 F=I AUT $=2 \quad \mathrm{P}=(1,1222,22222) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=4,6$
$A=1115,1131145350324,10324464072206615410,23404164202352102$ $E=2-3.87939-32-1.652702-1.532092-.467912-.347302+12+1.879392+37$ $K=\left(\begin{array}{ll}24 & 165,7\end{array}\right) \quad 1 / 3034 / 4172$

R97 $\quad \mathrm{DEG}=7 \quad \mathrm{AUT}=1 \quad \mathrm{P}=(1 / 7 / \mathrm{A}) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=5,6$
A=1 $155,1131141350406,1211343064246217222,13102122604324242$ $E=2-3.20893-32-2.628712-2.211572+.211572+.628712+12+1.208932+37$ $K=\left(\begin{array}{ll}24 & 12,7)\end{array} \quad 4 / 4217\right.$

R98 DEG=7 AUT=1 $\quad \mathrm{P}=(1 / 7 / \mathrm{A}) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=3,6$
$A=11511,14561150222,14441424407222542126,313126550256602$ $E=2-3.73212-2.81772-2.31692-.26792-.246512+1.19532+1.62232+2.56347$ $K=\left(\begin{array}{lllll}25 & 18 & 5 & 1,6\end{array}\right) \quad 4 / 3444$

R99 DEG=7 AUT=1 $P=(1 / 7 / A) \quad G I R=3 \quad C N=5,6$
A=1 $351,311325220560,626044310164507046,5712032602201516$
$E=4-2.791294-22-.7320514+1.791292+2.732057 \quad K=(2310,8) \quad 3 / 622$
R100 DEG=7 AUT=2 $P=(1,11122,112222) \quad G I R=3 \quad C N=3,6$
$A=1151,21411216772,650253046101251024026,52046120126250246$
$E=4-3.732052-.732054-.26795 \quad 5+1 \quad 2+2.732057 \quad K=\left(\begin{array}{lllllll}26 & 24 & 10 & 2,5\end{array}\right) \quad 3 / 2545 / 14502$
R101 $D E G=7 \quad F=I \quad$ AUT $=6 \quad P=(1,223,226) \quad G I R=3 \quad C N=6,3$
A=1 $3111,7471473432,102424123120461033060,24510153220134450$ $E=4-2.879392-24-.652704+.5320912+47 \quad K=(21,101051) \quad 1 / 1154 / 14141$

R102 $\quad \mathrm{DEG}=7 \quad \mathrm{~F}=\mathrm{I} \quad \mathrm{AUT}=2 \quad \mathrm{P}=(1,1222,22222) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=5,5$
$A=11115,1165171250124,10164163042442234102,7220265450113424$
$E=3-32-2.226682-1.532092-1.184792-.347302+12+1.879392+3.411477$
$K=(224,94) \quad 1 / 4514 / 2456$

```
R103 \(D E G=7 \quad A U T=4 \quad P=(1,124,2224) \quad G I R=3 \quad C N=4,6\)
```

$A=11511,116565374374,100224026010600434102,72202134042272022$
$\mathrm{E}=4-3.302784-14+.302784+157 \quad \mathrm{~K}=(22185,9) \quad \mathrm{D}(\mathrm{R} 12) 3 / 611$
R104 DEG=7 F=I AUT=6 $P=(1,223,226) \quad G I R=3 \quad C N=3,6$
A=1 $353,11110420,17621754724664564,313125115261252$
$E=2-54-1.532094-.347303+14+1.879397 \quad K=\left(\begin{array}{llllll}28 & 32 & 15 & 2,3\end{array}\right) \quad D(R 44) \quad D(R 84) 1 / 35$
4/11222

```
R105 DEG=7 F=I AUT=2 P=(1,1222,22222) GIR=3 CN=5,5
A=1 1 5 7,13 23 43 216 516,1024 450 6240 16120 24120,52240 164610 153104
E=2-2.87939 2-2.41147 4-2 2-.65270 2+.53209 1 2+2.18479 2+3.22668 7
K=(22 8,9 2) 1/423 4/3442
```

R106 DEG=7 F=I \quad AUT $=2 \quad P=(1,1222,22222) \quad G I R=3 \quad C N=5,5$
$A=1157,132343120240,21621165024245031520,3164063610115504$
$E=-32-2.532092-2.411472-22-1.347302+02+.879392+2.184792+3.226687$
$K=(228,92) \quad 1 / 4434 / 10315$
R107 DEG=7 F=I AUT=2 $P=(1,1222,22222) \quad G I R=3 \quad C N=6,3$
$A=13717,3711102202,152016402710530425220,12540165210152504$
$E=-3$ 2-2.87939 2-2.53209 2-1. $347302-.652702+02+.532092+.879392+47$
$K=(21,101051) \quad 1 / 3114 / 4435$

```
R108 DEG=7 AUT=1 P=(1/7/A) GIR=3 CN=3,6
```

A=1 1115 , 21 $15515422,142430501744521632302,156244132306602$
$E=2-3.6458-32-2.87942-.87942-.65272+.53212+1.34732+1.64582+2.53217$
$\mathrm{K}=\left(\begin{array}{lllll}25 & 18 & 5 & 1,6\end{array}\right) \quad \mathrm{D}(\mathrm{R} 34) 4 / 2155$
R109 $\quad \mathrm{DEG}=7 \quad \mathrm{~F}=\mathrm{A} \quad$ AUT $=1 \quad \mathrm{P}=(1 / 7 / 9 / 1) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=5,5$

$\mathrm{E}=2-3.50810-32-22-.864282-.676842-.250672+02+1.558872+3.741027$
$K=(2210,94) \quad 4 / 10247$
R110 $\quad D E G=7 \quad$ AUT $=4 \quad P=(1,1222,244) \quad G I R=3 \quad C N=5,5$
A=1 $371,1631631616,62011404540322035050,1644467030132424$
$E=-3 \quad 8-2 \quad 4+0 \quad 4+3 \quad 7 \quad K=(212,104) \quad 3 / 1122$
R111 DEG=7 F=I AUT=2 $P=(1,1222,2222,2) \quad G I R=3 \quad C N=5,5$
A=1 $1511,255535370764,12200640421202226202,16102175000372400$
$\mathrm{E}=2-3.53209$ 2-2.34730 2-1.53209 2-1 2-. $347302-.120612+12+1.8793957$
$\mathrm{K}=(2112,104) \quad$ B2XI8 $1 / 1254 / 7004$
R112 $D E G=7 \quad F=I \quad A U T=2 \quad P=(1,1222,22222) \quad G I R=3 \quad C N=5,6$
$A=1115,3141121350324,121651630421442225050,12424160212350106$
$E=2-4.064184-2 \quad 2-1.694597+1 \quad 2+2.75877 \quad 7 \quad K=\left(\begin{array}{ll}25 & 16,6\end{array}\right) \quad 1 / 4454 / 12250$
R113 $D E G=7 \quad F=I \quad$ AUT $=144 \quad P=(1,16,26,2) \quad G I R=4 \quad C N=2,9$
A=1 $11111,1111374374,172346316326$ 272,76 177000176400

R114 $D E G=7 \quad F=I \quad$ AUT $=2 \quad P=(1,1222,22222) \quad G I R=3 \quad C N=5,6$
$A=1115,113145310704,105024245016241611162,2066266222116142$
$E=2-3.41147$ 3-3 2-1.53209 2-. $347302+12+1.184792+1.879392+2.226687$
$K=(2516,6) \quad D(R 68) \quad 1 / 6114 / 1623$

R115 $D E G=7 \quad F=I \quad A U T=2 \quad P=(1,1222,22222) \quad G I R=3 \quad C N=4,6$
$A=1 \quad 1 \quad 5 \quad 1,2121 \quad 41 \quad 310 \quad 304,1252 \quad 2526115210626 \quad 5450,3424160146150232$ $E=2-4.226682-3.184792-1.532092-.347305+1 \quad 2+1.411472+1.879397$
$K=(27245,4) \quad D(R 74) 1 / 1074 / 6052$
R116 $\quad \mathrm{DEG}=7 \quad \mathrm{~F}=\mathrm{I} \quad \mathrm{AUT}=4 \quad \mathrm{P}=(1,124,2224) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=5,6$
$A=1155,113145254134,124052060121600625302,2246255062112702$
$E=5-3 \quad 2-2 \quad 2+0 \quad 6+1 \quad 2+37 \quad K=(2412,7) \quad 2 / 47 \quad 3 / 74 \quad 5 / 2266$
R117 $D E G=7 \quad F=A$ AUT $=2 \quad P=(1,1222,111222,1) \quad G I R=3 \quad C N=3,6$
$A=11113,77136014,131431203240116505524,463210546374400$ $E=2-3.732054-24-.732052-.2679514+2.732057 \quad K=\left(\begin{array}{lllll}23 & 14 & 5 & 1,8) & -D(R 52)\end{array}\right.$ 3/1422 5/14602

R118 $D E G=7 \quad F=I \quad A U T=2 \quad P=(1,1222,2222,2) \quad G I R=3 \quad C N=5,5$
$A=11113,2733147132246,430104460101600425204,12510175000372400$
$E=2-2.879394-22-1.226682-.652702-.184792+.5320912+4.411477$
$K=(194,126) \quad 1 / 4614 / 12106$
R119 $\quad D E G=7 \quad F=I \quad$ AUT $=2 \quad P=(1,1222,2222,2) \quad G I R=3 \quad C N=5,5$
$A=1 \quad 1 \quad 17,137367152 \quad 226,510120460101600425024,12450175000372400$
$E=-3 \quad 2-2.532092-2 \quad 2-1.34730 \quad 2-1.22668 \quad 2-.18479 \quad 2+0 \quad 2+.879392+4.411477$
$K=(194,126) \quad 1 / 2454 / 2346$
R120 $\quad D E G=7 \quad A U T=1 \quad P=(1 / 7 / A) \quad G I R=3 \quad C N=5,6$
$A=1315,1521105324122,6125034506112 \quad 24640,621705702213612$
$E=2-3.56342-2.62232-2.1953 \quad 2-.7535 \quad 2-.732112+1.31692+1.81772+2.73217$
$K=(2412,7) \quad 4 / 5045$
R121 $\quad \mathrm{EEG}=7 \mathrm{~F}=\mathrm{I} \quad \mathrm{AUT}=16 \quad \mathrm{P}=(1,124,28) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=6,3$
$A=111113,23631631616,12105047030460413110,6442473050126444$
$E=3-3$ 4-2 $6+0 \quad 2+1 \quad 2+47 \quad K=(21,101051) \quad 2 / 6213 / 3075 / 2613$
R122 $D E G=7 \quad$ AUT $=1 \quad P=(1 / 7 / A) \quad G I R=3 \quad C N=3,6$
$A=11111,215511250406,106110276207620366,2640646056111270$
$E=2-3.73212-3.50172-1.03132-.26792+.33672+.43752+.593812+3.16507$
$K=\left(\begin{array}{llll}25 & 20 & 5 & 1,6\end{array}\right) \quad 4 / 12212$
R123 $D E G=7 \quad F=I \quad$ AUT $=8 \quad \mathrm{P}=(1,124,244) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=5,5$
$A=1153,343236412,13307443270456421030,50444142504345210$
$E=2-3.758776-22+.694595+12+3.064187 \quad K=(2416,72) \quad 1 / 1614 / 6460$
R124 $D E G=7 \quad F=I \quad$ AUT $=8 \quad \mathrm{P}=(1,124,244) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=5,5$
$A=1 \quad 1 \quad 1 \quad 3,3 \quad 432316 \quad 16,13307443270456421210,50504142444345030$
$E=2-3.75877 \quad 3-3 \quad 6+0 \quad 2+.69459 \quad 2+1 \quad 2+3.064187 \quad K=\left(\begin{array}{lllllll}25 & 16,6 & 2\end{array}\right) \quad 1 / 2154 / 10654$
R125 $D E G=7 \quad A U T=1 \quad P=(1 / 7 / A) \quad G I R=3 \quad C N=3,6$
$A=13111,12541310216,74162464521032221150,354262604344062$
$E=2-3.732054-2.791292-.267955+14+1.791297 \quad K=(262051,5) 3 / 512$
R126 $D E G=7 \quad F=1 \quad A U T=240 \quad P=(1,25, A) \quad G I R=3 \quad C N=6,3$
$A=13111,317117120412,141410226424504232444,25102152504125602$ $E=10-25+12+47 \quad K=(20,111051) \quad$ C2XF8 -C2*F8 2/113 3/704 5/14441

R127 DEG=7 F=I AUT=2 $P=(1,1222,22222) \quad G I R=3 \quad C N=4,6$
$A=1 \quad 1 \quad 5 \quad 1,1115350324,1052 \quad 2426 \quad 50502424 \quad 21272,105663434232322$
$E=2-4.75877-32-22-.305412+06+1 \quad 2+2.064187 \quad K=\left(\begin{array}{lllll}28 & 28 & 10,3\end{array}\right) \quad D(R 57) \quad D(R 72)$
1/474/1546

TRANSITIVE GRAPHS ON 18 VERTICES (CONTD)
R128 $\quad D E G=7 \quad A U T=4 \quad P=(1,124,2224) \quad G I R=3 \quad C N=5,6$
A=1 $1511,53145250124,1620165620354025302,1270211306264462$
$\mathrm{E}=5-3$ 4-1.30278 $4+14+2.302787 \quad \mathrm{~K}=(2412,72) \quad \mathrm{D}(\mathrm{R} 61) 3 / 427$

```
R129 DEG=7 F=I AUT=2 P=(1,1222,22222) GIR=3 CN=3,6
A=1 1 5 1,1111 1 366 372,352 326 4450 13024 24250,52124 120252 250126
E=2-5.41147 2-1.53209 2-.81521 2-. 34730 2+. 22668 5+1 2+1.879397
K=(30 40 25 6,1) D(R41) D(R75) 1/701 4/6244
R130 DEG=7 F=I AUT=2 P=(1,1222,2222,2) GIR=4 CN=2,9
A=1 1 1 1,1 1 1 372 366,156 236 346 332 274,174 176400 177000
E=-7 2-1.87939 2-1.53209 2-1 2-. 34730 2+. 34730 2+1 2+1.53209 2+1.879397
K=(31 56 70 56 28 8 1,) 1/53 4/537
```

R131 $D E G=7 \quad A U T=1 \quad P=(1 / 7 / A) \quad G I R=3 \quad C N=3,6$

$\mathrm{E}=2-3.64575-32-24-1.302782+02+1.645754+2.302787 \quad \mathrm{~K}=\left(\begin{array}{llll}24 & 14 & 5 & 1,7\end{array}\right) \quad 3 / 1061$
R132 $D E G=7 \quad F=I \quad$ AUT $=144 \quad P=(1,16,26,2) \quad G I R=3 \quad C N=3,6$
A=1 11 15,21 5555374 374,202 20062042201234022,34102177000176400
$E=2-42-26-16+157 \quad K=(2220102,9)-D(R 93) \quad$ B2XI7 $1 / 4252 / 2153 / 1411$
4/13200 5/7100
R133 DEG=7 F=A AUT=1 $\quad P=(1 / 7 / 9 / 1) \quad G I R=3 \quad C N=5,5$
A=1 315 , 21 $511171306,146012102534306224540,1501664242347400$
$\mathrm{E}=2-3.09096-32-22-1.861642-.667812-.096622+02+2.556232+3.160807$
$K=(2210,92) 4 / 10354$
R134 DEG=7 $F=A \quad A U T=1 \quad P=(1 / 7 / 9 / 1) \quad G I R=3 \quad C N=4,6$
A=1 $3115,155101350252,6742322702216520,334270610327400$
$E=2-4.16502-1.59382-1.43752-1.33672-.73212+.031312+2.50172+2.73217$
$K=(24185,7) \quad-D(R 43) 4 / 5424$
R135 $\quad D E G=7 \quad F=1 \quad$ AUT $=24 \quad P=(1,34,226) \quad G I R=3 \quad C N=3,6$
A=1 $1111,14121240120,171614761254125220534,1053214124630526$
$E=2-54-2 \quad 11+17 \quad K=\left(\begin{array}{lllllll}29 & 32 & 15 & 2,2) \quad D(R 32) \quad D(R 65) & D(R 83) & 2 / 125 & 3 / 1504 \\ 5 / 14520\end{array}\right.$
R136 $\quad \mathrm{DEG}=7 \quad \mathrm{~F}=\mathrm{A} \quad$ AUT $=1 \quad \mathrm{P}=(1 / 7 / 9 / 1) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=3,6$
A=1 $3513,111116135026,340350010241400622540,770021027677400$
$\mathrm{E}=2-3.7321$ 2-2.2161 2-1.6329 2-. $84802-.26792-.0902$ 2+. $938312+3.84907$
$K=\left(\begin{array}{lllll}22 & 16 & 5 & 1,9\end{array}\right)-D(R 46) 4 / 12302$
R137 $D E G=8 \quad F=X T I \quad P=(1,8,+) \quad G I R=3 \quad C N=9,2 \quad T=2$
A=1 $3717,37771773770,1000300070001700037000,77000177000377000$
2[I9] SW(I9) F3[C2] 1/524 2/314 3/1610 4/17000 5/17000
R138 DEG=8 AUT $=1 \quad \mathrm{P}=(1 / 8 / 9) \quad$ GIR $=3 \quad \mathrm{CN}=5,5$

$E=2-4.508102-1.864282-1.676842-1.250673+02+.558872+22+2.741028$
$K=(188,102) 4 / 14207$
R139 $D E G=8 \quad F=I \quad$ AUT $=31104 \quad P=(1,26,6,3) \quad G I R=3 \quad C N=6,3$
$A=13717,73747247640,164036401301013030130,77000177000377000$
$E=-414-12+58 \quad K=(9,1920102) \quad S W(I 2)-D(R 132)-D(R 172)-D(R 21)-D(R 53)$
F4[C2] 1/342 2/66 3/170 4/4363 5/4336

TRANSITIVE GRAPHS ON 18 VERTICES (CONTD)
R140 $D E G=8 \quad$ AUT $=1 \quad P=(1 / 8 / 9) \quad G I R=3 \quad C N=5,5$
$A=11515,15 \quad 5165 \quad 221724,15640674201430215612,22512175042126162$ $E=-42-3.16502-2.73212-.59382-.43752-.33672+.73212+1.03132+3.50178$ $K=(164,126) \quad 4 / 10732$

R141 $\quad \mathrm{DEG}=8 \quad \mathrm{~F}=\mathrm{I} \quad \mathrm{AUT}=2 \quad \mathrm{P}=(1,2222,12222) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=5,5$
$A=13513,5433335146,350256062610616 \quad 23300,55440157120167050$ $E=2-3.532092-2.347302-22-1.532092-.347302-.120612+1.879392+248$ $K=(156,134) \quad-D(R 119) 1 / 1344 / 7220$

R142 $D E G=8 \quad A U T=1 \quad P=(1 / 8 / 9) \quad G I R=3 \quad C N=5,5$
$A=1 \quad 1 \quad 5 \quad 1,5 \quad 5565361 \quad 132,22231542122154142672,3305252426335202$
$E=2-3.741022-32-1.558872-1 \quad 0 \quad 2+.250672+.676842+.864282+3.508108$
$K=(164,126) \quad 4 / 12213$
R143 DEG=8 AUT=1 $P=(1 / 8 / 9) \quad G I R=3 \quad C N=3,6$
$A=1 \quad 1 \quad 1 \quad 11,55153 \quad 21 \quad 764,1512111222241456216456,30550106076114626$ $E=2-4.64575 \quad 4-2.30278 \quad 3+0 \quad 2+.64575 \quad 4+1.30278 \quad 2+28 \quad K=(201451,8) \quad D(R 45)$ 3/433

R144 DEG=8 AUT=1 $P=(1 / 8 / 9) \quad G I R=3 \quad C N=6,3$
$A=1115,251565275312,22224023514151306072,4634235152167006$ $E=-4 \quad 2-2.96962-2.2856 \quad 2-1.6840 \quad 2-.3160 \quad 2+.2679 \quad 2+.2856 \quad 2+.9696 \quad 2+3.73218$ $K=(15,131051) 4 / 4655$

R145 DEG=8 $F=I \quad$ AUT $=2 \quad P=(1,2222,12222) \quad G I R=3 \quad C N=5,6$
$A=1353,3510345630,105411224374125726720,46650103322245454$ $\mathrm{E}=2-4.411472-32-12-.87939 \quad 0 \quad 2+.184792+1.22668 \quad 2+1.347302+2.532098$ $K=(19 \quad 10,9) \quad 1 / 6144 / 11231$

R146 $D E G=8 \quad F=I \quad$ AUT $=2 \quad P=(1,2222,12222) \quad G I R=3 \quad C N=5,6$
$A=13513,1121 \quad 6111136,25425227141066215644,2370212714457142$ $E=2-3.532092-3.411472-2.347302-.120613+02+1.184792+22+2.226688$ $K=(186,10) \quad 1 / 1324 / 14231$

R147 $\quad D E G=8 \quad F=N$ AUT $=2 \quad P=(1,2222,12222) \quad G I R=3 \quad C N=5,6$
$A=1353,2151111261146,45432216241161217244,2750211613466072$ $E=4-3 \quad 4-2.30278 \quad 04+1.30278 \quad 4+2 \quad 8 \quad K=\left(\begin{array}{llll}17 & 6,11 & 2\end{array}\right)$

R148 $D E G=8 \quad$ AUT $=2 \quad P=(1,2222,12222) \quad G I R=3 \quad C N=3,6$
$A=13111,215155123146,51226467473217054,27122117404267202$ $E=2-4 \quad 4-2.302782-1 \quad 3+0 \quad 4+1.30278 \quad 2+3 \quad 8 \quad K=\left(\begin{array}{lllll}17 & 12 & 5 & 1,11\end{array}\right) 3 / 1070$

R149 $D E G=8 \quad F=I \quad$ AUT $=2 \quad P=(1,2222,12222) \quad G I R=3 \quad C N=5,5$
$A=1311,3171115263606,3344725042310435014,7302272254134522$ $E=2-3.532092-2.347302-2.226682-1.184792-.120613+02+22+3.411478$ $K=(156,134)-D(R 118)-D(R 71) 1 / 5504 / 6306$

R150 $D E G=8 \quad$ AUT $=1 \quad P=(1 / 8 / 9) \quad G I R=3 \quad C N=6,3$
$A=11515,3531757612,146213004504161427422,7412453412334150$ $E=2-3 \quad 4-2.30278 \quad 2-1.645752-1 \quad 04+1.30278 \quad 2+3.64575 \quad 8 \quad K=(14,141051) \quad 3 / 1305$

R151 $D E G=8 \quad F=1 \quad$ AUT $=2 \quad P=(1,2222,12222) \quad G I R=3 \quad C N=5,5$
$A=1377,116123215146,134215446321063426300,56440165050353120$
$E=2-3.226682-2.879392-2.184792-12-.652702+.532092+12+2.4114748$
$K=(156,134) 1 / 3244 / 15003$

```
R152 DEG=8 AUT=1 P=(1/8/9) GIR=3 CN=6,3
A=1 3 5 15,1 35 45 135 650,452 2006 5342 11250 35360,26122 106642 327022
E=2-3.8794 2-1.8794 2-1.6527 2-1.6458 2-.4679 0 2+.3473 2+1.5321 2+3.6458 8
K=(15,13 10 5 1) 4/5622
R153 DEG=8 F=I AUT=2 P=(1,2222,12222) GIR=3 CN=5,5
A=1 3 1 1,5 43 107 47 630,764 2752 5024 13012 21134,51072 130530 270270
E=2-4.41147 2-2.87939 2-1 2-.65270 2+.18479 2+.53209 2+1 2+1.22668 4 8
K=(18 10,10 4) 1/522 4/15011
R154 DEG=8 F=I AUT=2 P=(1,2222,12222) GIR=3 CN=5,5
A=1 1 5 3,35 33 61 111 36,410 2220 7226 7416 2744,44742 127302 57444
E=-4 2-3.22668 2-2.18479 4-1 2-.53209 2+.65270 2+2.41147 2+2.87939 8
K=(16 6,12 4) 1/72 4/2725
R155 DEG=8 F=1 AUT=2 P=(1,2222,12222) GIR=3 CN=5,6
A=1 1 5 3,35 33 61 311 36,1102 3044 5226 3416 22650,54720 66244 316502
E=2-3.22668 2-2.53209 2-2.18479 2-1.34730 2-1 0 2+.87939 2+2.41147 2+3 8
K=(15 2,13 4) -D(R23) 1/702 4/5243
R156 DEG=8 F=I AUT=4 P=(1,224,1224) GIR=3 CN=3,6
A=1 3 5 13,5 43 43 305 36,746 746 630 170 35220,75410 133120 273050
E=2-4 4-2 4-1 4+1 2+2 4 8 K=(16 10 5 1,12) -D (R78) 2/614 3/1413 5/7600
R157 DEG=8 F=I AUT=2 P=(1,2222,12222) GIR=3 CN=5,5
A=1 3 7 7, 1 1 25 13 170,764 752 1544 11342 25504,13242 164530 152270
E=2-4.41147 -4 4-1 2-.53209 2+.18479 2+.65270 2+1.22668 2+2.87939 8
K=(19 10,9 4) D(R109) 1/216 4/10764
R158 DEG=8 F=IA AUT=2 P=(1,2222,2222,1) GIR=3 CN=5,5
A=1 3 5 13,5 43 47 107 742,1744 530 270 15120 36050,50234 124432 377000
E=2-4.06418 2-1.69459 8-1 2+1 2+2.758774 8 K=(15 8,13 4) SW(I8) -D(R180)
1/544 4/7120
R159 DEG=8 F=I AUT=2 P=(1,2222, 12222) GIR=3 CN=5,6
A=1 1 5 13,11 61 13 25 170,1700 1640 4346 2546 23246,15506 126232 56434
E=-4 2-3.53209 2-2.34730 2-1.87939 2-.12061 2+.34730 2+1.53209 4+2 8
K=(18 6,10) 1/152 4/4467
R160 DEG=8 F=I AUT=2 P=(1,2222,12222) GIR=3 CN=3,6
A=1 1 5 13,3 45 101 241 170,524 252 726 656 27224,57412 17264 27512
E=2-4 2-3.41147 2-1.87939 3+0 2+.34730 2+1.18479 2+1.53209 2+2.22668 8
K=(19 14 5 1,9) D(R69) 1/226 4/3162
R161 DEG=8 F=I AUT=2 P=(1,2222,12222) GIR=3 CN=3,6
A=1 3 1 1,13 65 111 261 146,524 252 672 734 27224,17412 117024 267012
E=2-4 2-3 4-1 5+0 2+2 2+3 8 K=(17 10 5 1, 11) 2/252 5/11350
R162 DEG=8 F=I AUT=2 P=(1,2222,12222) GIR=3 CN=3,6
A=1 1 5 3,25 53 121 251 36,754 762 322 454 35024,73012 133404 275202
E=2-4 2-2.22668 2-1.87939 2-1.18479 3+0 2+. 34730 2+1.53209 2+3.41147 8
K=(16 10 5 1,12) 1/644 4/12606
R163 DEG=8 F=I AUT=2 P=(1,2222,12222) GIR=3 CN=5,5
A=1 1 5 3,27 57 5 203 740,232 2434 4114 12062 33224,35412 115660 63710
E=2-3.22668 2-3 2-2.18479 2-1 2-.87939 0 2+1.34730 2+2.41147 2+2.53209 8
K=(16 2,12 4) 1/234 4/3314
```

R164 $D E G=8 \quad$ AUT $=2 \quad P=(1,111122,12222) \quad G I R=3 \quad C N=6,3$
$A=13513,1151151351 \quad 36,11203060752017260 \quad 2506,44246164206352406$
$E=4-3 \quad 2-1.645754-1 \quad 3+02+2 \quad 2+3.645758 \quad K=(14,141051) \quad 3 / 315 \quad 5 / 3225$
R165 $D E G=8 \quad F=I \quad A U T=2 \quad P=(1,2222,12222) \quad G I R=3 \quad C N=3,6$
$A=13513,54343305170,434232746746 \quad 27220,57410117120267050$
$E=2-4 \quad 2-2 \quad 2-1.879392-1.532092-.347302+.347302+1.532092+1.8793948$
$K=\left(\begin{array}{lllll}16 & 10 & 5 & 1,12\end{array}\right) \quad-D(R 67) 1 / 4644 / 13003$
R166 $D E G=8 \quad A U T=2 \quad P=(1,2222,12222) \quad G I R=3 \quad C N=5,6$
$A=13513,54313225146,636 \quad 636 \quad 50601311034540,32340151520361250$
$E=4-3.30278 \quad 2-2 \quad 2-1 \quad 4+.30278 \quad 2+1 \quad 2+248 \quad K=(168,12) \quad 3 / 1230$
R167 $\mathrm{DEG}=8 \mathrm{~F}=\mathrm{I} \quad \mathrm{AUT}=6 \quad \mathrm{P}=(1,26,2223) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=3,6$
$A=11133,25315105134,6426404130577012770,171461741617226$
$E=3-44-1.879394+.347304+1.532092+28 \quad K=(191451,9) \quad D(R 70) 1 / 6424 / 10555$
R168 $\mathrm{DEG}=8 \quad \mathrm{AUT}=2 \quad \mathrm{P}=(1,11222,111222) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=6,3$
$A=11515,215135235602,1170214450221501226542,5634231306231446$ $E=-4 \quad 4-2.732054-12+.267954+.73205 \quad 2+3.732058 \quad K=(15,131051) 3 / 265$ 5/10770

R169 $\mathrm{DEG}=8 \quad \mathrm{AUT}=1 \quad \mathrm{P}=(1 / 8 / 9) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=5,5$
$A=13511,2157161171620,1006201272401724034016,4453667006213660$
$E=2-3 \quad 2-2.743662-1.976012-12-.329552-.3205202+1.281422+4.088328$
$K=(132,158) \quad 4 / 3126$
R170 $\quad \mathrm{DEG}=8 \quad \mathrm{~F}=\mathrm{I} \quad \mathrm{AUT}=2 \quad \mathrm{P}=(1,2222,12222) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=5,6$
$A=1335,235553630,57237432041540221264,5151213265074720$
$E=2-4.411472-2.532092-1.347302-102+.184792+.879392+1.226682+38$
$K=(1810,10) \quad 1 / 3064 / 6550$
R171 $\quad D E G=8 \quad F=I \quad A U T=2048 \quad P=(1,8,18) \quad G I R=3 \quad C N=3,6 \quad T=1$
$A=1171,721101221776,550226 \quad 627062706506,7055070226306506$

R172 $\mathrm{DEG}=8 \quad \mathrm{~F}=\mathrm{IA} \quad \mathrm{AUT}=144 \quad \mathrm{P}=(1,26,26,1) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=3,6$
$A=11111,3141131131774,772606411641264036,7044670246377000$
$E=2-58-16+148 \quad K=(1920102,9) \quad \operatorname{SW}(I 7)-D(R 56) 1 / 4342 / 1343 / 16034 / 13014$ 5/7050

R173 $\quad \mathrm{DEG}=8 \quad \mathrm{~F}=\mathrm{TIA} \quad \mathrm{AUT}=40320 \quad \mathrm{P}=(1,8,8,1) \quad \mathrm{GIR}=4 \quad \mathrm{CN}=2,9 \quad \mathrm{~T}=2$
$A=11111,11112774,772766756736676,576376377000 \quad E=-88-18+18$ $K=(285670562881) \quad ,\mathrm{SW}(I 1)-W 9(\mathrm{~B} 2)-\mathrm{B} 2 \mathrm{XI} 9 \mathrm{~B} 2 * I 91 / 252 \quad 2 / 4623 / 1634 / 776$ 5/377

R174 $D E G=8 \quad$ AUT $=1 \quad P=(1 / 8 / 9) \quad G I R=3 \quad C N=3,6$
$A=1 \quad 1 \quad 1 \quad 15,15545121374,25641634021630034472,3426212344614732$
$E=2-4.64582-2.53212-1.34732-.532102+.64582+.65272+.87942+2.87948$
$K=\left(\begin{array}{llll}19 & 14 & 5 & 1,9\end{array}\right) \quad D(R 136) 4 / 3262$
R175 $\quad D E G=8 \quad F=I \quad A U T=512 \quad P=(1,44,144) \quad G I R=3 \quad C N=3,6$
$A=13513,1111776,76475275276414624,62152114624262152$
$E=2-5.758772-1.30541 \quad 9+02+1.064182+28 \quad K=(2428153,4) \quad D(R 63) \quad D(R 64)$
$D(R 76) D(R 92)-D(R 31) I 5[B 1] 1 / 3144 / 6245$

R176 DEG=8 AUT=1 $P=(1 / 8 / 9) \quad G I R=3 \quad C N=5,5$
$A=11715,21617251460,12162067500171144672,5172016146325142$
$E=2-3.160802-32-2.556232-102+.09662 \quad 2+.667812+1.861642+3.090968$ $K=(166,122) 4 / 3312$

R177 $D E G=8$ AUT $=1 \quad P=(1 / 8 / 9) \quad G I R=3 \quad C N=5,5$
$A=1351,21755221550,104421522232153305530,72426676253446$
$E=2-4.090962-2.861642-1.667812-1.096623+02+1.556232+22+2.160808$
$K=(1810,102) \quad 4 / 5701$
R178 DEG=8 AUT $=1 \quad P=(1 / 8 / 9) \quad G I R=3 \quad C N=5,5$
$A=11515,271105163330,642367606 \quad 601433312,27500124152321360$ $E=-4 \quad 2-2.73212-2.56342-1.62232-1.1953 \quad 2+.2465 \quad 2+.7321 \quad 2+2.31692+2.81778$ $K=(164,124) \quad 4 / 2754$

R179 $D E G=8$ AUT $=2 \quad P=(1,2222,12222) \quad G I R=3 \quad C N=5,5$
$A=111513,235541301740,5222546246 \quad 6506 \quad 27224,17412111434261232$
$E=6-3 \quad 2-1 \quad 3+06+2 \quad 8 \quad K=\left(\begin{array}{llll}17 & 4,11 & 2\end{array}\right) \quad 3 / 455$
R180 $D E G=8 \quad F=I A \quad A U T=2 \quad P=(1,2222,2222,1) \quad G I R=3 \quad C N=5,5$
$A=11315,373710543472,334230014401460434602,5541236224377000$ $E=-4 \quad 2-2.7587710-1 \quad 2+1.694592+4.064188 \quad K=\left(\begin{array}{ll}13 & 4,158)\end{array} \quad \operatorname{SW}(I 3)-D(R 111)\right.$ -D(R158) 1/650 4/10665

R181 $D E G=8 \quad F=I \quad A U T=24 \quad P=(1,26,234) \quad G I R=3 \quad C N=3,6$
$A=1355,13235203770,7706065612635540,7523036540236230$
$E=3-4 \quad 8-1 \quad 6+28 \quad K=\left(\begin{array}{llllllll}18 & 10 & 5 & 1,10\end{array}\right) 2 / 4643 / 11605 / 1167$
R182 $D E G=8 \quad$ AUT $=1 \quad P=(1 / 8 / 9) \quad G I R=3 \quad C N=6,5$
$A=13715,311510561660,1016130436421201224560,6470216642237340$ $E=-4 \quad 2-2.732054-1.791294-1 \quad 2+.732054+2.79129 \quad 8 \quad K=(15,136) \quad 3 / 523$

R183 $D E G=8 \quad$ AUT $=2 \quad P=(1,11222,111222) \quad G I R=3 \quad C N=3,6$
$A=115 \quad 5,211110545170,1602114456225612 \quad 26532,16272 \quad 2256612356$ $E=2-4.64575 \quad 2-3 \quad 2-1 \quad 5+0 \quad 2+.64575 \quad 4+2 \quad 8 \quad K=\left(\begin{array}{lllll}20 & 14 & 5 & 1,8\end{array}\right) \quad D(R 117) 3 / 14235 / 5425$

R184 DEG=8 AUT=1 $P=(1 / 8 / 9) \quad G I R=3 \quad C N=4,6$
$A=11115,15151205760,73232164462744031036,3035640762230332$ $E=2-5.08832 \quad 2-2.28142 \quad 2-.679482-.67045 \quad 3+0 \quad 2+.97601 \quad 2+1.743662+28$ $K=\left(\begin{array}{lll}21 & 18 & 5,7\end{array}\right) \quad D(R 134) 4 / 6164$

R185 $\quad \mathrm{EEG}=8 \mathrm{~F}=\mathrm{IA}$ AUT $=2 \quad \mathrm{P}=(1,2222,2222,1) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=4,6$
$A=13513,251353572,3746647121070424642,51520126250377000$ $E=2-4.758778-12-.30541 \quad 02+2.064182+38 \quad K=(18165,10) \quad \operatorname{SW}(I 5)-D(R 190)$ -D(R35) 1/146 4/6303

R186 $\quad \mathrm{DEG}=8 \quad \mathrm{~F}=\mathrm{IA} \quad \mathrm{AUT}=8 \quad \mathrm{P}=(1,44,44,1) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=5,5$
$A=13315,255331207612,170162421461150234444,23310146260377000$ $E=4-38-104+38 \quad K=(144,144) \quad \operatorname{SW}(I 4)-D(R 186)-D(R 39) 2 / 743 / 15035 / 3252$

R187 DEG=8 AUT $=1 \quad P=(1 / 8 / 9) \quad G I R=3 \quad C N=5,5$
$A=1 \quad 1 \quad 1 \quad 15,151111145470,11264164162626435306,766211256232612$ $E=-42-3.84902-2.73212-.93832+.0902 \quad 2+.7321 \quad 2+.84802+1.63292+2.21618$ $K=(198,92) \quad D(R 133) \quad D(R 58) 4 / 10273$

R188 $\quad D E G=8 \quad F=1 \quad$ AUT $=512 \quad P=(1,44,144) \quad G I R=3 \quad C N=3,6$

$E=2-4 \quad 2-3.064182-.694599+0 \quad 2+3.75877 \quad 8 \quad K=\left(\begin{array}{lllll}16 & 12 & 5 & 1,12\end{array}\right) \quad D(R 28) I 6[B 1] 1 / 606$ 4/3360

R189 DEG=8 $F=I \quad$ AUT=12 $P=(1,26,36) \quad G I R=3 \quad C N=5,6$
$A=13513,5435203 \quad 36,60614656601355036330,3360105710306470$
$E=-4 \quad 6-2.732056+.732054+28 \quad K=(184,10) \quad 3 / 136 \quad 5 / 10356$
R190 $\quad D E G=8 \quad F=I A \quad$ AUT $=2 \quad P=(1,2222,2222,1) \quad G I R=3 \quad C N=6,4$
A=1 135 , $1365173375524,25220521124601231024,75004176002377000$ $E=2-3 \quad 2-2.06418 \quad 8-102+.305412+4.758778 \quad K=(10,18165) \quad S W(I 6)-D(R 185)$
$-D(R 25)-D(R 36)-D(R 42)-D(R 50) 1 / 364 / 12446$

TRANSITIVE GRAPHS ON 19 VERTICES
$S 1$ DEG=0 F=XTVIAP $P=(1,+) \quad C N=1,19$
S2 DEG=2 F=TVIP AUT=2 $P=(1,2,2,2,2,2,2,2,2,2) \quad G I R=19 \quad C N=3,10 \quad$ POLYGON
$A=1142,201010040400,20020001000100004000,4000020000200000500000$ $E=2-1.9732-1.7592-1.3552-.8032-.1652+.4912+1.0942+1.5782+1.8922$ $K=(1053647157924621209) \quad 1 /$,

S3 $\quad D E G=4 \quad F=V I \quad A U T=2 \quad P=(1,22,22,22,22,2) \quad G I R=3 \quad C N=4,7$
A=1 $1315,241244102500,24014002200120005000,4400030000320000740000$ $E=2-2.1582-2.1382-1.5202-1.2682-.6652-.0812+.2912+2.0692+3.4704$ $K=\left(\begin{array}{llll}66 & 120 & 70 & 6,3\end{array}\right) \quad D(S 2) 1 / 401$

S4 $\quad \mathrm{DEG}=4 \quad \mathrm{~F}=\mathrm{VI} \quad$ AUT $=2 \quad \mathrm{P}=(1,22,2222,222) \quad \mathrm{GIR}=4 \quad \mathrm{CN}=3,10$
$A=11111,241224420,2104224214210021040,4200021000300300300440$ $E=2-3.1142-2.7762-1.4822-.3122+.1332+.5372+.9292+1.4132+2.6724$ $K=(69152155667$,) 1/22

S5 DEG=4 F=VI AUT=2 $P=(1,22,2222,222) \quad G I R=4 \quad C N=3,10$
$A=11111,106024122,411462130007000,2044040300201400502200$
$E=2-3.327 \quad 2-2.562 \quad 2-.9692-.3942-.2612-.181 \quad 2+1.585 \quad 2+1.7262+2.3834$
$K=\left(\begin{array}{lllll}69 & 152 & 160 & 78 & 14,\end{array}\right) \quad 1 / 402$
S6 $\quad D E G=4 \quad F=V I \quad$ AUT $=2 \quad P=(1,22,222,222,2) \quad G I R=4 \quad C N=3,10$
$A=1111,34324214,22240012001040024200,25001240250000524000$ $\mathrm{E}=2-3.73172-1.92412-.87882-.86362+.22372+.32582+.77492+1.08822+2.98554$ $K=\left(\begin{array}{llllll}69 & 156 & 185 & 126 & 49 & 8,\end{array}\right) \quad 1 / 30$

S7 DEG=6 F=VI \quad UUT $=2 \quad P=(1,222,222,222) \quad G I R=3 \quad C N=5,5$ A=1 $135,337512452412,224220414021000024000,7140066200171000666000$ $\mathrm{E}=2-2.6232-1.8402-1.6822-1.6472-.8302-.2662+.0592+1.2662+4.5646$ $K=(3620,94) \quad 1 / 601$

S8 DEG=6 F=VI \quad UUT $=2 \quad P=(1,222,22222,2) \quad G I R=3 \quad C N=4,7$
$A=1153,251310244550,13602214114106220,14404114202270200564400$ $E=2-2.727 \quad 2-2.2332-2.1532-1.7492-.9842+.2302+.9232+2.2172+3.4776$ $K=(39365,6) \quad 1 / 242$

S9 DEG=6 F=VI AUT=2 $P=(1,222,2222,22) \quad G I R=3 \quad C N=4,7$
$A=11111,235513472214,42224604211104,5520036400256000535000$ $E=2-3.4922-2.3232-1.4682-1.0642-.2462-.1742+.3102+1.4972+3.9616$ $K=(3940 \quad 15,6) \quad D(\$ 3) 1 / 520$

```
S10 DEG=6 F=VI AUT=2 P=(1,222,22222,2) GIR=3 CN=4,7
```

A=1 1 11, $2151134724,1002421041201425022,1225455225740037200$ $\mathrm{E}=2-3.91692-2.94132-1.43572-.42582+.09652+.62372+.78152+.91322+3.30486$ $K=(4256306,3) \quad 1 / 124$

S11 $\quad D E G=6 \quad F=V I \quad$ AUT $=2 \quad P=(1,222,222222) \quad G I R=4 \quad C N=4,10$
$A=1111,11160150104,104221341072560212604,2214101422220054540122$ $\mathrm{E}=2-4.5352-2.8362-1.5352-.0322+.6102+.6992+1.4202+1.5792+1.6316$ $K=(45684512) \quad 1 /$,

S12 $\quad \mathrm{DEG}=6 \quad \mathrm{~F}=\mathrm{VI} \quad \mathrm{AUT}=2 \quad \mathrm{P}=(1,222,22222,2) \quad \mathrm{GIR}=4 \quad \mathrm{CN}=3,10$
A=1 $111,1117417274,132200450021004424102,5005424122252400525200$ $\mathrm{E}=2-5.0862-1.1982-.6712-.4782-.3882-.3462+1.0282+1.3182+2.8206$ $K=(458075367)-,D(S 7) 1 / 222$

S13 DEG=6 F=VI AUT=2 $P=(1,222,222222) \quad G I R=3 \quad C N=4,7$
A=1 $1315,111224344,542501201211025060,143041144422660451602$ $\mathrm{E}=2-3.2792-3.2412-1.6672-1.0442-.8842+1.2272+1.8692+1.9042+2.1156$ $K=(424810,3) \quad D(S 6) 1 / 441$

S14 DEG=6 F=VI AUT=6 $\quad \mathrm{P}=(1,6,66) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=5,7 \quad \mathrm{~T}=1$
$A=1175,214314102340,4246040121240235040,642011421030170063204$ $\mathrm{E}=6-2.285146-1.22188 \quad 6+2.50702 \quad 6 \quad \mathrm{~K}=(3932,6) \quad 1 / 301$

S15 DEG=6 F=VI AUT=2 $P=(1,222,22222,2) \quad G I R=3 \quad C N=4,7$
 $\mathrm{E}=2-3.8972-2.6382-1.4332-1.0292-.5802+.7152+1.0132+2.1822+2.6676$ $K=(425220,3) \quad 1 / 620$

S16 $\quad \mathrm{DEG}=6 \quad \mathrm{~F}=\mathrm{VI} \quad$ AUT $=2 \quad \mathrm{P}=(1,222,22222,2) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=4,7$
A=1 $1111,21115632640,11001064211212242412,4110222044336000355000$ $\mathrm{E}=2-4.1312-2.0712-2.0202-.5602+.1252+.3722+.4102+1.7112+3.1636$ $K=(4256306,3) \quad 1 / 203$

S17 DEG=8 F=VI AUT=2 $P=(1,2222,22222) \quad G I R=3 \quad C N=4,7$
A=1 $353,251353100,10401472633436643712,42704121642113270207530$ $\mathrm{E}=2-4.7002-2.3392-1.2582-1.0592-.3422+.0652+.4582+2.5012+2.6738$ $K=(24205,9) \quad 1 / 660$

S18 DEG=8 F=VI AUT=2 $P=(1,2222,22222) \quad G I R=3 \quad C N=5,7$
$A=1135,1523101241634,632243412321430434442,41506122246252160525150$ $\mathrm{E}=2-3.992$ 2-2.552 2-2. $3192-2.2372+.8632+.9082+1.5042+1.8092+2.0178$ $K=(2416,9) \quad D(S 8) 1 / 131$

S19 DEG=8 F=VI AUT=2 $P=(1,2222,22222) \quad G I R=3 \quad C N=4,7$
$A=11513,1161101241416,226122024101572416652,1516216154112506605246$ $\mathrm{E}=2-4.2962-2.8232-1.6012-1.2292-.9772+1.3322+1.4042+1.9882+2.2028$ $K=\left(\begin{array}{lll}24 & 16 & 5,9\end{array}\right) \quad 1 / 560$

S20 DEG=8 F=VI AUT=2 $\mathrm{P}=(1,2222,22222) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=5,5$
$A=11717,112513712,66422505520634611546,52110125060310342704544$ $E=2-4.5952-2.6432-1.7002-.5532-.1042+.2252+1.0612+1.1012+3.2098$ $K=(2416,94) \quad 1 / 151$

S21 $D E G=8$ F=VI AUT=2 $P=(1,2222,22222) \quad G I R=3 \quad C N=5,6$
$A=1177,25131523570,1370225015201460434602,46044131102344502730244$ $E=2-3.5082-2.9572-1.7422-1.1492-.8362-.6552+1.4142+2.1222+3.3118$ $K=(218,124) \quad-D(\$ 4) 1 / 702$

```
S22 DEG=8 F=VI AUT=2 P=(1,2222,22222) GIR=3 CN=5,5
A=1 3 7 7,13 65 101 41 334,472 14406300 15604 16602,54410 134220 342454 321322
E=2-3.406 2-2.803 2-2.788 2-.746 2-.089 2+. 209 2+.550 2+1. 312 2+3.760 8
K=(21 8,12 4) 1/47
```

S23 DEG=8 F=VI $A U T=2 \quad P=(1,2222,22222) \quad G I R=3 \quad C N=4,7$
$A=11315,156310543572,374100220041460434602,55410136220254324134452$
$\mathrm{E}=2-4.0822-2.3992-1.6622-1.0502-.5732+.1102+.1432+1.7182+3.7968$
$K=(21165,12) \quad-D(S 26) 1 / 612$
S24 $D E G=8 \quad F=V I \quad$ AUT $=2 \quad P=(1,2222,22222) \quad G I R=3 \quad C N=5,7$
$A=11315,11211523320,4504524324730433442,17541027625710637046$
$\mathrm{E}=2-4.0442-3.6402-1.3872-.3942-.1282+.3562+.5342+1.7042+2.9988$
$K=(2416,9) \quad 1 / 36$
S25 DEG=8 F=VI AUT=2 $P=(1,2222,22222) \quad G I R=3 \quad C N=5,5$
$A=1153,33754130122,101416142622706213114,5710112660165406272206$
$E=2-3.4412-3.0012-2.0052-1.0442-.7452-.3392+.8282+2.5912+3.1578$
$K=(214,124) \quad 1 / 621$
S26 $\mathrm{DEG}=8 \mathrm{~F}=\mathrm{VI} \quad \mathrm{AUT}=2 \quad \mathrm{P}=(1,2222,2222,2) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=7,4$
$A=1135,1365173375 \quad 524,25,2201210241500436002,4605231124375000776000$
$E=2-3.0372-1.9142-1.6342-1.5292-.4932-.4312-.262 \quad 2+.2452+5.0558$
$K=(15,18165) \quad-D(S 9) 1 / 161$
S27 DEG=8 F=VI AUT=2 $\mathrm{P}=(1,2222,22222) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=5,5$
$A=1135,2151173175564,3522440121220225404,76004175002255064136112$
$E=2-3.195 \quad 2-2.450 \quad 2-2.025 \quad 2-1.191 \quad 2-.731 \quad 2-.707 \quad 2+.748 \quad 2+1.152 \quad 2+4.3998$
$K=(184,158) \quad-D(S 5) 1 / 701$
S28 DEG=8 $\mathrm{F}=\mathrm{VI} \quad \mathrm{AUT}=2 \quad \mathrm{P}=(1,2222,22222) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=5,5$
$A=13315,11612717412,1224246013101627015530,4544110342327042353104$
$E=2-3.426 \quad 2-2.2392-2.1852-1.8472-1.3492-.0692+1.9502+2.3602+2.8058$
$K=(218,124) \quad 1 / 123$
S29 $D E G=8 \quad \mathrm{~F}=\mathrm{VI} \quad \mathrm{AUT}=2 \quad \mathrm{P}=(1,2222,22222) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=4,7$
$A=13513,1135734,672236415521210425042,6076060750250524524252$
$E=2-5.25142-2.14682-1.83212+.14512+.4232 \quad 2+.5142 \quad 2+.69382+.84762+2.60638$
$K=\left(\begin{array}{ll}27 & 28 \\ 10,6\end{array}\right) \quad D(S 15) \quad 1 / 614$
S30 $\quad \mathrm{DEG}=8 \mathrm{~F}=\mathrm{VI} \quad \mathrm{AUT}=2 \quad \mathrm{P}=(1,2222,22222) \quad \mathrm{GIR}=3 \quad \mathrm{CN}=4,7$
$A=1353,1111774,772212450521072424652,50524124252210764104752$
$E=2-5.8902-1.3632-.9452-.4412-.1802+.6162+1.1902+1.4662+1.5468$
$K=\left(\begin{array}{lll}30 & 40 & 25 \\ 6,3\end{array}\right) \quad D(S 10) \quad D(S 12) \quad D(S 16) \quad 1 / 74$

Additional Information

(a) Two graphs are cospectral if their adjacency matrices have the same eigenvalues and multiplicities. We list here all families of cospectral graphs in the catalogue. The complements of each member of a family form another family.

12 vertices: L15 L21, L27 L29. 16 vertices: P33 P49, P35 P45, P61 P88, P63 P72, P64 P86, P75 P91, P78 P95, P81 P84, P97 P107, P98 P134, P99 P113 P118, P103 P108, P105 P141, P111 P112, P120 P136, P124 P137, P142 P143.
(b) The following graphs are the only ones in the catalogue which are not Cayley graphs:

J7, 07, O21, P20, P52, P93, P110, R38, R147.
(c) The switching classes of transitive graphs of even order are shown in Table 1. It is easy to show that G and H are switching equivalent if and only if \bar{G} and \bar{H} are. Thus each family in Table 1 provides another by complementing each member. However the following graphs are actually switching equivalent to their own complements:
B1, J3, J6, J7, R15, R32, R38, R39, R147, R148, R161, R179.

Table 1 does not include the following graphs, as they are unique in their switching classes: L10, L16, L37, P74 and P139. It may be worth noticing that each family of cospectral graphs is related also by switching. In fact, two switching equivalent regular graphs of
the same degree are necessarily cospectral.
(d) The self-complementary transitive graphs in the catalogue are $\mathrm{E} 2, \mathrm{I} 4, \mathrm{M} 6, \mathrm{M} 7, \mathrm{Q} 14, \mathrm{Q} 15, \mathrm{Q} 18$ and Q20.
(e) The connected planar transitive graphs (excluding polygons) with $4 \leq n \leq 19$ are D4, F6, F7, H7, H10, J6, J11, L10, L13, L20, L21, L37, N6, N9, P10, P16, R10 and R20.
(f) The distance-regular connected graphs in the catalogue, excluding polygons and those with $k>(n-1) / 2$, are H7, I4, J7, J10, L34, L37, M6, N7, N13, N24, O7, O21, P27, P55, P81, P84, P130, Q18, R11 and R173. Of these, only P84 is not distance-transitive.
(g) Γ will act primitively on V if n is prime or if G is an empty graph. Excluding complements, the only other examples in the catalogue where this occurs are for I4, J7, 021, P55 and P81.
(h) The following are all those graphs in the catalogue whose arc-transitivity is at least one. We exclude disconnected graphs, polygons, and those whose complements are disjoint unions of complete graphs.

$$
\begin{aligned}
& \text { H7, I4, J7, J9, J10, } \overline{J 7}, ~ L 20, ~ L 23, ~ L 34, ~ L 37, ~ \overline{L 30, ~ M 3, ~ M 6, ~} \\
& \text { NT, N12, N13, N24, O7, } 012,021,023, \overline{020}, \overline{021}, \mathrm{P} 12, \mathrm{P} 23, \mathrm{P} 27, \\
& \text { P55, P81, P82, P84, P130, } \overline{\mathrm{P} 55}, \overline{\mathrm{P} 81}, \mathrm{Q} 3, \mathrm{Q} 18, \mathrm{R} 11, \mathrm{R} 28, \mathrm{R} 29, \\
& \text { R88, R90, R171, R173, } \overline{\mathrm{R} 126, ~ S 14 . ~}
\end{aligned}
$$

(i) The only connected graph in the catalogue which has no Hamiltonian cycle is Petersen's graph (J7), which has Hamiltonian paths and cycles of length 9.

B1	-B1								
D1	-D2								
F1	-F3	F2	F4						
H1	-H5	H2	-H3	H7	H4	-H6			
J1	--J8	J2	J10	J3	-33	J4	$J 5$		
$J 6$	-J6	J7	-J7	J9	-J11				
L1	-L25	L2	-L14	134	L3	-L8	14	L23	-L35
L5	-L9	L19	L6	L17	-L31	L7	L26		
L11	-L22	L36	L12	L27	L29	L13	-L18	L32	
L15	L21	-L28	L20	-L33	L24	-L30			
N1	- N 20	N2	N24	N3	-N8	N4	N19	N5	N10
N6	-N17	N7	N13	N9	-N22	N11	- N25	N12	- N 27
N14	N28	N15	N26	N16	N21	N18	N23		
P1	-P96	P2	-P56	P130,	P3	-P29	P82	-P132,	
P4	-P30	P87	-P116,	P5	P69	-P114,	P6	-P13	P109,
P7	-P14	P48	-P89	P140,	P8	-P15	-P76	P133,	
P9	-P62	P127,	P10	P40	-P63	-P72	P105	P141,	
P11	P37	-P64	-P86	P124	P137,				
P12	P39	-P71	P106,	P16	P83	-P131,			
P17	-P32	-P125,	P18	P80	-P101,	P19	-P123,		
P20	-P52	P93	-P110,	P21	-P33	-P49	P57	-P103	-P108,
P22	-P53	P61	P88	-P120	-P136,	P23	-P111	-P112,	
P24	-P35	-P45	P78	p95	-P99	.-P113	-P118,		
P25	-P47	P90	-P121,	P26	-P41	P68			
P27	-P44	P94	-P97	-P107,	P28	-P54	P58	-P104,	
P31	-P70	P138,	P34	P128,	P36	-P85	P102,		
P38	P100,	P42	-P66	P117,	P43	-P67	P98	P134,	
P46	-P59	P142	P143,	P50	-P75	-P91	P129,		
P51	-P65	P55	-P81	-P84	P60	-P135,	P73	-P122,	
P77	-P115,	P79	-P119,	P92	-P126				
R1	-R137,	R2	R173,	R3	-R54,	R4	R113,	R5	-R55
R6	R130,	R7	R90,	R8	-R132,	R9	R85	R10	-R111,
R11	R88	R12	-R103,	R13	R80	R14	-R172,	R15	-R15
R16	-R17	R18	R33,	R19	R37	R20	-R153,	R21	-R166,
R22	R49	R23	-R141,	R24	R40	R25	-R151,	R26	-R165,
R27	-R156,	R28	-R158,	R29	R48	R30	R139,	R31	R180,
R32	-R32	R34	R178,	R35	-R36	R38	-R38	R39	-R39
R41	R159,	R42	R157,	$R 43$	R140,	R44	R167,	R45	R182,
R46	R144,	R47	R189,	R50	R154,	R51	R187,	R52	R168,
R53	R181,	R56	R93,	R57	R94	R58	R109,	R59	-R74
R60	R114,	R61	R110,	R62	-R83	R63	-R84	R64	R96
R65	-R86	R66	R119,	R67	R107,	R68	R106,	R69	-R75
R70	R102,	R71	-R76	R72	R124,	R73	R133,	R77	R95
R78	R121,	R79	R108,	R81	R127,	R82	R131,	R87	R116,
R89	$R 97$	$R 91$	R128,	R92	-R136,	R98	-R120,	R99	-R125,
R100	-R117,	R101	-R104,	R105	-R115,	R112	-R123,	R118	-R129,
R122	-R134,	R126	-R135,	$R 138$	-R142,	R143	-R150,	R145	-R149,
$R 146$	-R163,	R147	-R147,	R148	-R148,	R152	-R174,	R155	-R160,
R161	-R161,	R162	-R170,	R164	-R183,	R169	-R184,	$R 171$	-R186,
R175	-R190,	R176	-R177,	$R 179$	-R179,	R185	-R188		

APPENDIX THREE

EXAMPIES OF ALGORTTHM $2 \cdot 31$ OUTPUT

In this Appendix we give two examples of the automorphism group generators produced by Algorithm 2•31. In each case we will use the notation defined in Section $2 \cdot 32$.

Example 1

In our first example G is the 5-dimensional cube defined as follows.

$$
\begin{aligned}
& V(G)=\{(i, j, k, l, m) \mid i, j, k, l, m \in\{0,1\}\} \\
& \mathbb{E}(G)=\left\{\left(i_{1}, j_{1}, k_{1}, \ell_{1}, m_{1}\right)\left(i_{2}, j_{2}, k_{2}, \ell_{2}, m_{2}\right) \mid\left(i_{1}-i_{2}\right)^{2}+\left(j_{1}-j_{2}\right)^{2}+\right. \\
& \left.\quad\left(k_{1}-k_{2}\right)^{2}+\left(\ell_{1}-\ell_{2}\right)^{2}+\left(m_{1}-m_{2}\right)^{2}=1\right\}
\end{aligned}
$$

The elements of $V(G)$ are numbered $1,2, \ldots, 32$ in lexicographic order.
For this graph we find $K=5, w_{1}=1, w_{2}=16, w_{3}=24$, $w_{4}=28$ and $w_{5}=30$. The output produced is as below. The execution time was $0 \cdot 18$ seconds.
$(23)(67)(1011)(1415)(1819)(2223)(2627)(3031)$
$\left|\Gamma^{(4)}\right|=2 \quad\left|\theta\left(\Gamma^{(4)}\right)\right|=24$
$(35)(46)(1113)(1214)(1921)(2022)(2729)(2830)$
$\left|\Gamma^{(3)}\right|=6 \quad\left|\theta\left(\Gamma^{(3)}\right)\right|=16$
$(59)(610)(711)(812)(2125)(2226)(2327)(2428)$
$\left|\Gamma^{(2)}\right|=24 \quad\left|\theta\left(\Gamma^{(2)}\right)\right|=10$
(917)(10 18) (11 19) (12 20) (13 21) (14 22) (15 23) (16 24)
$\left|\Gamma^{(1)}\right|=120 \quad\left|\theta\left(\Gamma^{(1)}\right)\right|=6$
$(12)(34)(56)(78)(910)(1112)(1314)(1516)(1718)(1920)(2122)$
$(2324)(2526)(2728)(2930)(3132)$
$|\Gamma|=3840 \quad|\theta(г)|=I$

Example 2

In our first example $G=C_{5}\left[C_{5}\right]$ where each C_{5} is labelled in cyclic order and the product is labelled as in the definition (Section 1.3). The elements $V(G)$ will be called $1,2, \ldots, 25$ in lexicographic order.

For this graph we find $K=10, \mathrm{w}_{1}=1, \mathrm{w}_{2}=3, \mathrm{w}_{3}=11$, $\mathrm{w}_{4}=13, \mathrm{w}_{5}=16, \mathrm{w}_{6}=18, \mathrm{w}_{7}=21, \mathrm{w}_{8}=23, \mathrm{w}_{9}=6$ and $\mathrm{w}_{10}=8$. The output below was generated in 0.23 seconds.
$\left(\begin{array}{ll}7 & 10\end{array}\right)(89)$
$\left|\Gamma^{(9)}\right|=2 \quad\left|\theta\left(\Gamma^{(9)}\right)\right|=23$
(678910)
$\left|\Gamma^{(8)}\right|=10$
$\left|\theta\left(\Gamma^{(8)}\right)\right|=21$
$(2225)(2324)$
$\left|\Gamma^{(7)}\right|=20$
$\left|\theta\left(\Gamma^{(7)}\right)\right|=19$
(21 $22 \quad 23 \quad 2425$)
$\left|\Gamma^{(6)}\right|=100 \quad\left|\theta\left(\Gamma^{(6)}\right)\right|=17$
$(1720)(1819)$
$\left|\Gamma^{(5)}\right|=200 \quad\left|\theta\left(\Gamma^{(5)}\right)\right|=15$
$\left(\begin{array}{lllll}16 & 17 & 18 & 19 & 20\end{array}\right)$
$\left|\Gamma^{(4)}\right|=1000 \quad\left|\theta\left(\Gamma^{(4)}\right)\right|=13$
(12 15) (13 14)
$\left|\Gamma^{(3)}\right|=2000 \quad\left|\theta\left(\Gamma^{(3)}\right)\right|=11$
$\left(\begin{array}{lllll}11 & 12 & 13 & 14 & 15\end{array}\right)$
$(621)(722)(823)(924)(1025)(1116)(1217)(1318)(1419)(1520)$
$\left|\Gamma^{(2)}\right|=20000 \quad\left|\theta\left(\Gamma^{(2)}\right)\right|=7$
$(25)(34)$
$\left|\Gamma^{(1)}\right|=40000 \quad\left|\theta\left(\Gamma^{(1)}\right)\right|=5$
$\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)$

$|\Gamma|=1000000 \quad|\theta(\Gamma)|=1$

REFERENCES

1 M. ASHBACHER: A homomorphism theorem for finite graphs. Proc. American Math. Soc. 54 (1976) 468-470.

2 H. BAKER, A. DEWDNEY and A. SZILARD: Generating the nine-point graphs. Math. Comput. 28, 127 (1974) 833-838.

3 T. BAYER and A. PROSKUROWSKI: Symmetries in the graph coding problem. Proc. NW76 ACM/CIPC Pac. Symp. (1976) 198-203.

4 M. BEHZAD and G. CHARTRAND: Introduction to the theory of graphs. Allyn and Bacon, Boston (1971).

5 N.L. BIGGS: Algebraic Graph Theory. Cambridge Tracts in Mathematics No. 67, Cambridge (1974).

6 C. BOHM and A. SANTOLINI: A quasi-decision algorithm for the p-equivaience of two matrices. ICC BULLETIN 3, 1 (1964) 57-69.

7 J. COOPER, J. MILAS and W.D. WALLIS: Hadamard equivalence. International Conference on Combinatorial Mathematics, Canberra (1977), Lecture Notes in Mathematics 686, Springer-Verlag, 126-135.

8 D.G. CORNEIL and R.A. MATHON: Algorithmic techniques for the generation and analysis of strongly regular graphs and other combinatorial configurations. Annals of Discrete Math. 2 (1978) I-32.

9
B. ELSPPAS and J. TURNER: Graphs with circulant adjacency matrices. J. Combinatorial Theory 9(1970) 297-307.
H. FIEISCHNER and W. IMRICH: Transitive planar graphs. Math. SLovaca 29 (1979) 97-105.

11
A. GARDINER: Partitions in graphs. Proc. 5th. British Combinatorial Conf. (1975) 227-229.

12 C.D. GODSIL: Personal communication (1980).

13 C.D. GODSIL and B.D. McKAY: Feasibility conditions for the existence of walk-regular graphs. Lin. Algebra and its Appl. To appear.

14 C.D. GODSIL: Neighbourhoods of transitive graphs and GRR's. J. Combinatorial Theory (B). To appear.

15 D. GORENSTEIN: Finite Groups. Harper and Row (1968).

16 D. GRIES: Describing an algorithm by Hopcroft. Acta Informatica 2 (1973) 97-109.

17 M. HALL: The Theory of Groups. Macmillan (1959).

18 J. HALL: Personal communication (1979).

19 J. HOPCROFT: An nlogn algorithm for minimizing states in a finite automaton. Theory of Machines and Computations. Academic Press (1971) 189-196.

20 P. LANCASTER: Theoxy of Matrices. Academic Press (1969).

21 V.L. ARLAZAROV, I.I. ZUEV, A.V. USKOV and I.A. FARADZEV: An algorithm for the reduction of finite non-oriented graphs to canonical form. Zh. vēchisZ. Mat. mat. Fiz. 14, 3 (1974) 737-743.

22 J.S. LEON: An algorithm for computing the automorphism group of a Hadamard matrix. J. Combinatorial Theomy (A) 27(1979) 289-306.

23 L. LOVASZ: Combinatorial Problems and Exercises. North-Holland (1979).

24 R. MATHON: Sample graphs for isomorphism testing. Proc. 9 th. Southeastern Conf. on Comb., Graph Theory and Computing (1978), to appear.
R. MATHON: Personal communication.

26 B.D. McKAY: Backtrack programming and the graph isomorphism problem. M. Sc. Thesis, University of Melbourne (1976).

27 B. D. McKAY: Backtrack programming and isomorph rejection on ordered subsets. Ars Combinatoria 5(1978) 65-99.

28 B.D. McKAY: Computing automorphisms and canonical labellings of graphs, International Conference on Combinatorial Mathematics, Canberra (1977), Lecture Notes in Mathematics 686, Springer-Verlag, 223-232.

29 B.D. McKAY: Eage connectivity of graphs, unpublished manuscript (1977).

30 B.D. McKAY and R.G. STANTON: Isomorphism of two large designs. Ars Combinatoria 6(1978) 87-90.

31 B.D. McKAY: Hadamard equivalence via graph isomorphism. Discrete Math. 27 (1979) 213-214.

32 B.D. McKAY: Transitive graphs with fewer than twenty vertices. Math. Comp. 33, 147 (1979) 1101-1121.

33 B.D. McKAY and R.G. STANMON: Some graph-isomorphism computations. Ars Combinatoria, to appear.

34 D.M. MILIER: An algorithm for determining the chromatic number of a graph. Proc. 5th. Manitoba Conf. on Numerical Math. (1975) 533-548.

35 A. NIJEHUIS and H.S. WILF: Combinatorial Algorithms. Academic Press (1975).

36
M. PETERSDORFF and H. SACHS: Specktrum und Automorphismengruppe eines Graphen. Combinatorial Theory and its Applications III, North Holland (1969) 891-907.
C.E. PRAEGER: On transitive permutation groups with a subgroup satisfying a certain conjugacy condition, preprint.

38 R.C. PRIM: Shortest connection networks and some generalizations. BeIL System Tech. J. 36 (1957) 1389-1401.

39
D.H. REES: Personal commuication (1979).

40 J.J. SEIDEL: Graphs and two-graphs. Proc. 5th. Southeastern Conf. on Combinatorics, Graph Theory and Computing, Utilitas Math. (1974).

41 H.H. TEH: An algebraic representation theorem of point-symmetric graphs. Nanta Math. 4 (1970) 29-46.

42 M.E. WATKINS: Connectivity of transitive graphs. J. Combinatorial Theory, 8, 1 (1970) 23-29.

43 B. WEISFEILER: On construction and identification of graphs. Lecture Notes in Mathematics 558, Springer-Verlag (1976).

44 H. WIELANDT: Finite Permutation Groups. Academic Press (1964).

45 J.H. WILKINSON: The Algebraic Eigenvalue Problem. Clarendon Press (1965).

46 H.P. YAP: Point symmetric graphs with $p \leq 13$ points, Nanta Math., 6(1973) 8-20.

