
TOPICS IN 

COMPUTATIONAL GRAPH THEORY 

BY 

BRENDAN D, ~1cKAY 

A THESIS SuBMITTED FoR THE DEGREE OF 

DocToR OF PHILOSOPHY 

AT THE 

UNIVERSITY OF MELBOURNE 

JUNE 1980 



PREFACE 

This thesis is concerned with two problems in computational 

Graph Theory. 

The first problem is the design of an algorithm for 

canonically labelling a graph and for finding generators for its 

automorphism group. The emphasis here is on the power of the 

algorithm for solving practical problems, rather than the theoretical 

niceties of the algorithm. We succeed in developing an algorithm 

whose implementation is probably the most powerful practical graph 

isomorphism program yet devised. 

The second problem considered here is the construction 

of an exhaustive list of vertex-transitive graphs with 19 or fewer 

vertices. This is accomplished with the aid of a large number of 

theoretical tools, some of which are developed here for the first 

time and may be of independent interest. 

All results not attributed to another author are new. 

However there are several people whose suggestions and encouragements 

played a far from trivial part in the conduct of this research. 

Particular thanks are due to my supervisor D.A. Holton and to 

C .D. Godsil. I would also like to thank Professor R.G. Stanton for 

his generous support during my visit to the University of Manitoba 

in 1978. 
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CHAPTER ONE 

INTRODUCTION 

In this chapter we present a selection of the definitions 

and elementary results which will be required for use in later 

chapters. 

l•l Basic Notation 

Throughout this thesis V will denote the set {1, 2, ···, n}, 

where n 2 l. The empty set is denoted by 0. A single-element set 

{x} (a singleton) will generally be abbreviated to x if no confusion 

is likely. 

If X is a set, then lXI denotes its cardinality. A 

relation ~ on X is called a linear ordering of X if for all 

x, y, z E X we have (i) x ~ x, (ii) x ~ y or y ~ x, (iii) if x ~ y 

and y ~ x then x = y, and (iv) if x ~ y and y ~ z then x ~ z. Let 

Z be a set whose elements are finite sequences of elements of X 

(the length may vary). Then the lexicographic ordering of Z induced 

by ~is the linear ordering~ defined as follows. 

If x = (x1 , x2 , ···, ~) E Z and y_ = (y 1 , y2 , 

if and only if either of the following holds. 

( i) 

(ii) 

For some t, l ~ t ~ min(k, £),we have x. = y. for 
l l 

i < t and xt < yt. 

x. = y. for l ~ i ~ k and £ 2 k. 
l l 

If X is a linearly ordered set and Y is a non-empty finite subset of 

X, then min Y and max Y denote the values of the smallest and the 

l. 

largest elements of Y with respect to ~. respectively. For notational 

convenience we write min 0 = oo, where oo is a symbol with the property 

of being larger than anything it is compared with. 



If M is a matrix, then M .. denotes the (i, j)-th entry of 
lJ 

M, MT denotes the transpose of M and, if M is square, tr M denotes 

the trace of M. If i and j are integers, (i, j) denotes the greatest 

common divisor of i and j, while ilj indicates that i is a divisor of 

j. Finally, log always denotes the natural logarithm. 

1•2 Graphs 

A graph G is a pair (V(G), E(G)), where V(G) is a finite 

set whose elements are called vertices or points of G, and E(G) is 

a set of unordered pairs of distinct elements of V(G), called edges. 

In a few special cases we will also allow E(G) to contain singletons 

2. 

from V(G), called loops. However, unless otherwise stated, our graphs 

do not have loops. An edge {x, y} E E(G) will commonly be abbreviated 

to xy. The end-vertices x and y of an edge xy are said to be adJacent 

or joined. 

The set of all graphs G with V(G) =V will be denoted by Q(V). 

The order of a graph G is the cardinali ty of V( G) . A graph 

His a subgraph of G if V(H) ~ V(G) and E(H) ~ E(G). If, in addition, 

V(H) = V(G) then H is a spanning subgraph of G. Another special 

type of subgraph His that induced by V(H). In this case 

E(H) = {xy E E(G)Ix, yE V(H)}. In general we will make no 

notational distinction between subsets of V(G) and the subgraphs 

of G which they induce. 

If x E V(G), then N(x, G) denotes the set (or induced 

subgraph) {y E V( G) lxy E E(G)} and N(x, H) denotes the set 

V(G) \ ({x} u N(x, G)). The complement G of G has V(G) = V(G) 

and E(G) = {xylx, yE V(G), x # y, xy i E(G)}. It follows that 

N(x, G) = N(x, G) and N(x, G) = N(x, G). The degree of a vertex 

x E V(G) is the cardinality of N(x, G). If every vertex of G has the 



same degree k, we say that G is regular of degree k. If G is regular 

and the subgraphs N(x, G) and N(x, G) are empty or regular for each 

x E V(G), then G is called strongly regular. 

A path of length r ~ 0 in a graph G is a sequence 

x of distinct vertices of H, such that x. x. E E(G) 
r l-1 l 

for 1 ~ i ~ r. The distance 3(x, y) between x, y E V(G) is defined 

to be the length of the shortest path, if any, whose first and last 

entries are x and y. If there is no such path, 3(x, y) = oo by 

convention. More generally, if X, Y S V(G), the distance between 

X and Y in G is 3(X, Y) = min{d(x, y) lx E X, yE Y}. The diameter of 

G is max{3(x, y)lx, yE V(G)}. If G has finite diameter it is called 

connected, otherwise it is disconnected. 

Two graphs G and H are said to be isomorphic, written 

G = H, if there is a bijection ~: V(G) + V(H) such that xy E E(G) 

if and only if ~(x)~(y) E E(G). It is important to realise that 

Q(V) contains all the graphs G with V(G) = V, not just 

representatives of the different isomorphism types. 

Several special types of graphs are important enough 

to warrant names. The complete graph K has V(K ) =V and 
n n 

E(K) = {xylx, yE V, x 'I- y}. The empty graph is the complement K 
n n 

of K , and thus has no edges. A polygon C is a connected regular 
n n 

graph of degree 2. A subgraph isomorphic to a complete graph is also 

called a clique and one isomorphic to a polygon is called a cycle. 

Let G be any graph. The linegraph L(G) has V(L(G)) = E(G) 

and E(L(G)) = {e 1e2 le 1 , e 2 E E(G) and Je 1 n e 2 ! = 1}. The switching 

graph Sw(G) has V(Sw(G)) = V(G) x {0, 1} and E(Sw(G)) = {(x, i)(y, j)l 

i = j and xy E E(G) or i 'I- j and xy E E(G)}. If G has n vertices, 

then Sw(G) has 2n vertices and is regular of degree n - 1. 

3. 



Switching graphs have an important association with a 

relationship known as switching e~uivalence [40]. Two graphs G 

and H with V(G) = V(H) are switching equivalent if V(G) can be 

partitioned into disjoint non-empty subsets vl and v2 such that 

E(H) = {xy E E(G) jx, y E V1 or x, y E V2} 

u {xy i E(G)jx E V1 and yE V2}. 

Some of the basic properties of switching e~uivalence are summarised 

in the following theorem. 

1·3 THEOREM (a) Switching equivalence is an equivalence relation. 

(b) Each equivalence class containing graphs of odd 

order contains exactly one graph whose vertices 

all have even degree. 

Proof: 

(c) Each equivalence class contains at least one 

graph with a vertex of degree zero. 

(d) TWo graphs .G and Hare switching equivalent if and 

only if Sw(G) ~ Sw(H). 

See [40] for (a)- (c) and [14] for (d). 

Let G and H be graphs. A number of binary products can be 

used to construct a new graph from G and H. The simplest is the 

disjoint union G u H, for which we assume V(G) n V(H) = 0. This is 

defined by V(G u H) = V(G) u V(H) and E(G u H)= E(G) u E(H). Any 

graph isomorphic to the disjoint union of m graphs isomorphic to G 

will be denoted by mG. Three other products each have vertex set 

V(G) x V(H). The tensor product G * H has 

4. 

D 

E(G *H)= {(x1, y 1)(x2 , y 2 ) jx1x 2 E E(G), y 1y 2 E E(H)}. The cartesian 

product G x H has E(G x H) = {(x1, y 1)(x2 , y 2 ) jx 1 = x2 and y 1y 2 E E(H), 

or y 1 = y 2 and x 1x2 E E(G)}. The lexicographic product G[H] has 



Some of the elementary properties of these three operations are given 

in the next lemma. 

1·4 LEMMA (a) G * H - H * G 

(b) G X H - H X G 

(c) G[H] 'f H[G] (in qeneral) . 

(d) G[H] = G[H] 

(e) K X H = 
m 

K [H] 
m 

= mH 

Let G be any graph. A (vertex-)cutset of G is a subset of 

V(G) whose removal from G leaves a disconnected graph or a single 

vertex. An edge-cutset of G is a subset of E(G) with a similar 

property. The (vertex-)connectivity K and the edge-connectivity 

n are defined to be the size of a smallest cutset or a smallest 

edge-cutset, respectively. 

Let G be any graph, and let V1 and V2 be disjoint non-empty 

subsets of V(G). Let F = {xy E E(G) Jx E V1 , yE V2}. We say that 

V1 and V2 are completely joined if JFI = JV 1 1 JV2 1, trivially joined 

if IFI = 0 or JFI = JV1 1 IV2 1 and non-trivially joined if 

0:_< J'FI < JV1 J!V2 J. We say that V1 and v2 are equitably joined if 

there are constants k 1 and k 2 such that each vertex in V1 is adjacent 

to exactly k 1 vertices in v2 , and each vertex in V2 is adjacent to 

We also say that v1 is equitably joined to itself if it induces a 

regular subgraph of G. 

Let G E Q(V). The adjacency matrix of G is the nxn matrix 

A= A(G), where A .. = l if {i, j} E E(G) and A .. = 0 otherwise. 
lJ lJ 

5. 
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1•5 Partitions 

A partition of the set V is a set of disjoint non-empty 

subsets of V whose union is V. An ordered partition of V is a 

sequence (V1 , V2 , ···, Vr)' such that {V1 , v2 , •••, Vr} is a partition 

of V. The set of all partitions of V and the set of all ordered 

partitions of V will be denoted by rr(V) and g(V) respectively. For 

notational economy we also define rr*(V) = rr(V) u g(V). 

The elements of a partition (or ordered partition) n E rr*(V) 

are usually called its cells. A trivial cell of n is a cell of 

cardinality one; the element of such a cell is said to be fixed by TI• 

If every cell of n is trivial, then n is a discrete partition, 

while if there is only one cell, n is the unit partition. 

If n 1 , n2 E II*(V), we write n 1 ~ n2 if n 1 and n 1 have the 

same cells, in some order. We say that n 1 is finer than n2 , denoted 

n 1 ~ n2 , if every cell of n 1 is a subset of some cell of n2 . Under 

the same circumstances, n2 is coarser than n 1 • It is well known that 

the set II(V) forms a lattice under the partial order~. This means 

that, given n 1 , n2 E II*(V) there is a unique coarsest partition 

n 1 A n2 E II(V) such that n 1 ~ n 1 A n2 and n2 ~ n 1 A n2 , and a unique 

finest partition n 1 v n2 E II(V) such that n 1 ~ n 1 v n2 and 

n2 ~ n 1 v n2 . Each cell of n 1 A n2 is a non-empty intersection of a 

cell of n 1 and a cell of n2 . Each cell of n 1 v n2 is a minimal 

non-empty subset of V which is both a union of cells of n 1 and a union 

of cells of n2 . 

Let nE II*(V). Then fix(n) is the set of elements of V 

6. 

which are fixed by n. The support of n is the set supp(n) =V\ fix(n). 

The set of minimum cell representatives of n is mcr(n) = {ruin V. \V. E n}, 
l l 

where the minima are under the natural ordering of V. 



Some of the elementary properties of these sets are given 

in the following lemma. 

1·6 LE:MMA. Let TI ' Tf E: 1 2 
rr*( v) • 

(a) fix( TI 1 V TI 2 ) = fix( TI 1) n fix( TI 2 ) 

(b) fix(TI 1 1\ TI2) 2 fix( TI 1 ) u fix(TI 2 ) 

(c) supp(TI 1 V Tf ) = supp(TI 1) u supp( TI) 2 

(d) supp(TI 1 1\ Tf ) 
2 

s supp( TI 1 ) n supp(TI2 ) 

(e) mer( TI 1 V TI 2 ) s mcr(TI 1 ) n mcr(TI 2 ) 

(f) mcr(TI 1 A TI 2 ) = mcr(TI 1 ) u mcr(TI 2 ) 

Let TI = (V 1 , V 2 , 

u(x, TI) = i, where x E: V .. 
l 

V) E: II(V). For each x E: V define r ~ 

If TI 1 , TI 2 E: g(V) then we say that TI 1 and 

TI 2 are consistent if, for any x, yE: V, u(x, TI 1) < u(y, TI 1 ) implies 

that u(x, TI 2 ) ~ u(y, TI 2 ). As a relation, consistency is symmetric 

but not transitive. If TI 1 ~ TI 2 and TI 1 and TI 2 are consistent, we 

indicate this by writing TI 1 ~ TI 2 or TI 2 ~ TI 1 . The relation~ is 

transitive but not symmetric. A partition nest is a se~uence 

Tf >Tf _>see 
- 2 1 - .2: Tf • - r The use of s~uare brackets will always indicate 

that an enclosed se~uence of ordered partitions is a partition nest. 

l• 7 Groups 

The most elementary properties of groups will be assumed, as 

they can be found in any book on group theory, for example Hall [17]. 

We are only concerned here with finite groups. 

The trivial (single-element) group will be denoted by l. 

The cyclic group of order n will be denoted by Z . If p is a prime, 
n 

7. 
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a group whose order is a power of p is called a p-group, and a subgroup 

which is a p-group is called a p-subgroup. If pm is the highest power 



of p which divides the order of a group r, then a subgroup of r of 

order pm is a Sylow p-subgroup of r. The set of all Sylow p-subgroups 

of r will be denoted by Syl (r). The following theorem is due to p 

Sylow. 

1·8 THEOREM Let pm be the highest power of a prime p which divides 

the order of a group r. Then r has at least one subgroup of each of 

the orders p, p 2 , ···,pm. In particular Syl (r) ~ 0. Furthermore~ 
p 

any two members of Syl (r) are conjugate in r~ and every p-subgroup 
p 

of r is contained in some member of Syl (r). 
p 

If r and A are groups, then r ® A denotes the direct 

product of r and A. The next lemma follows easily from Theorem 1·8. 

1·9 LEMMA If r and A are groups and p is prime~ then 

Syl (r ®A) = {P ® QIP E Syl (r), Q E Syl (A)}. 
p p p 

If~ is a subset or a set of subsets of a group r, then the 

8. 
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subgroup <~) of r generated by ~ is the smallest subgroup of r which 

contains each element of ~. If A ~ r then the normaliser Nr(A) of A 

in r is the largest subgroup of r of which A is a normal subgroup. 

1•10 LEMMA Let r be any group. Let P, Q E Syl (r) such that 
p 

P ~ Q and lP n Ql is maximal. Then any conjugates of P n Q in r which 

lie in Pare conjugate in Nr(P). 

Proof: See Lemma 7·4·7 in [15]. 

0 If r is a group, y, 0 E rand~ s r, we use y as an 

abbreviation for o- 1yo and define ~Y = {wylw E ~}. 

D 



9. 

1·11 Permutation Groups 

Unless otherwise indicated, proofs of all the results 

mentioned in Sections 1·11- 1·16 can be found in [44]. 

A permutation y of the set V is a bijection from V to itself. 

The image of x E V under y will be denoted by xY. An m-cycle (m 2 2) 

is a permutation of the form (v v ••• v ), where elements of V not 
l 2 m 

mentioned are mapped onto themselves. A 2-cycle is also called a 

transposition. The set of all permutations of V forms a group of 

order n! under function composition, called the symmetric group S 
n 

A permutation group of degree n is a subgroup of S . The group 
n 

r ~ S is transitive if, for each x, yE V, there is some yE r such 
n 

that xY = y. If W S V and yES define wY = {xYjx E W}. If r ~ S , 
n n 

w s V and wY = w for each yE r, then r induces a group rlw of 

permutations of W. If also rjW is transitive then W is an orbit of r 

and we say that r acts transitively on W. The orbits of r are 

disjoint, and so are the cells of a partition e(r) E rr(V). More 

generally, if ~ is a subset or a set of subsets of S we define 
n 

e ( ~) = e ( ( ~)), The next lemma follows easily from the definitions. 

1·13 LEMMA If~_, <I> s s then e(~ u <IJ) 
n 

= e(~) v e(<IJ). 

An orbit of size r can be called an r-orbit. A 1-orbit 

will also be called a trivial orbit. A point x E V which is in a 

trivial orbit of T is said to be fixed by r. The set of all points 

fixed by r is denoted by fix(r). In other words, fix(r) = fix(e(r)). 

We can similarly define fix(~) = fix(e(~)), supp(~) = supp(e(~)) and 

mer(~) = mcr(e(~)) if~ is any subset or set of subsets of S . The 
n 

next lemma follows from Lemmas 1·6 and 1·13. 

0 



1•14 LEMMA Let st_, <ll ~ s . Then n 

(a) fix( Si u <ll) = fix(s-2) n fix( <ll), 

(b) supp(s-2 u <ll) = supp(s-2) u supp(<ll), and 

(c) mcr(s-2 u <ll) ~ mcr(s-2) n mer( <ll). 

If r, A ~ S have disjoint support, the direct sum of r and 
n 

1\. is the group r $ 1\. = <r u fl.). Clearly r $ 1\. is isomorphic as an 

abstract group to r 0 !\., 

Let r ~ s 
n 

A block of r is a subset W S V such that for 

every yE r, either wY = W or wY n W = 0. Obviously 0, V and every 

singleton are blocks; any other blocks are called non-trivial. If 

r is transitive and W is a block of r, then the different sets wY, 

for yE r, form the cells of a partition of V which is called a 

block-system for r, non-trivial if W is a non-trivial block. If 

r is transitive and has no non-trivial blocks it is called primitive_, 

otherwise it is called imprimitive. 

A permutation y E S is defined according to its action on 
n 

10. 
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V, but it is also convenient to define an action of y on other objects 

which involve V. We have already defined the action of y on subsets 

of V, for example. Other important cases are as follows. 

(i) If nE rr*(V), ny is formed by replacing each cell 

V. with V.Y (in situ if TIE n(V)), 
l l 

(ii) If G E Q(V) then Gy E Q(V) has E(Gy) = {xYyYjxy E E(G)}. 

Other cases will be defined when they are first re~uired, 

but in every case the idea is the same. Each element x E V is simply 

replaced by xy wherever it occurs in the object under consideration. 

Let r ~ S and let Si be any set such that an action of each 
n 

Y E r is defined on each element of st. Si need not be closed under 

this action. Then the stabiliser of Si in r is the group 



r~ = {y E rjwY = w for each w E ~}. Elements of r~ are said to 

fix ~. The most important cases of this construction are as follows. 

(i) (point-wise stabiliser) 

If W 

If W 

~V then fW = {y E rjxY = x for each X E W}. 

= {x x ••• x} we will also write 
1' 2' ' r 

r as r 
W x 1 , x2 , •••, xr 

(ii) (set-wise stabiliser) 

If w ~ v then r {W} = { y E r jwY = w}. 

(iii) (partition stabiliser) 

If TIE IT*(V) has cells V1, V2 , V then 
r 

f = {yE rjv.Y =V. for 1 ~ i ~ r}. Note that 
TI l l 

this is not the same as r{n} = {yE rj1rY = 1r}, 

nnles s 1f E J1. (V) • 

(iv) (automorphism group) 

If G E Q( V), then the automorphism group of G is 

We will discuss this group in more depth later. 

A group r ~ s is semi-regular if r = 1 for each X E V, 
n x 

and regular if it is semi-regular and transitive. 

Proofs of each part of the following theorem may be 

fonnd in [ 44]. 

1 ·15 THEOREM Let r, A ~ S where r is transitive but A need not 
n 

be. Let W be an orbit of A, and let {B, B, ••• , B } be a block 
1 2 r 

system for r. 

(a) If yE s then wY &S an orbit of AY. 
n 

In particular.3 

if y E N8 ( A) , wY is an orbit of A. 
n 

For any x E W, lA IIWI = I Al. 
X 

(b) 

11. 



(c) If P E Syl (A) for some prime p 3 then every shortest 
p 

orbit of P in W has length pm3 where pm is the 

highest power of p which divides IWI. 

(d) Both jB 1 i and rare divisors of n. 

(e) If~~ f 3 then e(~) is a block-system for r. 

(f) The permutation group on {B 1 , B2 , ···, Br} induced 

by the action of r is transitive. 

(g) r{B 1} acts transitively on B 1 • 

(h) If r 1 ~ ~ ~ f 3 then the orbit of~ which contains 

lis a block for r. 

(i) fix(r 1) is a block for r. 

Now let r ~ S be transitive. The set J(r) consists of 
n 

those subgroups A ~ r such that 

(i) 1 <A~ r 1, and 

(ii) Nr(A) acts transitively on fix(A). 

The most useful theorem for the identification of members 

of J(r) is due to Jordan. (See [44] for a proof.) 

1·16 THEOREM Let r ~ S be transitive3 and let A be a non-trivial 
n 

subgroup of r 1 which is conjugate in r 1 to any of its conjugates in 

r which lie in r 1. Then A E J(r). 

If r is regular, then J(r) = 0 obviously. If r is 

transitive, but not regular, then r 1 itself and any non-trivial 

Sylow p-subgroups of r 1 are in J(r). Another useful family of members 

of J(r) is defined in the next theorem. 

12. 
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0 



1•17 THEOREM Let 

prime p. Then A = 

r be transitive and let Syl (r 1 ) # {1} 
p 

(Syl (r 1 )) E J(r). 
p 

for some 

Proof: Obviously 1 <A~ r 1 • Furthermore, if Ay£ A for 

some yE r, then Ay= = A, by Theorem 1·8. 

Therefore A E J(r) by Theorem 1•16. 

1·18 COROLLARY Under the conditions of the theorem~ fix(A) is a 

13. 

0 

block for r. 

Proof: Let~= Nr(A). Then r 1 ~ ~ ~ r, since A~ r 1 obviously. 

Therefore fix(A) is a block for r, by Theorems 1•15(h) and 1•17. 0 

The next theorem is due to C. E. Praeger [37]. 

THEOREM Let r ~ S be transitive and let 1 < A ~ r have the 
n 

property that for any y E r~ A and AY are conjugate in ~{A3 AY}). 

Then lfix(A) I ~ ~(n - l). 

If A~ ~ ~ r are groups, we say that A is weakly closed in 

~with respect to r if for each y E ~AY ~ ~ if and only if AY = A. 

1·20 THEOREM Let r ~ sn be transitive and let 1 <PE Sylp(r 1 ) for 

some prime p. If 1 < A ~ P and A is weakly closed in P with respect 

to r~ then lfix(A) I ~ ~n. 

Proof: Suppose that lfix(A) I > ~~. Let yE r and 

Then I fix(~) I ~ 1, so that ~ ~ r for some x E V. 
X 

By Theorem 1·8, there are Q E Syl (~) and ~ E ~ such that A ~ Q and 
p 

0 

0 

Ay~ Q~. But then A~ and Ay are both in Q~ and hence in any conjugate 

of P which contains Q~. Therefore A~= Ay by the weak closure 

condition. But then lfix(A) I ~ ~(n - 1) by Theorem 1•19, contradicting 

the assumption that lfix(A) I > ~n. 0 



14. 

1•21 Transitive graphs 

A graph G is transitive if Aut(G) is transitive, and 

edge-transitive if Aut(G) acts transitively on E(G). A t-are in 

G is a sequence (x0 , x 1 , •••, xt) of vertices of G such that 

i ~ t and x. f x .. for 1 ~ i < t. 
l-1 l+l 

The 

arc transitivity of G is the maximum value oft such that Aut(G) 

acts transitively on the t-ares of G. A discussion of arc-

transitivity can be found in [ 5 ]. Clearly 1-arc transitivity is 

the same as transitivity. A 2-arc transitive graph is also called 

symmetric; such a graph is clearly also edge-transitive. Some of 

the elementary properties of the various forms of transitivity are 

summarised in the next theorem. 

1•22 THEOREM Let G and H be graphs. 

(a) Aut(G) = Aut(G). In particular G is transitive if 

and only if G is transitive. 

(b) If G is edge-transitive then L(G) is transitive. 

(c) If G and Hare transitive~ then G x H, G *Hand 

G[H] are transitive. 

(d) If G is transitive and disconnected then G = mH for 

some m ~ 2 and some connected transitive graph H. 

(e) Let G be transitive with diameter ~. Define G 

plus diagonals to be the graph D(G) where 

V(D(G)) = V(G) and 

E(D(G)) = E(G) u {xylx, yE V(G), 3(x, y) = ~}. 

Then D(G) is transitive. 0 



A rich source of transitive graphs is the Cayley graph 

construction. Let r be a group, and let Q be a subset of r such that 

(i) Q does not contain the identity of r, and 

(ii) y E Q if and only if y-l E Q, for ally E f. 

The Cayley graph of r with connection set Q is the graph 

H = C(r, Q) with 

V(H) = r, and 

E(H) = {{y, yw}ly E f, wE Q}. 

H is a transitive graph on which r acts (by left multiplication) as a 

regular subgroup of Aut(H). Conversely, if Aut(H) contains a regular 

subgroup r then His (isomorphic to) a Cayley graph of r. 

Transitive graphs which are not Cayley graphs are 

comparatively rare, but they do exist. See Appendix 2 for some 

examples. In order to algebraically represent all transitive graphs 

we can generalise the Cayley graph construction as in the next 

theorem, first published by Teh [41]. 

1•23 THEOREM Let r be any group. Let A ~ r and Q ~ r satisfy the 

conditions 

(i) AQA does not contain the identity of r~ and 

(ii) yE nifandonly if·y- 1 E Q~ for yE r. 

Define the graph H = c(r, A, Q) as follows: 

V( H) 

E(H) 
-1 = {{yA, oA}iy, o Er, y a E AQA} 

Then H is a transitive graph for which Aut(H) contains a transitive 

(not-necessarily faithful) representation of r. Conversely~ if r is 

a transitive subgroup of Aut(H) then H = c(r, A, Q) for suitable 

choices of A and Q. 

15. 
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1•24 Algorithms 

Algorithms in this thesis are given in an informal a 

manner as is possible without loss of rigor. Execution commences 

at the command marked (1) and proceeds as directed until the 

command stop is encountered. The only special symbol is the 

assignment operator+, which indicates that the expression on the 

right of the operator is to be evaluated and the resulting value 

assigned to the variable on the left. When we are describing the 

operation of the algorithm, Step (i) refers to the set of commands 

starting at that marked (i) and finishing with the command 

preceding that marked (i + 1). 
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CHAPTER TWO 

A NEW GRAPH LABELLING ALGORITHM 

In this chapter we will discuss the design of an algorithm 

for canonically labelling a vertex-coloured graph and for finding a 

small set of generators for the automorphism group of the graph. 

This algorithm is a descendant of the one described in McKay [26], 

which in turn was descended from an algorithm first developed in 

McKay [28]. Other algorithms which are related to ours in some 

respects have been devised by Mathon [25], Arlazarov, Zuev, Uskov 

and Faradzev [21] and Bayer and Proskurowski [ 3]. However we believe 

that the algorithm we will present here, or more precisely the 

implementation which we will discuss in Chapter 3, is the most 

powerful which is presently in use. It has been successfully applied 

to difficult graphs of order greater than 600 (see Chapter 3) and to 

rather easier graphs with around 3000 vertices. 

2•1 Canonical Labelling Maps 

A canonical ZabeZZing map is a map c: Q(V) X n(v) ~ Q(V), 

such that for any G E Q(V), nE n(V) and yE Sn we have 

(Cl) C(G, n) ~ G 

(C2) C(GY, nY) = C(G, n) 

( C3) If C(G, ny) =C(G, n), then ny 0 = n for some 

OEAut(G). 

The main use of a canonical labelling map is to solve 

various graph isomorphism problems as indicated in the following 

theorem. 



2•2 THEOREM Let G1, G2 E Q(V)~ TIE n(v) and o E Sn. Then 

C(G1 , n) = C(G2 , nY) if and only if there is a permutation o E Sn 

such that G2 = G1° and nY = n°. 

Proof: The existence of 8 as required implies that 

C(G 1 , n) = C(G2 , nY) by Property C2. Suppose conversely that 

some S E S 
n 

C(G1 , n) = C(G2 , nY). By Property 

Therefore C(G2 , nY) = C(G 1S, ny) = 

Cl, G2 = G1S for 

s -l 
C ( G l , TI y ) , by Property C2. 

Since C(G1, n) = C( G2 , TI y) ' there is some a E Aut(G 1) such that 

yS -1 a by Property C3, 
y as 

But a E Aut(G 1), and TI = TI 
' and so TI = TI . 

so G2 = G S 
l = G aS 

l 

The isomorphism problem described in Theorem 2•2 can be 

thought of as that of testing vertex-coloured graphs for 

isomorphism. Given 1nl colours, we colour those vertices of G1 

which lie in the i-th cell of G1 with the i-th colour, for 

1 ~ i ~ lnl. We then similarly colour the vertices of G2 in 

accordance with TIY. This will use the same colours with the same 

frequency. Theorem 2•2 now says that C(G1 , n) = 0(G2 , ny) if and 

only if there is a colour-preserving isomorphism from G1 to G2 . 

The most important case is, of course, when TI is the unit 

partition (V), in which case Property C3 holds trivially. However 

we will maintain the more general setting we have created, since 

the added complications will only be slight. 

2•3 Equitable Partitions 

ForGE Q(V), v E V and W s V, define dG(v, W) to be the 

number of elements of W which are adjacent in G to v. The subscript 

G will normally be suppressed. We will say that n E rr*(V) is 

18. 
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equitable (with respect to G) if, for all v1 , v2 En (not necessarily 
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the elementary properties of equitable partitions are studied in 

McKay [26]. For our purposes here we need only recall that the 

equitable members of IT(V) form a lattice which is closed under v. 

Since the discrete partition is always equitable, it follows that 

for every TI E IT*(V) there is a unique coarsest equitable partition 

~(n) E IT(V) which is finer than n. 

One of our first concerns in this chapter will be to study 

an efficient procedure for computing ~(n) from n. 

2•4 The Refinement Procedure 

The algorithm we give here is a descendant of one first 

described in McKay [26]. It actually turns out to be a generalization 

of an algorithm of Hopcroft ([19], see also [16]) for minimizing 

the number of states in a finite automat:9n.,, although it was not 

derived from the latter. 

The algorithm accepts a graph G E Q(V), an ordered partition 

TIE TI(V) and a sequence a= (W 1 , w2 , ···, WM) of distinct cells of n. 

The result is an ordered partition R(G, TI, a) E ~(V). Under suitable 

conditions on a, to be discussed below, R(G, n, a) ~ ~(n). 

2 • 5 ALGORITHM Compute R(G, n, a) given G E Q(V), nE TI(V) and 

"' = (W W • • • , WM) _c 'IT. 
u. 1' 2' " 

( 1) 

m+ 1 

(2) If (n is discrete or m> M) stop: R(G, n, a) = n 

W+W 
m 

m+m+l 

k + 1 

{Suppose TI = (V 1 , V2 , V ) at this point} 
r 
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(3) Define (X1 , X2 , ···, Xs) E ~(Vk) such that for any 

x EX., yE Y. we have d(x, W) < d(y, W) if and only if 
l J 

i < j. 

If (s = l) go to (4) 

Let t be the smallest integer such that !Xtl is maximum 

(l:::;t:::;s). 

If(W. = vk J 
for some j (m :::; j :::; M)) w. +X 

J t 

For l :::; i < t set WM. + X. 
+l l 

For t < i :::; s set WM. + X. 
+l-1 l 

M+ M + s - l 

Update n by replacing the cell Vk ~n situ with the cells 

(4) k + k + l 

X in that order. 
s 

If ( k :::; r) go to ( 3) 

Go to ( 2) D 

2•6 THEOREM For any G E Q(V), nE [(V), R(G, n, n) ~ ~(n). 

Proof: (a) The value of M - m is decreased in Step (2) and is only 

increased when ~ is made strictly finer. Therefore the algorithm is 

certain to terminate. 

(b) By definition, ~(n):::; n, so ~(n):::; Ti' at Step (1). Now 

suppose that ~(n) :::; Ti' before some execution of Step (3). Since W is 

a cell of some partition coarser than ~(n) (some earlier value of n), 

it is a union of cells of ~(n). Since ~(n) is equitable, we must have 

that ~(n) ~ n after the execution of Step (3). Therefore, by 

induction, ~(n) ~ R(G, n, n) ~ n when the algorithm stops. 

(c) Suppose that R(G, n, n) is not equitable. Then for 

some vl, v2 E R(G, TI, n) there are x, yE vl such that 



d(x, V2 ) ~ d(y, V2 ). Since n is made successively finer by the 

algorithm, x and y must always be in the same cell of n. 

21. 

(d) At step (1), V2 is contained in some element of a. Hence 

V2 must sometime be contained in W for an execution of Step (3). 

(e) Since x and y are never separated, d(x, W) = d(y, W). 

But d(x, V2) ~ d(y, V2), and since W is a union of cells of R(G, rr, rr), 

there is at least one other cell v3 of R(G, rr, rr) contained in W for 

which d(x, v3 ) ~ d(y, V3 ). Since V2 and v3 are different cells of 

R(G, rr, rr) they must be separated at some execution of Step (3). At 

least one of them, say V2 will then be contained in some new element 

of a. 

(f) Since the argument in (e) can clearly be repeated 

indefinitely, the algorithm never stops, contradicting (a). Therefore 

our assumption that R(G, rr, rr) is not equitable must be false, which 

proves that R(G, rr, rr) ~ ~(rr). 0 

An important advantage that Algorithm 2·5 has over previous 

algorithms for computing ~(rr) is that a can sometimes be chosen to be 

a proper subset of rr. One method of choosing a is described in the 

next theorem. 

2•7 THEOREM Let G E Q(V) 3 rr E TI(V) and suppose that there ~s some 

equitable partition rr' which ~s coarser than rr. Choose a ~ rr such 

that for any WE rr'~ we have X~ W for at most one X E rr \ a .. Then 

R(G, rr, a) ~ ~(rr). 

Proof: (a) By the same arguments as in Theorem 2·6, the algorithm 

will eventually stop, and ~(rr) ~ R(G, rr, a) ~ rr. 

(b) Suppose that R(G, rr, a) is not equitable. Then for some 

V1, V2 E R(G, rr, a) there are x, yE v1 such that d(x, V2 ) ~ d(y, V2 ). 



Since R(G, ~. a) ~ ~~, and~· is equitable, there is at least one 

other cell v3 of R(G, ~.a) such that d(x, V3) # d(y, V3). 

(c) If v2 and v3 are in different cells of~. the defined 

relationship between ~. a and ~~ ensures that at least one of them, 

say v2 , is contained in some cell of a at step (1). We can then 

take up the proof of Theorem 2•6 at step (d), and conclude that 

(d) On the other hand, v2 and v3 may be in the same cell 

of ~. Since they are different cells of R(G, ~. a) they must be 

separated at step (3) of the algorithm. At least one of them, say 

v2 , will then be contained in some new element of a. We can now 

take up the proof of Theorem 2·6 at step (e) and conclude as before 

that R(G, ~.a)~~(~). 

One application of Theorem 2·7 occurs when G is regular and 

~ has more than one cell. The unit partition ~ 0 is equitable, and so 

we can choose a to be ~ less any one cell. This will be particularly 

time-saving if ~ = ( v, V\ v) for some v, in which case we can use 

a = ( v). 

A much more important application of Theorem 2·7 will be 

described in Section 2· 9· 

Two very useful properties of Algorithm 2·5 are stated in 

the next lemma. Both of them are immediate consequences of the 

definition of the algorithm. 

2 ·8 LEMMA 

y E S . Then 
n 

Let G E .Q( V), ~ E ]1.( V), a an ordered subset of ~ and 

( a) R( G, ~ , a) ~ ~ _, and 

22. 

0 

0 
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2•9 Partition nests 

Let TI = (V1 , V2 , Vk) E Q(V) and let v E Vi for some i. 

If IV. I = l define TI o v = TI, If IV. I > l define 
l l 

TI 0 V=(V1, •••, V. 1 , v, V.\v, V. , ···, Vk). 
l- l l+l 

Also define 

TI l. v R(G, TI o v, (v)). 

Given G E G(V), TIE Q(V) and a se~uence y = v 1 , v 2 , •••, vm-l 

of distinct elements of V, we define the partition nest derived from 

G, TI and v to be [TI 1 , TI 2 , ···, Tim]' where 

(a) 

(b) 

TI 1 = R(G, TI, TI), and 

TI. = TI. 1. v. 1 , for 2 ~ i ~m. 
l l-1 l-

It follows from Theorems 2·6 and 2·7 that each TI. is 
l 

e~uitable. Define g(V) to be the set of all partition nests derived 

from some G E Q(V), TIE Q(V) and vector~ of distinct elements of V. 

2·10 The basic search tree 

Let G E Q(V) and TIE Q(V). Then the search tree T(G, TI) 

is the set of all partition nests v = [TI 1 , TI 2 , ••• TI ] E ~(V) such ' m ·-

that vis derived from G, TI and a se~uence v 1 , v2 , • • • , v where, 
m-1 

for l ~ i ~ m - l, v. is an element of the first non-trivial cell of 
l 

TI. which has the smallest size. This definition implies that 
l 

ITiil < ITii+ll for l ~ i <m. 

The elements of T(G, TI) will be referred to as nodes. The 

length lvl of a node vis the number of partitions it contains. If 

v = [TI TI , •••, TI ] is a node then v(i) denotes the node 
1' 2 m 

···, TI.], for l ~ i ~m. 
l 

Thus v (m) = v . If m ~ 2 then v is 

f (m-1) 
called a successor o v . Similarly, v is a descendant of v 

( i) 

(and v(i) is an ancestor of v) if l ~ i <m. The root mode [TI 1] is 

an ancestor of every node other than itself. The set of all nodes 

e~ual to or descended from a node v constitutes the subtree of T(G, TI) 
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rooted at v, and is denoted by T( G, Tr, v). If the last partition 

in a node is discrete, v will be called a terminal node. 

Suppose that v 1 and v 2 are distinct nodes, neither of which 

is a descendant of the other. Then for some i, v 1(i) = v 2(i) but 

( i+l) 
\)1 

( i +l) 
\)2 

../. (i+l) 
T \) 2 • 

( i+l) 
The node v 1 will be denoted by v 1 - v 2 and 

by \)2 - \) 1. 

The natural linear ordering of V can be used to provide an 

ordering< of the nodes of T(G, Tr). Let v 1 and v 2 be distinct nodes. 

If \)1 is an ancestor of \)2 then \)1 < \)2. If neither of \)1 or v 2 is 

an ancestor of the other, there is a node [Tf ' Tf 2' 
Tf J and 

1 m 

vertices v1 f v2 such that \)1 - \)2 = [Tr1, Tf2' Tf m' Tf .L V 1 J ari.d 
m 

\)2 -\)1 = [Tr1' Tf2' 0 • • Tf 
' m' 

Then we have v 1 < v 2 if 

v 1 < v2 • If v 1 < v2 , we say that v 1 is earlier than v2 , and that 

v2 is later than v 1 . 

Some of the obvious properties of this ordering of T(G, Tr) 

are listed in the next lemma. 

2•11 LEMMA Let G E Q(V), Tr E J!(V) andv 1 , v 2 , v 3 E T(G, Tr). Then 

(a) Exactly one of v 1 < v2 v 1 = v 2 and v 2 < v 1 is true. 

(b) If v 1 < v2 and v2 < v 3 then v 1 < v 3 • 

(c) If v 1 < v2 , v 1 ' E T(G, Tr, v 1) and v2 ' E T(G, Tr, v2 ) 

then v 1 ' < v 2 ', except possibly if v 1 is an ancestor 

of v2. 

If v 1 # v 2 and neither of v 1 and v2 ~s an ancestor of 

the other~ then v 1 < v 2 if and only if 

Given G E Q(V) and Tr E J!(V) we can generate the elements of 

T(G, Tr) in the order given by <, with the simple backtrack algorithm 

given below. 

0 



2•12 ALGORITHM Generate T(G, n) in the order earliest to latest~ 

given G E Q(V) and n E TI(V). 

(1) k+-1 

TI 1 +- R( G' TI ' TI) 

Output [n 1 J 

(2) If (nk is discrete) go to (4) 

Wk +- first non-trivial cell of nk of the smallest size 

(3) If (Wk = (/J) go to (4) 

V +- min Wk 

k +- k + 1 

Output [ n 1 , n 2 , • • • , nk J 

Go to (2) 

(4) k+-k-1 

If (k ~ 1) go to (3) 

Stop: All the nodes of T(G, n) have been output in the 

proper order. 

2•13 Group actions on T(G, n) 

If v = [n 1 , n2 , ···, nm] E ~(V) and y E S , then we can 
n 

25. 
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define vY = [TI y TI y ••• TI y] 
1'2' 'm' 

Obviously vY E ~(V). The property 

of Algorithm 2·5 described in Lemma 2·8 has immediate consequences for 

T(G, n), as we describe in the next theorem. 

2·14 THEOREM Let G E 2(V), TIE [(V) and yE Sn. 

(a) T(GY, nY) = T(G, n)Y. 

(b) If v E T(G, n), then T(GY, nY, vY) = T(G, n, v)Y. D 



The map from T(G, n) to T(G, n)y will not in general 

preserve the ordering <. 

We will be particularly interested in permutations y E s 
n 

such that Gy = G and TIY E TI • In other words , y E Aut (G) . If TI 

\) 1 ' v 2 E T(G, n) and \)2 = \) y for some y E Aut( G) we write \)1 \)2 1 TI 

and say that v 1 and vL are equivalent. By Theorem 2•14, ~ is an 

equivalence relation on T(G, n). If vis a terminal node of T(G, n) 

then v is called an identity node if there is no earlier node of 

T(G, n) which is equivalent to v. 

The following theorem is fundamental to our treatment of 

group actions on T(G, n). 

2·15 THEOREM Let G E Q(V), nE TI(V) and yE Aut(G) • 
TI 

(a) T(G, n)y = T(G, n). 

Then 

(b) If v E T(G, n), then T(G, n, vy) = T(G, n, v)Y. 

(c) If v 1, v 2 E T(G, n), v 1 < v 2 and v 1 ~ v 2 , then 

T(G, n, v2 - v 1) contains no identity nodes. 

26. 

Proof: Assertions (a) and (b) are immediate consequences of Theorem 

2·14, so we consider only assertion (c). If v 1 ~ v 2 , there is some 

yE Aut(G)n such that v 2 = v 1Y. But then v 2 - v 1 = (v 1 - v2 )Y and so 

T(G, n, v 2 - v 1) = T(G, n, v 1 - v2 )Y by (b). However v 1 < v 2 and 

so \)1 - \)2 < \) - \) 1, by Lemma 2·11. Therefore, every terminal node 
2 

in T(G, n, \)2 - \) 1 ) is equivalent to an earlier terminal node in 

T(G, n, \)1 - \)2), which proves (c) • 

2·16 ' Indicator functions 

Let t:,. be any linearly ord~~red set. An indicator function 

is a map A : G(V) X IT(V) X N(V) + t:,. 
~ ~ ~ 

such that A(GY, nY, vy) = A(G, n, v) for any G E Q(V), nE TI(V), 

\! E T(G, n) and y E S . 
n 



27. 

Given one indicator function A, we can define another 

indicator function A by: 

(1) (2) (k) 
J::,(G, TI, v) = (A(G, TI, v ), A(G, TI, v ), ···, A(G, TI, v )), 

where k = !vi, with the lexicographic ordering induced from the 

ordering of !':.. 

2·17 Definition of C(G, TI) 

If v = [TI , TI , ···, TI ] is a terminal node of T(G, TI) then 
l 2 m 

1T is a discrete ordered partition, by definition. This means that 
m 

1T defines an ordering of the elements of V. We can define a graph 
m 

G(v) isomorphic to G by relabelling the vertices of Gin the order 

that they appear in Tim· More precisely, if Tim = (v1 lv2 1 

o E S is the permutation taking v. onto i for 1 ~ i ~ n, then 
n l 

G(v) = G0 . The following lemma is an immediate conseQuence of the 

definitions. 

2·18 LE:MMA If G E 9(V), 1T E IT(V), yES and V E T(G, TI) is a 
·- ~ n 

terminal node~ then G(vY) = G(v) if and only if yE Aut(G). 

Proof: • 0 • I V ) • 
n 

and take the permutation o E S which takes v. onto i for 1 ~ i ~ n. 
n l 

Then G(v) = G0 by definition. Also by definition, 

Timy = (v/lv/1 

G(v) = G(vY) if and 

lv Y), and so G(vY) 
n 

;;: -ls: 
only if Gu = Gy u 

Therefore 

which is possible if and only 

ifyEAut(G). 0 

Our next reQuirement is a linear ordering of Q(V). Any 

such ordering will do, but it will be convenient for us to use an 

ordering defined using the adjacency matrices of elements of Q(V). 

Given G E Q(V) we can define an integer n(G) by writing down the 
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elements of the adjacency matrix in a row-by-row fashion, and 

interpreting the result as an n 2-bit binary number. If 

G1 , G2 E Q(V) we can then define G1 s G2 if and only if 

n(G 1 ) s n(G2 ). 

We can at last define C(G, n). Let X(G, n) be the set of 

all terminal nodes of T(G, n). Choose an arbitrary (but fixed) 

indicator function A. Let A* = max{~(G, n, v) jv E X(G, n)}. Then 

we define C(G, n) = max{G(v) jv E X(G, n) and ~(G, n, v) = A*}. 

2•19 THEOREM C is a canonical labelling map. 

Proof: We show that C has Properties Cl- C3 (Section 2·1). 

Property Cl is true because G(v) ~ G for any v E X(G, n). Now let 

yES . By Theorem 2·14 T(GY, nY) = T(G, n)Y and so 
n 

X(GY, nY) = X(G, n)Y. Also, by the definition of indicator function, 

~(GY, nY, vY) = ~(G, n, v) for any v E X(G, n). Finally, by the 

definition of G(v), we find that GY(vY) = G(v). Therefore C has 

Property C2. 

In order to prove Property C3 we must recall Lemma 2·8(a). 

Together with the fact that any v E X(G, n) is a partition nest, this 

implies that C(G, n) = G0 for some o E S such that n° = n. 
n 

Now suppose that C(G, nY) = C(G, n) for 

c satisfies Property y - y-l C2, C(G, n ) - C(G , n). 

some y E S 
n 

Since 

Therefore there are 

a i3 v Gv-la i3 a, i3 E S such that n = n = n, C(G, n') = ' and C(G, n) =G. 
n 

Y Gy-la i3 The assumption that C(G, n ) = C(G, n) thus implies that = G 

and so Sa- 1y E Aut(G). Finally, nsa-ly = ny since n13 = na = n. 

Therefore C has Property C3. 

An elementary means of computing C(G, n) is now apparent. 

Using Algorithm 2•12 we can generate every element of X(G, n). We 

D 
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can then identify those v E X(G, ~) for which A(G, ~, v) is maximum 

and so find C(G, ~) from its definition. It is not necessary to store 

all of X(G, ~) simultaneously; its elements can be processed as they 

are generated and then discarded. However, this process is not 

practical for use with a great many graphs because of the size of 

X(G, ~). One problem is with graphs having large automorphism groups. 

Since Aut(G) acts semi-regularly on X(G, ~), IX(G, ~)I must be a 

multiple of IAut(G) I, and so can be impossibly large, even for 

moderate n. Secondly, there are graphs for which IX(G, ~)I is very 

large, even if IAut(G) I is small. We will meet some of these graphs 

in the next chapter. 

The method which we will-use to attack these difficulties 

is a process of pruning T(G, ~). Let us say that v E X(G, ~) is a 

canonical node if C(G, ~) = G(v). Obviously, any part of T(G, ~)can 

be ignored if the remainder is known to contain a canonical node. 

Our guiding light is the following theorem, which is already implicit 

in the foregoing. 

2•20 THEOREM Let G E Q(V), ~ E TI(V), and 

A*= max{~(G, ~. v) lv E X(G, ~)}. Let X*(G, ~)be any subset of 

X(G, ~) which contains those identity nodes v for which ~(G, ~. v) =A*. 

Then X*(G, ~)contains a canonical node. 

In the terms of Theorem 2·20 our aim will be to reduce the 

size of X*(G, ~) as much as possible. We will reduce the number of 

elements of X*(G, ~) which are not identity nodes by searching for 

automorphisms of G and employing any we find to delete subtrees of 

T(G, ~). We will reduce the number of identity nodes in X*(G, ~)by 

using A. 

D 



Using automorphisms to prune T(G, n) 

The existence of one or more automorphisms of G can be 

inferred during the generation of T(G, n) in at least two different 

ways. 

(1) We may find two terminal nodes v 1 , v 2 E X(G, n) such 

that G(v 1 ) = G(v2 ). 

(2) We can sometimes infer the presence of automorphisms 

from the structure of an equitable partition. 

The first case is the more important and will be treated 

first. The second case can wait until Section 2•24. 

Suppose then that during the generation of T(G, n) we 

encounter a terminal node v 2 E X(G, n), compute G(v 2), and discover 

that it is the same as G(v 1 ) for some earlier terminal node v 1 • 

Since v 1 and v 2 are terminal nodes, there is a unique permutation 

y E Sn such that v 2 = v 1Y. It then follows from Lemma 2·18 that 

yE Aut(G). We will call y an explicit automorphism. 

30. 

Once we have found an explicit automorphism there are 

several ways we can put it to work. These are based on Theorem 2·15. 

The immediate outcome of Theorem 2•15 is that we may ignore the 

remainder of the subtree T(G, n, v 2 -v 1 ). However, we can do better 

than that. Since Aut(G) is a group, not only y but all its powers are 

in Aut(G). Moreover, if we have found several automorphisms of G, any 

permutation which is generated by these is also in Aut(G). The 

following scheme for handling this mass of information is not always 

the best, but has been found to work very well in many circumstances. 

Let E E X(G, n) be the earliest terminal node. We will need 

the following lemma. 



2•22 LEMMA 

Proof: 

Let v 1 < v2 E X(G, n). Then lE- v2 1 ~ lv 1 - v2 1. 

If lv 1 - v2 1 < lE- v2 1, then v 2 E T(G, n, E- v 1 ), 

31. 

which contradicts the assumption that v 1 < v 2 • 0 

We next introduce an auxiliary partition e E rr(v). We 

initially set 8 to the discrete partition of V, and whenever we obtain 

an explicit automorphism y, we update 8 + 8 V 8(y). This means, by 

Lemma 1•13, that 8 is at every stage the orbit partition of the group 

generated by all the explicit automorphisms so far discovered. It 

also means that 8 ~ 8(Aut(G) ), where [n 1 , n ••• n J is any 
Tim 2' ' m 

common ancestor of all the terminal nodes we have yet considered. 

This is because a permutation taking one node to another fixes their 

common ancestors. 

Now consider a node v = [n 1 , n2 , ···, nm] which is an 

ancestor of E. Because of the definition of E, v is also an 

ancestor of all the terminal nodes generated so far. Let 

vk} be the first non-trivial cell of smallest size 

V < • • • < 
2 

Since e ~ TI ' e induces a partition 
m 

of W. Now the successors of v, in the order earliest to latest, are 

V (V l) , V (V 2 ) , • • • , V ( Vk) , Where V (Vi) = ( TI l TI :2:: TI .L V.). m m l 

If v. < v. are in the same cell of e, there is some automorphism y, 
l J 

generated by the explicit automorphisms so far discovered, such that 

v(v.) = v(v.)Y. 
J l 

Therefore we can exclude the subtree T(G, n, v(v.)) 
J 

from further examination. There are two ways of doing this. The 

first is that, as we generate successive subtrees T(G, n, v(v1)), 

T(G, n, v(v2)), ···we only consider those for which viE mcr(e). 

The second is that, upon discovering an explicit automorphism y 

during the generation of T(G, n, v(v. )), and updating e, we check to 
l 



see if it is still true that v. E mcr(e). If not, we have found 
l 

proof (namely y) that T(G, n, v(v.)) only contains terminal nodes 
l 

equivalent to the terminal nodes of some subtree we have already 

examined. Therefore we can return at once to v and consider v(v.+ ). 
l l 

The technique just described often allows us to jump all 

the way back to an ancestor v of E after only generating one terminal 

node of a subtree rooted at a successor of v. Unfortunately this is 

not always possible, for example when a new terminal node is not 

recognized as being equivalent to an earlier one. It will also be 

possible (due to the use of A - see later) for a whole subtree to be 

ignored without knowing it to be equivalent to anything else. In 

order to put our automorphisms to work in such cases we have devised 

the following scheme. 

Firstly, we maintain a store £which contains 

(fix(y), mcr(y)) for every explicit automorphism y so far discovered 

(or some subset of them). Then, with each non-terminal node 

v E T(G, n) we associate a set W(v) ~ V. The first time (if any) 

we encounter v in the search of T(G, n), W(v) is set equal to the 

first smallest non-trivial cell of nm' where v = [n 1, n2 , 

The next time we encounter v (if any), we redefine 

W(v) + W(v) n mcr(y 1) n mcr(y 2 ) n ••• n mcr(yr), where 

TI ]. 
m 

~. 

y 1, y 2 , ···, yr are those previously encountered explicit automorphisms 

which fix v. From then on we can ignore subtrees T(G, n, v(v)) for 

which vi W(v). This is justified by Lemma 1·14. The reasons for 

deferring the modification of W(v) until the second encounter with 

v are (i) that the subtree rooted at the earliest successor of v has 

to be examined anyway (since the smallest element of W(v) before the 
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modification remains in W(v) after the modification) and (ii) that 

there is after no second encounter with v (we may find an automorphism 

allowing us to jump back to an ancestor of v). The next lemma shows 

that we can determine whether y fixes v by looking at fix(y). 

2•23 LEMMA Let y be an explicit automorphism. Let 

v2' 0 G • ' V e 
m-1 

Then y fixes v if and only if 

Proof: 

v } ~ fix(y). 
m-1 

The necessity is obvious. To prove the sufficiency 

we use induction on the ancestors of v. We know that y fixes n 1, 

because n 1 is an ancestor of the two equivalent terminal nodes via 

which y was discovered. Now suppose that {v1 , v ••• v } ~ fix(v) 
2' ' m-1 ' 

and that y fixes (n ~ n ~ ••• ~ n ) for some r (1 ~ t ~m- 1). 
1 2 r 

Thus yE Aut(G)nr' Furthermore, y fixes vr and nr+ 1 is the coarsest 

equitable partition finer than n which fixes v . Therefore y fixes 
r r 

TI 
r+1 

There is one other circumstance under which we may wish to 

D 

change W(v). If we find two equivalent terminal nodes v 1, v2 where 

v2 = v 1Y and where v is the longest common ancestor of v 1 and v2 , 

we can set W(v) + W(v) n mcr(y). 

Implicit automorphisms 

There are occasions when we can infer the presence of one or 

more automorphisms without generating any of them explicitly. These 

are based on the following lemma. 



2·25 LEMMA Let G E Q(V) and let n E ~(V) be equitable with 

respect to G. If n has m non-trivial ceUs and either n::; 1nl + 4, 

n = In! +m or n = In I + m + 1_, then n 1 = e(Aut( G) ) for any 
nl 

equitable n 1 ::; n. 

Proof: 

1::; i::; m and !Vi! = 1 for m< i::; k. Since n 1 is equitable, there 

is a set of numbers e .. (1 ::; i,j ::; k) such that each vertex in V. is 
lJ l 

adjacent to e .. vertices in V .. Counting the edges between V. and 
lJ J l 

V. we find that 
J 

IV. le .. = IV. le ... 
l lJ J Jl 

Since 0 ::; e .. ::; IV.!,(*) implies that e .. = 0 or e .. = !V.I whenever 
lJ J lJ lJ J 

(IV. I, IV. I)= 1. 
l J 

If n 1Y = n 1 for some yES and (IV.!, IV.!)= 1, the 
n l J 

permutation y will preserve the set of edges between V. and V .. 
l J 

Therefore, in determining whether or not y E Aut(G) we can ignore 

such edges. In particular we can ignore any edge incident with a 

vertex in a trivial cell. 

If n satisfies the requirements of the theorem, there are 

seven possibilities for the sizes of the non-trivial cells of n 1 • 

We will treat these separately. 

(a) IV i I = 2 for 1 ::; i ::; m. 

Let V. = {v., w.} for 1::; i::; m. For 1::; i < j::; m there 
l l l 
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( *) 

are four possibilities for the edges between V. and V .. Either there 
l J 

are no such edges, all possible such edges or two such edges. In 

the last case the edges are either {V. ' V.} and {w., w.} or {v., w.} 
l J l J l J 

and {w., v .L Therefore the permutation y = (vl wl)(v2 w2) ••• (vm wm) 
l J 

is in Aut( G), and since e(y) = n 1' nl = e(Aut(G) ). 
Til 
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(b) Jv 1 1 =3, Jvil =2for2:5:i:S:m. 

Let V1 = {v1 , w1 , x 1 } and Vi = {vi, wi} for 2 :5: i :5: m. 

Since (2, 3) = 1 we can ignore the edges between V1 and Vi (2 :5: i :5: m). 

Furthermore, V1 itself either contains no edges or a triangle. 

Therefore the permutation y = (v1 w1 x 1 )(v2 w2)(v3 w3)···(vm wm) is in 

Aut( G). 

(c) m= land IV I = 3, 4 or 5. 
l 

In any of these cases the reQuired result is a simple 

corollary of the fact that all regular graphs with 3, 4 or 5 vertices 

are transitive. 

(d) m = 2, lVII = 4 and IV21 = 2. 

(e) m = 2, IV 1 1 = IV I = 3. 
2 

Each of these cases is easily settled by considering 

every possibility for the edges inside or between V1 and V2 . 

The most commonly occurring case of Lemma 2·25 is when 

n = 1nl +m, which corresponds to n 1 only having cells of size 1 or 2. 

Lemma 2·25 can be put to several uses. The most immediate 

application is that whenever we encounter a node v = [n 1 , n2 , ···, nm] 

for which n satisfies the reQuirements of Lemma 2•25, we can infer 
m 

that all the terminal nodes descended from v are eQuivalent, and so 

at most one of them is an identity node (the earliest one, if any). 

A less direct techniQue is to store the pair (fix(n ), mcr(n )) in 
m m 

the list §, along with the similar pairs derived from explicit 

automorphisms. It can then become useful in pruning later parts of 

the search tree. 

D 
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2·26 Eliminating identity nodes 

The techniques of the last few sections are generally quite 

efficient in removing terminal nodes which are not identity nodes. 

However, there are occasions when the number of identity nodes is 

unmanageably large. Examples of these will be given in the next 

chapter. Some of these can be eliminated by means of an indicator 

function A. 

Suppose that during the search of T(G, n) we maintain a 

node variable p. When the first terminal nodes is generated, we 

initialize p + s. Thereafter we update p + v whenever we find a 

terminal node v such that ~(G, n, v) > ~(G, n, p) or 

~(G, n, v) = ~(G, n, p) and G(v) > G(p). The definition of C(G, n) 

ensures that by the time we have finished searching T(G, n) we have 

G(p) = C(G, n), provided the set of terminal nodes examined includes 

all the identity nodes. Now suppose that at some instant during our 

search we have p = [rr 1 , n 2 , • • •, nm] and encounter a node 

v = [n' 1 , n' 2 , •••, n'k], not necessarily terminal. Let r = min(m, k). 

Then, if ~(G, n, v(r)) < ~(G, n, p(r)), the definition of an indicator 

function tells us that ~(G, n, v') < ~(G, n, p) for every terminal 

node v' of T(G, n, v). Therefore we can safely ignore T(G, n, v) 

without miscalculating C(G, n). 

The efficiency of this technique depends mainly on two 

factors. One is the power of~ in distinguishing between non-

equivalent nodes. This, of course, can only be improved by changing 

A, which will generally involve a power/computation-time trade-off. 

The other factor depends on the initial labelling of G. Suppose that 

we wish to search the subtree T(G, n, v). We do this by successively 

searching the subtrees T(G, n, v 1), T(G, n, v2 ), T(G, n, V), 
r 



where v v ••• v are the successors of v, in the order earliest 
1' 2' ' r 

to latest. We can use the information provided by A by ignoring the 

subtree T(G, n, v.) if A(G, n, v.) < A(G, n, v.) for some j < i. The 
l l J 

number of subtrees which are thus ignored could vary from none (if 

the A(G, n, v.) are in non-decreasing order) to the maximum number 
l 
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possible (if A(G, n, vi) ~ A(G, n, v 1) for 1 ~ i ~ r). While there is 

no efficient way of ensuring that the best case always occurs we can 

arrange for the worst case to be very unlikely. The simplest way of 

doing this (but not the one we will adopt) is to label G in a random 

fashion before commencing the generation of T(G, n). A precise 

statistical analysis of how this effects the overall efficiency would 

be very difficult, but a rough idea can perhaps be gained from the 

following two theorems. We will use E(X) to denote the expectation 

of a random variable X, and P(x) to denote the probability of an event 

x. The first theorem suggests that the number of ignored subtrees 

will not usually be much less than the maximum number possible. 

2•27 THEOREM Let o1 < o2 < ••• < ok be elements of a linearly ordered 

~ be positive integers_, and put 

+ •• 0 + 
~- Let x 1 , x 2 , • • ·, xJI, be elements of !'-._, 

exactly m. of which are equal too. for 1 ~ j ~ k. Now permute the 
J J 

x. at random to get x(l), x( 2 ), ···, x(Ji,), each of the£! possible 
l 

permutations being equally 

x(i) 2 x(j) for j < i, but 

likely. For 1 ~ i ~ Jl,_, mark x(i) if 

x(i) # o Let M be the number of marked 
k 

k-1 ill" 
elements. Then E(M) = L --:-------.:J;;___+ ___ + __ , where the sum 

j=l 1 + mj+1 + mj+2 ••• ~ 

is taken as 0 if k = 1. 

In particular~ if m. = 
k-1 J 

m for 1 ~ j ~ k_, then 

E(M) = L . ~ 1 ~ log(2k). 
. lmJ J= 



Proof: 

E(M) = 

By the additivity of expectation, 

.Q, 

I P(x. is marked) 
l i=1 

k 
= I m.p., where pJ. = P(a given element equal to 8. is marked) 

j=1 J J J 

k-1 
= I m.p., since pk = 0. 

j=1 J J 

Now 
( i) 

suppose x = oj, where j ~ k. Let x(l)' x( 2 )' X be the 
(t) 

t = mj+ 1 + mj+2 + ••• +~elements greater than oj. Then each of 

the (t + l)! possible relative orders in which the elements 

(i) (1) (2) 
x , x(l)' •••, x(t) occur in the sequence x , x , 

( .Q,) 
X are 

equally likely, but only the t! orders for which x(i)is first result 

. ( i) . k 1n x be1ng mar ed. Therefore p. 
J 

t! 1 
= (t+l)! = t+l' as required. 

The second theorem concerns the number of different values 

of A(G, n, v.) amongst those T(G, n, v.) which are not ignored. It 
l l 

therefore has a bearing on the number of identity nodes which are 

excluded by means of A. 

2·28 THEOREM Under the conditions of Theorem 2·273 let N be the 

number of different values amongst the marked elements. Then 

k-1 m. 
E(N) = I m + m + 

j=1 j j+1 
e • l!ll + , where the sum ~s 0 if k = l. 

mk 

::::; log .Q, 

In particular3 if m. = m for 1 ::::; i ::::; k3 then 
l 

E(N) = I ~ ::::; 
j=2 J 

log k. 

Proof: The proof of the exact expression for E(N) is nearly 

the same as the proof of Theorem 2•27 and so will be omitted. 

38. 
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We will prove the bound E(N) ::::; log .Q, by induction on k. It 

is obviously true for k = l. Now let k > l. 
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Then E(N) = 
m. 

J = 
k-1 m. 

I m +m + ••• +m. 
j= 2 j j+l K 

+m +···+m. 
j+l K 

ml 
~ Q: +log(~- m1), by the induction hypothesis 

ml ml 
= log ~ +-- + log(l- --) 

f/., ~ 

ml 
~ log ~. since 0 < < 1. 

~ 
0 

An alternative to this technique for using A is to compute 

A(G, n, v.) for 1 ~ i ~rand then only search T(G, n, v.) for those 
l l 

v. for which A(G, n, v.) is the largest. This is undoubtedly the 
l l 

best approach in many cases. However we are not adopting this method 

because it severely degrades the average-case behaviour. This is 

because the discovery of automorphisms frequently allows us to 

reject a subtree T(G, n , v . ) without ever computing v .. 
l l 

The theorems above relate to the effect of performing an 

initial random relabelling of G. The reasons we are not adopting 

this approach are, firstly, that this relabelling may almost double 

the total execution time (for a very large random graph; see Chapter 

3) and, secondly, that in order to make some of the output useful 

(e.g. the list of automorphisms produced) it may be necessary to 

translate it back to the original labelling, which is inconvenient. 

We will describe an alternative, but will only justify it 

qualitatively. A more precise analysis would be impossibly difficult 

to perform. 

Let A' : Q(V) x J!(V) x ~(V) + ;:., be any convenient indicator 

function. Now devise a map f : ;:., + ;:., with the property that for 

pairs x, yE;:.., x- y is very poorly correlated with f(x)- f(y). 

(This is not meant to be a rigorous definition). For example, take 

;:., = [-1, 1] and f(x) = sin(lo 10x); knowledge of x- y tells us almost 



nothing about f(x) - f(y) except in special circumstances. Now 

define A : Q(V) x TI(V) x E(V) +~by A(G, n, v) = f(A'(G, n, v)). 

The hope is that any tendency to an unfavourable ordering of the 

values of A'(G, n, v 1), •••, A'(G, n, vr) will not occur for 

A(G, n, v 1), ···, A(G, n, vr). However, as we have stated, there 

is little hope of an exact statistical analysis. The best we can 

say is that the computational experience is favourable. 

2·29 Storage of identity nodes 

Up to this point we have been tacitly assuming that we are 

keeping a record of all those identity nodes so far generated, so 

that we can recognize later terminal nodes which are equivalent to 

any of them. In practice this can cause a severe storage problem, 

since the number of identity nodes can be very large, even if we 

don't count those which are eliminated by use of an indicator 

function. Therefore it is necessary to put a limit on the number of 

identity nodes (strictly, terminal nodes not known to be equivalent 

to an earlier node) to be stored. The optimum strategy is not clear. 

On the one hand, storing more identity nodes improves our chances of 

detecting automorphisms, which can be put to use as we have seen. On 

the other hand, testing two terminal nodes for equivalence is quite 

time consuming (especially for large graphs), and having to do a lot 

of these tests would have a very bad effect on the overall execution 

time. 
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The technique which we have adopted, without a great deal 

of theoretical justification, is to store two identity nodes at a 

time, The earliest terminal node E is always stored. The other 

terminal node (which may be the same as the first) is our best guess 

so far at the identity node corresponding to O(G). This is the node p 



referred to in Section 2•26. We also permit the algorithm to search 

for terminal nodes equivalent to E, with the aim of using the 

automorphisms thus discovered to shorten the total amount of work. 

This will sometimes degrade the performance somewhat, but on the 

average it works very well. 

We are now able to summarize the way in which terminal 

nodes are processed. Suppose that we have just created a node v, 

not necessarily terminal, which is not an ancestor of E (i.e. is 

later than d . 

The node p and the partition e have the same interpretation 

as before. Suppose that v is the node [n 1 , n2 , •••, nm] so that 

!vi = k. Also define m= \El and r = \p\, and define variables as 

follows. 

hn: If nk satisfies the requirements of Lemma 2·25, then hh is 

the smallest value of i, 1 ~ i ~ k, for which n. satisfies 
l 

these requirements. 

Otherwise, hh = k. 

ht: This is the smallest value of i, 1 ~ i ~m, for which all the 

h: 

v: 

hb: 

hzb: 

(i) 
terminal nodes descended from or equal to E have been 

shown to be equivalent. 

The longest common ancestor of E and v is v(h) 

(hb) 
The longest common ancestor of p and v is v 

This is the maximum value of i, 1 ~ i ~ min{k, r}, such that 

fl(G, 
(i) (i) 

TI, V = fl(G, 'IT, p ). 

41. 
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t . t (i) (i) By re urn~ng o v we mean backtracking in the search tree to v 

d . . th t xt f ( i) t . f and procee lng Wl he ne successor o v not yet genera ed, l 

( i-l) 
any. If there are no such successors, we return to v , and so 

forth. "Return to v ( 0 )" is eq_ui valent to "stop". 

(k) 
Now suppose we have just created v = v Let ~ = ~(G, n, v) 

( l) If ( k > m or !:, -:f 1:, ( G, n , s ( k) ) 

and (k > r or!:,< t:,(G, n, p(k))), go to (B). 

(2) If vis non-terminal, proceed to search T(G, n, v). 

(3) If (k >m or!:, -:f t:,(G, n, s)) go to (4). 

If the permutation y taking s onto v is an automorphism, 

go to (A) . 

(4) If (k > r or ~ < ~(G, TI, p) or 

(~ = MG, TI, p) and G( v) < G( p) ) ) go to (B). 

If (A > A( G, TI, p) or (!:, = !:,(G, TI, p) and 
~ ~ 

G(v) > G(p))) set p + v then go to (B) . 

If(~= ~(G, n, p) and G(v) = G(p)), let y be the 

permutation taking p onto v and go to (A). 

(A) {At this stage we have found an automorphism Y.} 

(A•l) Add (fix(y), mcr(y)) to~ (if there is room) 

set e + e v e(y). 

(A•2) If vi mcr(e), return to v(h) 

Otherwise, return to v(hb). 

(B) {At this stage we have a terminal node v not known to be 

eq_uivalent to an earlier terminal node.} 

(B•l) If hh < k, add (fix(nhh), mcr(nhh)) to£ (if there is 

room). 

(B•2) 
( . ) 

Return to v l , where i = min{hh-1, max{ht-1, hzb}}. D 



The only feature in the foregoing informal algorithm which 

we have not already justified is the use of the variable ht in 

Step (B•2). What we want to do in Step (B•2) is to return to the 

longest ancestor v. of v which may conceivably have a terminal 
l 

descendant which is either equivalent to E or improves on p as the 

"best canonical label so far". All the terminal nodes in T( G, 1T, )hh)) 

are known to be equivalent to v, so we can assume that i < hh. 

( i) 
Furthermore, if i > hzb, none of the descendants of v can improve 

on p. Finally, if i ~ ht, and one of the descendants of v(i) was 

. 1 t t th ( i) ld b . 1 t t ( i) H 11 eqlilva en o E en v wou e equlva en o E . owever, a 

the terminal nodes descended from E(i) are equivalent, and so all 

those descended from v(i) are equivalent, giving a contradiction. 

2·30 We will now give a complete formal description of the 

whole algorithm. 

Notes: ( i) lab and dig are boolean variables. If lab= false, 

p is not used, and the algorithm only searches for terminal nodes 

equivalent to E· We will show in Theorem 2·33 that useful information 

about Aut(G) is still obtained. If dig= true, the algorithm will not 

use Lemma 2·25, and will be valid for digraphs and graphs with loops 

(for which Lemma 2·25 does not hold). 

(ii) The variable v refers everywhere to the node 

changes value. 

It thus changes value if 1T. (1 ~ i < k) or k 
l 

(iii) L ~ 1 is an integer specifying a limit on the number 

of pairs (fix(x), mcr(x)) to be stored at one time. The result 

computed by the algorithm is independent of the choice of L, although 

the efficiency in general may not be. 



(iv) P £ TI(V) is the set of all ordered partitions of V 

which satisfy the requirements of Lemma 2·25. 

(v) We are assuming for convenience that A(G, n, v) is 

real in value. If this is not the case replace 

"qzb + ~- zbk " by 

-1 if ~ < zbk 

qzb + 0 if Ak = zbk 

l if ~> zbk 

2 • 31 ALGORITHM 

(l) k +size+ l 

h + hzb + index + £ + 0 

8 + discrete partition of V 

n 1 + R(G, n, n) 

If (n 1 E P and not dig) hh + l, otherwise hh + 2 

If (n 1 is discrete) go to (18) 

w1 +first smallest cell of n 1 

v 1 + min W 1 

e 1 + 0 

A1 + 0 

(2) k + k + l 

nk + Tik-1 l. vk-1 

~ + A( G, n, V) 

If (h = 0) go to (5) 

If (hzf = k - l and ~ = zfk) hzf + k 

If (not lab) go to (3) 

qzb + ~ - zbk 

If (hzb = k - l and qzb = 0) hzb + k 

If (qzb > 0) zbk + ~ 

44. 
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(3) If (hzb = k o-r:-(Zah and qzb :e: 0)) go to (4) 

Go to (6) 

(4) If (Tik is discrete) go to (7) 

Wk + first smallest cell of 1Tk 

If (dig or 1rk i P) hh + k + l 

Go to ( 2) 

( 5) zfk + zbk + \. 

Go to ( 4) 

( 6) k 1 + k 

k + min(hh - l, max(ht - l, hzb)) 

If (k' = hh) go to ( 13) 

t + min(t + l, L) 

At + mer( 1Thh) 

<I>t+fix(Tihh) 

Go to ( 12) 

( 7) If (h = 0) go to (18) 

If (k # hzf) go to (8) 

Define y E 8 by Ey =V 
n 

If ( Gy = G) go to ( 10) 

( 8) If (not Zab or qzb < 0) go to (6) 

If (qzb > 0 or k < I PI ) go to (9) 

If ( G( V) > G( p)) go to (9) 

If ( G( V) < G( p) ) go to (6) 

Define y E S by vY 
n 

= p 

Go to ( 10) 



46. 

(9) p + \) 

qzb + 0 

hb + hzb + k 

zb + oo 
k+l 

Go to (6) 

( 10) Q_+min(£+ 1, L) 

QJI, + mcr(y) 

tll£ + fix(y) 

If ( 8 y = 8) go to (11) 

Output y 

If ( tvc E mcr(8)) go to (11) 

k+h 

Go to ( 13) 

( 11) k + hb 

( 12) If ( e = 1) vJ n 
k k Si£ 

( 13) If (k = 0) Stop 

If (k > h) go to ( 1'7) 

If (k = h) go to ( 14) 

h+k 

tvc + min(Wk) 

tvh + tvc 

(14) If (vk and tvh are in the same cell of 8) index+ index+ 1 

Vk + min{v E Wklv > vk} 

If (vk = oo) go to (16) 

If (vk i mcr(8)) go to (14) 



(15) hh + min(hh, k + 1) 

hzf + min(hzf, k) 

If (not tab or hzb < k) go to (2) 

hzb + k 

q_zb + 0 

Go to ( 2) 

(16) If ( IWkl = index and ht = k + 1) ht + k 

size + size x index 

index+ 0 

k + k - 1 

Go to (13) 

(17) If (ek = 0) set Wk + Wk n ~i for each i, 1 ~ i ~ ~. 

( 18) 

such that {v1 , v2 , 

ek + 1 

vk + min{v E Wk\v > vk} 

If (vk "f oo) go to (15) 

k + k - l 

Go to (13) 

h + ht + hzf + k 

zfk+l + 00 

E: + V 

k + k- 1 

If (not tab) go to ( 13) 

p + V 

hzb + hb +k + 1 

zb + oo 
k+2 

q_zb + 0 

Go to (13) 

~--(~) 



2·32 Consider the stage during the execution of Algorithm 2·31 

that we pass the point marked B (in Step (18)). At this instant 

define K = k- 1 and w. = v. (l ~ i ~ K). 
l l 

r(i) = r 

Now let r(o) = r = Aut(G) , and define 
1T 

{w l' 
} (point-wise stabiliser) for l ~ i ~ K. 

wi 

Since E is a terminal node, the coarsest eq_ui table partition which is 

finer than 1T and fixes w1 , w2 , ••• , wk is discrete. Therefore 

r(K) = l. 

2·33 THEOREM During the execution of Algorithm 2•31~ each time 

we pass point A ( 1:n Step ( 16)) or point B (in Step ( 18)) the foUOU)ing 

are true: 

(i) index= jr(k-l) \1\r(k) \ (point A only) 

(ii) size= jr(k- 1 )j 

(iii) e = e(r(k- 1 )) 
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(iv) r(k- 1 ) = (Y) , where Y is the set of aU automorphisms 

"output" up to the present stage (in Step ( 10)). 

( v) 

Proof: The theorem follows readily from the theory that we 

have already discussed, so we will only describe briefly how this 

needs to be assembled. 

Point B is only passed once, when E is created,and k = K + l 

at this stage. Point A is then passed K times, at which stages k 

has the values K, K- 1, •••, l in that order. 

We prove the theorem by backward induction on k. For 

k = K + lit is obvious. Now assume it fork', for some k', 

2 ~ k' ~ K + 1, and let k = k' - 1. 



Consider V= [~1' ~2' ···, ~k]. The successors of v, in 

the order earliest to latest are v 1, v2 , •••, v where v. = v(w.), 
m l l 

and Wk = {w , w , •••, w }. The previous time we passed point A 
1 2 m 

(or B) was when we completed our examination of the subtree 

T(G, ~. v1 ). We now claim that, for l $ i $m, by the time we have 

completed examination of T(G, ~. v. ), w. is in the same cell of 
l l 

e as v 1 if and only if vi ~ v 1 . 

Suppose on the contrary that there is an earliest v. for 
l 

which our assertion is not true. If v. is not eQuivalent to v 
l 1 

then wi and w1 are obviously in different cells of e, since e is the 

orbit partition of some subgroup of Aut( G) • On the other hand, if 
~k 

vi~ v 1, T(G, ~. vi) contains one or more terminal nodes eQuivalent 

to E· The nature of the algorithm is such that if one of these nodes 

is generated, it will be recognized as being eQuivalent toe, and 

if it is not generated this will only be because it has been shown 

to be equivalent to an earlier terminal node. Furthermore, implicit 

automorphisms are never used to reduce Wk, and during the examination 

of T(G, ~, v.), if any, the only stored pairs(~.,~.) which are used 
l J J 

to reduce any W have w. E ~ .• Therefore, either w. is already in 
r l J l 

the same cell of e as w1 or we are sure to discover some automorphism 

y such that v.Y < v .. By the induction hypothesis w.Y is the same of 
l l l 

8 as w 1, and SO the update 8 + 8 V 8(y) merges the cells Of 8 

containing w and w., contrary to hypothesis. Note also that we 
1 l 

have just proved that y E Y. 

We have thus concluded that the cell of e containing w1 is 

the orbit of r(k- 1) containing w1. Since e = e(Y) by construction, 

and r(k) $ (y) by the original induction hypothesis, we must have 

r(k- 1) = (y), since (y) contains a full set of coset-



representatives for r(k) in r(k- 1), This proves that 8 = 8(f(k- 1)). 

The variable index merely counts the number of elements in the cell 

of 8 containing w1, so claims (i) and (ii) follow immediately. 

Claim (v) follows from the simple observation that the 

number of cells of 8 starts at n and decreases by at least one for 

each new element of Y. 

In closing we note a few simple properties of the set of 

generators of r found by Algorithm 2·31. These are essentially the 

same as those given in Theorems 36 - 38 in [27] and the proofs given 

there apply with only notational changes. Let Y be the full set of 

automorphisms "output" by Algorithm 2•31, and let r =Aut( G). 

2•34 THEOREM (1) Y does not contain any element of the form y8~ 

where y~ 8 E r_, supp(y) n supp(8) = 0 and y # (l) # 8. 

(2) Suppose that for some subset Y* ~ Y_, we have 

( Y*) = A ( 1) e A ( 2 ) _, where A ( 1 ) and A ( 2 ) are non-trivial subgroups 

of r. Then Y* = Y(l) u Y( 2 ) where Y(l) n y( 2 ) = 0, \Y(l)) = A(l) 

and \ Y ( 2 ) ) = A ( 2 ) • 

(3) Suppose that for some subset W ~V the point-wise 

50. 

0 

stabiliser rw has exactly one non-trivial orbit. Then some subset of 

Y generates a conjugate of rw in r. 0 



CHAPTER THREE 

IMPLEMENTATION CONSIDERATIONS 

In this chapter we will discuss some of the problems 

that arise in the implementation of Algorithm 2·31 and how these 

have been approached. We will then examine the theoretical and 

empirical performance of our implementation. Finally, we will 

mention a few of practical uses to which our implementation has 

been put. The notation we have devised in Chapter 2 will continue 

to apply here. 

3•1 Time versus storage 

51. 

The program described in McKay [28] worked so efficiently 

for many classes of graphs that the practical limit on the size of 

graph that could be processed was set by the amount of storage 

available, rather than by execution time considerations. Consequently 

the present implementation places considerably more emphasis on 

storage conservation, in some places to the slight detriment of time 

efficiency. 

The variable types used by Algorithm 2•31 include graphs, 

sets, partitions and partition nests. We will now describe the data 

structures used in our implementation for each of these variable 

types. 

3•2 Partition nests 

Let v = [TI 1 , TI 2 , Tik] E g(v). Then v can be represented 

by two arrays a and b of length n as follows. Define TIO = (V). 
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(i) The array a contains the elements of V in any 

order consistent with ~k. Precisely, if 

u(a(i), ~k) < u(a(j), ~k) then i < j, for any 

i, j E V. 

(ii) Each entry of b is an integer in the interval 

[0, n + l] chosen thus: 

(a) If u(a(i), ~k) = u(a(i + l), ~k), then 

b(i) = n + l ( l :::; i :::; n - l). 

(b) If u(a(i), ~. 1 ) = u(a(i + 1), ~. 1 ) but 
J- J-

u(a(i), ~.) < u(a(i + 1), ~.),then 
J J 

b( i) = j ( 1 :::; j :::; k, l :::; i :::; n - l). 

(c) b(n) = 0. 

The three main operations on a partition nest that are 

required by Algorithm 2•31 can be performed as follows. 

( l) To determine~. (l:::; j:::; k): Let i < i < ••• < i 
J 1 2 r 

be all the values of i such that b(i) :::; j. Define 

io = 0. Then~. = (V 1' v2' Vr)' where 
J 

VQ, = {a(i) JiQ, + l :::; i < . } 
-1 - lQ, . 

(2) To replace v by v(j) ( l :::; j < k): Change each 

b(i) > j to n + l, for 1 :::; i :::; n. 

(3) To extend v by cell subdivision: Suppose we wish to 

update V to [~ 1 , ~ 2 , •••, ~k+ 1 J, where ~k+ 1 is formed 

from ~k by subdividing a cell Vi E ~k into disjoint 

subsets W 1 , W 2 , W . The elements of V. are 
s l 

a(j), a(j + 1), a(j + t- 1) for some j, where 

t = IV. I· Permute these t elements of a into any 
l 

order consistent with ~k+l and then set the appropriate 

t - 1 elements of b to k + 1 (so that the result is a 

correct representation of[~ , ~ , •••, ~k J). 
1 2 +1 



53. 

3•3 Unordered partitions 

The only unordered partition used by Algorithm 2•31 is 8. 

For any v E V let 8 denote the cell of 8 containing v and let 
V 

p(v) = min 8 . Clearly 8 can be uniquely represented by the array p, 
V 

and most of the necessary questions about 8 can be answered very 

quickly by reference to p. For example, if v, w E V then v and w are 

in the same cell of 8 if and only if p(v) = p(w), and v E mcr(e) if 

and only if p(v) = v. 

This representation of 8 suffers from the disadvantage that 

updates of the form 8 + 8 v 8(y), for yES , are quite expensive in 
n 

terms of computation time. This problem has been considerably 

alleviated by the use of a second array q which "chains together" the 

elements of each cell. More precisely, if i E mcr(e), then 

8. = {i, q(i), q(q(i)), q(q(q(i))), ···},where the sequence 
l 

terminates on the term before the first zero. 

Suppose that we wish to merge the cells Si f 8j of 8, 

where we can assume that p(i) < p(j). This operation can easily be 

performed as follows. 

(a) i' + i 

(b) Repeat i' + q(i') until q(i') = 0. 

(c) q(i') + j' + p(j) 

(d) Repeat p(j') + p(i) and j' + q(j') until j' = 0. 

The representation we have chosen for 8 may not be the most 

efficient possible but,since we know of no graphs for which our 

implementation of Algorithm 2•31 spends more than a small fraction 

of the total time in manipulating 8, we have felt no need to improve 

it. 
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Sets 

The sets used by Algorithm 2·31 are all subsets of V, 

namely W., ~- and Q. for each i. These can be represented in the 
l l l 

computer by bit-vectors. A bit-vector is a set of n (generally 

contiguous) machine bits designated bit(l) to bit(n). A set W S V 

can be represented by a bit-vector with bit(i) = 1 if i E W and 

bit(i) = 0 otherwise (1 ~ i ~ n). The most obvious advantage of this 

representation is its storage economy. The other main advantage is 

that many elementary set operations (such as intersection) and 

relational tests (such as subset) can be done very quickly using the 

bit-wise boolean operations available on most machines. On the 

other hand testing whether i E W can be annoyingly awkward, 

especially if the bit-vector extends over more than one machine word, 

since several arithmetic operations may be required to locate bit(i). 

3·5 Graphs 

Algorithm 2•31 requires the input graph G and, for 

reasonably efficient operation, requires the graph variable G(p). 

From the great number of possible ways of representing these graphs 

in the computer, we have chosen an adjacency matrix representation 

because of its greater storage economy. More precisely, G is stored 

as a list of n bit-vectors representing N(l, G), N(2, G), •••, N(n, G), 

and so requires around n2 bits of storage. Since Algorithm 2•31 is 

valid also for digraphs, it is clearly not possible to reduce this 

storage requirement in general. However if the program was only 

intended to be applied on graphs with very low degree, a different 

sort of representation would save space, and probably time as well. 



3·6 Efficiency of Algorithm 2•5 

Algorithm 2•5 can easily be implemented using the data 

structures above. We will now consider the efficiency which can 

be achieved in such an implementation, but first we need to consider 

an associated sorting problem. 

Suppose that we have an array a(l), a(2), ···, a(m) taking 

values from V and a map f: V+ {0, 1, 2, •••, k}. We wish to sort 

the values of the array a so that f( a( 1)) :0:: f( a( 2)) :0:: • • • :0:: f( a(m)). 

This can be done by the following algorithm, using an auxiliary 

array c(O), c(l), ···, c(k). The time requirement of the algorithm 

is clearly O(m + k). 

(1) c(j) + 0 for 0 :0:: j :0:: k 

( 2) 

( 3) 

(4) 

c(f(a(i))) + c(f(a(i))) + 1 for 1 :0:: i :0:: m 

i + 1 

For j = O, 1, 

i + 1 

x+ a(i) 

k do i' + i + c(j), c(j) + i and i + i' 

If ( x < 0) go to ( 4) 

i' + c(f(x)) 

c(f(x)) + c(f(x)) + 1 

x' + a(i') 

a( i') + -x 

x + x' 

Go to ( 3) 

i + i + 1 

If (i :0:: m) go to (2) 

a(i) + -a(i) for 1 :0:: i :0:: m 

55. 

D 



The following complexity result was suggested by a related 

result in Gries [16]. For the necessary definitions, refer back to 

Section 2·9. 

3•7 THEOREM For any G E Q(V), n E E(V) and distinct 

V e e e 

2' ' 
v E V, the derived partition nest [n 1, 

m-1 
'IT eee TI] 
2' ' m 

can be computed in O(n2 log n) time, assuming an impl-ementation in 

which d(v, W) can be computed in time proportional- to IWI, for any 

V E V, w ~ V. 

56. 

Proof: It is obvious that the time occupied in the computation 

of n. o v. for l ~ i ~m- 1 and in Step (1) of Algorithm 2·5 will be 
l l 

easily O(n2log n). Since each execution of Step (2) of Algorithm 2·5 

requires only a fixed amount of time and leads to an execution of 

Step (3), we are justified in restricting our attention to Step (3). 

For any given W, the necessary r executions of Step (3) can 

be performed in O(niWI) time. This follows from the assumption about 

the computation of d(v, W) and from the algorithm in Section 3•6. 

Therefore the total time for the computation of [n n ••• n ] is 
1' 2' ' m 

O(n2log n + niiWI ), where the sum is over all sets assigned toW 

during any execution of Step (2) (for any execution of Algorithm 2·5). 

Let x E V and consider the real variable q , defined at any 
X 

point of time during any execution of Algorithm 2·5 by 

q = h + log £ Here h is the number of sets containing x which 
X X 2 X X 

have been previously assigned toW during an execution of Step (2), 

plus the number of sets W. (m~ j ~M) which contain x, plus one for 
J 

the set {x} = {v.} created by the operation n. o v., if it exists 
l l l 

and has not already been counted. Also £ is the current size of the 
X 

cell of n which contains x. Note that hx' £x and qx are variables 

which frequently change value during Algorithm 2·5. 



The value of q clearly remains constant or decreases 
X 

between different executions of Algorithm 2·5. The only other place 

where it can change is during Step (3), when h remains fixed while 
X 

t decreases, or h increases by one. In the latter case £ 
X X X 

decreases by at least a factor of two, so that q does not increase. 
X 

Therefore qx is non-increasing throughout the computation, implying 

that its last value is bounded above by its first, which is bounded 

above by 2 + log2 n. 

2 + log n. 

Therefore the final value h of h is at most 
X X 

2 

We conclude that the total time required for the 

computation of [n 1 , n2 , 

as required. 

n] is O(n2log n +nE h ) = O(n2log n), 
m XEV x 

For our particular choice of data structures, and our 

particular implementation environment, we have found that the fastest 

way to compute d(v, W) for n/30 ~ !WI ~ n approximately is to 

represent W as a bit-vector and to count the number of one-bits in 

the bit-vector representing N(v, G) n W. Although this technique 

(used for !WI > 1) appears to reduce the total time in "the majority" 

of cases, it has the unfortunate side-effect of invalidating the 

premises of Theorem 3•7. The best replacement for the bound 

O(n 2log n) which we have been able to prove is O(n 3). Since the time 
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D 

required for the computation of d(v, W) is now essentially independent 

of lwl, Step (3) of Algorithm 2·5 can be simplified by using t = l. 

This is especially convenient if the sequence a is represented as a 

set of pointers to the array a (see Section 3•2). 



3•8 Efficiency of Algorithm 2•31 

Let T*(G, n) be the portion of the search tree T(G, n) 

which is examined by Algorithm 2•31. Let m be the number of 
1 

terminal nodes of T*(G, n) which are equivalent to the earliest 

terminal node E (including E itself). Let m be the number of nodes 
2 

of T*(G, n) which are not equivalent to E and which do not have any 

descendants in T*(G, n). Let L be the constant defined in Section 

2•30. Then the total time required by Algorithm 2•31 is 

O(m1n2log n + m2n2(L +log n)), under the conditions of Theorem 3·7, 

where m2 may depend on L. For our implementation, this must be 

increased to O(n 3(m +m)+ m2n2L). By Theorem 2•33, m ~ n, but 
1 2 1 

we have not found any reasonable bound on m2 . It varies in a very 

complicated manner with the initial labelling of the input graph 

and the value of L. 

3·9 Other implementation details 

Algorithm 2•31 has been implemented on a Cyber 170 
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computer, mainly in Fortran. Because of the difficulty in manipulating 

bit-vectors efficiently in Fortran, several small subroutines are 

coded in assembler language. 

The indicator function A is evaluated by the subroutine 

which implements Algorithm 2•5. It is formed by taking cell sizes, 

relative vertex degrees and other information which is computed in 

the course of Algorithm 2·5, and merging these into a single integer 

value in a "pseudo-random" fashion (see Section 2·28). 

A technique which produced considerable improvements in 

efficiency in some cases involves the updating of the graph G(p) 

when p is updated. The computation of G(p) is quite time-consuming 
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(up to about 6 seconds for n = 1000), so this computation is delayed 

for as long as possible, in case it is not necessary. 

3•10 Storage requirements 

Let m be the number of machine-words required to hold a 

bit-vector of size n. Let K be the maximum length of a node of 

T*(G, n). Obviously K ~ n, but very much smaller values are normal. 

Define L as before. The total amount of storage required by our 

implementation, ignoring a minor amount independent of n, is 

2mn + lOn +m+ (m+ 4)K + 2mL words. This figure includes 2mn words 

for the storage of G and G( p) • If lab = false (see Algorithm 2 • 31), 

the storage requirement can be reduced by mn + 2n words. 

3·11 Experimental performance 

In Figure 3·1 we give the execution time required for 

several families of graphs. In each description below, S gives the 

approximate slope of the curve in the region 50 ~ n ~ 200. Although 

the results of Section 3·8 predict a value of S ~ 4, even when 

m = 0, the experimental value of S is less than 3 in each of these 
2 

classes. 

(i) E empty graph on n vertices (S = 2·8). 

( ii) Q m-dimensional cube, where n = 2m (S = 2·3). 

(iii) c random circulant graph of degree 10 (S = 2•2). This is 

defined by V(G) =V and E(G) = {xy\lx- Yl E W(mod n)}, 

where W is a random subset of {1, 2, ···, [(n- 1)/2]} of 

size 5. 

"random" regular graph of degree 6 (S = 2·9). There is no 

known practical algorithm for randomly generating regular 



100 

time 
in 

seconds 

10 

1 

6o. 

Q c 

·01w---------~~--~---r--4--r-T~-r~--------~----~---.--~-r-T~~ 
10 100 1000 

number of vertices 

Figure 3•1 



6L 

graphs so that each graph appears with eQual freQuency. 

The graphs represented by the curve R6 were made by 

randomly generating three permutations y 1, y 2 and y 3 such 

8 Y· Y · 
that X #X, 0 E {y 12 , y 22 , y 32}, and X l #X J, 

1 ~ i < j ~ 3, for each x E V. Define G by V(G) = V and 

E( G) = 
Y· 

{xx ljx E V, 1 ~ i ~ 3}. For n ~ 40 all those 

graphs constructed had trivial automorphism groups, and 

produced search trees with maximum depth 2. 

(v) R20 : same as R6 but with degree 20 (S = 2·6). 

(vi) G1 : random graph. Each possible edge is independently chosen 

or not chosen with probability ~· The dashed line marked 

P in Figure 5•1 gives the average time reQuired for the 

computation of G(p) for some p. At least one such step 

is essential for any program which computes C(G, n) from 

G using an adjacency matrix representation. Therefore 

Figure 5•1 suggests that the performance of our program is 

close to optimal for large random graphs. 

(vii) G2 same as (vi) but with lab = false. 

3·12 Harder Examples 

We have also tested our program on a number of graphs which 

have traditionally been regarded as difficult cases for graph 

isomorphism programs. 

(i) The strongly regular graphs with 25 vertices reQuired 

between 0•1 and 2•4 seconds, with the average time 

being 1•0 seconds. 
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(ii) A strongly regular graph G with 35 vertices can be 

formed from a Steiner Triple System (STS) with 15 

points. The vertices of G are the blocks of the STS, 

and two vertices are adjacent if the corresponding 

blocks overlap. For the 80 graphs so formed, our 

program required between 0·3 and 7 seconds, with an 

average of 4•8 seconds. Most of these graphs have 

a trivial automorphism group. 

(iii) Certain strongly regular graphs G with n vertices can 

be extended to graphs E(G), having 2n + 2 vertices, 

which are 2-ZeveZ reguZar. See Mathon [24] for the 

necessary definitions. There are good theoretical 

reasons to expect 2-level regular graphs to be 

particularly difficult to process, and this is borne 

out by experience. The graphs A60 and B60 (60 

vertices; see [24]) required 79 and 180 seconds 

respectively, while the graphs A72 - D72 (72 

vertices) required about 500 seconds each. 

3•13 Design isomorphism 

A design D (also known as a hypergraph) is a pair of sets 

(P, B), where B is a collection of subsets of P. The elements of P 

are called points and the elements of Bare called bZocks. Two 

bijections f 1 : P 1 + P2 and f 2 : B1 + B2 such that x E X implies 

f 1 (x) E f 2 (X) for all x E P1 , X E B1 • 

Given a design D = (P, B) we can construct a graph G = G(D), 

where V(G) =PuB and E(G) = {xXIx E P, X E B, x E X}. It is easy 

to prove ( [ 6 ] [30]) that two designs D = (P , B ) and D = (P , B ) 
1 1 1 2 2 2 



are isomorphic if and only if there is an isomorphism f : G(D 1 ) + G(D2 ) 

such that f(P 1 ) = P2 and f(B 1 ) = B2 • Therefore Algorithm 2•31 can 

be used for design isomorphism. 

If D is a balanced incomplete block-design (BIBD) then G(D) 

is known to present difficulties for many graph isomorphism programs, 

and ours is no exception. Two 50-vertex graphs G(D), named A and 
50 

B50 in [24], required about 60 seconds each. In another experiment 

[33], we established the isomorphism of six BIBDs with 36 points and 

36 blocks (so n = 72) using about 6·6 seconds of machine time each. 

The smallness of this figure is principally due to the reasonably 

rich automorphism groups of the designs. 

A much more difficult problem was posed by two BIBDs, D1 

and D2 , with 126 points and 525 blocks [30]. This problem was solved 

using an ancestor of Algorithm 2•31 implemented on an IBM 370/168 

computer. The graph G(D2 ) was processed in 582 seconds, and has an 

automorphism group of size 756000 with two orbits (the points and the 

blocks). The graph G(D 1 ) was similarly tackled, but the execution 

had not finished before it was aborted after 1200 seconds. We then 

constructed the strongly regular graphs s 1 and 8 2 of order 525 and 

degree 144 whose edges are the intersecting blocks of D1 and D2 The 

graph S had a transitive automorphism group of order 756000 (running 
2 

time 66 seconds) and 8 1 had an automorphism group of order 1000 and 

three orbits (running time 461 seconds). The orbits of s 
l 

were then 

used to provide an initial partitioning of the vertices of G(D 1 ) into 

four cells (the point cell and three block cells). It was then 

processed in 227 seconds, and found to have an automorphism group of 

order 1000. Thus D1 and D2 are not isomorphic. 



3•14 Hadamard equivalence 

Let M1 and M2 be two mxn matrices with ±1 entries. We say 

that M1 and M2 are Hadamard equivalent if M2 can be obtained from M1 

by applying an element of the group r generated by the following 

operations. 

r. 
l 

c. 
J 

Permute 

Permute 

Multiply 

Multiply 

the rows according to 

the columns according 

row i by -1 (1 :::; i :::; 

column j by -1 ( 1 :::; j 

a E S . 
m 

to 13 E s n 

m). 

:::; n). 

Suppose that M is any mxn matrix with ±1 entries. Define 

G = G(M) to be the graph with V( G) = {v.' vi' w.' -w-.11:::; i :::; m, 
l J J 

1 :::; j :::; n} and E(G) = {v.w., :v.-w.11 :::; i :::; m, 1 s. j :::; n, M .. = 1} u 
l J l J lJ 

{v.w., v.w.ll:::; i:::; m, 1:::; j:::; n, M .. = -1}. We will refer to the 
l J l J lJ 

vertices v. and v. as v-type vertices. The following theorem first 
l l 

appeared in McKay [31]. 

3•15 THEOREM Let G1 = G(M 1) and G2 = G(M2 ). Then M1 and M2 are 

Hadamard equivalent if and only if there is an isomorphism from G1 

to G2 which maps the v-type vertices of G1 onto those of G2 . 

Proof: Let r be the set of permutations of V(G1) generated by the 

following elements: 
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pa For each i, onto and - onto (a s ) . map V v.a V v.a E 
i i m l l 

q_l3 For each j ' onto and w onto - (13 s map w w 
jl3 w ·13 E 

j j J n 

r. Interchange v. and v. (1 :::; i :::; m). 
l l l 

c. Interchange w. and w. (l :::; j :::; n). 
l J J 

Define ~ to be the homomorphism from f into f which takes 

pa onto pa' ql3 onto ql3' ri onto ri and cj onto cj for each a E Sm, 

13 E S , 1 :::; i :::; m and 1 :::; j :::; n. It is easily verified that ~ is a 
n 

) ' 



group isomorphism and that G(M1y) = G(M 1 )y~ for each yE r. Therefore, 

the Hadamard equivalence of M1 and M2 implies the presence of an 

isomorphism from G1 to G2 which maps the v-type vertices of G1 onto 

those of G2 . 

Suppose conversely that there is an isomorphism 8 of the 

required type from G1 to G2 . Let e 1 be any edge of G1 and let e 2 

be its image in G2 . Fork E {1, 2}, define Hk to be the subgraph of 

Gk induced by those vertices adjacent to either end of ek. The 

structure of Gk ensures that Hk has three important properties. 

(i) Exactly one of V. and v. is in Hk (l :0: i :0: m). 
l l 

(ii) Exactly one of w. and w. is 
J J 

in Hk (l :0: j :0: n). 

( iii) Hk completely determines Gk. 

To explain (iii), suppose for example that v.w. E E(R ). Then 
l J -K. 

v. w . E E ( Gk) but v. w . , v. w . i E ( Gk) . 
l J l J l J 

Since 8 is an isomorphism, it maps H1 onto H2 • By 

properties (i) and (ii) we can find y E r whose restriction to H1 

-is the same as that of 8. But then y is an isomorphism from G1 to 

G2 , by property (iii). D 

If M is a Hadamard matrix (m= nand MTM = ni) then the 

graph G(M) may prove exceedingly difficult for Algorithm 2•31. 

This was discovered when our implementation was applied to a 

collection of 126 Hadamard matrices of order 24, produced by 

C. Dibley and W.D. Wallis, in an attempt to determine the equivalence 

classes. Several of the graphs, having very large automorphism 

groups, were processed in about 300 seconds, but some of those 

smaller automorphism groups would require more than 1800 seconds 

- the program was not run to completion. These graphs are all 



2-level regular in the sense of Mathon [24], but are very much harder 

than those given in [24], even though they have larger groups. The 

reason for this is that the search tree T*(G, n) has depth 7 or 8 

(compared with 4 for the graphs in [24]), although only 2 or 3 

vertices generally need to be fixed in order to eliminate any 

non-trivial automorphisms. This means that the automorphism group 

is of no use for a large part of T*(G, n). 

Other workers (see [ 8] for example) have found that a 

count of small subgraphs (e.g. cliques) can often be used to provide 

an initial partitioning of the vertices of a difficult graph, which 

greatly speeds up a subsequent isomorphism test. Similar techniques 

can be used here, but they are of no use in many cases. Some of the 

hardest graphs amongst the 126 mentioned above have only two orbits 

(the v-type vertices and the others) -the initial partitioning 

which we were using anyway (because of Theorem 3·15). However we 

have devised a method based on a generalisation of the profile 

defined in [ 7] which can be used to refine the partitions at the 

immediate successors of the root node in T*(G, n). With this 

improvement, we can now process these graphs in about 20 seconds on 

the average. More details will be given in a future paper. 

An algorithm specifically for equivalence of Hadamard 

matrices has been devised by Lean [22]. The details given in [22] 

are insufficient to permit a direct comparison with our technique, 

but a cursory examination suggests that Lean's technique may be 

competitive with ours for this particular problem. 

3·16 Examples 

66. 

Some examples of the automorphism group generators produced 

by Algorithm 2•31 are given in Appendix 3. 



CHAPTER FOUR 

TRANSITIVE GRAPHS - MISCELLANEOUS THEORY 

In this chapter we present a miscellaneous collection of 

theoretical results concerning the structure of transitive graphs. 

Most of these results are required for use in Chapter 5. Anything 

not attributed to another author is new. 

Lexicographic Products 

Sections 4·1 - 4•5 were inspired by unpublished work by 

C. Godsil, who proved Theorem 4·5 (a)<=» (e) without the use of 

Lemma 4·4. 

A graph G E Q(V) is called a non-trivial lexicographic 

product (NTLP) if G = H[J], where H and J have at least two vertices. 

A subset W £ V is called externally-related (ER) in a 

graph G if each vertex in V \ W is either adjacent to every vertex of 

W or to no vertex of W. Subsets of size 0, 1 or n are necessarily ER, 

so we will call W a non-trivial ER subset if 2 ~ JWI < n. 

4·2 LEMMA 

Proof: 

Let w1 , w2 :::: V be ER. Then 

( a) W l n W 2 1.-s ER , 

(b) if w1 n w2 # 0 then w1 u w2 1.-s ER, and 

(c) if W1 n w2 # 0, w1 \ w2 # 0 and w1 \ w2 # 0 then 

W \ W and W \ W are ER. 
l 2 l 2 

Part (a) is trivial. For part (b), any vertex not in 

wl u w2 but adjacent to some vertex of wl u w2 is adjacent to every 

-vertex in wl n w2 and therefore to every vertex of wl u w2. 

Now consider part (c). Suppose some vertex xi w1 \ w2 is adjacent 

to some vertex yE w1 \ w2 . If xi W , then xis adjacent to every 

vertex in wl \ W2, since wl is ER. Suppose that X E wl n W2, and 
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let z and w be arbitrary vertices in wl \ w2 and w2 \ wl respectively. 

Since W2 is ER, y is adjacent tow. Since W1 is ER, w is adjacent to 

z. Finally, since W2 is ER, z is adjacent to x. Therefore W1 \ W2 

is ER, and similarly w2 \ w1 is ER. D 

4·3 LEMMA 

Proof: 

4•4 LEMMA 

If W is an ER subset of V, then 

Aut( G) {W} = Aut(W) $ Aut(V \ W). 

obvious. 

Let G be any graph with at least one non-trivial 

ER subset~ such that r = Aut(G) contains no transpositions. Then 

a non-trivial ER subset of minimum size is a block for r. 

Proof: Let B be a non-trivial ER subset of minimum size. 

If B = {x, y} then (x y) E r obviously, so IBI ~ 3. Now suppose that 

B n BY f 0 for some yE r. Then B =BY, since otherwise either 

B n By orB \By is a non-trivial ER subset smaller than B, by 

Lemma 4•2. Thus B is a block for r. 

4·5 THEOREM Let G be a transitive graph which ~s neither empty nor 

complete. Then the following are equivalent. 

Proof: 

(a) G is a NTPL. 

(b) G = G1 [G2 J, where G1 and G2 are non-trivial and 

transitive. 

(c) G has a non-trivial ER subset. 

(d) Aut(G) has a non-trivial ER block. 

(e) Aut(G) has an intransitive subgroup with exactly one 

orbit of size greater than one. 

Obviously, (b) => (a) => (c) and (d) => (e) => (c) , so it will 

suffice to prove that (d) =>(b) and (c) => (d). 

D 

D 



Suppose that Aut(G) has a non-trivial ER block B, and let 

B1 , B2 , ... , Br be the complete block system containing B. Fori~ j, 

B. and B. are trivially joined, since B. and B. are ER. Furthermore, 
l J l J 

the subgraphs B. are isomorphic and transitive, and Aut(G) acts 
l 

transitively on {B 1 , B2 , ... , Br}. Therefore condition (b) is 

satisfied. 

Suppose now that G has a non-trivial ER subset. Then, by 

Lemma 4·4, either condition (d) is satisfied or Aut(G) contains a 

transposition (x y). In the latter case, we can assume without loss 

of generality (replace G by G if necessary) that N(x, G) = N(y, G). 

Now define B = {v E V!N(v, G) = N(x, G)}. Then B ~ V, since 

otherwise G is empty. Therefore B is a non-trivial ER block of Aut(G). D 

4·6 Vertex-connectivity 

Sections 4·6- 4·8 are adapted from Watkins [42]. 

Let G be a transitive graph with degree k (l ~ k ~ n - 2) 

and vertex-connectivity K ~ l. Obviously, K ~ k. A part of G is a 

component of the subgraph V \ X, for some minimum cutset X. The 

parts of G of the smallest size are the atomic parts of G. 

4·7 THEOREM Suppose that K < k and that the atomic parts of G have 

s1.-ze a. Then 

Proof: 

( l) 2 ~ a ~ E... 
4 

(2) The atomic parts of G are disjoint and form a block 

system for Aut(G). 

( 3) The minimum cutset defined by an atomic part is a 

un1.-on of at least two atomic parts. 

(4) K ~ k - a+ l 

See [42 J. D 
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4·8 COROLLARY K > 2k/3. 

Proof: 

4·9 THEOREM 

G is a NTLP. 

Proof: 

This follows from (1) and (4) above. 

If K < k and equality holds in Theorem 4·7(4), then 

Let W be an atomic part. Since the cutset determined 

by W has K = k- a+ l vertices, each vertex in W must be adjacent to 

every vertex in the cutset. In other words, WisER. Since W is a 

block, by Theorem 4·7, G is a NTLP by Theorem 4•5. 

4·10 Edge-connectivity 

Sections 4•10- 4•14 are extracted from McKay [29], 

Theorem 4•14 has also been proved by Lovasz [23], by very similar 

means. 

Let G be a graph with edge-connectivity n ~ 1. For 

X, Y ~ V let e(X, Y) denote the number of edges of the form xy, where 

x E X, yE Y. A non-empty proper subset W c V is an edge-part of G if 

e(W, V\ W) = n· The edge-parts of minimum size are called edge-atoms. 

4·11 LEMMA Let X and Y be edge-parts and suppose that A= X n Y, 

B = X \ y' c = Y \ X and D = V \ (X u Y) are non-empty. Then A, B, 

C and Dare edge-parts. 

Proof: Since X and Y are edge-parts, 

e(A, C) + e(A, D) + e(B, C) + e(B, D) = n' and 

e(A, B) + e(A, D) + e(B, C) + e(C, D) = n. 

Since (/J ::f A, B, C, D ::f V, 

e(A, B) + e(A, C) + e(A, D) ~ n. 

e(A, B) + e(B, C) + e(B, D) ~ n, 

e(A, C) + e(B, C) + e(C, D) ~ n, and 

e(A, D) + e(B, D) + e(C, D) ~ n. 

0 

0 



Adding the two equations and subtracting half the sum of the four 

inequalities, we obtain e(A, D) + e(B, C) ~ 0. Consequently, 
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e(A, D) = e(B, C) = O, and the four inequalities are equalities. D 

4·12 COROLLARY Distinct edge-atoms are disjoint. D 

4 •13 LEMMA Suppose that G is regular with degree k., Let W be 

an edge-part. Then if I Wl ~ k we have n = k and either lW I = l or 

lwl = k. 

Proof: Let £ be the average degree of the subgraph W. 

Counting the edges of G adjacent to elements of W we have 

£1WI = kiWI - n 

;::: k£ + k - n' since £ ~ lwl - 1 

Therefore k - n ~ 0, since lwl ~ k, and so k = n, since n ~ k 

obviously. Therefore the inequality above becomes £1WI 2:: £k which 

implies that lwl = k or£ = 0. In the latter case, lwl = 1, since 

edge-parts are connected. 

4·14 THEOREM Let G be a connected transitive graph with degree k. 

Then n = k. 

Proof: Suppose n < k and that W is an edge-atom of G. By 

Lemma 4·13, lwl > k. Also, wY is an edge-atom for any yE Aut(G), 

and soW is a block of Aut(W), by Corollary 4·12. However, the 

condition lwl > n implies that the set-wise stabiliser Aut(G){W} 

cannot act transitively on W, since otherwise e(W, V\ W) would be 

a multiple of lwl. This is a contradiction. 

D 

D 

We remark that Theorem 4·14 is also true for infinite 

transitive graphs, if n is defined as min{e(W, V\ W)IW ~V, 0 < lwl < oo} 

See McKay C29J for this and many related results. 



4•15 Other connectivity results 

The first theorem in this section was proved by Gardiner 

[ 11], and independently by Ashbacher [ 1 ] . 

4·16 THEOREM Let G be a graph with n ~ 3 vertices such that for any 

two vertices v 1 w we have N(v, G) 1 N(w, G) and N(v, G)= N(w, G). 

Then either N(v, G) is connected for each v E V or Aut(G) has a 

non-trivial ER block. 

4·11 COROLLARY Let G be a non-complete connected transitive graph. 

If N( v, G) is disconnected for some v E V, G is a NTLP. 

Proof: If N(v, G) = N(w, G)for some v #worn= 2, Aut(G) 

contains a transposition, and so is a NTLP by Theorem 4·5. 

Otherwise, G satisfies the requirements of Theorem 4·16, and 

is thus a NTLP by Theorem 4•5. 

4•18 Sections 4·18 to 4·21 are due to Godsil [14]. 

A regular graph G is called an (s 3 t)-graph if the graphs 

N(v, G) and N(v, G) have exactly s and t isolated vertices, 

respectively, for each v E V. 

4·19 THEOREM Let s, t ~ 1. Then a regular graph G is an 

(s, t)-graph if and only if it is c5 a switching graph of the form 

Sw(H[Kt+ 1J), where N(v, H)# N(w, H) for v 1 w, or the complement of 

such a switching graph. 

4•20 THEOREM Let G be a regular graph of degree k such that 

N(v, G) = N(w, G) for all v, w E V, and suppose that N(v, G) has a 

component of size k c, where 1 < c ~ 2. Then n ~ 2k + 1. If 

n = 2k + 1, G is one of the two graphs shown in Figure 4•1. 

12. 

0 

0 

0 

0 



Figure 4.1 

4·21 THEOREM Let G be a transitive graph such that both N(v, G) 

and N(v, G) are disconnected. Then G is either c3 x c3 or an 
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(s~ t)-graph~ with s, t ~ 1. D 

4•22 THEOREM Let G be a connected transitive graph such that for 

each v E V there is a unique vertex v' E V at distance 3 from v. 

Suppose G has degree k~ where n = 2k + 2. Then G is a switching graph. 

Proof: Since Aut(G) is transitive, the set of~ pairs {v, v'} 

form a block system for Aut(G). Since the two vertices in one block 

are at distance 3 from each other, no vertex is adjacent to both 

vertices of a block. However the number of blocks is k + 1, so 

every vertex is adjacent to exactly one element of the blocks it does 

not itself lie in. Therefore G; Sw(H), where His the subgraph of G 

induced by any set of vertices containing exactly one element of each 

block. D 

4•23 THEOREM Let G be a transitive graph with K = k and n = 2k + 2. 

Then either G has diameter 2 or G is a switching graph. 

Proof: Every vertex adjacent to a given vertex v is adjacent 

to at least one vertex at distance 2 from v, since otherwise K < k. 

Therefore, if the diameter of G is greater than 2, there is a unique 
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vertex v' at distance 3 from v. Thus G is a switching graph, by 

Theorem 4 • 22. 0 

4·24 THEOREM Let G be a connected non-complete transitive graph 

with n ~ 7 and odd. Let D(G) be the set of elements of Aut(G) of the 

form (a b)(c d). If D(G) ~ 0, then G is a NTLP. 

Proof: Since Aut(G) is transitive, every v E V is contained 

in supp(y) for some yE D(G). Thus ID(G)I ~ 2. Since n is odd and 

lsupp(y) I is even for ally E D(G), we can find distinct y, o E D(G) 

such that supp(y) n supp(o) ~ 0. 

There are essentially seven different ways in which y and 

o can overlap. In the first six cases, we can identify an intransitive 

subgroup A having exactly one non-trivial orbit. Therefore G is a 

NTPL in these cases, by Theorem 4•5. Let y = (a b)(c d) 

( i) 

(ii) 

( iii) 

( i v) 

( v) 

(vi) 

If o = (d e)(f g) ' 

If o = (cd)(ef), 

A S Aut(G) because 

If 0 = (a c)(e f), 

If 0 = (a b)(c e) ' 

If 0 = (a c)(d e) ' 

If 0 = (a c)(b d), 

take A = ( yoyo > . 
take A = < ( c d)) 

{ c' d} is ER. 

take A = < y' oyo>. 

take A = (Y6). 

take A = (Y, 0 >. 
take A = (y, o). 

If none of the cases above occurs, the only type of 

overlap is as for y = (a b)(c d) and o =(a e)(c f); call this 

type (vii). Now define a relation~ on V. 

(a) X ~ X for all X E V 

(b) If x ~ y E V, x ~ y if and only if there are 

automorphisms y = (x a)(y b) and o = (x c)(y d) 

such that a ~ c and b ~ d. 

Clearly ~ is symmetric. Now suppose that s ~ y, x ~ y and there 
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exists a= (x e)(z f) E D(G), where y #a# 8 and f # y. Since 

only overlaps of type (vii) are allowed, e E {a, b, c, d, y}, and 

either z = y or {z, f} = {v, d}. However, in the latter case, a 

and oyo =(a c)(b d) have an overlap of type (ii). Therefore z = y. 

We conclude that~ is an equivalence relation with classes 

of size 2, contradicting the assumption that n is odd. 

4·25 THEOREM Let G be a connected non-complete transitive graph 

with n odd and n 2 1. If G has an automorphism of the form 

(a b c) ( d e f) , then G is a NTLP. 

Proof: If (a b c) ( d e f) E Aut (G) we find, by considering 

the edges between {a, b, c} and {d, e, f} that (a b)(d e) E Aut(G). 

The result now follows from Theorem 4·26. 

Theorems 4·24 and 4·25 undoubtedly have a common 

generalization, but we have made no serious attempt to find it. 

4·26 Let G be a transitive graph and let r = Aut(G). Let 

{(l)} <A ~ r. Then A has a unique representation 

A= A(l) @ A( 2 ) @ ••• @ A(r) 
' 

where the supports of the A(i) are non-empty and disjoint, and r 

is maximum. The subgroups A(i) are called the fragments of A. 

Define a graph H = H(G, A) as follows. V(H) is the set 

0 

0 

of non-trivial orbits of A. Two distinct vertices of H are adjacent 

if and only if the corresponding orbits are non-trivially joined in G. 

4·21 LEMMA If ~ is a fragment of A and y E r~ then ~Y &s a 

fragment of AY. 

Proof: obvious. 0 
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Let 1 # P E Syl (r ) for some prime p. Then the 
p 1 

supports of the fragments of Pare the components of H(G, P). 

Proof: Let ~ be a fragment of P. Any orbit of P in supp(~) 

is trivially joined to each orbit not in supp(~), and so supp(~) is 

a union of components v1, v2, •••, V of H(G, P). 
r 

let TIE TI(V) have non-trivial cells v1, v2, ···, vr 

r 
Then r = .e r le , and~ E 

TI l=l TI i 

Suppose r 2: 2, 

and fix any 

Syl (r ), so 
p TI 

point not in supp(~). 

that ~ = ~( 1 ) e ~( 2 ) e ••• e ~(r) where ~(i) 
' E Syl (r le ) by 

p TI i 

Lemma 1•9, contradicting the assumption that ~ is a fragment of P. D 

4•29 LEMMA Let 1 1 P E Syl (r ) for some pr~me p. Let ~ be a 
p l 

fragment of P and let y E r. Then if ~ Y :::; P and supp( ~) is a union 

or orbits of P, ~Y is a fragment of P. 

Proof: Since supp(~y) is a component of H(G, pY) and the 

non-trivial orbits of ~ Y are orbits of P, supp(~Y) = 

some 

~y = 

4·30 

fragment ~· of P. But then ~y :::; ~I 
' 

since ~y :::; 

~~ 
' since both ~y and ~~ are in Sylp(r 8 (~')). 

THEOREM Let PE Syl (r ) have fragments ~(l), 
p 1 

Suppose that some ~(i) is uniquely identified amongst 

supp(~') for 

P and so 

~(2) , ~ ( r). 

{ (1) (2) 
~ ' ~ . ~(r)} by the sizes of its orbits and that3 for every 

yE r, ~(i)y:::; P only 

P. Then lsupp(~(i)) I 

if the non-trivial orbits of ~(i)y are orbits of 

1 
;::: - n. 

2 

Proof: By Lemma 4•29, ~(i) is weakly closed in P with respect 

to r. The theorem now follows from Theorem 1•20. 

As an example of the use of Theorem 4·30, the automorphism 

group of a transitive graph G with 15 vertices cannot have a Sylow 

2-subgroup of the form ((2 3)(4 5)(6 7), (8 9)(10 11)(12 13)(14 15)), 

since the fragment ((2 3)(4 5)(6 7)) has a support which is too small. 

D 

D 
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4·31 Eigenvalue Techniques 

The results described in Sections 4•31- 4•39 are special 

cases of more general results developed by Godsil and McKay [13]. 

Let G E G(V) and let TI = (V V ••• V) E ~(V) be 
1' 2' ' m ·-

equitable. The mxn matrix T = T(n) is defined by 

T = ki { -~ 
ij 0 

if j E V. 
l 

otherwise, 

where k. = \V.\. 
l l 

Using T we define the quotient matrix of G by n 

to be Q = Q(G, n) = TATT, where A is the adjacency matrix of G. 

Note that Q is symmetric. 

4·32 LEMMA For 1 s; i, j :s; m, let e .. be the number of vertices 1.-n 
lJ 

V. to which each vertex 1.-n 
J 

V. is adjacent in G. Then TA = QT and 
l 

h 
Q .. = (k./k.) 2e .. , for 1 s; i, 
lJ J l Jl 

j s; m. 

Proof: For 1 :s; i, j s; m, 

Q .. 
lJ 

T 
= (TAT ) .. = 

lJ 

= 

= 

n 

I 
r=l 

-~ k. d(v,V.)T. 
l l JV 

\ -~ L (k.k.) e .. 
l J Jl rEVj 

h 
(k. /k. ) 2e ... 

J l Jl 

The equation TA= QT can now be verified directly. 

For any square matrix M, let aM denote the set of (distinct) 

eigenvalues of M. If A E aM, define ~M(A) to be the multiplicity of 

A. If A i aM define JJM(A) = 0. 

0 

4•33 LEMMA For any m-vector x and scalar A, Q~ = AX if and only if 

T T T T 
If Q~ = A~ then T Q~ = AT ~ and so AT x = AT ~' by 

Lemma 4•32. If ATTx = ATT~' then TATT~ = ATTT~ and so Q~ =A~, 

since TTT = I. 0 
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4 • 34 COROLLARY The characteristic polynomial of Q divides that of A. 

Proof: Suppose that A E crQ. Then A E crA by the Lemma. Let 

x } be a full set of orthonormal eigenvectors of Q for -r 

A, ( T T T T T T Then for l ~ i,j ~ r we find T x.) (T x.) = x. TT x. = x x 
-l -J -l -J -i -j' 

since TT T = I. Therefore {T Tx 1 , T Tx2 , ~ • ·, T Txr} is a set of 

orthornormal eigenvectors of A for A. Therefore ~Q(A) ~ ~A(A). D 

4·35 LEMMA Qr = TArTT for r = 0, l, 2, 

Proof: This is an easy conse~uence of the fact that TTT =I. D 

From now on we will assume that v1 = {w}, for some wE V. 

The next lemma follows immediately from Lemma 4·35. 

4·36 LEMMA 

We next recall two standard matrix theory results. Their 

proofs may be found in Lancaster [20], for example. 

4·37 LEMMA Let M be any real symmetric matrix~ and let 

rE {0, l, 2, •••}. For A E crM let {~ 1 (A), ~2 (A), •••, ~s (A)} 

be a full set of orthonormal eigenvectors of M for A~ where 

sA = ~M( A). 

Then (a) trMr = I sAAr 
AE0M 

sA 
(b) Mr = ·I Ar I x.(A)X.(A)T. 

-l -l 
AE0M i=l 

4-38 THEOREM Let G be a transitive graph~ and let 

n = (v1 , V2 , ···, Vm) be an equitable partition3 such that v1 = {w}. 

Let Q = Q(G, n). For any 1?eal nwriber A3 define p(Q, A) as follows. 

( i ) If A ~ cr Q, define p ( Q, ~) = 0 • 

(ii) If A E crQ, let {~ 1 , ~2 , ···, ~s} be a full set of 
s 

D 

D 

orthonormal eigenvectors of Q for A. Then define p(Q, A)= I (~.)~, 
i=l l 



where (~i)~ denotes the square of the first entry of ~i· Then for 

any real number A, ~A(A) = np(Q, A). 

Proof: For rE {0, 1, 2, ···}, 

tr Ar = n(Qr) 11 , by Lemma 4·36, 

= n L Arp(Q, A), by Lemma 4•37(b), 
AE<JQ 
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= n L Arp(Q, A), by Corollary 4•32. ( 1) 
AE0A 

Alternatively, 

tr Ar = L ~A(A)Ar, by Lemma 4·37(a). ( 2) 
AE0A 

Since the elements of A are distinct (by definition), the claimed 

result follows on comparing (1) with (2). 

4•39 COROLLARY Under the conditions of the Theorem~ crA = crQ. 

The usefulness of Theorem 4·38 is that it provides a 

necessary condition on a matrix Q in order that it be a quotient 

matrix of some transitive graph G. If the computed values np(Q, A), 

for A E crQ, are not positive integers, then G does not exist. We 

will find in Chapter 5 that this condition is very strong. 

Theorem 4•38 can in fact be proved under the weaker 

assumption that G is walk-regular~ and a generalized version holds 

for any graph G at all. (See Godsil and McKay [13] for further 

details.) We also note that the case of Theorem 4·38 for ~Q(A) = 1 

has recently been proved independently by Rees [39], who has used it 

in the search for symmetric graphs of degree three. 

4•40 THEOREM [36] Let G be a transitive graph with degree k and 

adjacency matrix A. If A is a simple eigenvalue of A~ then 

A E {-k, -k+2, k-2, k}. 

D 

D 



So. 

Proof: Let x be an eigenvector of A corresponding to A. Since 

G is transitive, the entries of x have equal absolute value. The 

theorem now follows on considering the first row of the equation 

D 

4·41 THEOREM Let G be a transitive graph with adjacency matrix A. 

Let s be the number of simple eigenvalues of A. Then n is even if 

s ~ 2 and divisible by 4 if s ~ 3. 

Proof: Since G is regular, c is an eigenvector of A 

corresponding to the eigenvalue k, where k is the degree of G and 

Q is the n-vector with each entry 1. Suppose that A is a simple 

eigenvalue of A other than k, and let y be a corresponding 
~ 

eigenvector. Since the entries of~ have equal absolute value, 

and~ is orthogonal to ~. n must be even. 

Suppose that z is one eigenvector corresponding to a 

simple eigenvalue other than k or A. Then, as before, the entries 

of z have equal absolute value. The mutual orthogonality of 

~' ~and~ now implies that n is divisible by 4. D 



CHAPTER FIVE 

CONSTRUCTION OF TRANSITIVE GRAPHS 

In this chapter we describe the construction of all the 

transitive graphs with 19 or fewer vertices. This can be seen as 

an application of Algorithm 2 • 31, although we actually used an 

ancestor of that algorithm. 

Since many of the steps of the construction required 

extensive computation, it is necessary to present them in the order 

in which they were actually performed. Not to do so would mean that 

we could not present intermediate results. The outcome of this is 

that the order in some places does not appear particularly sensible, 

since a few of the techniques used for eliminating subcases were not 

invented until after the optimum point for their application had 

passed. 

The transitive graphs up to order ll and some of those of 

order 12 were found previously by Yap [ 46]. To the best of our 

knowledge, ours is the first attempt to exhaustively catalogue the 

transitive graphs of any higher order, except when the order is 

prime (see Turner [9 ]). 

5·1 An overview 

Throughout this chapter, G is a transitive graph with 

V(G) =V= {1, 2, ···, n}, degree k and automorphism group r. 

Define G to be a set containing one graph isomorphic to 

each transitive graph G which satisfies the following conditions. 

81. 



82. 

( i) n E {8, 9, 10' 12' 14' 15' 16, 18} 

(ii) 3 ::;; k ::;; (n-1)/2 

(iii) G is not a NTLP. 

(iv) G is not a switching graph. 

( v) r is not regular. 

(vi) G has connectivity k. 

In Sections 5•2 - 5·3 we will identifY all those transitive 

graphs of order 19 or less which are not isomorphic to a member of G. 

In Sections 5•4 - 5·24 we will seek a collection Q of 962131 matrices 

such that for each G E G and some A E J(r), Q(G, 8(A)) E Q (for some 
~ 

labelling of G). In Sections 5·25- 5·30 we will use a battery of 

tests to identifY a subset £* of 709 elements of Q with the same 

property as £· In Sections 5·31 - 5·36 we will use Q* to construct G. 

5•2 Identification of transitive graphs not in G. 

A basic source of data was the catalogue of 9-vertex graphs 

produced by Baker, Dewdney and Szilard [ 2 ] . A direct search 

produced a list of all transitive graphs with nine or fewer vertices. 

The results coincided with the list of Yap [46]. By Theorem 4.5, the 

transitive NTLPs with n ::;; 18 are all lexicographic products of these 

graphs. The transitive switching graphs with n ::;; 18 were found with 

the help of Theorem 1•3. The transitive strongly regular graphs were 

extracted from Weisfeiler [43]. 

In order to construct those graphs with regular automorphism 

group a list of all the groups of order up to 19 was prepared, with 

help from C. Godsil. This list appears in Appendix 1. A complete 

list of all the Cayley graphs for each group was computed and those 

with regular groups selected. 



Suppose that G is a transitive graph with a prime number 

of vertices, p. Since PI 1r1, r contains an element of order p, 

which clearly must be a single p-cycle. Therefore G is a Cayley 

graph of the cyclic group zp. 

Finally, we can investigate the transitive graphs with 

connectivity less than their degree. 

5• 3 THEOREM Let G be a transitive graph~ not a NTPL~ with n 

vertices~ degree k and connectivity K· If n ~ 19, 3 ~ k ~ (n-l)/2 

and K < k, then G is isomorphic to the graph drawn in Figure 5 • l. 

Proof: Let a be the size of the atomic parts of G. The 

conditions on n and k ensure that k ~ 8 and, since K is non-prime 

(Theorem 4·7(3)), the only possibilities are K = 4 and K = 6. By 

Theorem 4·9, k ~ K + a - 2 and by Theorem 4·7(2) aiK· If a = 2, 

then k ~ K, so a = 3 and therefore K = 6. This gives k ~ 7 and so 

k = 7. By the conditions on nand k we haven= 18, k = 7, a= 3 

and K = 6. 

Since the atomic parts are connected and transitive, they 

must be triangles. Call them A1 , A2 , •••, A6 . Let H be the graph 

with vertices A1 , A2 , •••, A6 and with Ai adjacent to Aj if and only 

if the corresponding atomic parts are joined in G by at least one 

edge. By Theorem 4·7(3), His regular with degree 2 and since G is 

connected, H is connected. Therefore H is a hexagon. Assume for 

convenience that A , A , ···, A are the vertices of the hexagon in 
l 2 6 

cyclic order. 

Now consider a vertex v in A1 • Since k = 7, v must be 

adjacent to every vertex in A6 and to two vertices in A2 (without 

loss of generality). Since the total number of edges leaving A1 is 

odd, and A2 and A6 are blocks, the set-wise stabiliser A of A1 in r 
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fixes A2 and A6 set-wise. Since also A acts transitively on A1 , every 

vertex in A1 is adjacent to all of A6 and to two vertices in A2 . 

Considering the other atomic parts in similar fashion, we 

conclude that the pairs A1A6 , A2A3 and A4A5 are joined by every 

possible edge and that the pairs A1A2 , A3A4 and A5A6 are each 

joined in an equitable fashion by six edges. It is easy to see 

that this can be done in essentially only one way, yielding the 

graph in Figure 5•1. 

Figure 5•1 

5•4 Numerical partitions 

A numerical partition of n is a sequence cr of the form 

(n; 
ml m2 mr 

nl n2 n ) such that 1 ::; n 1 < n2 < < n r' m. r l 
r 

for 1 ::; i ::; r and I m.n. = n. Superscripts equal to one are 
i= l l 

usually omitted. Define r (cr) = m. for 1 ::; i ::; r and r. (cr) = 0 
n· l J l 

j ri {n 1' n2' n }. Also 
r 

define R(cr) = u I j ;::: 2, r. (cr) =f. O}. 
J 

> 0 

if 

0 



A partition TI E IT*(V) has an associated numerical partition 

n illy), where m. is the number of cells of TI 
r J. 

of size n., for 1 ~ i ~ r. If A is a permutation group of degree n, 
J. 

then cr(e(A)) will be abbreviated to cr(A). 

The first step in the construction of £ will be to find 

a set I of numerical partitions with the following property. For 

every G E G there is some A E J(r) such that cr(A) E I. Such a set 

I will be called sufficient. 

The first theorem identifies a number of types of numerical 

partition which can be eliminated from any sufficient set without 

destroying the sufficiency. 

5•5 THEOREM Let G E G, A E J(f), and a= cr(A). For each i, define 

r. = r. (a). Also define R = R(cr), T = 
J. J. 

L r. and m = 
iER 1 

max{r.ji E R}. 
J. 

Then none of the following conditions 

(Rl) r 1 ~ 2 and m = 1. 

(R2) t=l. 

( R3) r 1 = 1 and t = 2. 

(R4) For some i ~ 2, r. 
J. 

(R5) For some pr--1..-me p, 

(R6) max R > 10. 

= 

rl 

are satisfied. 

1 and (i, j) = 1 for aU 

= p and m < p. 

Proof: By Theorem 4·5, we know that G cannot have any 

i ¥: j 

non-trivial ER subsets, since G is not a NTLP. If Rl is satisfied, 

fix(A) is ER, since Nr(A) fixes each of the non-trivial orbits of A. 

If R2 is satisfied, the non-trivial orbit of A is ER. If R3 is 

satisfied, G is strongly regular. If R4 is satisfied, the orbit of 

size i is ER, since the coprimality condition ensures that it is 

trivially joined to every other orbit. 

E R. 



Suppose R5 is satisfied. Then by Theorem 1·16, a Sylow 

p-subgroup P of Nr(A) acts transitively on fix(P). Also, P permutes 

the non-trivial orbits of A, by Theorem 1·15(a), and soP fixes each 

non-trivial orbit of <A> set-wise, since m < p. Therefore fix(A) 

is ER. 

Suppose R6 is satisfied. Let £ ~ 11 be the length of the 

longest orbit of A. Since n ~ 18, condition R4 is satisfied if 

£ = 11, 13, 15, 16 or 11. If£ = 14, either Rl or R4 is satisfied. 

So suppose £ = 12. The only possibilities for 0 which do not 

satisfY any of the conditions Rl - R5 are (18; 12 , 22 , 12) and 

( 18; 1' 2' 3' 12) . 

Suppose 0 = (18; 12, 22, 12). Since the neighbourhood 

of any fixed point is a union of orbits, the degree of G is at most 

5. Now, if any point in a 2-orbit is adjacent to a point in the 

12-orbit, it is adjacent to at least six such points. Therefore 

the 12-orbit is ER. 

Suppose 0 = (18; 1, 2, 3, 12). Then the degree of G is 

at most 5, as before. Therefore the 2-orbit is not joined at all 

to the 12-orbit, as before, and is trivially joined to the 3-orbit, 

since (2, 3) = 1. Therefore the 2-orbit is ER. 

5 • G THEOREM Let 1:1 be the set of all numerical partitions 0 of 

n3 where nE {8, 9, 10, 12, 14, 15, 16, 18}, 1 ~ r 1 (0) < n, r 1 (0) In 

and which satisfy none of the conditions Rl - R6. Then 1: 1 ~s 

sufficient. 

Proof: Let G E G. Then by Theorems 1•15, 1·16 and 5 ·5, 

r 1 E J(r) and 0(r 1 ) E 1: 1 • 

Altogether, Z1 contains 154 numerical partitions, as 

detailed below. 
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n partitions 

8 3 

9 3 

10 4 

12 13 

14 14 

15 23 

16 39 

18 55 

Since the total number of numerical partitions of elements 

of {8, 9, 10, 12, 14, 15, 16, 18} is 1098, we have made considerable 

progress. However, if the computation of S is to be made feasible, 

the size of E1 must be reduced much further. 

Let J*(r) denote the set of subgroups A E J(r) which 

satisfY the additional property that fix(A) is a block for r. Recall 

from Chapter 1 that r 1 E J*(r) and (Sy\(r 1)) E J*(r) if Pllr 1 1. 

5•7 LEMMA Let G E G~ and Zet 1 # P E Syl (r ) for some prime p. 
p 1 

If fix(P') = fix(P) for every P' E Syl (r ), PE J*(r). 
p 1 

Proof: 

fix( F) 

We already know that PE J(r). Furthermore, 

= fix((Syl (r ))) and soP E J*(r) 
p 1 

5•8 LEMMA Let G E G~ and Zet PI lr 1 1 be prime. Suppose that r 1 

has a non-triviaZ orbit W of Zength £. Then the orbits of (SyZ (r J) p 1 

on Ware of equaZ size r~ where r = 1 or r ~ p. AZso~ if pi£ then 

r > 1. 

Proof: The equality of the orbit sizes follows from Theorem 

1•15 (e), since .(Syl ( r )) :::; r . 
p 1 1 

Now suppose that r > 1. Then any 

x E W is moved by some PE Syl (r ), so that r ~ p. The final 
p 1 

0 

assertion follows from Theorem l·l5(c). 0 



Let 0 be a numerical partition. For prime p, we will 

say that 0 satisfies condition A if 
p 

(i) for every£ E R(0), either£< p or pj£, 

(ii) for some£ E R(0), £is not a power of p, and 

(iii) for some£ E R(0), pj£. 

Similarly, 0 satisfies condition B if 
p 

(iv) for some£ E R(0), 1 < £ < p, and 

(v) for some£ E R(0), pj£. 

Let G E G, p ~ 2 be prime 

Then if 0(r 1 ) satisfies condition Ap' PE 

and PE Syl (r 1 ). 
p 

J*(r) and P # r 1 • 

Proof: P f 1 by (iii) and P f r 1 by (ii). Furthermore, 

any P' E Sylp(r 1 ) fixes each orbit of size less than P and moves 

each point in each orbit of size divisible by p. Therefore 
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PE J*(r) by Lemma 5·7. D 

5•10 LEMMA Let G E G, p ~ 3 be prime and A= (Sy\(r 1 )}. 

If 0(r 1 ) satisfies condition Bp then A E J*(r) and A# r 1 • 

Proof: lA! > 1 by (v) and A# r 1 by (iv). Therefore 

A E J*(r). D 

5•11 THEOREM Let E2 be the set of numerical partitions formed 

from E1 by deleting any merriber satisfying A2 , A3, A5, B3 or B5. 

Then E2 is sufficient. 

Proof: Notice firstly that, due to the definition of E1, 

0(A) E E1 for any A E J*(r), for any G E G. 

(a) Suppose that 0 = 0(r 1 ) and that 0 satisfies Ap, 

for some p E {2, 3, 5}. Let PE Syl (r ). Then 0(P) E E1 , by 
p 1 

Lemma 5•9. Furthermore the orbit lengths of 0(P) are all powers 

of P, so that 0(P) satisfies no A orB • Therefore 0(P) E E2 . 
q q 



(b) Suppose that cr = cr(r 1 ) and that cr satisfies B3. Let 

A = (syl (r )) 
3 1 

and cr' =cr(A). Then cr ' E L:1 by Lemma 5 .10, and so 

G 1 E 
2 

L: unless cr' satisfies A2 , A3, As, B3 or Bs. By its definition, 

A has at least three fixed points and no 2-orbits. 

(i) Suppose cr' satisfies A . Then the possible 

non-trivial orbit lengths of A are 4, 6, 8 and 

10, with at least one orbit of size 6 or 10. 

The only such partitions in L:l are ( 16; 14 
' 

62) 

and ( 18; 16 , 62 ). Both of these satisfy A3 and 

so are treated below. 

(ii) Suppose cr' satisfies A3 . Then since 

( iii) 

Syl 3(A) = Syl 3(r 1 ) all the elements of Syl 3(r 1 ) 

have the same fixed points, and so cr(P) E L: 2 

for P E Syl / r 1 ) , as in case (a) . 

Suppose cr' satisfies As or Bs. Then we find 

that L: 1 does not contain any such partitions. 

(iv) Suppose cr' satisfies B3. Then A has a 2-orbit, 

which is impossible. 

(c) Suppose that cr = cr(r 1 ) and that cr satisfies Bs. Let 

A= (Syls(r 1 )) and cr' = cr(A). Then A has at least 3 fixed points 

and no orbits of size 2, 3 or 4. The only such partitions in L: 1 

which satisfy A2 , A3, As, B3 orBs are (16; 14, 62) and (18; 16, 62). 

In either case Lemma 5·8 and condition R6 prove that the two 6-orbits 

are orbits ofrr However, cr satisfies Bs and so r 1 has an orbit of 

length 5 or 10. For cr' = (16; 14, 62) this is impossible, and for 

cr' = (18; 16, 62) we get cr = (18; 1, 5, 62 ), which violates R4. 

Therefore cr' E L:2. D 



The definition of L: 2 ensures that, for any G E G, there is 

some A E J*(r) such that cr(A) E L: 2 . Moreover, we can assume that 

A = r unless cr(r 1 ) satisfies A2, A3, As, B3 or Bs. In the latter 
1 

case, we can assume that either A E Syl ( r 1 ) or A = p 

some p E {2, 3, 5}. 

5·12 THEOREM Form the set L: 3 from L: 2 by removing the numerical 

(18; 1, 3, 6, 8), (18; 1, 3, 42, 6), (18; 1, 3 3 , 42 ) and 

(18; 1, 3 2 , 4, 6). Then L: 3 is sufficient. 

Proof: In each case there are less than three fixed points, 

and the orbit sizes are not powers of the same prime. Therefore, by 

the preceding remarks, we can assume that we are dealing with cr(r 1) 

in each case. 

Suppose cr(r) = (18; 1, 3, 6, 8). Then the degree k of G 
1 

is either 3, 6 or 8. Let e(r 1 ) = {V 1 , v2 , v3, v4}, where IV1 1 = 1, 

!V2 1 = 3, IV 3 1 = 6 and !V4 1 = 8, and let each vertex in Vi be 

adjacent to e .. vertices of V., for 1 :::; i,j :::; 4. Now e 34 = o, 4 or 
lJ J 

and e = 0 or 8. Hence k f 3, or else V 4 is ER. Suppose instead 
24 

8 

that k = 6. Then e = 0 24 • which implies that e = 4 since otherwise 
34 

V would be ER. Similarly, since V cannot be ER, e > 0. The only 
4 2 2 3 

other possibility is e = 2 since otherwise the vertices in v3 would 
23 

have degree greater than 6. (They are all adjacent to V as well.) 
1 

But then we must have e 22 = 3, which is impossible. Therefore k = 8. 

However we must then have e 24 = 0 (or V2 is ER), and so e 22 = 2 and 

e 23 = 6, making V2 ER anyhow. Therefore (18; 1, 3, 6, 8) cannot 

occur at all. 

For each of the other numerical partitions, note that 

90. 
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nwnber of fixed points of 1\. = <syl 3(r 1)) • Recall from Lemma 5·8 

that 1\. either fixes a 4-orbit point-wise or is transitive on it, and 

from Corollary 1•18 that fin. In each case we will show that 0 1 E z 3. 

Say o(r 1 ) = (14; 1, 3, 4, 6). Since fll4, 1\. is transitive 

on the 4-orbit. Therefore o' = (14;12 , 34 ) E z3. 

Say o(r 1 ) = (15; 1, 32 , 42 ). Since fll5, 1\. cannot fix both 

4-orbits. If it fixes exactly one, o(l\.) = (15; 15 , 32 , 4), which 

violates R4. Hence o' = (15; 13, 34 ) E z3. 

Say o(r 1 ) = (16; 12, 32, 42 ). Since fll6, 1\. is transitive 

on both 4-orbits. Therefore o' = (16; 14 , 34 ) E z 3. 

Say o(r 1 ) = (18; 1, 3, 42, 6) or (18; 1, 33, 42). Since 

fll8, 1\. cannot fix exactly one 4-orbit. Therefore o' = (18; 13, 35) 

or (18; 19, 33), both of which are in z3. If o(r 1 ) = (18; 12, 32, 4, 6) 

then 0 ' = (18; 13, 35) or (18; 16, 34), both of which are in z3, 0 

The reason we went to the trouble of eliminating the seven 

nwnerical partitions in Theorem 5·12 is that in each of the remaining 

partitions, the cell sizes are all powers of the same prime. Theorem 

l•l5(c) and the fact that Syl ( (Syl (r 1 ))) = Syl (r ), immediately p p p 1 

imply the following theorem. 

5·13 THEOREM For any G E G~ there &s p E {2, 3, 5, 7} such that 

0 

The only nwnerical partition in z3 which actually involves 

p = 1 is (16; 12, 72). We will eliminate this partition and a few 

other potentially troublesome partitions in the next theorem. 

5·14 THEOREM Form z4 from z 3 by deleting the numerical partitions 



Then ~ 4 is sufficient. 

Proof: In each case we can assume that 0 = 0(P) for 

PE Syl (r ), where p E {2, 3, 5, 7}. 
p l 

Suppose firstly that 0 is of the form (2r + 2; 12, r2). 
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Since G E G, G has degree rand the two fixed points are not adjacent. 

If they are adjacent to the same r-orbit, fix(P) is ER. On the other 

hand, if the fixed points are adjacent to different r-orbits, G has 

diameter greater than two, and so is a switching graph, by Theorem 

4. 23. 

Suppose 0(P) = (16; 18, 22 , 4). From the remark preceding 

Theorem 5•12, we can assume that fix(P) is a block of r. (This may 

not be true for some of the partitions involved in the proof of 

Theorem 5·12.) Therefore there is an element yE r such that 

Let v be a vertex in one of the 2-orbits. Then P' is a 2-group 
V 

fixing a vertex, but strictly larger than P, contradicting the 

assumption that PE Syl2 (r 1 ). 

Suppose now that 0(P) = (12 + 2r; 12r, 22 , 8), for 

rE {1, 2, 3}. Since Nr(P) acts transitively on fix(P), and there 

are no non-trivial ER subsets, half of the fixed points are adjacent 

to one 2-orbit and half to the other, and each point in a 2-orbit is 

adjacent to 4 points in the 8-orbit. Therefore a point in a 2-orbit 

has degree at least 4 + r. Also, a fixed point has degree at most 

2r + l. Therefore r ~ 3. For the case (18; 16, 22, 8) we infer from 

the foregoing that each fixed point is adjacent to the other five 

fixed points and to one of the 2-orbits. However, this implies that 

fix(P) can be partitioned into two ER subsets. D 



Our final attack on the number of numerical partitions 

0 E ~is aimed at those with r 1 (cr) = 1. The reason is that for these 

partitions the property that Nr(A) acts transitively on fix(A) is 
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trivial, and so of no use in reducing the number of quotient matrices. 

5•15 LEMMA Let G E (i and P E Syl ( r ) for some prime p. Suppose 
p 1 

that lfix(P)I = 1 and that P has an orbit VI of length p. Let wE VJ. 

Proof: Since lfix(P) I = 1, PE Syl (r). Furthermore 
p 

P = P n P', where P' E Syl (r ), and is of the largest size possible w p w 

for any intersection of two distinct Sylow p-subgroups of r, since 

[P : p ] = p. 
w 

p-group, P yo 
w 

Let yE r be such that pwY ~ r 1 • Since P Y is a 
w 

~ P for some o E r . 
1 

By Lemma 1·10, P yo = 
w 

P (3 for 
w 

some (3 E Nr(P). But lfix(P) I =land so (3 E r 1 • Hence P Y = P a 
w w 

-1 where a= (38 E f 1 . Therefore P E J(r) by Theorem 1·16. w 

5·16 THEOREM Form the set ~ of numerical partitions by deleting 

(9; l, 22 , 4), (15; 1, 2, 4, 8), (15; l, 2, 43), (15; 1, 23, 8), 

(15; l, 2 3 , 42 ), (15; 1, 2 5 , 4) and (16; 1, 32 , 9) from ~ 4 • Then~ 

is sufficient. 

Proof: In each case we can assume (as shown earlier) that 

the partition a to be deleted is cr(P) for some PE Sylp(r 1 ), where 

p = 2 or 3. In each case let cr' = a(P ), where w is a vertex in an 
w 

orbit of length p. Since there is at least one orbit of length 

greater than p, lP I > l. 
w 

For each 0 we consider all the possible values of a'. 

Apparent possibilities not mentioned violate either Rl or R5, and 

so cannot actually occur. 

D 
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If 0 = (9; 1, 22, 4) then 0' = (9; 13, 23), which is in~. 

If 0 = ( 15 ; 1, 2 , 4 , 8) then 0 1 = ( 15 ; 13 , 26 ) , ( 15 ; 13 , 24 , 4) or 

( 15; 13 
' 

43) • all of which are in ~. If 0 = ( 15; 1, 2, 43) then 

0' = ( 15; 13 
' 26)' ( 15; 13 

' 
24 

' 4) or ( 15; 13 
' 4 3) ' all of which are 

in ~. If 0 = ( 15; 1, 23 8) then 0 1 = ( 15; 13 26) or ( 15; 15 25)' ' ' ' 

both of which are in~. If 0 = ( 15; 1, 23 42) then 0' = ( 15; 13 26)' 
' ' 

( 15; 13 
' 

24 
' 4) or ( 15; 15 

' 25) ' all of which are in L If 

0 = ( 15; 1, 25 
' 4) then 0' ( 15; 13 

' 26)' ( 15; 13 
' 

24 
' 

4), 

(15; 15, 25) or (15; 19, 23), The first three are in~. For the 

case 0 1 = (15; 19, 23) see below. If 0 = (16; 1, 33, 9) then 

0' = (16; 14, 34), which is in~. 

Suppose that 0(P) = (15; 1, 25, 4), where the 2-orbits of 

and suppose that 0(P ) = (15; 19, 23) for any 
w 

In each case two of the 2-orbits of P are w 

in the 4-orbit of P, since [P : P ] = 2. Without loss of generality 
w 

then, fixing vl leaves v2 unfixed, and fixing v2 leaves either vl 

or V3 unfixed. But then fixing V4 leaves either V1 and V2 or V2 and 

v 3 unfixed, contrary to hypothesis. Therefore we can find 

U u • e U V such that 0(P ) 1 (15; 19, 23). 
5 w 0 

The set ~ comprises the 57 numerical partitions given in 

Table 5 •1. 

5•17 Neighbourhood partitions 

Let G E G and A E J(r). Since A~ r 1 , 8(A) induces a 

partition 8' on N(l, G). The associated numerical partition 

0 = 0 ( 8' ) is called the neighbourhood partition corresponding to the 

pair (G, A). In other words, 0 specifies the sizes of the orbits of 

A to which a fixed point is adjacent. Since A E J(r), 0 is 

independent of the choice of fixed point. 



95. 

(8; 12 
' 

23) ( 16; 12 
' 

2, 4 3) 

( 8; 14 
' 

22) ( 16; 12 
' 

23 
' 8) 

( 9; 1, 24) ( 16; 12 
' 

23 , 42) 

( 9; 13, 23) ( 16; 12 , 25 
' 

4) 

( 16; 12 
' 

27) 
( 10; 12' 22' 4) 

( 16; 14 4 3) 
' ( 10; 12' 24) 

( 16; 14 02 42) 
' '-- ' 

( 10; 1, 33) 
( 16; 14 04 4) , L 0 

( 12; 12 • 2, 42) ( 16; 14 
' 

26) 

( 12; 12 , 23 
' 

4) ( 16; 18 
' 

42) 

( 12; 12 , 25) ( 16; 18 
' 

24) 

( 12; 14 
' 

42) ( 16; 1, 35) 

( 12; 14 
' 

')2 
~ ' 4) ( 16; 14 

' 
34) 

( 12; 14 
' 

24) ( 16; 1, 5 3 ) 

( 12; 16 2 3) 
( 18; 12 42 8) ' 

' ' ( 12; 13 33) 
( 18; 12 44) ' • 

( 12; 16 32) 
( 18; 12 22 4, 8) ' 

' ' 
( 14; 12 

' 
4 3) ( 18; 12 

' 
22 , 43) 

( 14; 12 
' 

22 
' 

42) ( 18; 12 
' 

24 
' 

8) 

( 14; 12 
' 

')4 
-~- ' 4) ( 18; 12 

' 
24 

' 
42) 

( 14; 12 
' 

26) (18; 12 
' 

26 
' 

4) 

( 14; 12 
' 

34) ( 18; 12 
' 

28) 

( 15; 1, 2 7 ) ( .l8; 16 
' 

43) 

( 15; 13 43) ( 18; 16 22 
' 

42) 
' ' 

( 15; 13 24 4) ( 18; 16 24 4) 
' ' ' ' 

( 15; 12 26) ( 18; 16 26) 
' ' 

( 15; 15 25) ( 18; 13 35) 
' ' 

( 15; 13 34) (18; 16 34) 
' ' ( 18; 19 
' 

3 3) 

( 18; 13 
' 

53) 

Table 5·1 



5·18 LEMMA Let G E (), A E J (r ) and cr 1 = cr ( A ) . Then the 

corresponding neighbourhood partition cr 2 satisfies the foZZowing 

conditions3 where k is the degree of G. 

(a) CJ2 ~s a numericaZ partition of k. 

(b) For aZZ i, ri(cr2 ) ~ ri(cr 1 ). 

(c) rl(cr2) < rl(crl). 

(d) rl(cr2) < k. 

(e) r 1 (cr 1 )r1 (cr2 ) ~seven. 

(f) If r 1 (cr) ~ 2, there is some i ~ 2 such that 

0 < ri(cr2 ) < ri(cr 1 ). 

Proof: Conditions (a), (b) and (c) are obvious. Condition 

(d) is necessary to prevent G from being disconnected. Condition 

(e) follows from the fact that the subgraph fix(A) is regular. 
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Finally, if condition (f) was not satisfied, fix(A) would be ER. D 

Let T be the set of all partition pairs (cr 1 , cr2 ) such that 

cr 1 E r and cr 2 satisfies conditions (a) - (f) of Lemma 5·18. Then for 

each G E G, there is some A E J(r) such that (cr 1 , cr 2 ) ET, where 

cr 1 = cr(A) and cr 2 is the corresponding neighbourhood partition. We 

can further assume that A E Syl (r ) for some p E {2, 3, 5}, except 
p 1 

possibly when cr 1 is one of the partitions (9; 13, 23), (15; 13, 26), 

( 15; 13, 4 3) , ( 15; 15, 25) and ( 16; 14 , 34) • 

5·19 Complete-join matrices 

Let G be any graph and let n = (v1 , V2 , ···, Vm) be a 

partition of V. Define K(G, n) to be the graph whose vertices are 

V , V , •••, V and where V. is adjacent to V. if either i # j and 
1 2 m l J 

V. is completely joined to V. in G or i = j and the subgraph Vl. is 
l J 

complete. Thus K(G, n) may have loops on some vertices. 



vle will also regard the vertices of K( G, 1T) to be labelled with the 

size of the corresponding cell of 1T, and will refer to this label 

as the size of the vertex. The set of size-preserving automorphisms 

of K(G, 1T) will be denoted by Auts(K(G, 1T)). Subgraphs of K(G, 1T) 

will be considered to inherit their vertex sizes from K(G, 1T). 

If A~ r, K(G, 8(A)) will be abbreviated to K(G, A). Note 

that if A E J(r), K(G, A) determines both 0(A) and the corresponding 

neighbourhood partition. 

The next major step in the construction of Q will be to 

find a family K of graphs such that, for any G E G, there is some 

A E J(f) such that K(G,A) E K. 

Let f ~ 1, r ~ lands ~ 0. Define F(f, r, s) to be the 

set of all fxr 0-l matrices F with the following properties. 

(a) Each row of F has exactly s ones. 

(b) The columns of F are in lexicographic order. 

(c) Let H be the graph with adjacency matrix fQ~~-]· 
FTI 0 

I 
Then the group of automorphisms of H which fix the 

partition {1, 2, ···, f!f+l, f+2, ···, f+r} acts 

transitively on {1, 2 • se 

' ' fL 

In Table 5·2 we give the size of F(f, r, s) for various 

f, r and s. Obviously, !F(f, r, 0) I = l for any f, r. 

The reason for our interest in F(f, r, s) is revealed in 

the following theorem. 

5•20 THEOREM Let G E G_, and A E J(r). Let 0 1 = 0(A) and let 02 

97. 

be the corresponding neighbourhood partition. Let l = !1, 1 < !1, 2 < • • • < Q,t 

be the different orbit sizes of A. Then for some ordering of the 

orbits of A in non-decreasing order of size and some matrix M_, the 

adjacency matrix of K(G, A) is 



98. 

f 

r s 1 2 3 4 5 6 8 9 

1 1 1 1 1 1 1 

2 1 1 2 1 4 11 36 

2 1 1 1 1 1 -'-

3 1 1 2 2 4 26 281 -'-

2 1 2 2 4 26 281 

3 1 1 1 1 1 

4 1 1 2 2 5 26 141 -'-

2 1 3 3 10 81 386 

3 1 2 2 5 26 141 

4 1 1 1 1 -'-

5 1 1 2 2 2 

2 1 3 3 13 

3 1 3 3 13 -'-

4 1 2 2 

6 1 1 2 2 5 27 

2 1 3 4 14 226 -'-

3 1 4 4 22 436 

4 1 3 4 226 

7 1 1 2 

2 1 3 

3 1 4 

4 1 4 

8 1 1 2 

2 1 3 
~ 1 4 ..) -'-

4 1 5 

Table 5·2 
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where T is the adjacency matrix of a transitive graph of order r 1(cr 1) 

and degree r 1(cr2 )_, and FiE F(r1(cr 1), r.Q,_(cr 1), r.Q,_(cr2 )), for 2 s: is: t. 
l l 

Moreover_, let H be the graph whose adjacency matrix A(H) 

~s formed from K(G, e(A)) by setting M= 0. Let m be the order of H. 

(i) The maximum degree of H is less than the degree of G. 

(ii) Auts(H) acts transitively on the set 

{ 1 , 2 , • • • , r 1 ( 0 1 ) } _, and 

(iii) Auts(H) does not have a subgroup which fixes 

{r1(cr 1), r 1(cr 1) + 1, ···,m} point-wise and 

has exactly one non-trivial orbit. 

Proof: T is the subgraph induced by fix(A) and so is 

transitive since A E J(r). Each F. depicts the way in which each 
l 

fixed point is joined to the orbits of size £.. Condition (b) (of 
l 

the definition of F(f, r, s) above) can be satisfied by simply 

permuting the columns of each F.. Condition (c) follows from 
l 

condition (ii) above, which follows from the observation that 

Auts(H) contains the representation of Nr(A) on the orbits of A. 

Condition (iii) is necessary to prevent G from containing a non-

trivial ER subset. Finally, if any vertex of H has degree equal to 

the degree of G, the corresponding orbit of A is non-trivial and ER. 



5·21 LEMMA Assume the notation of Theorem 5•20. If H and H* 

correspond to the same partition pair (cr 1 , cr 2 ) and are isomorphic 

via a mapping preserving the vertex sizes3 they correspond to the 

same family of graphs in G. 

Proof: obvious. 

5·22 Construction of K 

Let K1 be the set of the 650 graphs H, as defined in 

Theorem 5•19, which correspond to some (cr 1 , cr 2 ) E T and satisfy all 

the requirements of Theorem 5·18. Only one member of each 

isomorphism class (defined Lemma 5·21) is included. The following 

table gives the size of K1 for each order n and degree k. 

n.\ k 3 4 5 6 7 8 

8 2 

9 3 
10 -:> 

..) 2 

12 7 13 17 

14 4 7 6 10 

15 11 19 
16 13 24 45 63 73 
18 10 30 46 57 89 96 

Let G E G. Then there is some A E J(r) such that the 

graph H corresponding to K = K(G, A) is in Kl. Let F be the set of 

vertices of K (or H) of size one, and let N be the set of vertices 

of K (or H) of size greater than one which are adjacent in H to at 

least one vertex of size one. The corresponding subsets of G will 

be denoted by F and N* respectively. 
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D 

Suppose now that IN*I < k. Since k < ~ and IFI ~ ~. N* is 
2 2 

a cutset of G of size less than k. Since this is not possible for 



G E G, the corresponding H can be eliminated. Altogether 43 graphs 

are thus eliminated from K1 giving a new set K2 containing 607 

graphs. 

The next step is to determine the possible induced 

subgraphs N of K. This computation is quite complicated and so 

will only be described in broad outline. 

For each v E F let N be the subgraph of K induced by 
V 

those vertices in N which are adjacent to v. Since Auts(K) acts 

transitively on F, the N are all isomorphic. Each possible 
V 

subgraph N can be determined, and then the possible imbeddings of 
V 

these subgraphs in N can be enumerated by a backtrack procedure, 

subject to the requirements of correct overlap and to degree 

restrictions (non-trivial ER orbits are avoided). The resulting 
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graphs H' (presumably subgraphs of K containing all the edges within 

FuN) can be eliminated if Auts(H') does not act transitively on F. 

The set K3 of all generated H' has 946 members distributed as below. 

Many members of K2 yielded no members of K3 • 

n \ k 3 4 5 6 7 8 

8 2 

9 4 

10 3 3 

12 7 14 18 

14 4 9 8 20 

15 13 24 

16 13 26 44 74 132 

18 10 34 48 79 134 223 

The next step is to determine which vertices of each 

H' E K3 could have loops in some K E K which has H' as a subgraph. 

This produces a set K4 of 8088 graphs distributed as below. At this 



stage we can say that for each K E ~. the subgraph of K containing 

all loops and all edges in FuN is in K4 . 

.. -n .\ k 3 4 5 6 7 8 

8 5 

9 16 

10 11 12 

12 20 54 64 

14 21 63 72 163 

15 75 178 

16 53 174 256 534 810 

18 51 248 352 728 1083 3045 

Because of the large size of K4 an effort will be made to 

reduce it before proceding further. The following techniques can be 

applied. 

(a) Let G E G correspond to some H" E K4 • Then G has 
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nk/2 edges altogether. Let£ be the number of edges of G represented 

by edges of H", and let p E {2, 3, 5} be the prime dividing the 

vertex sizes of H". Then pI (nk/2 - £), since the remaining edges 

of G are between non-trivial orbits of A and in non-complete 

subgraphs within the orbits of A. This requirement eliminates 3040 

cases. 

(b) Let H" E K4 and let J be the subgraph of H" induced 

by these vertices adjacent to a given vertex v E F. If J is 

disconnected, where G is any graph in G which corresponds to H". 

Therefore G is a NTLP, by Corollary 4•17, and so G is a NTLP, 

contrary to the assumption that G E G. This requirement eliminates 

258 graphs H". 



Let K5 be the set of graphs in K4 which have not been 

eliminated in (a) or (b) above. Then Ks contains 4790 graphs, 

distributed as below. 

n \ k 3 4 5 6 7 8 

8 3 

9 7 
10 9 7 
12 12 32 4o 

14 15 38 48 109 

15 35 85 
16 34 107 170 340 497 

18 34 141 230 452 640 1705 

A complex breadth-first process has been used to fill in 

any extra edges necessary to make up each H" E K5 to the possible 

graphs K(G, 11.) from which it could be derived. 

The possible sites for a new edge e of H" were broken 

into a number of classes which are necessarily invariant under 

Auts(K(G, 11.)). For example, the sizes of the end-vertices and 

whether one or both of these vertices was in N were used. The 

resulting classes were then arranged in a convenient order. The 

program was designed to insert the edges only in order of class 
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and, once the program had decided that no more edges of a given 

class were appropriate, it tested whether or not the size-preserving 

automorphism group was still transitive on F. The answer was almost 

always "yes", testifying to the success of the following theorem, 

which was used repeatedly. A method of isomorph-rejection was also 

used, ensuring that no subcase was ever considered more than once. 



5•23 THEOREM Let A and ~ ~ A be permutation groups acting on a set 

X. Suppose ~ and A have a common orbit W and let w E W. If Y s X 

~s fixed set-wise by A , and y E A, then yY = Y~ for some ~ E ~. 
w 

Proof: Since W is a common orbit of A and ~. there is an 

element~ E ~such that w~ = wY. 

by A , we must have yY = Y~. 
w 

Then y E A ~· Since Y is fixed 
w 

Let K E ~ and let L be a spanning subgraph of K for which 

we know that Auts(K) ~ Auts(L) and that Auts(L) acts transitively on 

F. Suppose that {x, y} £ V(K) is fixed by Auts(L) , where v E F. 
V 

Then Theorem 5·23 tells us that the orbit of {x, y} under Auts(K) is 

the same as the orbit of {x, y} under Auts(L). 

EXAMPLE: K5 contains the following graph L. 

Y\-fi 
3/ 0/ "os 

Here F = {1, 2}, vertices 3- 8 have size 2 and 

Auts(L) = ((1 2)(3 5), (6 8)) . The pair {3, 7}is fixed by 

Auts(L) 1 , and so its orbit under Auts(K) is the same as under 

Auts(L), namely {{3, 7}, {5, 7}}. Therefore if we insert one of 

these edges we must insert the other one also. 

The computation just described produced a set K6 of 

223159 graphs and required about 3~ hours of computer time on a 

Cyber 73 computer. K6 satisfies the requirements for the set ~. 

but we will first attempt to reduce its size (with only slight 

success). 

(a) For each K E K6 , each 2-orbit was examined to 

determine whether its degree in K was impossibly low. For example, 

104. 

0 
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if a= (18; 12 , 28 ) and k = 8, no 2-orbit can have degree 0 inK, 

since its vertices cannot possibly be given degree more than seven 

by adding non-complete joins between orbits. This process eliminates 

18555 cases. 

(b) Let K E K6, and let c be the size of a component of 

the subgraph N(l, K). -
Then by Theorem 4-20 applied to G, either 

n ~ 9 or 2c > n - k - 1. This test eliminates only 1556 cases. 

(c) Suppose n = 2k + 2 and v, w E F. Then if v and w 

are not adjacent, N(v, K) n N(w, K) i 0, since otherwise G would be 

a switching graph, by Theorem 4-23. This test eliminates 3447 cases. 

Let K denote the set of all elements of K6 not eliminated 

by the tests above. Then K has 199601 elements distributed as 

below. 

n graphs 

8 2 

9 13 

10 14 

12 140 

14 976 

15 4452 

16 12355 

18 181649 

5·24 Construction of Q 

We are now in a position to construct a family of quotient 

matrices satisfying the requirements for S· 

For each K E ~· a simple backtrack program has been used 

to list all feasible ways of joining each orbit (vertex of K) to 

the other orbits or to itself. Having done this, another backtrack 

scheme produced 962131 possible quotient matrices. This scheme made 
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considerable use of Theorem 5·23, and also used its knowledge of 

Auts(K) to eliminate isomorphs. 

This set of possible quotient matrices is much too large, 

so we will expend considerable effort in reducing its size. 

5·25 Necessary conditions on Q E Q 

We have computed a set S of 962131 matrices with the 

following property. For each G E G there is some A E J(r) such that 

Q(G, e(A)) E g. For the remainder of the chapter, F = fix(A). 

Quotient matrices are somewhat awkward for exact 

computation, since their entries are sometimes irrational. 

Consequently we have devised a somewhat different representation. 

Let G E G, A E J(r), e(A) = (Vl, v2, ••• , Vm) and Q = Q(G, e(A)). 

Define the symmetric mxm matrix R = R(G, A) by 

k 
= Q .. (min{JV.J, IV.j}jmax{JV.I, jV.I}) 2 , 

lJ l J l J 
for 1 s i ,j s m. 

If IV. I s IV .1, then R .. is the number of vertices in V. adjacent to 
l J lJ l 

each vertex in V .. The quotient matrix Q is represented in the 
J 

computer by R. 

We now describe in detail a battery of tests which can be 

applied to each element of g. These tests are so successful that 

all but 709 matrices can be eliminated. In other words, 961422 of 

them proved to be not equal to Q(G, e(A)) for any G E G and A E J(r). 

5·26 The tests described in this section are only employed if 

there are no orbits of size greater than 4. Since G is transitive, 

each vertex lies on the same number of triangles. Call this number 

t. A triangle of G can appear in Q in seven different ways as 

indicated below, where the open circles represent non-trivial orbits 

of A. 
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(a) (b) ~ 0 

(c) 4 (d) [::e I o 

(e) @ (f) ~ 
(g) @:1 
The exact number of triangles of types (a) - (e) can be 

calculated from Q. For types (f) and (g) a table (165 entries) can 

be constructed by hand giving upper and lower bounds on the number 

of triangles, for each possible combination of the appropriate 

entries of R. For example, if I V. I = I V . I = I V I = 4, R. . = R. n = 3 
l J 9., lJ l;v 

and Rj9., = 2, there are either 16 or 20 triangles of type (g). This 

table, plus the calculations for types (a) - (e), can be used to 

calculate the exact number t of triangles on a vertex v E F and 

bounds on the number of triangles on every other vertex of G. 

NCl t is independent of the choice of v E F. 

NC2 The upper and lower bounds for each v i F include t. 

NC3 nt is divisible by 3. 

The justification for NC3 is that nt/3 is the number of triangles in G. 

Tests NCl - NC3 are remarkably successful, eliminating all 

but 62818 elements of 9· 

Consider the graph H = H(G, A) defined in Section 4·26. 

Obviously, H can be determined from Q(G, 8(A)). The nature of the 

components of H will be indicated by a symbol such asH~ (24, 222), 

which indicates that there are two components, one corresponding to a 



2-orbit and a 4-orbit, and the other to three 2-orbits. 

NC4 If H has a component of type 22, 33 or 24, n is even. 

The cases 22 and 33 are justified by Theorems 4·24 and 4·25. For 

the case 24, an examination of the possible ways of joining the two 

orbits, and the possible contents of the orbits, reveals that r has 

an element of the form (a b)(c d), whose support is the 4-orbit. 

Therefore, n is even by Theorem 4•25. 

Recall from the remark following Lemma 5 • H! that we can 

assume A E Syl (r 1 ), for some p E {2, 3, 5}, unless cr(A) is one of p 

(9; 13 23) 
' ' ( 15; 13 26) 

' ' ( 15; 13 24 
' ' 4) ' ( 15; 13 

' 
43), (15; 15 

' 

and ( 16; 14 
' 

34). Many possible component types for H can be 

immediately eliminated by the use of Theorem 4•30. 

NC5 The following possibilities for H are impossible. 

n = 12, H (22, 222) 

n = 14, H ~ (22, 2222), (222, 24) 

n = 15, H ~ (222, 2222) 

n = 16, H ~ ( 22, 22, 222) , ( 22, 22, 24) , ( 22, 222) , 

( 22' 2222) ' ( 22' 22222) ' ( 222' 2222) ' 

(222, 24), (2222, 24), (33, 333), (224, 24) 

( 24' 44) 

n = 18, H ~ ( 22, 22, 2222) , ( 22, 22, 224) , ( 22, 22, 44) , 

( 22' 222' 222) ' ( 22' 222' 24) ' ( 22' 2222) ' 
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25) 

( 22' 222222) ' ( 22' 224) ' ( 22' 44) ' ( 222' 22222) ' 

( 222' 24) ' ( 2222' 224) ' ( 2222' 44) ' ( 22222' 24) ' 

(224, 44), (33, 333), (2224, 24), (24, 244) 



Let J be the graph whose adjacency matrix is obtained 

from Q by changing every non-zero entry to one. If N(l, J) is 

disconnected, then so is N(l, G). Consequently, by Corollary 4·17 

we have 

NC6 

5·29 

N(l, J) is connected. 

For each orbit V. of A, we can divide the vertices of G 
l 

into classes according to their distance from V .. This division 
l 

can be determined from Q. Suppose that for each d, there are ~(d) 

vertices at distance d or more from vertex 1. 
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NC7 For each orbit V. and each d, there are at most ~(d) vertices 
l 

at distance d or more from V .• 
l 

NC8 For any V., let d. be the maximum distance of any vertex of 
l l 

G from V.. Then if 0 < d < d., there are at least k vertices 
l l 

of G at distance d from C. 
l 

Condition NC8 follows from the assumption that G has 

connectivity k. 

Tests NC4 - NC8 are not very successful, eliminating only 

4365 cases, leaving 58454 cases remaining. 

5· 30 By far the most powerful necessary conditions which we 

have applied to Q E ,9 are based on tht.:. eigenvalue techniques 

described in Sections 4•31 - 4•40. 

These computations were different from any of the earlier 

computations in that they necessitated the use of floating-point 

arithmetic, with its associated rounding error problems. The 

eigenvalues and eigenvectors of each Q were computed using adapted 
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versions of routines from the IMSL library. These use Householder's 

method for reduction to tridiagonal form and the QR method for 

completing the diagonalisation. Since Q is real and symmetric, high 

accuracy eigenvalues can be expected (see Wilkinson [45]). The 

eigenvector problem is not so well conditioned, especially when 

there are eigenvalues which are close together. However, if we 

have a collection of eigenvalues, each significantly different in 

value from any eigenvalue not in the collection, the space spanned 

by all the corresponding eigenvectors will be found quite 

accurately (see [45]). 

Since our largest Q has order 12, and the computations 

used approximately 14 decimal digit accuracy, the eigenvalues 

-11 
computed generally had errors of 10 or less. However we assumed 

-3 
only that their errors were less than 10 . We also checked that the 

computed set of eigenvectors was orthonormal to high accuracy (inner 

-9 ) products less than 10 from their proper value • The latter check 

never failed. 

Suppose that A1 ~ A2 ~ ••• ~ Am are the computed eigenvalues, 

and x 1, x2 , •••, x are the corresponding computed (orthonormal) 
~ ~ ~ 

eigenvectors. Let Ai ~ Ai+l ~ ••• ~ Ai+r-l be a contiguous subsequence 

of Al ~ A2 ~ ... ~ A such that A j+l - A. ~ 10-3 for i ~ j < . + r - 2, - l m J 

A· A.l > 10- 3 (or i = 1) and Ai+r A. > 10- 3 (or i + r - 1 = m). l l- l+r-1 

It is possible that these r computed eigenvalues actually represent 

more than one eigenvalue of Q. However, the validity as opposed to 

the strength) of the tests described below will not suffer if we 

assume that we are considering an eigenvalue of Q with multiplicity 

r. In fact this assumption reduces the probability of a matrix Q 

being rejected accidentally due to errors in the computed eigenvectors 



(for the reasons noted above). 
i+r-1 

Now let v E F and compute p(v) = \ (x ) 2 • where 
j~i ~j V , 

denotes the square of the v-th entry of x .. From Corollary 
~J 

1~·34, Theorem 4·38 and Theorem 4·40 we obtain the following 

conditions. 
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NC9 p(v) is independent of the choice of v E F (verified within 10- 3 ). 

NClO 

NCll 

NC12 

np(l) is an integer (verified within 10-2 ). 

The integer nearest to np(l) is at least r. 

If r = 1 then\. is an integer (verified within 10-2 ). 
l 

The wide deviation from integer allowed in NClO and NC12 

was designed to eliminate any chance of a matrix Q being rejected 

solely because of rounding error. It is highly likely that a number 

of matrices were passed when they should have been failed, but this 

is of minor importance. 

Tests NC9 - NC12 eliminate all but 709 of the 58454 matrices 

to which they have been applied. The remaining matrices are 

distributed as below. 

n matrices 

8 1 

9 5 

10 5 

12 45 

14 17 

15 38 

16 263 

18 335 
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5·31 Generation of G 

In the previous section we have constructed a family S* of 

109 matrices, such that for any G E G there is some A E J( r) .such 

that Q(G, 8(A)) E 9*· The problem now is to use£* to construct G. 

The quotient matrices Q for which A has an orbit of size 5 

or more will be investigated by hand (see Section 5•32). There are 

only I of these. The remaining cases have been processed by a 

program which we now describe. 

The edges of G which correspond to completely joined orbits 

are determined trivially. It is also possible to fill in the contents 

of each orbit, since for each order up to four there is only one 

transitive graph of each degree. The main difficulty is in making 

the non-complete joins between orbits. 

For each of the pairs (m , m ) = (2, 2), (2, 4), (4, 2), 
1 2 

(4, 4) and (3, 3) a table T1 was constructed (by machine) giving 

every possible equitable means of joining an orbit of length m to 
1 

an orbit of length m2 . This was indexed by m1 , m2 and the number of 

edges between the orbits. A second table T2 contained one member of 

each equivalence class in T1 , where two members of T1 are equivalent 

if one can be obtained from the other by performing aZZowable 

permutations of the second orbit. For m = 2 or 3, any permutation 
2 

is allowable, but for m2 = 4 only the eight automorphisms of a 

square are allowable, since a 4-orbit may contain a square or its 

complement. 

For example, for m1 = 2, m2 = 4 and 4 edges between the 

orbits, T1 contains six entries as below. For convenience we have 

drawn a square in each 4-orbit. 

fifth entries of T 1 • 

T contains just the first and 
2 
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(a) (b) 

(d) 

(e) (f) 

Now define the graph H = H(G, A) as in Section 4-26, but 

with loops omitted. As we noted earlier, H can be determined from 

Q. Each edge of H thus indicates a non-complete join in G between 

orbits of A. The edges of H were then labelled with weights~ 

roughly indicating the complexity of the necessary join in G. More 

precisely, the higher an edge weight the greater the advantage in 

using T2 rather than T1 as the source of possible joins. The method 

of Prim [38] was then used to find a spanning forest of maximum total 

weight. The program MAXSPF in Nijenhuis and Wilf [35] was adapted 

for this purpose. Suppose that H has s vertices, t edges and c 

components. Prim's method produces a sequence of e- , e , • • •, e 
1 2 s-e 

edges of H with the property that at least one end-vertex of each 

edge is not an end-vertex of any earlier edge in the sequence. 

The remaining t - s + c edges of H were arranged in a 

sequence e e ··~ e s-c+l' s-c+2' ' t · 
The order was fairly arbitrary, 

except that edges which completed a neighbourhood (i.e. after 

insertion of the appropriate edges in G, the neighbourhood of some 

vertex of G would be known for the first time) were given precedence. 

The complete list of possible transitive graphs G for each 

quotient matrix Q was then constructed using a backtrack program 



which inserted non-complete joins in Gin the order e 1 , e 2 , ···, et• 

For 1 ~ i ~ s-e at least one of the orbits involved was only 

trivially joined to other orbits (before the join represented by e. 
l 

was inserted) and so could be subject to any allowable permutation 

without changing the graph at that stage. Therefore the list of 

possible joins could be drawn from T2 rather than T1 • Joins 

corresponding to later edges of H were drawn from T . The only 
l 

other non-trivial means of shortening the search was to keep track 

of the neighbourhoods of the vertices of G. Each time a new 

neighbourhood was completed, it was examined to see if its vertices 

had the same degree sequence as those of any earlier neighbourhoods. 

Any completed graphs generated by the program were tested 
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to see if they were transitive, and if so whether they were isomorphic 

to any earlier generated graph (for the same quotient matrix). The 

program which tested the transitivity kept an eye open for 

transpositions in the automorphism group (none were ever found) but 

otherwise no effort was made to identify transitive graphs not in G. 

Despite the elaborate preparations, it was expected that 

this computation would occupy the computer for several hours at 

least. In fact it was all over in 12 minutes. More than half that 

time was taken up by the ten largest cases, each of which had two 

or more 4-orbits. 

For the 702 quotient matrices processed, a total of 8584 

graphs were produced. Of these, 7863 were intransitive and 127 were 

isomorphs, so that 594 transitive graphs were produced altogether. 

Out of the 702 quotient matrices, 120 produced no transitive graph, 

584 produced one each, and 5 produced two each. In Figure 5·2 we 

give an example of a quotient matrix (actually R(G, A) - see 
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0 0 1 0 0 0 1 

0 0 1 0 0 1 0 

1 1 0 0 0 1 1 

R( G, A) = 0 0 0 0 2 1 1 

0 0 0 2 0 1 1 

0 1 1 1 " 1 1 .J... 

" 0 1 1 1 1 " .J... .J... 

6 

3 

Figure 5 •2 



Sec;tion 5•25) having two transitive realisations. The two graphs 

drawn are strongly regular and so not actually in G, but this was 

not noticed at the time. The labelling on each determines the orbit 

of A to which each vertex belongs. 

5•32 Special Cases 

116. 

We will now consider the seven quotient matrices in S* 

which have not been processed by the program described in the previous 

section. In this section "x ~ y" means "x is adjacent to y in G" and 

"without loss of generality" is assumed at each step. Also, N(x, G) 

will be abbreviated to N(x) and N(x, G) to N(x). 

(a) o(A) = (16; 1, 5 3 ), 

R(G, A) = 

Any realisation is clearly 

(b) o(A) = ( 16; 

R( G, A) = 

0 1 0 0 

l 0 2 2 

0 2 0 3 

0 2 3 0 

strongly regular, and so not 

1, 53) ' 

0 1 0 0 

1 0 2 2 

0 2 2 1 

0 2 1 2 

Any realisation is strongly regular and so not in G. 

in (). 
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(c) cr(A) = ( 18; 12 22 4, 8) , ' ' 

0 0 1 0 1 0 

0 0 0 1 1 0 

1 0 0 1 0 1 
R( G, A) = 0 1 1 0 0 1 

1 1 0 0 2 1 

0 0 1 1 1 3 

Let e(A) = (1!2!3, 4!5, 617, 8, 9, 10111, 12, 18). N(l) is 

clearly isomorphic to c4 u R'2 . In order that N(3), N(4), N(5) and 

N(6) be isomorphic to N( 1), we must have the situation below. 

1 2 

6 

Now N(l) has the form 

where each of {11, 12, 13, 14} is adjacent to one of {15, 16, 17, 18}, 

and vice-versa. Without loss of generality, 11 ~ 7 and 11 ~ 15. In 

order that N(ll) ~ N(l) we must have 13 ~ 9 and 13 ~ 17. The graph 

we have at the moment has automorphisms (8 10), (12 14) and (16 18). 

Therefore we can say 12 ~ 8 and 12 ~ 16 which forces 14 ~ 10 and 

14 ~ 18. Considering N(ll) and N(8) we must have 8 ~ 18 and 10 ~ 16. 

Similarly 7 ~ 17 and 9 ~ 16. The resulting graph is indeed transitive. 
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(d) o(A) = (18; 1 ' 2 4, 8) ' 

0 0 1 1 0 0 

0 0 1 0 ~ 0 ..L 

1 1 2 0 0 1 
R( G, A) = 1 0 0 1 0 1 

0 ~ 0 0 1 1 ..L 

0 0 1 1 1 3 

Let B(A) = (11213, 415, 617, 8, 9, 10111, 12, 18). Obviously 

N(l) is isomorphic to c4 u K2 • Since N(3) ~ N(4) ~ N(l) we have 

the following situation. 

1 2 

3 

By considering vertex 1 we see that each vertex has two 

adjacent vertices at distance 3. Considering vertex 3 similarly, 

we have 5 ~ 11, 12, 13, 14 and 6 ~ 15, 16, 17, 18. To get 

N(ll) ~ N(l) we must have a triangle equivalent to 1 ~ 15 ~ 11 ~ 1. 

Considering the vertices at distance 3 from 11 and 15 and then N(9), 

we have another triangle 9 ~ 13 ~ 17 9. Similarly we have 

8 ~ 12 ~ 16 ~ 8 and 10 ~ 16 ~ 18 ~ 10. The resulting graph is 

transitive and can be identified as the cartesian product of a 

triangle and an octahedron. 
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(e) cr(A) = ( 18; 12 ' 22 ' 4' 8) ' 

0 1 1 0 1 0 
, 0 0 1 1 0 _J_ 

1 0 1 1 0 1 
R(G, A) = 1 0 1 1 _J_ 0 1 

1 1 0 0 3 1 

0 0 1 1 1 4 

This case can be handled in a way similar to case (d). 

However it is clear that the neighbourhood of vertex 1 is isomorphic 

to K5 u K2 , and it is very easy to see that the only 18-vertex graph 

with each vertex having this neighbourhood is K3 x K6 • This graph 

is transitive, of course, and does have a quotient matrix of the 

form above (take A to be the stabiliser of two vertices in the same 

6-clique). 

( f) cr (A) = ( 18; 12 , 22 , 4, 8) 

0 1 1 0 1 0 

1 0 0 1 1 0 

1 0 0 2 0 1 
R( G, A) = 

0 1 2 0 0 1 

1 1 0 0 3 1 

0 0 1 1 1 4 

Let 8(A) = (lj2j3, 4j5, 6j7, 8, 9, 10j11, 12, •••, 18). 

Obviously N(l) is isomorphic to K5 u K2 . Since G is transitive it 

must contain 3 disjoint 6-cliques, forming a block-system for A, 

with 3 blocks of size 6. Now consider the spanning subgraph E of G 

containing just those edges not in any 6-clique. Then E is a 

transitive graph with degree two, and so is isomorphic to either 

6c 3 , 3C6 , 2C 9 or c 18 • In the present case, E contains a hexagon 



(say 1 ~ 3 ~ 5 ~ 2 ~ 6 ~ 4 ~ 1) and so is isomorphic to 3C6 • We can 

also see that this hexagon (and thus the other two) has two vertices 

in each 6-clique. The only possibility is the graph drawn 

schematically below, where it is to be understood that any two 

vertices in the same row are adjacent. 

(g) o(A) = ( 18; 13' 53) 

0 1 1 1 0 0 

1 0 1 0 -.. 0 ..L 

R(G, A) 1 1 0 0 0 1 
= 

1 0 0 4 1 1 

0 1 0 1 4 1 

0 0 1 1 1 4 

The neighbourhood of each vertex is clearly isomorphic to 

K5 u K2 , and so this is the same graph as in case (e), namely 

5·33 Consolidation 

A file has been constructed containing all the transitive 

graphs of order at most 19 which are notinG (see Section 5•1). 

120. 

This file has been merged with the collection of 594 graphs described 

in Section 5·31 and the extra handful of graphs constructed in the 

previous section. Isomorphic copies of the same graph have been 

eliminated. For convenience, every transitive graph up to order 9 

has been retained, while those of order greater than 9 with 

k > (n-1)/2 have been deleted. The result is a set of 546 



non-isomorphic transitive graphs. As this number indicates, many 

of the elements of G have been constructed via more than one 

Quotient matrix. The total number of transitive graphs of order 

~ 19 and degree~ 8 can be found in Table 5•3. The same information 

restricted to connected graphs is given in Table 5·4· The entries 

for the remaining degrees are easily deduced, since the number of 

transitive graphs of order n and degree k is equal to the number 

with order n and degree n - k - 1, and all transitive graphs with 

k ~ (n - 1)/2 are connected. 

Where there is any overlap, our results have been compared 

with those of Yap [46], who considered transitive graphs of order up 

to 12 (except for those of degree 5), Rees [39] who constructed the 

symmetric graphs of degree 3 up to 40 vertices, and Hall [18] who 

constructed all the graphs up to order 11 with isomorphic neighbour­

hoods. The only discrepancy found is with Yap's catalogue, which 

omits two transitive graphs on 12 vertices. 

Another check on our results has been carried out by 

generating all the Cayley graphs of every group of order 19 or less, 

and verifying that each is present in the catalogue. Since the bulk 

of transitive graphs seem to be Cayley graphs (all but 9 of our 546 

are) this is probably quite a good check. A further test has been 

to generate transitive graphs from those in the catalogue using 

unary and binary operations, and to check that the resulting graphs 

are present. An example is the D(G) construction defined in 

Theorem 1·22. 

The complete list of 546 transitive graphs is given in 

Appendix 2 together with many of the properties of each graph, and 

representations of each graph as Cayley graphs or products of other 

graphs. 

121. 
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degree 

order 0 1 2 3 4 5 6 1 8 total 

1 1 1 

2 1 1 2 .L 

3 1 0 1 2 .L 

4 1 1 1 1 4 _!_ 

5 1 0 1 0 1 3 _!_ 

6 1 1 2 2 1 1 8 

1 1 0 1 0 1 0 1 4 

8 1 1 2 3 3 2 1 1 14 

9 1 0 2 0 3 0 2 0 1 9 

10 1 1 2 3 4 4 3 2 1 22 

11 1 0 1 0 2 0 2 0 1 8 

12 1 1 4 1 11 13 13 11 1 74 

13 1 0 1 0 3 0 4 0 3 14 

14 1 1 2 3 6 6 9 9 6 56 

15 1 0 3 0 8 0 12 0 12 48 

16 1 1 3 1 16 27 40 48 48 286 

17 1 0 1 0 4 0 1 0 10 36 

18 1 1 4 1 16 24 38 45 54 380 

19 1 0 1 0 4 0 10 0 14 60 

Table 5•3 
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degree 

order 0 1 2 3 4 5 6 7 8 total 

1 1 1 

2 0 1 1 

3 0 0 1 1 

4 0 0 1 1 2 

5 0 0 1 0 1 2 

6 0 0 1 2 1 1 5 

7 0 0 1 0 1 0 1 3 

8 0 0 1 2 3 2 1 1 10 

9 0 0 1 0 3 0 2 0 1 7 

10 0 0 1 3 3 4 3 2 1 18 

11 0 0 1 0 2 0 2 0 1 7 

12 0 0 1 4 10 12 13 11 7 64 

13 0 0 1 0 3 0 4 0 3 13 

14 0 0 1 3 5 6 8 9 6 51 

15 0 0 1 0 7 0 12 0 12 44 

16 0 0 1 4 13 25 39 47 48 272 

17 0 0 1 0 4 0 7 0 10 35 

18 0 0 1 5 12 23 36 45 53 365 

19 0 0 1 0 4 0 10 0 14 59 

Table 5 • 4 
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The group information given for each graph was computed 

using the algorithm described in McKay [26]. Those graphs in the 

catalogue which are planar were identified in the list of Imrich [10] 

(we did not ourselves test any graphs for planarity). Those graphs 

with primitive automorphism groups were found with the help of the 

simple lemma below. The algorithms used for the other given 

properties of each graph do not deserve special mention, except 

that for chromatic number we used Miller's method [34]. 

5·34 Let r be a transitive group acting on V. For each pair 

e = {x, y} 3 where x f y E V3 define the graph G with vertex set 
e 

V and edge set {xYyYIY E r}.. Then r is primitive if and only if 

each G 
e 

Proof: 

1-s connected. 

If B is a non-trivial block of r, and x f yE B, then G 
e 

is disconnected obviously. Conversely, if G is disconnected, then 
e 

r is imprimitive, since A ~ Aut(Ge) and Aut(Ge) is imprimitive. 0 

5·35 Concluding remarks 

The computation described in this chapter occupied a 

Cyber 73 computer for a total of about 14 hours, of which probably 

80% was taken up with the 18-vertex transitive graphs. With the 

experience thus gained, the computer time required could be 

considerably reduced, but it would seem unlikely that the transitive 

graphs on 20 vertices could be found in less than 20 hours, using 

the same techniques. 

On the other hand Cayley graphs are easy to generate. 

Those up to order 19 were generated and sorted according to 

isomorphism type in less than 15 minutes. There is no reason why 

all the Cayley graphs cannot be found for most groups for which the 
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number of different Cayley graphs is not too large (less than a 

million say). The major problem is in the construction of those 

transitive graphs which are not Cayley graphs. As we have already 

stated, there are only 9 such graphs in our catalogue (not counting 

complements). A few of these are well-known (Petersen's graph, its 

linegraph, and the linegraph of K6 ) but the others appear here for 

the first time. If we had some way of constructing these graphs 

separately, our labour would be very greatly reduced. One approach 

would be to use Theorem 1·23, but we would need to know the possible 

orders of minimum transitive subgroups of Aut(G). As C. Godsil has 

shown [12], these can have orders much larger than n, in general. 

An alternative approach to the generation of transitive 

graphs would be to generate those with primitive automorphism 

groups separately. This could be done using similar methods to the 

ones used here, using the primitivity assumption to limit the number 

of subcases. For example, r 1 and < Sylp ( r 1 )) either have l or n 

fixed points. The graphs with imprimitive groups could be 

constructed via a block system (each block contains the same 

transitive graph and the action of the group on the blocks is 

transitive). 

Yet another technique is based on the following lemma. The 

proof is elementary but we will omit it anyway. 

5·36 LEMMA Let r be a transitive group with degree n = pm, 

where p &s a prime and 1 ~ m ~ p. Then r has an element of order p 

without fixed points. 0 

By a stroke of luck, the requirements of the lemma are met 

by n = 20, 21 and 22. Of these, n = 20 should be the hardest case 



(since m is the largest) but initial investigations suggest that the 

generation of the transitive graphs for 20 ~ n ~ 22 by this method 

is probably a practical proposition. We hope to be able to give 

more details, and the results of the computation, in a future paper. 
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APPENDIX ONE 

GROUPS OF ORDERS 5 TO 19 

127. 

In this Appendix we present a list of the groups of order n, 

for 5 ~ n ~ 19, together with various items of data on each. This 

information is required for Appendix 2, in which we will list the 

Cayley graphs for each group. 

On the first line of the description for each group, we 

give the identification number of the group, a common name (if any) 

and an abstract presentation. The second line has the following 

information. 

inv = number of elements of order two 

max = maximum order of an element 

cntr = size of centre 

comm = size of commutator subgroup 

The next few lines contain generators for a regular 

permutation representation of the group. The last line gives a list 

of elements of the group. The first inv elements are the elements of 

order two, if any. The remaining elements constitute one member of 

each pair {y, y- 1 }, where y is an element of order greater than two. 

Each element is given as a word of minimum length in the generators 

and their inverses. 
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Group 5-l 

inv = 0 max = 5 cntr = 5 comm = 1 

a = ( 1 2 3 4 5) 

elements: ' a a2 

Group 6-1 z6 = <a I a6 = 1) 

inv = 1 max = 6 cntr = 6 comm = 1 

a = (1 2 3 4 5 6) 

Group 6-2 D6 = <a,Sia 2 = 6 3 = (aS) 2 = 1) 

inv = 3 max = 3 cntr = 1 comm = 3 

a = (1 2)(3 6)(4 5) 

6 = (134)(256) 

elements: a aS aS- 1 , 6 

Group 1-1 17 = /ala7 = 1)' LJ7 '\ 

inv = 0 max = 1 cntr = I comm = 1 

a = (1 2 3 4 5 6 I) 

elements: , a a 2 a 3 

Group 8-1 

inv = 1 max = 8 cntr = 8 comm = 1 

a = (1 2 3 4 5 6 I 8) 

Group 8-2 

inv = 3 max = 4 cntr = 8 comm = 1 

a = (1 2 5 3)(4 6 8 I) 

6 = (1 4)(2 6)(3 1)(5 8) 



Group 8-3 

inv = 7 max = 2 cntr = 8 comm = 1 

a = (1 2)(3 5)(4 6)(7 8) 

s = (1 3)(2 5)(4 7)(6 8) 

y = (1 4)(2 6)(3 7)(5 8) 

elements: aS y aS ay Sy aSy 

Group 8-4 Dg = (a,SJa4 = S2 = (aS) 2 = 1) 

inv = 5 max = 4 cntr = 2 comm = 2 

a = (1 2 5 3)(4 7 8 6) 

s = (1 4)(2 6)(3 7)(5 8) 

Group 8-5 

inv = 1 max = 4 cntr = 2 

a = (1 2 6 3)(4 8 5 7) 

s = (1 4 6 5)(2 7 3 8) 

elements: a2 , a S aS 

Group 9-1 

inv = 0 max = 9 cntr = 9 

a = (1 2 3 4 5 6 7 8 9) 

elements: 

Group 9-2 

inv = 0 max = 3 cntr = 9 

a= (1 2 3)(4 6 8)(5 7 9) 

s = (1 4 5)(2 6 7)(3 8 9) 

elements: , aS aS as- 1 

comm = 2 

comm = 1 

comm = 1 
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Group 10-1 

inv = 1 max = 10 cntr = 10 comm = 1 

a = (1 2 3 4 5 6 7 8 9 10) 

Group 10-2 

inv = 5 max = 5 cntr = 1 comm = 5 

a= (1 2 5 7 3)(4 8 10 9 6) 

s = (1 4)(2 6)(3 8)(5 9)(7 10) 

Group 11-1 

inv = 0 max = 11 cntr = 11 comm = 1 

a = (1 2 3 4 5 6 7 8 9 10 11) 

Group 12-1 z12 = <aJal2 = 1> 

inv = 1 max = 12 cntr = 12 comm = 1 

a = (1 2 3 4 5 6 7 8 9 10 11 12) 

Group 12-2 Z 2 ® Z5 = (a,Sja6 = s2 = 1, aS= Sa) 

inv = 3 max = 6 cntr = 12 comm = 1 

a= (1 2 5 9 7 3)(4 6 10 12 11 8) 

s = (1 4)(2 6)(3 8)(5 10)(7 11)(9 12) 

Group 12-3 

inv = 7 max = 6 cntr = 2 comm = 3 

a= (1 2 5 9 7 3)(4 8 11 12 10 6) 

s = (1 4)(2 6)(3 8)(5 10)(7 11)(9 12) 
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Group 12-4 A4 =(a,S,y\a 2 = S2 = y2 = 1, aS= Sa, Sy = yaS, ay= yS) 

in v = 3 max = 3 en tr = 1 eo mm = 4 

a = (1 2)(3 6)(4 11)(5 10)(7 9)(8 12) 

s = (1 3)(2 6)(4 7)(5 12)(8 10)(9 11) 

y = (1 4 5)(2 7 8)(3 9 10)(6 11 12) 

elements: aS aS, y ay ay-l Sy 

Group 12-5 \a ,S \a 6 = 1, a 3 = S2 , aS = Sa- 1 ) 

inv = 1 max = 6 cntr = 2 comm = 3 

Cl. = (1 2 6 12 9 3)(4 10 8 5 11 7) 

s = (1 4 12 5)(2 7 9 8)(3 10 6 11) 

Group 13-1 

inv = 0 max = 13 cntr = 13 comm = 1 

Cl. = (1 2 3 4 5 6 7 8 9 10 11 12 13) 

elements: 

Group ,14-1 

inv = 1 max = 14 cntr = 14 comm = 1 

Cl. = (1 2 3 4 5 6 7 8 9 10 11 12 13 14) 

Group 14-2 

inv = 7 max = 7 cntr = 1 comm = 7 

a = (1 2 5 9 11 7 3)(4 8 12 14 13 10 6) 

s = (1 4)(2 6)(3 8)(5 10)(7 12)(9 13)(11 14) 

Group 15-1 

inv = 0 max = 15 cntr = 15 comm = 1 

a = (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15) 

elements: 



Group 16-1 Z = <ala 16 = 1) 
16 

inv = 1 max = 16 cntr = 16 comm = 1 

a = (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16) 

Group 16-2 

inv = 3 max = 8 cntr = 16 comm = 1 

a= (1 2 5 9 13 11 7 3)(4 6 10 14 16 15 12 8) 

s = (1 4)(2 6)(3 8)(5 10)(7 12)(9 14)(11 15)(13 16) 

Group 16-3 

inv = 3 max = 4 cntr = 16 comm = 1 

a = (1 2 6 3)(4 7 12 9)(5 8 13 10)(11 14 16 15) 

s = ( 1 4 11 5 ) ( 2 7 14 8) ( 3 9 15 10 )( 6 12 16 13) 

Group 16-4 

inv = 7 max = 4 cntr = 16 comm = 1 

a = (1 2 6 3)(4 7 12 9)(5 8 13 10)(11 14 16 15) 

s = (1 4)(2 7)(3 9)(5 11)(6 12)(8 14)(10 15)(13 16) 

y = (1 5)(2 8)(3 10)(4 11)(6 13)(7 14)(9 15)(12 16) 

Group 16-5 

inv = 15 max = 2 

ao = oa, Sy = yS, So =oB, yo = ay) 

cntr = 16 comm = 1 

a = (1 2)(3 6)(4 7)(5 8)(9 12)(10 13)(11 14)(15 16) 

B = (1 3)(2 6)(4 9)(5 10)(7 12)(8 13)(11 15)(14 16) 

y = (1 4)(2 7)(3 9)(5 11)(6 12)(8 14)(10 15)(13 16) 

0 = (1 5)(2 8)(3 10)(4 11)(6 13)(7 14)(9 15)(12 16) 

elements: a S y o aS ay ao By So yo aSy aBo ayo Syo aBYo 
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Group 16-6 z2 0 D8 = (a,S,y!a4 = S2 = y2 = (aS) 2 = 1, Sy = yS, ay= ya) 

inv = 11 max = 4 cntr = 4 comm = 2 

a = (1 2 6 3)(4 9 12 T)(5 8 13 10)(11 15 16 14) 

S = (1 4)(2 T)(3 9)(5 11)(6 12)(8 14)(10 15)(13 16) 

y = (1 5)(2 8)(3 10)(4 11)(6 13)(1 14)(9 15)(12 16) 

Group 16-T Z2 0 Q = <a,S,y!a4 = s2 = 1, a2 = y2 , ay= ya- 1 , yS = Sy, aS =Sa) 

inv = 3 max = 4 cntr = 4 comm = 2 

a = (1 2 T 3)(4 8 14 11)(5 10 6 9)(12 16 13 15) 

s = (1 4)(2 8)(3 11)(5 12)(6 13)(1 14)(9 15)(10 16) 

y = (1 5 T 6)(2 9 3 10)(4 12 14 13)(8 15 11 16) 

Group 16-8 

inv = T max = 4 cntr = 4 comm = 2 

a= (1 2 T 3)(4 8 14 11)(5 10 6 9)(12 16 13 15) 

s = (1 4)(2 8)(3 11)(5 13)(6 12)(1 14)(9 16)(10 15) 

y = (1 5 T 6)(2 9 3 10)(4 12 14 13)(8 15 11 16) 

Group 16-9 (a,S,y!a4 = S2 = 1, aS = Sa, S = y2 , ay = ya- 1S) 

inv = T max = 4 cntr = 4 comm = 2 

a = (1 2 T 3)(4 8 14 11)(5 13 15 10)(6 12 16 9) 

s = (1 4)(2 8)(3 11)(5 6)(1 14)(9 10)(12 13)(15 16) 

y = (1 5 4 6)(2 9 8 10)(3 12 11 13)(7 15 14 16) 



Group 16-10 

inv = 3 max = 4 cmtr = 4 comm = 2 

a = (1 2 6 3)(4 9 12 7)(5 10 13 8)(11 14 16 15) 

13 = ( 1 4 11 5) ( 2 7 14 8) ( 3 9 15 10) ( 6 12 16 13) 

Group 16-11 <a,l3\a 8 = 13 2 = 1, 13al3 =aS) 

inv = 3 max = 8 cntr = 4 comm = 2 

a = (1 2 5 11 16 15 7 3)(4 9 12 8 14 16 13 10) 

13 = (1 4)(2 6)(3 8)(5 12)(7 13)(9 15)(10 11)(14 16) 

Group 16-12 D16 =(a,S\a8 = S2 = (aS) 2 = 1) 

inv = 9 max = 8 cntr = 2 comm = 4 

a = (1 2 5 9 13 11 7 3)(4 8 12 15 16 14 10 6) 

s = (1 4)(2 6)(3 8)(5 10)(7 12)(9 14)(11 15)(13 16) 

Group 16-13 (a,l3 \a 8 = S2 = 1, Sal3 = a 3 ) 

inv = 5 max = 8 cntr = 2 comm = 4 

a = (1 2 5 11 16 15 7 3)(4 9 14 6 13 8 12 10) 

s = (1 4)(2 6)(3 8)(5 12)(7 14)(9 11)(10 15)(13 16) 

Group 16-14 1 a4 = Q2 
' 1-' ' 

inv = 1 max = 8 cntr = 2 comm = 4 

a = (1 2 6 13 12 16 9 3)(4 10 15 8 5 11 14 7) 

s = (1 4 12 5)(2 7 16 8)(3 10 13 11)(6 14 9 15) 
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Group 17-1 

inv = 0 max = 17 en tr = 17 eo mm = 1 

a = (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17) 

Group 18-1 

inv = 1 max = 18 cntr = 18 comm = 1 

a= (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18) 

elements: 

inv = 1 max = 6 cntr = 18 comm = 1 

a = (1 2 6 12 9 3)(4 7 13 17 15 10)(5 8 14 18 16 11) 

B = (1 4 5)(2 7 8)(3 10 11)(6 13 14)(9 15 16)(12 17 18) 

inv = 3 max = 6 cntr = 3 comm = 3 

a= (1 2 3)(3 8 6)(5 9 7)(10 12 14)(11 13 15)(16 18 17) 

B = (1 4 10 16 11 5)(2 6 12 17 13 7)(3 8 14 18 15 9) 

Group 18-4 

inv = 9 max = 9 cntr = 1 comm = 9 

a= (1 2 59 13 15 11 1 3)(4 8 12 16 18 17 14 10 6) 

B = (1 4)(2 6)(3 8)(5 10)(7 12)(9 14)(11 15)(13 17)(15 18) 
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Group 18-5 

inv = 9 max = 3 cntr = 1 comm = 9 

a= (1 2 3)(4 7 10)(5 8 11)(6 12 9)(13 17 15)(14 18 16) 

s = (1 4 5)(2 7 8)(3 10 11)(6 14 13)(9 16 15)(12 18 17) 

y = (1 6)(2 9)(3 12)(4 13)(5 14)(7 15)(8 16)(10 17)(11 18) 

elements: y ay Sy ya yS aSy ayS Sya yaS, a B aB aS- 1 

Group 19-1 

inv = 0 max = 19 cntr = 19 comm = 1 

a = (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19) 

elements: 

136. 
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APPENDIX TWO 

TRANSITIVE GRAPHS OF ORDER 2 TO l9 

In this appendix we give a complete list of the transitive 

graphs of order n for 2 ~ n ~ 9 and the transitive graphs of order n 

and degree k, for 10 ~ n ~ 19 and k ~ (n- 1)/2. This catalogue has 

been published in McKay [32J. Graph theoretic concepts not defined 

in this thesis have been defined in Behzad and Chartrand [ 4 ]. 

Throughout our description of the data given for each 

graph in the catalogue we will call the graph G and assume that 

V(G) =V= {1, 2, •••, n}. The degree of G will be denoted by k and 

the automorphism group of G by r. Also define a( G) = e(r 1 ) and let 

a(G) be the partition of V such that vertices v and w are in the same 

cell if and only if a(l, v) = a(l, w). 

(a) Set Notation: A set of positive integers can be 

written as an octal integer by putting bit i equal to 1 if and only if 

i is in the set. The bits are numbered from 1 starting at the right 

hand (low order) end. For example, 251 (octal) is 10101001 (binary) 

and so represents the set {1, 4, 6, 8}. 

(b) First Line of Data: The first item in this line is the 

name of G, for example 120 or Pl6. The letter indicates the order of 

G (A for 1, B for 2, etc.), and the numbers are allotted sequentially 

within each order. Care must be taken to avoid confusing names like 

K3 with the commonly accepted notations for special graphs, for 

example K , C , K 
3 5 3,4 

The latter notations will be used in this 

description of the catalogue, but never in the catalogue itself. 



We now describe the other pieces of information which may 

occur on the first line. 

(i) DEG: degree of G. 
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(ii) F: flags associated with G. Each flag is a single letter whose 

presence indicates a special property. If no flags apply, 

the F is omitted. The flags used are listed below. 

X = disconnected. 

N = not a Cayley graph. 

T = distance transitive (a(G) = a(G)). 

R = distance regular (a( G) is equitable) buLnot distance 

transitive {only-case is P84). 

V = r acts primitively on V. 

I = r satisfies this condition: For any v, w E V there is 

y E r such that vy = w and wy = v. 

A = antipodal (if a(u, v) = a(u, w) = ~ then a(v, w) = ~. where 

~is the diameter of G). 

S = self-complementary (G =G). 

P = planar. 

(iii) AUT: order of r 1 • 

(iv) P: partitions a(G) and a(G). Each digit or letter gives the 

size of one cell of a partition IT of V. Letters are used 

for cell sizes over 9; A for 10, B for ll, etc. 

Case 1: If n = 2 of :G is not a GRR, then IT is a( G). The 

cells of a(G) are grouped by commas into the cells of 

a( G). For example, P = (1, 4, 24, l) indicates that a( G) 

has one 4-cell at distance l from vertex l, a 2-cell and a 

4-cell at distance 2, and a single 1-cell at distance 3. 

If G is disconnected, only vertices in the component 
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containing vertex 1 are included; the presence of additional 

components is indicated by a "+" sign. 

Case 2: If n # 2 and G is a GRR, then rr is 3(G). To avoid 

confusion with Case 1, the cells are separated by slashes. 

For example, P = (1/6/8/1) indicates 6 vertices at distance 

1 from vertex 1, 8 vertices at distance 2, and 1 vertex at 

distance 3. 

(v) GIR: girth of G, unless G is acyclic. 

(vi) CN: chromatic numbers of G and G, respectively. 

(vii) T: arc-transitivity of G, unless r is not transitive on l-ares, 

( viii) 

or k = 0, or k = 2. 

Any other text on the first line indicates a common name 

for G, for example "PETERSEN GRAPH". 

(c) Adjacency Matrix (omitted if d = 0) 

Each a. is an octal representation (see part (a)) of the 
l 

set of vertices preceding vertex i which are adjacent to i. Note that 

a 1 is omitted. The labelling of the vertices of G is consistent 

with the partition P described above. For example, if 

P = (1, 4, 24, 1), a(G) is {112, 3, 4, 516, rl8, 9, 10, 11112} and 

3 ( G) is {112 , 3, 4 , 5 16 , 1 , 8 , 9 , 10 , 11112} . 

ExampZe:If A= 1 1 6, we have 2 adjacent to 1, 3 adjacent to 

1 and 4 adjacent to 2 and 3. 

(d) EigenvaZues of Adjacency Matrix 

(omitted if G is disconnected). 
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Each field gives one eigenvalue of the adjacency matrix of 

G. If the eigenvalue has multiplicity other than one, this 

multiplicity is written immediately before the eigenvalue, using an 

intervening"+" for nonnegative eigenvalues. If the eigenvalues for 

G are A1 :::; A2 :::; 

-A - 1 :::; -A -
n-1 n-2 

Example: 

:::; A , those for G are 
n 

1 :::; • •• :::; -A - 1 :::; n 1 - k -

E = -4 3-·4391 2+0 1• 3417 5 

The eigenvalues are -0·4391 

1. 

(3 

and -4, 1•3417, 5 (once each). 

(e) Independent Sets and Cliques 

(omitted if G is disconnected). 

times), 0 (twice) 

ai is the number of independent sets of size i in G, i.e. cliques of 

size i in G, which include vertex 1. 

S· is the number of cliques of size i in G which include vertex 1. 
l 

Those numbers before the comma are a's; those after the 

comma are S's. The total number of independent sets or cliques of 

size i in G is na./i or nS./i, respectively. 
l l 

Example: K = (, 4 1). G has no independent sets of size 3 

or greater. Vertex 1 is contained in 4 triangles 

and 1 clique of size 4. 

(f) Representations of G. 

The data provided about G contain a number of descriptors 

expressing G as a product etc. In explaining each descriptor type, H 

and J stand for the names of transitive graphs in the catalogue. As 

before, n and k are the order and degree of G, respectively. The 

variable i indicates a positive integer. 
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( i) -H: complement of H, unless G is self-complementary. 

(ii) i[H]: G is the disjoint union of i copies of H (i > 1), 

unless k ~ 1. 

(iii) L(H): linegraph of H, unless k ~ 2. 

(iv) -L(H): complement of L(H), unless k ~ 2 or G is complete. 

(v) SW(H): switching graph of H. 

(vi) SW(H+): switching graph of the disjoint union H u K1 , unless H 

is complete or empty. The only example is L37. All 

switching graphs in the catalogue are either type (v) 

or type (vi) . 

(vii) D(H): H plus diagonals (see Section 1·22), provided H has 

diameter at least 3 and is connected. 

(viii) -D(H): complement of D(H)~ This notation is omitted if His 

bipartite and has diameter 3. In that case -D(H) is 

the disjoint union of two cliques. His connected with 

diameter <:: 3. 

(ix) Wi(H): generalized linegraph of subdivision graph (1 ~ i ~ 9). 

Form a multigraph from H by replacing each edge by i 

parallel edges. Then subdivide each edge with a new 

vertex and take the linegraph of the result. Omitted 

if H has degree ~ 1, or k = 2. 

Every linegraph in the catalogue is of type (iii) or 

type (ix) except these: 

L(K ) = K (2 ~ m ~ 19)' 1 ,m m 

L(K ) = K3 X K (4 ~ m ~ 6) . 
3,m m 

( x) -Wi(H): complement of Wi(H) (1 :::; i ~ 9) ' unless H has degree ~ 1, 

or Wi (H) has degree 2. 
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(xi) H[J]: lexicographic product of H around J, unless k $ 1. 

If His empty (i.e. His complete), the notation (ii) 

is used instead. 

(xii) H x J: cartesian product of Hand J, unless either H or J is 

empty. 

(xiii) -H x J: complement of H x J, unless G is complete. 

(xiv) H * J: tensor product of Hand J, unless k $ 1. 

(xv) -H * J: complement of H * J, unless G is either empty or 

complete. 

(xvi) i/m: G is the Cayley graph C(A, ~),where A is the ith 

group of order n, and the connection set ~ is specified 

by the octal number m (see (a)). The groups and their 

elements are numbered in the order they are listed in 

Appendix 1; an element and its inverse have the same 

ordinal. ~ is not canonical in any sense. 

Example: If n = 16, the notation 3/123 represents 

C(A, ~),where A is group 16-3 and~ is 

Cayley graph representation is only given if 

2 $ k $ (n - 1)/2. 



TRANSITIVE GRAPHS ON 2 VERTICES 

Bl DEG=O F=XTVIAP AUT=l P=(l,+) CN=l,2 
-B2 SW(Al) 

B2 DEG=l F=TVIAP AUT=l P=(l,l) CN=2,1 T=l 
A=l E=-1 1 K=(,) -Bl 

TRANSITIVE GRAPHS ON 3 VERTICES 

Cl DEG=O F=XTVIAP AUT=2 P=(l,+) CN=l,3 
-C2 -L(C2) 

C2 DEG=2 F=TVIAP AUT=2 P=(l,2) GIR=3 CN=3,1 TRIANGLE 
A=l 3 E=2-l 2 K=(,l) -Cl 

TRANSIT! GRAPHS ON 4 VERTICES 

Dl DEG=O F=XTVIAP AUT=6 P=(1,+) CN=l,4 
-04 

02 DEG=1 F=XTIP AUT=2 P=(l,1,+) CN=2,2 T=l 
A=1 0 4 -03 -L(D3) SW(Bl) SW(B2) -B2XB2 

D3 DEG=2 F=TIAP AUT=2 P=(l,2,1) GIR=4 CN=2,2 SQUARE 
1 1 6 E=-2 2+0 2 K=(,) -02 B2[B1] B2XB2 -B1XB2 -B2*B2 

04 DEG=3 F=TVIAP AUT=6 P=(l,3) GIR=3 CN=4,1 T=2 TETRAHEDRON 
A=l 3 7 E=3-l 3 K=(,3 1) -01 B2[B2] 

TRANSITIVE GRAPHS ON 5 VERTICES 

El DEG=O F=XTVIAP AUT=24 P=(1,+) CN=l,5 
-E3 

E2 DEG=2 F=TVISP AUT=2 P=(l,2,2) GIR=5 CN=3,3 PENTAGON 
A=l 1 4 12 E=2-1.61803 2+.61803 2 K=(,) -l(E2) 1/1 

E3 DEG=4 F=TVIA AUT=24 P=(1,4) GIR=3 CN=5,1 T=2 
A=1 3 7 17 E=4-l 4 K=(,6 4 1) -El 

TRANSITIVE GRAPHS ON 6 VERTICES 

Fl DEG=O F=XTVIAP AUT=120 P=(1,+) CN=l,6 
-F8 

F2 DEG=l F=XTIP AUT=8 P=(1,1,+) CN=2,3 T=1 
A=1 0 4 0,20 -F7 -L(D4) 

F3 DEG=2 F=XTIP AUT=12 P=(l,2,+) GIR=3 CN=3,2 
A=l 3 0 10,30 2[C2] -F5 SW(C2) 1/4 2/10 

F4 DEG=2 IAP AUT=2 P=(1,2,2,1) GIR=6 CN=2,3 HEXAGON 
A=l 1 4 2,30 E=-2 2-1 2+1 2 K=(1,) -F6 SW(C1) -B2XC2 B2*C2 l/2 2/6 



TRANSITIVE GRAPHS ON 6 VERTICES (CONTD) 144. 

F5 DEG=3 F=TIA AUT=12 P=(1,3,2) GIR=4 CN=2,3 T=3 
A=l 1 1 16,16 E=-3 4+0 3 K=(1.) -F3 -L(F3} D(F4) B2[Cl] -BlXC2 

F6 DEG=3 F=IP AUT=2 P=(1,12,2) GIR=3 CN=3,2 PRISM 
A=1 1 5 12,26 E=2-2 2+0 1 3 K=(,1) -F4 -L(F4) W3(B2) -Wl(C2) B2XC2 -B2*C2 

F7 DEG=4 F=TIAP AUT=8 P=(l,4,1) GIR=3 CN=3,2 T=1 OCTAHEDRON 
A=1 1 7 7,36 E=2-2 3+0 4 K=(,4) -F2 L(D4) -Wl(F2) C2[Bl] -B2XC1 

F8 DEG=5 F=TVIA AUT=l20 P=(l,5) GIR=3 CN=6,1 T=2 
A=1 3 7 17,37 E=5-l 5 K=(,10 10 51) -F1 B2[C2] C2[B2] 

TRANSITIVE GRAPHS ON 7 VERTICES 

Gl DEG=O F=XTVIAP AUT=720 P=(1,+) CN=l,7 
-G4 

G2 DEG=2 F=TVIP AUT=2 P=(1,2,2,2) GIR=7 CN=3,4 HEPTAGON 
A=l 1 4 2,20 50 E=2-1.80194 2-.44504 2+1.24698 2 K=(3,) -G3 -D(G2) 1/1 

G3 DEG=4 F=VI AUT=2 P=(1,22,2) GIR=3 CN=4,3 
A=1 3 5 3,34 72 E=2-2.24698 2-.55496 2+.80194 4 K=(,3) -G2 -L(G2) D(G2) 

G4 DEG=6 F=TVIA AUT=720 P=(1,6) GIR=3 CN=7,1 T=2 
A=1 3 7 17,37 77 E=6-l 6 K=(,15 20 15 6 1) -G1 

TRANSITIVE GRAPHS ON 8 VERTICES 

H1 DEG=O F=XTVIAP AUT=5040 P=(l,+) CN=l,8 
-H14 

H2 DEG=l F=XTIP AUT=48 P=(l,l,+) CN=2,4 T=l 
A=l 0 4 0,20 0 100 -H13 

H3 DEG=2 F=XTIP AUT=16 P=(1,2,1,+) GIR=4 CN=2,4 
A=1 1 6 0,20 20 140 2[03] -Hll D2[B1] B2XD2 B2*D3 1/4 2/5 3/104 4/22 5/2 

H4 DEG=2 F=TIAP AUT=2 P=(l,2,2,2,1) GIR=8 CN=2,4 OCTAGON 
A=l 1 4 2,20 10 140 E=-2 2-1.41421 2+0 2+1.41421 2 K=(6 1,) -Hl2 1/10 4/11 

H5 DEG=3 F=XTIP AUT=144 P=(1,3,+) GIR=3 CN=4,2 T=2 
A=1 3 7 0,20 60 160 2[04] -H8 SW(D2) SW(D4) D2[B2] 1/5 2/22 3/70 4/42 5/3 

H6 DEG=3 F=I AUT=2 P=(1,12,22) GIR=4 CN=3,4 
A=1 1 1 10,24 52 26 E=2-2.41421 -1 2+.41421 2+1 3 K=(3,) -H10 D(H4) 1/11 
4/26 

H7 DEG=3 F=TIAP AUT=6 P=(l,3,3,1) GIR=4 CN=2,4 T=2 CUBE 
1 1 1 14,12 6 160 E=-3 3-1 3+1 3 K=(3 1,) -H9 SW(Dl) SW(D3) -W4(B2) B2XD3 

-B2XD4 82*04 2/11 3/45 4/15 

H8 DEG=4 F=TIA AUT=144 P=(l,4,3) GIR=4 CN=2,4 T=3 
A=1 1 1 1,36 36 36 E=-4 6+0 4 K=(3 1,) -H5 D(H7) B2[D1] D3[Bl] -B1XD4 



TRANSITIVE GRAPHS ON 8 VERTICES (CONTD) 

H9 DEG=4 F=I AUT=6 P=(l,l3,3) GIR=3 CN=4,2 
A=1 1 5 15,12 62 146 E=3-2 3+0 2 4 K=(,3 1) -H7 W4(82) B2XD4 -B2XD3 -82*04 

HlO DEG=4 F=IP AUT=2 P=(l,22,12) GIR=3 CN=4,3 ANTIPRISM 
A=1 1 5 13,6 54 162 E=2-2 2-1.41421 0 2+1.41421 4 K=(,3) -H6 -D(H4) 

H11 DEG=5 F=I AUT=16 P=(1,14,2) GIR=3 CN=4,2 
A=1 3 3 7,13 74 174 E=-3 4-1 2+1 5 K=(,6 2) -H3 -L(H3) -W2(D2) B2[D2] D3[B2] 
-B1XD3 -B2XD2 -82*03 

Hl2 DEG=5 F=I AUT=2 P=(1,122,2) GIR=3 CN=4,2 
A=l 1 5 13,27 56 136 E=2-2.41421 2-1 .41421 1 5 K=(,6 1) -H4 -L(H4) 
-Wl(D3) 

H13 DEG=6 F=TIA AUT=48 P=(1,6,1) GIR=3 CN=4,2 T=1 
A=l 1 7 7,37 37 176 E=3-2 4+0 6 K=(,12 8) -H2 -W1(H2) B2[D3] D4[Bl] -BlXD2 
-B2XD1 -82*02 

H14 DEG=7 F=TVIA AUT=5040 P=(1,7) GIR=3 CN=8,1 T=2 
A=1 3 7 17,37 77 177 E=7-1 7 K=(,21 35 35 21 7 1) -H1 B2[D4] D4[B2] 

TRANSITIVE GRAPHS ON 9 VERTICES 

11 DEG=O F=XTVIAP AUT=40320 P=(l,+) CN=l,9 
-19 

I2 DEG=2 F=XTIP AUT=144 P=(1,2,+) GIR=3 CN=3,3 
A=l 3 0 10,0 30 40 240 3[C2] -I7 1/4 2/4 

13 DEG=2 F=TIP AUT=2 P=(1,2,2,2,2) GIR=9 CN=3,5 NONAGON 
A=1 1 4 2,20 10 100 240 E=2-1.87939 2-1 2+.34730 2+1.53209 2 K=(lO 4,) -I8 
1/10 

I4 DEG=4 F=TVIS AUT=8 P=(1,4,4) GIR=3 CN=3,3 T=1 
A=1 3 1 11,24 12 154 162 E=4-2 4+1 4 K=(2,2) L(F5) -l(F5) C2XC2 -C2XC2 C2*C2 
-C2*C2 2/12 

15 DEG=4 F=I AUT=2 P=(1,22,22) GIR=3 CN=3,3 
A=l 3 1 1,34 32 124 252 E=2-2.87939 2-.65270 2+.53209 2+1 4 K=(3,1) -!6 

(13) 1/14 

I6 DEG=4 F=I AUT=2 P=(l,22,22) GIR=3 CN=3,3 
A=1 1 3 15,24 12 144 342 E=2-2 2-1.53209 2-.34730 2+1.87939 4 K=(1,3) -15 
0(13) 1/11 

17 DEG=6 F=TIA AUT=l44 P=(1,6,2) GIR=3 CN=3,3 T=1 
A=1 1 1 17,17 17 176 176 E=2-3 6+0 6 K=(l,9) -I2 -L(I2) C2[C1] -C1XC2 

I8 DEG=6 F=I AUT=2 P=(l,222,2) GIR=3 CN=5,3 
A=l 3 5 13,27 17 174 372 E=2-2.53209 1.34730 2+0 2+.87939 6 
-L(I3) 

I9 DEG=8 F=TVIA AUT=40320 P=(1,8) GIR=3 CN=9,1 T=2 

(,10 4) -13 

A=l 3 7 17,37 77 177 377 E=8-1 8 K=(,28 56 70 56 28 8 1) -I1 C2[C2] 



TRANSITIVE GRAPHS ON 10 VERTICES 

J1 DEG=O F=XTVIAP AUT=362880 P=(1,+) CN=l,lO 

J2 DEG=1 F=XTIP AUT=384 P=(l,l,+) CN=2,5 T=l 
A=l 0 4 0,20 0 lOO 0 400 

J3 DEG=2 F=XTIP AUT=20 P=(1,2,2,+) GIR=5 CN=3,6 
A=l 1 4 12,0 40 0 300 240 2[E2] l/4 2/40 

J4 DEG=2 F=TIAP AUT=2 P=(1,2,2,2,2,1) GIR=10 CN=2,5 POLYGON 
A=1 1 4 2,20 10 100 40 600 E=-2 2-1.61803 2-.61803 2+.61803 2+1.61803 2 
K=(15 10 1,) B2*E2 1/10 2/24 

J5 DEG=3 F=I AUT=2 P=(1,12,22,2) GIR=4 CN=2,5 
A=1 1 1 12,6 4 10 320 340 E=-3 2-1.61803 2-.61803 2+.61803 2+1.61803 3 
K=(9 4 1,) D(J4) 1/3 2/7 

J6 DEG=3 F=IP AUT=2 P=(1,12,22,2) GIR=4 CN=3,5 PRISM 
A=1 1 1 12,6 10 104 240 520 E=2-2.61803 2-.61803 2-.38197 1 2+1.61803 3 
K=(9 4,) B2XE2 1/21 2/41 

J7 DEG=3 F=NTVI AUT=12 P=(1,3,6) GIR=5 CN=3,5 T=3 PETERSEN GRAPH 
A=1 1 1 10,22 10 102 144 224 E=4-2 5+1 3 K=(9 2,) -L(E3) 

J8 DEG=4 F=XTI AUT=2880 P=(1,4,+) GIR=3 CN=5,2 T=2 
A=1 3 7 17,0 40 140 340 740 2[E3] SW(E3) 1/24 2/140 

J9 DEG=4 F=I AUT=32 P=(l,4,14) GIR=4 CN=3,5 T=1 

146. 

A=1 1 1 1,36 30 106 106 630 E=2-3.23607 5+0 2+1.23607 4 K=(6 2,) E2[B1] 1/14 
2/130 

JlO DEG=4 F=TIA AUT=24 P=(1,4,4,1) GIR=4 CN=2,5 T=2 
A=1 1 1 1,34 32 26 16 740 E=-4 4-1 4+1 4 K=(6 4 1,) SW(E1) -W5(B2) -B2XE3 
B2*E3 1/12 2/33 

J11 DEG=4 F=IAP AUT=2 P=(1,22,22,1) GIR=3 CN=4,4 ANTIPRISM 
A=1 1 3 15,24 12 44 302 740 E=2 .23607 4-1 0 2+2.23607 4 K=(3,3) SW(E2) 
-D(J11) -D(J6) l/6 2/43 

TRANSITIVE GRAPHS ON 11 VERTICES 

Kl DEG=O F=XTVIAP AUT=3628800 P=(1,+) CN=1,11 

K2 DEG=2 F=TVIP AUT=2 P=(1,2,2,2,2,2) GIR=11 CN=3,6 POLYGON 
A=1 1 4 2,20 10 100 40 400,1200 
E=2-1.91899 2-1.30972 2-.28463 2+.83083 2+1.68251 2 K=(21 20 5,) 1/10 

K3 DEG=4 F=VI AUT=2 P=(1,22,22,2) GIR=3 CN=4,4 
A=1 1 3 15,24 12 102 44 640,1700 
E=2-2.20362 2-1.59435 2-.47889 2-.23648 2+2.51334 4 K=(6,3) D(K2) -D(K3) 1/24 

K4 DEG=4 F=VI AUT=2 P=(l,22,222) GIR=4 CN=3,6 
A=1 1 1 1,34 32 104 242 424,1212 
E=2-3.22871 2-1.08816 2+.37279 2+.54620 2+1.39788 4 K=(9 4,) 1/5 



TRANSITIVE GRAPHS ON 12 VERTICES 

L1 DEG=O F=XTVIAP AUT=39916800 P=(l,+) CN=1,12 

L2 DEG=1 F=XTIP AUT=3840 P=(1,1,+) CN=2,6 T=1 
A=1 0 4 0,20 0 100 0 400,0 2000 

L3 DEG=2 F=XTIP AUT=2592 P=(1,2,+) GIR=3 CN=3,4 
A=l 3 0 10,0 30 40 0 240,400 2400 2[F3] 4[C2] 1/20 2/20 3/400 4/40 5/10 

L4 DEG=2 F=XTIP AUT=256 P=(l,2,1,+) GIR=4 CN=2,6 
A=1 1 6 0,20 0 20 240 100,100 3000 3[03] F2[B1] B2XF2 1/10 2/5 3/110 4/5 5/4 

L5 DEG=2 F=XTIP AUT=24 P=(1,2,2,1,+) GIR=6 CN=2,6 
A=1 1 4 2,30 0 100 0 400,1200 500 2[F4] B2*F3 B2*F4 C2*D2 1/4 2/10 3/102 5/2 

L6 DEG=2 F=TIAP AUT=2 P=(1,2,2,2,2,2,1) GIR=12 CN=2,6 POLYGON 
A=1 1 4 2,20 10 100 40 400,200 3000 E=-2 2-1.73205 2-1 2+0 2+1 2+1.73205 2 
K=(28 35 15 1,) 1/2 3/120 

L7 DEG=3 F=XTIP AUT=6912 P=(1,3,+) GIR=3 CN=4,3 T=2 
A=1 3 7 0,20 0 60 260 100,1100 3100 3[04] F2[B2] 1/11 2/7 3/34 4/7 5/21 

L8 DEG=3 F=XTI AUT=864 P=(l,3,2,+) GIR=4 CN=2,6 T=3 
A=l 1 1 16,16 0 lOO 100 100,1600 1600 2[F5] D2[C1] B2*F5 1/5 2/12 3/106 5/3 

L9 DEG=3 F=XIP AUT=24 P=(1,12,2,+) GIR=3 CN=3,4 
A=l 1 5 12,26 0 100 100 200,1500 1600 2[F6] W3(D2) B2XF3 C2XD2 1/21 2/21 3/401 
5/11 

L10 DEG=3 F=P AUT=2 P=(l,12,22,22) GIR=3 CN=3,4 
A=1 1 5 10,4 2 102 240 120,440 3020 E=3-2 3-1 2+0 3+2 3 K=(18 10,1) Wl(D4) 
4/11 

L11 DEG=3 AUT=4 P=(1,12,122,12) GIR=4 CN=2,6 
A=1 1 1 14,10 4 2 2 620,540 340 E=-3 2-1.73205 3-1 3+1 2+1.73205 3 
K=(19 15 51,) 3/124 

L12 DEG=3 F=I AUT=2 P=(1,12,22,22) GIR=4 CN=3,6 
A=1 1 1 12,6 10 4 200 500,1240 520 E=2-2.73205 3-1 2+0 2+.73205 2+2 3 
K=(19 16 5,) D(L6) 1/41 3/32 

L13 DEG=3 F=IAP AUT=2 P=(1,12,22,12,1) GIR=4 CN=2,6 PRISM 
A=1 1 1 6,12 10 4 300 220,140 3400 E=-3 2-2 -1 4+0 1 2+2 3 K=(19 16 51,) 
B2XF4 B2*F6 2/14 3/122 

L14 DEG=4 F=XTIP AUT=384 P=(1,4,1,+) GIR=3 CN=3,4 T=1 
A=1 1 7 7,36 0 100 100 700,700 3600 2[F7] L(H5) -D(L26) F3[Bl] 1/24 2/120 
3/600 5/12 

L15 DEG=4 AUT=4 P=(1,112,122,2) GIR=3 CN=4,3 
A=1 1 5 15,6 20 110 42 442,1300 2700 E=4-2 2-.73205 3+0 2+2.73205 4 K=(10,3 1) 
W2(C2) 3/56 

L16 DEG=4 AUT=2 P=(1,22,1222) GIR=3 CN=3,4 
A=1 1 1 11,6 24 12 60 450,702 1304 E=3-2.56155 3-1 2+1 3+1.56155 4 K=(12 4,1) 
4/103 



TRANSITIVE GRAPHS ON 12 VERTICES (CONTD) 

Ll7 DEG=4 F=I AUT=2 P=(1,22,122,2) GIR=4 CN=2,6 
A=1 1 1 1,6 34 32 22 14,1540 1640 E=-4 2-1.73205 2-1 2+0 2+1 2+1.73205 4 
K=(13 10 5 1,) 1/50 3/47 

L18 DEG=4 F=I AUT=4 P=(1,22,14,2) GIR=3 CN=3,4 
A=l 1 1 11,6 24 22 114 212,1440 2340 E=2-3 4-1 0 2+1 2+2 4 K=(12 6,1) 
-D(L21) B2XF6 C2XD3 1/30 2/25 3/501 5/14 

L19 DEG=4 F=I AUT=12 P=(1,13,23,2) GIR=4 CN=2,6 

148. 

A=1 1 1 1,34 34 12 22 6,1700 1640 E=-4 -2 4-1 4+1 2 4 K=(l3 10 5 1,) B2XF5 
2/16 3/214 

L20 DEG=4 F=IAP AUT=4 P=(l,4,24,1) GIR=3 CN=3,4 T=1 CUBOCTAHEDRON 
A=l 1 5 3,30 6 50 304 60,1102 3600 E=5-2 3+0 3+2 4 K=(11 3,2) L(H7) -D(L10) 
4/50 

L21 DEG=4 F=IP AUT=2 P=(1,22,22,12) GIR=3 CN=3,4 ANTIPRISM 
A=1 1 3 15,12 24 104 42 600,1440 3300 E=4-2 2-.73205 3+0 2+2.73205 4 
K=(10 1,3) -D(Ll2) l/44 3/205 

l22 DEG=4 F=IA AUT=2 P=(1,22,222,1) GIR=3 CN=3,4 
A=1 1 1 11,24 12 4 202 454,322 740 E=2-2.73205 2-2 3+0 2+.73205 2+2 4 
K=(12 5,1) 1/22 3/403 

L23 DEG=4 F=I AUT=64 P=(1,4,14,2) GIR=4 CN=2,6 T=1 
A=1 1 1 1,36 30 30 6 6,1700 1700 E=-4 2-2 6+0 2+2 4 K=(13 11 5 1,) F4[B1] 
B2*F7 C2*D3 1/42 2/110 3/221 5/24 

L24 DEG=4 F=I AUT=4 P=(1,22,124) GIR=4 CN=3,6 
A=1 1 1 1,6 60 50 224 222,1114 512 E=2-3 2-2 0 6+1 4 K=(l3 6,) D(L13) 1/14 
2/43 3/132 5/42 

L25 DEG=5 F=XTI AUT=86400 P=(1,5,+) GIR=3 CN=6,2 T=2 
A=1 3 7 17,37 0 100 300 700,1700 3700 2[F8] SW(F3) SW(F8) D2[C2] F3[B2] 1/25 
2/121 3/610 5/13 

L26 DEG=5 I AUT=64 P=(1,14,4,2) GIR=3 CN=4,3 
A=1 3 7 3,23 60 160 14 414,1700 3700 E=-3 8-1 2+3 5 K=(4,6 2) SW(F2) SW(F4) 
-D(Ll8) -D(L35) F4[B2] 1/43 2/114 3/245 5/61 

L27 DEG=5 AUT=1 P=(1/5/6) GIR=3 CN=3,4 
A=1 1 1 15,11 50 66 306 412,1160 3106 E=-3 2-2.73205 2-1 2+0 2+.73205 2+2 5 
K=(7 1,3) 3/225 

L28 DEG=5 F=I AUT=2 P=(1,122,222) GIR=3 CN=3,4 
A=1 1 5 1,1 50 124 252 526,272 166 E=2-3.73205 2-1 2-.26795 5+1 5 K=(9 4,1) 
D(L22) 1/61 3/413 

L29 DEG=5 F=I AUT=2 P=(1,122,222) GIR=3 CN=4,3 
A=1 3 7 1,1 22 42 170 264,1350 724 E=-3 2-2.73205 2-1 2+0 2+.73205 2+2 5 
K=(7,3 1) 1/13 3/174 

L30 DEG=5 F=I AUT=l2 P=(1,23,6) GIR=3 CN=4,3 
A=l 3 1 11,31 44 12 314 222,1524 1342 E=6-2 3+1 2+2 5 K=(6,4 1) C2XD4 -C2*D4 
1/31 2/27 3/434 4/17 5/31 



TRANSITIVE GRAPHS ON 12 VERTICES (CONTD) 

L31 DEG=5 AUT=1 P=(1/5/6) GIR=3 CN=3,4 
A=1 1 1 15,15 74 42 210 702,622 3406 E=2-2.73205 2-2 -1 2+0 2+.73205 1 3 5 
K=(6 1,4) 3/503 

L32 DEG=5 F=I AUT=4 P=(1,122,24) GIR=3 CN=4,3 
A=1 1 1 3,23 16 16 250 144,1630 1524 E=2-3 2-2 4+0 1 2+2 5 K=(7,3 1) 1/15 
2/17 3/311 5/23 

L33 DEG=5 F=I AUT=4 P=(l,l4,24) GIR=3 CN=4,4 
A=l 1 1 11,5 50 124 262 162,1216 516 E=3-3 2-1 6+1 5 K=(8 2,2) -L(F7) D(L20) 
4/111 

L34 DEG=5 F=TIA AUT=120 P=(1,5,5,1) GIR=4 CN=2,6 T=2 
A=1 1 1 1,1 74 72 66 56,36 3700 E=-5 5-1 5+1 5 K=(10 10 51,) SW(F1) SW(F5) 
-W6(B2) -B2XF8 B2*F8 2/111 3/163 

L35 DEG=5 F=IA AUT=8 P=(1,14,14,1) GIR=3 CN=3,4 
A=l 1 1 15,15 74 42 206 212,1422 3700 E=2-3 5-1 3+1 3 5 K=(6 2,4) SW(F6) 
SW(F7) -D(L15) B2XF7 2/124 3/416 

L36 DEG=5 F=I AUT=2 P=(1,122,222) GIR=3 CN=4,4 
A=1 1 1 5,31 50 124 216 116,642 3122 E=2-3 2-1.73205 2-1 3+1 2+1.73205 5 
K=(7,3) 1/7 3/350 

L37 DEG=5 F=TIAP AUT=10 P=(1,5,5,1) GIR=3 CN=4,4 T=1 ICOSAHEDRON 
A=1 3 5 3,31 50 114 22 560,606 3700 E=3-2.23607 5-1 3+2.23607 5 K=(5,5) 
SW(E2+) -D(L37) 4/121 

TRANSITIVE GRAPHS ON 13 VERTICES 

Ml DEG=O F=XTVIAP AUT=479001600 P=(1,+) CN=1,13 

M2 DEG=2 F=TVIP AUT=2 P=(1,2,2,2,2,2,2) GIR=l3 CN=3,7 POLYGON 
A=1 1 4 2,20 10 100 40 400,200 2000 5000 
E=2-1.94188 2-1.49702 2-.70921 2+.24107 2+1.13613 2+1.77091 2 K=(36 56 35 6,) 
1/1 

M3 DEG=4 F=VI AUT=4 P=(1,4,44) GIR=4 CN=4,7 T=1 
A=1 1 1 1,20 10 142 144 54,1122 224 4412 E=4-2.65109 4+.27389 4+1.37720 4 
K=(18 12,) 1/6 

M4 DEG=4 F=VI AUT=2 P=(1,22,22,22) GIR=3 CN=4,5 
A=l 1 3 15,24 12 44 102 400,1200 3500 3240 
E=2-2.20623 2-1.70081 2-1.25595 2-.17097 2+.42692 2+2.90704 4 K=(l5 4,3) 
D(M2) l/44 

M5 DEG=4 F=VI AUT=2 P=(1,22,222,2) GIR=4 CN=3,7 
A=l 1 1 1,34 32 4 202 414,222 2500 5240 
E=2-3.43891 2-.80575 2-.46814 2-.36089 2+1.06170 2+2.01199 4 K=(18 16 5,) 
-D(M4) 1/5 

M6 DEG=6 F=TVIS AUT=6 P=(1.6,6) GIR=3 CN=5,5 T=l 
A=1 3 1 15,11 43 124 312 432,654 3046 5360 E=6-2.30278 6+1.30278 6 K=(6,6) 
1/15 



TRANSITIVE GRAPHS ON 13 VERTICES (CONTD) 

M7 DEG=6 F=VIS AUT=2 P=(1,222,222) GIR=3 CN=5,5 
A=1 3 3 15,5 3 132 74 244,1502 3350 3560 

150. 

E=2-3.19783 2-1.96516 2-1.07010 2+.07010 2+.96516 2+2.19783 6 K=(6,6) 1/64 

M8 DEG=6 F=VI AUT=2 P=(1,222,222) GIR=3 CN=4,5 
A=1 3 5 3,1 1 174 172 164,1152 2524 5252 
E=2-4.14811 2-.88018 2-.56468 2+.51496 2+.66799 2+1.41002 6 K=(9 4,3) -M9 
D(M5) 1/16 

M9 DEG=6 F=VI AUT=2 P=(1,222,222) GIR=3 CN=5,4 
A=1 1 3 5,33 75 124 52 412,1224 3604 7602 
E=2-2.41002 2-1.66799 2-1.51496 2-.43532 2-.11982 2+3.14811 6 K=(3,9 4) -M8 
-D(MS) 1/52 

TRANSITIVE GRAPHS ON 14 VERTICES 

Nl DEG=O F=XTVIAP AUT=6227020800 P=(1,+) CN=1,14 

N2 DEG=1 F=XTIP AUT=46080 P=(1,1,+) CN=2,7 T=1 
A=1 0 4 0,20 0 lOO 0 400,0 2000 0 10000 

N3 DEG=2 F=XTIP AUT=28 P=(l,2,2,2,+) GIR=7 CN=3,8 
A=1 1 4 2,20 50 0 200 0,0 2400 1200 3000 2[G2] 1/20 2/200 

N4 DEG=2 F=TIAP AUT=2 P=(1,2,2,2,2,2,2,1) GIR=14 CN=2,7 POLYGON 
A=1 1 4 2,20 10 100 40 400,200 2000 1000 14000 
E=-2 2-1.80194 2-1.24698 2-.44504 2+.44504 2+1.24698 2+1.80194 2 
K=(45 84 70 21 1,) B2*G2 1/2 2/140 

N5 DEG=3 F=I AUT=2 P=(l,12,22,22,2) GIR=4 CN=2,7 
A=1 1 1 12,6 10 4 200 100,240 120 3400 5400 
E=-3 2-2.24698 2-.80194 2-.55496 2+.55496 2+.80194 2+2.24698 3 
K=(33 44 25 6 1,) D(N4) 1/11 2/7 

N6 DEG=3 F=IP AUT=2 P=(1,12,22,22,2) GIR=4 CN=3,7 PRISM 
A=1 1 1 12,6 10 4 200 500,240 120 5000 12400 
E=2-2.80194 2-1.44504 2-.80194 2+.24698 2+.55496 1 2+2.24698 3 K=(33 44 25 6,) 
B2XG2 1/5 2/201 

N7 DEG=3 F=TI AUT=24 P=(1,3,6,4) GIR=6 CN=2,7 T=4 HEAWOOD GRAPH 
A=1 1 1 10,2 2 4 4 10,1240 1500 460 320 E=-3 6-1.41421 6+1.41421 3 
K=(33 42 20 6 1,) 2/144 

N8 DEG=4 F=XI AUT=28 P=(l,22,2,+) GIR=3 CN=4,6 
A=l 3 5 3,34 72 0 200 200,400 3400 3600 7200 2[G3] 1/104 2/1200 

N9 DEG=4 F=IAP AUT=2 P=(l,22,22,22,1) GIR=3 CN=4,5 ANTIPRISM 
A=1 1 3 15,24 12 44 102 500,240 1400 6200 17000 
E=2-2.24698 2-1.69202 2-1.35690 2-.55496 0 2+.80194 2+3.04892 4 K=(21 10,3) 
1/60 2/504 

N10 DEG=4 F=I AUT=2 P=(1,22,222,12) GIR=4 CN=2,7 
A=l 1 1 1,32 34 14 22 2,4 3600 3300 3440 
E=-4 2-2.24698 2-.80194 2-.55496 2+.55496 2+.80194 2+2.24698 4 
K=(24 26 15 6 1,) B2*G3 1/12 2/164 



TRANSITIVE GRAPHS ON 14 VERTICES (CONTD) 151. 

Nl1 DEG=4 F=IA AUT=2 P=(l,22,2222,1) GIR=4 CN=3,7 
A=1 1 1 1,24 12 4 2 414,1222 450 4320 740 
E=2-3.04892 2-2.24698 2-.55496 0 2+.80194 2+1.35690 2+1.69202 4 K=(24 22 5,) 
l/22 2/214 

Nl2 DEG=4 F=I AUT=l28 P=(1,4,14,4) GIR=4 CN=3,7 T=l 
A=1 1 1 1,36 30 6 6 30,600 3100 4600 13100 E=2-3.60388 2-.89008 7+0 2+2.49396 4 
K=(24 28 15 3,) -D(N14) G2[B1] 1/30 2/1005 

N13 DEG=4 F=TI AUT=24 P=(1,4,6,3) GIR=4 CN=2,7 T=2 DUAL OF HEAWOOD 
A=1 1 1 1,30 24 14 12 6,22 2700 3240 1540 E=-4 6-1.41421 6+1.41421 4 
K=(24 24 15 6 1,) 2/154 

N14 DEG=5 F=I AUT=128 P=(1,14,4,4) GIR=3 CN=5,4 
A=1 3 7 3,23 14 60 114 260,1200 2500 7200 16500 
E=2-2.60388 7-1 2+.10992 2+3.49396 5 K=(12,6 2) -D(N12) G2[B2] 1/31 2/207 

N15 DEG=5 F=I AUT=2 P=(1,122,2222) GIR=3 CN=4,5 
A=1 1 5 5,11 50 24 242 122,1006 2412 3340 4720 
E=2-2.69202 2-2.35690 2-1.24698 -1 2+.44504 2+1.80194 2+2.04892 5 K=(15 4,3) 
D(N6) D(N9) 1/61 2/1114 

N16 DEG=5 F=A AUT=1 P=(1/5/7/1) GIR=3 CN=4,5 
A=1 1 1 11,15 60 6 202 530,406 710 2066 7300 
E=2-3.21615 2-1.85926 -1 2-.38772 2-.16723 2+.96917 2+2.66119 5 K=(15 8,3) 
2/226 

N17 DEG=5 F=I AUT=2 P=(1,122,222,2) GIR=3 CN=4,5 
A=1 1 5 11,5 70 164 12 406,1042 422 7200 16500 
E=2-3.24698 2-1.55496 2-1.24698 2-.19806 2+.44504 2+1.80194 3 5 K=(15 8,3) 
B2XG3 1/105 2/1201 

N18 DEG=5 F=I AUT=2 P=(1,122,2222) GIR=4 CN=3,7 
A=1 1 1 1,1 66 72 52 26,1110 2604 5050 12424 
E=2-4.04892 2-1.24698 -1 2+.35690 2+.44504 2+.69202 2+1.80194 5 K=(18 16 5,) 
D(N11) D(N5) 1/23 2/541 

N19 DEG=5 F=I AUT=2 P=(1,122,222,2) GIR=4 CN=2,7 
A=1 1 1 1,1 72 66 54 34,26 52 7500 7600 
E=-5 2-1.80194 2-1.24698 2-.44504 2+.44504 2+1.24698 2+1.80194 5 
K=(18 20 15 6 1,) 1/13 2/172 

N20 DEG=6 F=XTI AUT=3628800 P=(1,6,+) GIR=3 CN=7,2 T=2 
A=1 3 7 17,37 77 0 200 600,1600 3600 7600 17600 2[G4] SW(G4) 1/124 2/1600 

N21 DEG=6 AUT=l P=(1/6/7) GIR=3 CN=5,4 
A=1 1 1 11,5 75 70 46 422,630 1456 3302 13206 
E=2-3.21615 -2 2-1.85926 2-.38772 2-.16723 2+.96917 2+2.66119 6 K=(9,6 2) 
2/233 

N22 DEG=6 F=I AUT=2 P=(1,222,1222) GIR=3 CN=4,5 
A=1 3 1 1,5 3 170 164 552,1224 2612 4134 12072 
E=2-4.04892 2-1.80194 2-.44504 2+.35690 2+.69202 2+1.24698 2 6 K=(12 6,3) 
1/122 2/1206 



TRANSITIVE GRAPHS ON 14 VERTICES (CONTD) 

N23 DEG=6 F=I AUT=2 P=(1,222,1222) GIR=3 CN=4,5 
A=1 3 5 3,1 1 170 164 152,1304 2642 5134 2472 

152. 

E=2-4.04892 -2 2-1.24698 2+.35690 2+.44504 2+.69202 2+1.80194 6 K=(l2 6,3) 
D(N16) 1/46 2/1017 

N24 DEG=6 F=TIA AUT=720 P=(l,6,6,1) GIR=4 CN=2,7 T=2 
A=l 1 1 1,1 1 174 172 166,156 136 76 17600 E=-6 6-1 6+1 6 K=(15 20 15 6 1,) 
SW(Gl) -W7(B2) -B2XG4 B2*G4 1/52 2/173 

N25 DEG=6 F=I AUT=2 P=(1,222,1222) GIR=3 CN=4,5 
A=1 3 1 11,15 23 36 214 222,544 3142 5450 13520 
E=2-2.69202 2-2.35690 2-1.80194 2-.44504 2+1.24698 2 2+2.04892 6 K=(9 2,6) 
1/106 2/1203 

N26 DEG=6 F=I AUT=2 P=(1,222,1222) GIR=3 CN=4,5 
A=1 1 3 5,15 23 36 214 222,544 3142 5450 13520 
E=2-2.69202 2-2.35690 -2 2-1.24698 2+.44504 2+1.80194 2+2.04892 6 K=(9 2,6) 
1/54 2/570 

N27 DEG=6 F=IA AUT=2 P=(1,222,222,1) GIR=3 CN=4,5 
A=1 3 3 15,5 3 132 74 144,1142 2310 5460 17600 
E=2-3.49396 6-1 2-.10992 2 2+2.60388 6 K=(9 4,6) SW(G3) -D(N28) 1/160 2/1214 

N28 DEG=6 F=IA AUT=2 P=(1,222,222,1) GIR=3 CN=5,4 
A=1 1 3 5,33 75 124 52 412,224 3204 7402 17600 
E=2-2.60388 -2 6-1 2+.10992 2+3.49396 6 K=(6,9 4) SW(G2) -D(N17) -D(N27) 1/16 
2/1055 

TRANSITIVE GRAPHS ON 15 VERTICES 

01 DEG=O F=XTVIAP P=(1,+) CN=1,15 

02 DEG=2 F=XTIP AUT=62208 P=(1,2,+) GIR=3 CN=3,5 
A=1 3 0 10,0 30 40 0 240,400 0 2400 4000 24000 5[C2] 1/20 

03 DEG=2 F=XTIP AUT=400 P=(1,2,2,+) GIR=5 CN=3,9 
A=1 1 4 12,0 40 0 0 500,440 200 0 14000 10200 3[E2] 1/40 

04 DEG=2 F=TIP AUT=2 P=(1,2,2,2,2,2,2,2) GIR=15 CN=3,8 POLYGON 
A=1 1 4 2,20 10 100 40 400,200 2000 1000 10000 24000 
E=2-1.95630 2-1.61803 2-1 2-.20906 2+.61803 2+1.33826 2+1.82709 2 
K=(55 120 126 56 7,) 1/2 

05 DEG=4 F=XTI AUT=691200 P=(1,4,+) GIR=3 CN=5,3 T=2 
A=1 3 7 17,0 40 0 140 540,1540 200 4200 14200 34200 3[E3] 1/44 

06 DEG=4 F=I AUT=4 P=(l,22,24,4) GIR=3 CN=3,5 
A=1 1 1 11,4 42 24 22 214,412 500 1040 14240 16100 
E=4-2.61803 4-.38197 2+.38197 2+1 2+2.61803 4 K=(30 32 10,1) C2XE2 1/60 

07 DEG=4 F=NTIA AUT=8 P=(1,4,8,2) GIR=3 CN=4,6 T=1 
A=1 3 1 11,20 4 110 144 2,210 1060 3002 5300 12440 E=5-2 4-1 5+2 4 
K=(29 24 2,2) L(J7) 



TRANSITIVE GRAPHS ON 15 VERTICES (CONTD) 153. 

08 DEG=4 F=I AUT=2 P=(1,22,22,22,2) GIR=3 CN=3,5 
A=l 1 3 15,24 12 44 102 400,200 1500 2240 7000 33000 
E=2-2.16535 2-2 4-1 2-.12920 2+1.12920 2+3.16535 4 K=(28 20 1,3) 0(04) 1/12 

09 DEG=4 F=I AUT=2 P=(1,22,2222,2) GIR=4 CN=3,8 
A=l 1 1 1,24 12 4 2 414,1222 410 4220 10540 4340 
E=2-3.23607 2-1.82709 2-1.33826 2+.20906 2+1 2+1.23607 2+1.95630 4 
K=(31 36 15 2,) 1/104 

010 DEG=4 F=I AUT=2 P=(l,22,222,22) GIR=3 CN=3,5 
A=l 1 1 11,24 12 54 122 2,4 3040 3100 11400 26200 
E=2-2.95630 2-2 2-1.20906 2+.33826 2+.38197 2+.82709 2+2.61803 4 K=(30 32 11,1) 
1/22 

011 DEG=4 F=I AUT=2 P=(1,22,222,22) GIR=4 CN=3,8 
A=1 1 1 1,34 32 4 202 14,22 2400 5200 12500 5240 
E=2-3.57433 4-1 2-.27977 2+.40898 2+1 2+2.44512 4 K=(31 40 25 6,) 1/140 

012 DEG=4 F=I AUT=4 P=(1,4,224,2) GIR=4 CN=3,8 T=1 
A=1 1 1 1,24 12 30 6 120,50 1042 2104 6600 11600 
E=2-3.23607 2-2 4-.61803 2+1.23607 4+1.61803 4 K=(31 36 16 2,) C2*E2 1/11 

013 DEG=6 F=I AUT=2 P=(1,222,2222) GIR=3 CN=5,3 
A=l 3 7 17,1 1 50 320 344,542 2510 1260 16504 15242 
E=2-2.95630 2-2.61803 2-1.20906 2-.38197 2+.33826 2+.82709 2+3 6 K=(l3,6 4 1) 
1Fj44 

014 DEG=6 F=I AUT=2 P=(1,222,2222) GIR=3 CN=3,5 
A=1 3 5 3,1 41 134 72 104,42 3464 3312 3260 23510 
E=2-3.16535 2-3 2-1.12920 2+.12920 4+1 2+2.16535 6 K=(l5 8 1,4) 1/121 

015 DEG=6 F=I AUT=2 P=(1,222,2222) GIR=3 CN=4,5 
A=1 3 1 1,5 3 72 334 64,1112 2224 1412 16160 15150 
E=2-3.78339 2-2.61803 2-.38197 2+0 2+.48883 2+1.54732 2+1.74724 6 K=(16 8,3) 
1/16 

016 DEG=6 F=I AUT=4 P=(l,24,224) GIR=3 CN=3,5 
A=1 3 5 13,5 43 146 36 30,140 3300 3420 17410 17240 
E=2-3 4-1.61803 2-1.23607 4+.61803 2+3.23607 6 K=(12 4 1,7) 1/122 

017 DEG=6 F=I AUT=2 P=(1,222,222,2) GIR=3 CN=5,4 
A=1 1 3 5,33 75 124 52 204,1402 2412 1224 17200 37400 
E=2-2.61803 2-1.74724 2-1.54732 2-.48883 2-.38197 2+0 2+3.78339 6 1<=(10,9 4) 
-0(010) -0(011) 1/52 

018 DEG=6 F=I AUT=2 P=(1,222,2222) GIR=3 CN=4,5 
A=1 1 3 5,23 55 164 1s2 204,402 322n 7410 13o12 21o24 
E=2-2.82709 2-2.33826 2-1.23607 2-.79094 2+0 2+.95630 2+3.23607 6 K=(12 4,7) 
-0(017) 1/124 

019 DEG=6 F=I AUT=2 P=(1,222,2222) GIR=3 CN=3,5 
A=1 1 1 11,23 55 134 72 42,104 3404 7202 13214 7422 
E=2-3 2-2.61803 2-.82709 2-.38197 2-.33826 2+1.20906 2+2.95630 6 K=(13 4 1,6) 
0(08) 1/13 



TRANSITIVE GRAPHS ON 15 VERTICES (CONTD) 

020 DEG=6 F=I AUT=48 P=(1,24,8) GIR=3 CN=5,3 
A=1 3 1 11,31 71 104 12 614,422 3224 2442 15244 12702 E=8-2 4+1 2+3 6 
K=(12,7 4 1) C2XE3 -C2*E3 1/64 

021 DEG=6 F=NTVI AUT=48 P=(1,6,8) GIR=3 CN=4,5 T=1 

154. 

A=1 3 1 1,21 11 124 142 654,54 2342 2524 15032 2632 E=5-3 9+1 6 K=(16 8 2,3) 
-L(F8) 0(07) 

022 DEG=6 F=I AUT=2 P=(1,222,2222) GIR=3 CN=3,5 
A=1 3 1 1,1 1 174 172 424,1212 2124 5052 12164 5152 
E=2-4.57433 2-1.27977 2-.59102 2+0 4+1 2+1.44512 6 K=(18 16 5,1) 1/62 

023 DEG=6 F=I AUT=5184 P=(1,6,26) GIR=4 CN=3,8 T=1 
A=1 1 1 1,1 1 176 176 160,1016 1016 1016 16160 16160 
E=2-4.85410 10+0 2+1.85410 6 K=(19 20 10 2,) 0(012) 0(09) E2[C1] 1/51 

024 DEG=6 F=I AUT=4 P=(1,24,224) GIR=3 CN=4,6 
A=1 1 5 13,5 43 2 204 740,630 1262 1514 6464 12312 
E=2-2.61803 4-2.23607 2-.38197 2+0 4+2.23607 6 K=(13 4,6) -0(06) 1/15 

TRANSITIVE GRAPHS ON 16 VERTICES 

P1 DEG=O F=XTVIAP P=(1,+) CN=1,16 

P2 DEG=1 F=XTIP AUT=645120 P=(1,1,+) CN=2,8 T=1 
A=1 0 4 0,20 0 100 0 400,0 2000 0 10000 0,40000 

P3 DEG=2 F=XTIP AUT=6144 P=(1,2,1,+) GIR=4 CN=2,8 
A=l 1 6 0,20 0 20 240 100,0 100 5000 2000 2000,60000 2[H3] 4[03] H2[B1] B2XH2 
D2XD2 B2*H3 D2*D3 1/20 2/3 3/3 4/30 5/24000 6/1200 7/3 8/42 9/30 10/3 11/3 
12/240 13/5 14/4 

P4 DEG=2 F=XTIP AUT=32 P=(1,2,2,2,1,+) GIR=8 CN=2,8 
A=1 1 4 2,20 10 140 0 400,0 0 2000 5000 2400,14000 2[H4] B2*H4 1/100 2/400 
6/1001 8/24 11/200 12/102 13/1000 14/100 

P5 DEG=2 F=TIAP AUT=2 P=(1,2,2,2,2,2,2,2,1) GIR=16 CN=2,8 POLYGON 
A=1 1 4 2,20 10 100 40 400,200 2000 1000 10000 4000,60000 
E=-2 2-1.84776 2-1.41421 2-.76537 2+0 2+.76537 2+1.41421 2+1.84776 2 
K=(66 165 210 126 28 1,) 1/10 12/210 

P6 DEG=3 F=XTIP AUT=497664 P=(1,3,+) GIR=3 CN=4,4 T=2 
A=1 3 7 0,20 0 60 260 100,0 1100 5100 2000 22000,62000 2[H5] 4[04] H2[B2] 1/21 
2/22 3/22 4/1004 5/60001 6/10004 7/22 8/1002 9/1002 10/22 11/24 12/2040 13/120 
14/5 

P7 DEG=3 F=XTIP AUT=288 P=(1,3,3,1,+) GIR=4 CN=2,8 T=2 
A=1 1 1 14,12 6 160 0 400,0 2000 5000 2400 25000,12400 2[H7] B2XH3 D2XD3 B2*H5 
B2*H7 02*04 2/201 3/12 4/402 5/441 6/1024 7/11 8/404 9/300 10/12 11/402 12/106 
13/16 

P8 DEG=3 F=XI AUT=32 P=(1.12,22,+) GIR=4 CN=3,8 
A=1 1 1 12,6 50 124 0 400,0 400 1000 16000 12400,7000 2[H6] 1/101 2/42 6/2024 
8/43 11/14 12/4040 13/60 14/101 



TRANSITIVE GRAPHS ON 16 VERTICES (CONTD) 

P9 DEG=3 F=I AUT=2 P=(1,12,22,22,22) GIR=4 CN=3,8 
A=l 1 1 12,6 10 4 240 120,200 lOO 5000 2400 24000,52000 
[=2-2.84776 2-1.76537 -1 2-.41421 2-.23463 2+.84776 2+1 2+2.41421 3 
K=(51 96 85 36 7,) D(P5) 1/11 12/54 

P10 DEG=3 F=IAP AUT=2 P=(1,12,22,22,12,1) GIR=4 CN=2,8 PRISM 
A=1 1 1 12,6 10 4 200 100,240 120 1400 5000 2400,70000 
E=-3 2-2.41421 3-1 2-.41421 2+.41421 3+1 2+2.41421 3 K=(51 96 85 36 7 1,) 
B2XH4 B2*H6 2/11 6/1042 12/301 

P11 DEG=3 AUT=8 P=(1,12,122,122,2) GIR=4 CN=2,8 
A=1 1 1 14,2 2 10 4 160,100 40 600 600 26000,16000 

155. 

E=-3 2-2.23607 5-1 5+1 2+2.23607 3 K=(51 95 80 33 7 1,) 6/2011 9/440 12/114 
13/404 

P12 DEG=3 F=IA AUT=6 P=(1,3,6,23,1) GIR=6 CN=2,8 T=2 
A=1 1 1 10,10 4 2 4 2,620 1140 300 440 1020,70000 
E=-3 4-1.73205 3-1 3+1 4+1.73205 3 K=(51 94 75 27 7 1,) 8/105 11/102 12/412 
13/1001 

P13 DEG=4 F=XTI AUT=165888 P=(1,4,3,+) GIR=4 CN=2,8 T=3 
A=1 1 1 1,36 36 36 0 400,400 400 400 17000 17000,17000 2[H8] D2[D1] H3[B1] 
B2*H8 D3*D3 1/104 2/205 3/140 4/2042 5/40034 6/11400 7/140 8/2140 9/2102 10/140 
11/140 12/5000 13/500 14/30 

P14 DEG=4 F=XI AUT=288 P=(1,13,3,+) GIR=3 CN=4,4 
A=1 1 5 15,22 46 152 0 400,400 1000 6400 5000 32400,27000 2[H9] W4(D2) B2XH5 
D2XD4 2/23 3/46 4/224 5/20520 6/306 7/106 8/222 9/161 10/106 11/25 12/451 
13/121 

P15 DEG=4 F=XIP AUT=32 P=(1,22,12,+) GIR=3 CN=4,6 
A=1 1 3 15,6 52 164 0 400,0 3000 2400 17000 12400,45400 2[H10] 1/120 2/420 
6/11100 8/2041 11/220 12/2011 13/103 14/12 

P16 DEG=4 F=IP AUT=2 P=(1,22,22,22,12) GIR=3 CN=4,6 ANTIPRISM 
A=1 1 3 15,24 12 44 102 400,200 1500 2240 3000 32000,65000 
E=2-2.17958 2-2 2-1.41421 2-.64885 2-.43355 0 2+1.41421 2+3.26197 4 
K=(36 35 5,3) 1/6 12/4404 

P17 DEG=4 F=I AUT=2 P=(1,22,1222,22) GIR=4 CN=3,8 
A=1 1 1 1,30 24 12 4 402,1014 422 4240 2140 21200,50500 
[=2-3.41421 2-1.84776 2-.76537 2-.58579 0 2+.76537 2+1.84776 2+2 4 
K=(39 56 35 9,) 1/60 12/2003 

P18 DEG=4 F=I AUT=2 P=(1,22,2222,12) GIR=4 CN=3,8 
A=l 1 1 1,2 4 24 12 122,1054 50 120 14600 4300,50440 
E=2-3.26197 2-2 2-1.41421 0 2+.43355 2+.64885 2+1.41421 2+2.17958 4 
K=(39 55 30 6,) 1/14 12/4003 

P19 DEG=4 F=IA AUT=2 P=(1,22,222,22,1) GIR=4 CN=2,8 
A=1 1 1 1,32 34 2 4 14,22 1600 2600 2240 1500,74000 
E=-4 2-2.61313 2-1.08239 6+0 2+1.08239 2+2.61313 4 K=(39 59 45 21 7 1,) 1/42 
12/512 

P20 DEG=4 F=N AUT=2 P=(1,112,111222,11) GIR=4 CN=3,8 
A=1 1 1 1,30 2 4 24 14,1002 402 2320 4310 1540,6240 
E=2-3.23607 -2 4-1.41421 0 2+1.23607 4+1.41421 2 4 K=(39 54 30 6,) 



TRANSITIVE GRAPHS ON 16 VERTICES (CONTD) 
156. 

P21 DEG=4 F=I AUT=2 P=(l,l12,1222,22) GIR=4 CN=3,8 
A=1 1 1 1,6 22 12 24 14,220 2110 1240 540 25000,52400 
E=2-3.41421 -2 2-1.41421 2-.58579 3+0 2+1.41421 3+2 4 K=(39 56 35 9,) B2XH6 
2/103 6/17 12/65 

P22 DEG=4 AUT=8 P=(l,112,122,22,2) GIR=3 CN=4,4 
A=1 1 5 15,6 42 142 20 410,1400 3400 200 10100 34000,72000 
E=5-2 2-1.23607 5+0 2 2+3.23607 4 K=(36 34,3 1) W2(D3) 6/1250 9/2041 12/544 
13/221 

P23 DEG=4 F=I AUT=256 P=(1,4,14,4,2) GIR=4 CN=2,8 T=l 
A=1 1 1 1,36 30 6 6 30,600 1100 1100 600 36000,36000 
E=-4 2-2.82843 10+0 2+2.82843 4 K=(39 61 50 24 7 1,) H4[B1] 1/202 2/410 
6/3011 9/230 10/240 12/134 13/412 14/44 

P24 DEG=4 AUT=2 P=(1,112,11222,111) GIR=4 CN=3,8 
A=1 1 1 1,6 30 24 14 402,202 2060 1050 700 34000,43100 
E=2-3.23607 3-2 5+0 2+1.23607 3+2 4 K=(39 55 30 6,) 6/1054 9/2042 

P25 DEG=4 F=I AUT=4 P=(1,22,124,22) GIR=4 CN=2,8 
A=1 1 1 1,30 4 2 24 12,14 22 2640 5140 6300,1700 
E=-4 2-2 4-1.41421 2+0 4+1.41421 2+2 4 K=(39 56 40 21 7 1,) D(P10) B2*H10 
2/105 6/4401 8/441 11/103 12/4202 13/206 14/22 

P26 DEG=4 AUT=! P=(l/4/7/4) GIR=4 CN=2,8 
A=1 1 1 1,30 6 14 2 22,10 24 6440 7100 3600,740 
E=-4 -2 2-1.84776 2-1.41421 2-.76537 2+.76537 2+1.41421 2+1.84776 2 4 
K=(39 56 40 21 7 1,) 12/35 

P27 DEG=4 F=TIA AUT=24 P=(1,4,6,4,1) GIR=4 CN=2,8 T=2 4-CUBE 
A=l 1 1 1,14 22 24 12 30,6 1500 1240 2440 2300,74000 E=-4 4-2 6+0 4+2 4 
K=(39 57 40 21 7 1,) B2XH7 D3XD3 B2*H9 3/210 4/2050 5/20620 6/1103 9/214 
10/110 11/240 13/1014 

P28 DEG=4 F=I AUT=6 P=(1,13,36,2) GIR=4 CN=4,8 
A=1 1 1 1,6 22 12 110 60,620 1104 50 10204 16000,61400 
E=4-2.73205 -2 3+0 4+.73205 3+2 4 K=(39 54 25,) D(P12) 8/72 11/105 12/542 
13/61 

P29 DEG=5 F=XI AUT=2048 P=(1,14,2,+) GIR=3 CN=4,4 
A=l 3 7 3,23 74 174 0 400,400 1400 2400 17400 17000,57000 2[Hl1] D2[D2] H3[B2] 
1/105 2/442 3/407 4/2300 5/52402 6/3444 7/407 8/2402 9/2401 10/407 11/407 
12/346 13/1060 14/31 

P30 DEG=5 F=XI AUT=32 P=(1,122,2,+) GIR=3 CN=4,4 
A=l 3 7 11,25 72 166 0 400,400 1400 3000 16400 17400,37000 2[H12] 1/121 2/122 
6/5044 8/432 11/224 12/2340 13/134 14/13 

P31 DEG=5 F=I AUT=256 P=(1,14,4,4,2) GIR=3 CN=4,4 
A=1 3 7 3,23 14 60 114 260,1200 3200 500 10500 36000,76000 
E=-3 2-1.82843 8-1 2+1 2+3.82843 5 K=(24 8,6 2) H4[B2] 1/203 2/414 6/3122 
9/1046 10/242 12/174 13/225 14/45 

P32 DEG=5 AUT=1 P=(1/5/8/2) GIR=3 CN=4,4 
A=1 1 5 15,1 50 2 344 206,1010 2022 560 1242 26100,56200 
E=-3 2-2.84776 2-1.76537 -1 2-.41421 2-.23463 2+.84776 2+2.41421 3 5 
K=(27 20,3 1) 12/73 



TRANSITIVE GRAPHS ON 16 VERTICES (CONTD) 

P33 DEG=5 AUT=l P=(l/5/8/2) GIR=3 CN=4,4 
A=1 1 5 15,1 50 2 344 206,1010 2022 560 1242 36000,46300 

157. 

E=2-3 2-2.41421 3-1 2-.41421 2+.41421 1 2+2.41421 3 5 K=(27 20,3 1) 6/730 

P34 DEG=5 F=A AUT=1 P=(1/5/9/1) GIR=3 CN=4,6 
A=1 1 1 15,5 40 42 202 610,544 120 4012 14406 1330,17100 
E=-3 2-2.41421 2-2.23607 2-1 2-.41421 2+.41421 2+2.23607 2+2.41421 5 
K=(27 19,3) 12/4124 

P35 DEG=5 AUT=1 P=(1/5/8/2) GIR=3 CN=4,6 
A=1 1 5 5,11 60 22 202 524,10 2406 1150 6042 22300,52600 
E=2-3 2-2.23607 5-1 3+1 2+2.23607 3 5 K=(27 20,3) 6/12110 

P36 DEG=5 F=I AUT=2 P=(1,122,2222,2) GIR=3 CN=4,6 
A=1 1 5 5,11 50 24 220 540,1022 442 4012 12006 23300,14700 
E=2-3.17958 2-1.64885 2-1.43355 2-1 2-.41421 1 2+2.26197 2+2.41421 5 
K=(27 20 5,3) 1/111 12/1064 

P37 DEG=5 AUT=8 P=(1,122,1222,12) GIR=4 CN=2,8 
A=1 1 1 1,1 74 70 64 42,22 16 16 17100 13600,7600 
E=-5 2-2.23607 5-1 5+1 2+2.23607 5 K=(30 40 35 21 7 1,) 6/2431 9/2064 12/334 
13/416 

P38 DEG=5 AUT=1 P=(l/5/A) GIR=3 CN=4,6 
A=l 3 1 11,21 14 12 6 104,1220 2242 440 13420 10710,15140 
E=-3 2-2.23607 4-1.73205 2-1 4+1.73205 2+2.23607 5 K=(27 19,3) 13/241 

P39 DEG=5 F=I AUT=6 P=(l,23,16,3) GIR=4 CN=2,8 
A=1 1 1 1,1 6 64 62 54,32 52 34 7300 14700,13500 
E=-5 4-1.73205 3-1 3+1 4+1.73205 5 K=(30 39 35 21 7 1,) 8/1130 11/441 12/711 
13/1007 

P40 DEG=5 F=I AUT=2 P=(l,l22,1222,12) GIR=4 CN=2,8 
A=l 1 1 1,1 14 32 46 66,72 44 30 14700 16300,15500 
E=-5 2-2.41421 3-1 2-.41421 2+.41421 3+1 2+2.41421 5 K=(30 41 35 21 7 1,) 
B2*H12 2/214 6/11240 12/436 

P41 DEG=5 F=I AUT=2 P=(1,122,2222,2) GIR=3 CN=4,4 
A=l 1 1 3,23 12 6 10 404,1130 644 4224 2150 21600,51500 
E=2-2.84776 2-2.41421 2-1.76537 2-.23463 2+.41421 2+.84776 1 2+3 5 
K=(27 20,3 1) 1/23 12/2150 

P42 DEG=5 F=I AUT=2 P=(1,122,2222,2) GIR=4 CN=3,8 
A=l 1 1 1,1 72 66 32 46,1010 2404 4030 12044 25200,52500 
E=2-4.26197 2-1 2-.56645 2-.41421 2-.35115 1 2+1.17958 2+2.41421 5 
K=(30 40 25 6,) 1/45 12/4043 

P43 DEG=5 AUT=! P=(l/5/7/3) GIR=3 CN=4,6 
A=l 1 1 15,11 10 6 202 406,50 1066 2160 12500 21300,42700 
E=2-3.14626 -3 4-1 2-.31784 2+.31784 2+1 2+3.14626 5 K=(27 24 5,3) 12/1310 

P44 DEG=5 F=I AUT=12 P=(l,23,16,3) GIR=3 CN=4,4 
A=l 1 1 11,31 6 44 42 214,412 1224 2422 3100 34100,60700 E=3-3 6-1 4+1 2+3 5 
K=(27 21,3 1) B2XH9 D3XD4 3/242 4/1045 5/2341 6/2413 9/1062 10/52 



TRANSIT! GRAPHS ON 16 VERTICES (CONTD) 

P45 DEG=5 F=A AUT=2 P=(1,1112,111222,1) GIR=3 CN=4,4 
A=1 1 1 11,31 14 12 6 242,1222 2104 5104 10440 24420,60700 
E=2-3 2-2.23607 5-1 3+1 2+2.23607 3 5 K=(27 19,3 1) 6/643 9/1122 

P46 DEG=5 F=A AUT=4 P=(l,l22,1224,1) GIR=3 CN=4,6 
A=1 1 5 3,3 14 2 202 120,140 2250 2444 5230 11424,3700 
E=-3 4-2.23607 4-1 2+1 4+2.23607 5 K=(27 20,3) 9/620 11/111 

P47 DEG=5 F=I AUT=4 P=(1,122,224,2) GIR=3 CN=4,4 
A=1 1 1 3,23 6 12 110 604,250 124 2230 4144 31400,47400 
E=-3 4-2.41421 2-1 4+.41421 2+1 2+3 5 K=(27 20,3 1) 2/602 6/6014 8/1112 
11/207 12/4070 13/72 14/23 

P48 DEG=5 F=I AUT=144 P=(1,14,34,3) GIR=4 CN=2,8 

158. 

A=1 1 1 1,1 74 74 74 12,22 42 6 17200 17400,17100 E=-5 -3 6-1 6+1 3 5 
K=(30 42 35 21 7 1,) B2XH8 B2*H11 2/111 4/1142 5/74400 6/2642 7/304 8/2114 
9/2404 11/141 12/631 13/601 

P49 DEG=5 F=I AUT=2 P=(l,122,1222,12) GIR=3 CN=4,6 
A=1 1 1 11,25 14 12 6 442,1222 130 4144 700 31400,66200 
E=2-3 2-2.41421 3-1 2-.41421 2+.41421 1 2+2.41421 3 5 K=(27 21,3) B2XH10 
2/424 6/5240 12/2112 

P50 DEG=5 F=IA AUT=16 P=(1,14,144,1) GIR=4 CN=3,8 
A=1 1 1 1,1 74 30 244 30,1044 2422 1242 2412 1206,74100 
E=2-3.82843 -3 4-1 6+1 2+1.82843 5 K=(30 34 15 3,) 2/52 6/1154 9/1144 10/304 
12/4700 

P51 DEG=5 F=I AUT=2 P=(1,122,22222) GIR=4 CN=4,8 
A=1 1 1 1,1 70 64 210 104,1212 506 4050 12024 21442,11422 
E=2-3.61313 -3 2-2.08239 2+.08239 6+1 2+1.61313 5 K=(30 32 10,) D(P19) 1/13 
12/57 

P52 DEG=5 F=N AUT=2 P=(1,1112,1111222) GIR=3 CN=4,4 
A=1 1 1 5,25 6 2 310 214,1010 3010 4640 12620 4122,42142 
E=4-2.41421 2-2.23607 -1 4+.41421 1 2+2.23607 3 5 K=(27 18,3 1) 

P53 DEG=5 F=A AUT=8 P=(l,122,12222,1) GIR=4 CN=3,8 
A=1 1 1 1,1 74 74 74 402,202 12 6 17040 17020,17100 
E=2-4.23607 5-1 2+.23607 5+1 3 5 K=(30 40 25 6,) D(P11) 6/645 9/321 12/2405 
13/501 

P54 DEG=5 F=A AUT=2 P=(l,122,12222,1) GIR=3 CN=4,6 
A=1 1 1 5,31 14 12 6 402,1202 1440 6220 2124 21150,14700 
E=2-3 4-1.73205 3-1 1 4+1.73205 3 5 K=(27 19,3) 8/464 11/221 12/2103 13/141 

P55 DEG=5 F=TVI AUT=120 P=(1,5,A) GIR=4 CN=4,8 T=2 -CLEBSCH GRAPH 
A=1 1 1 1,1 14 142 44 522,224 160 6412 3050 630,64006 E=5-3 10+1 5 
K=(30 30 5,) D(P27) 3/604 4/1051 5/2170 6/11220 9/1114 10/54 11/54 13/1023 

P56 DEG=6 F=XTI AUT=18432 P=(1,6,1,+) GIR=3 CN=4,4 T=l 
A=l 1 7 7,37 37 176 0 400,400 3400 3400 17400 17400,77000 2[H13] -D(P109) 
D2[D3] H5[B1] 1/124 2/460 3/143 4/3024 5/71003 6/14006 7/460 8/2143 9/2403 
10/143 11/160 12/7000 13/700 14/214 



TRANSITIVE GRAPHS ON 16 VERTICES (CONTD) 

P57 DEG=6 F=I AUT=2 P=(l,1122,12222) GIR=3 CN=4,4 
A=1 1 5 15,1 1 6 322 652,1104 444 4162 2152 26320,16250 

159. 

E=-4 2-3.41421 2-1.41421 2-.58579 3+0 2+1.41421 3+2 6 K=(21 14,3 1} 2/243 
6/6214 12/4071 

P58 DEG=6 F=I AUT=6 P=(1,123,36) GIR=3 CN=4,4 
A=1 3 7 1,1 1 42 22 102,1550 1464 4730 3324 744,41270 
E=-4 4-2.73205 3+0 4+.73205 3+2 6 K=(21 12,3 1} D(P28) 8/1047 11/445 12/751 
13/75 

P59 DEG=6 AUT=4 P=(1,1122,1224) GIR=3 CN=4,6 
A=l 1 1 11,5 5 36 26 416,342 342 5120 4510 33060,32450 
E=4-3.23607 -2 4+0 4+1.23607 2+2 6 K=(21 14,3) D(P46) 9/1504 11/305 

P60 DEG=6 F=A AUT=1 P=(1/6/8/1) GIR=3 CN=4,4 
A=1 3 5 15,21 41 150 6 354,1500 2102 4422 10432 16240,66600 
E=2-3.23607 3-2 2-1.23607 4+0 2+1.23607 2+3.23607 6 K=(18 9,6 1) 9/3022 

P61 DEG=6 AUT=8 P=(1,1122,1222,2) GIR=3 CN=4,4 
A=1 1 5 15,5 45 6 160 550,302 2242 232 10232 27400,57400 
E=-4 4-2 2-1.23607 5+0 2 2+3.23607 6 K=(18 8,6 2) 6/1163 9/2035 12/372 13/227 

P62 DEG=6 F=A AUT=1 P=(1/6/8/1) GIR=3 CN=4,4 
A=1 1 5 1,35 61 134 2 422,734 410 5006 15042 5502,74600 
E=2-3.41421 -2 2-1.84776 2-.76537 2-.58579 0 2+.76537 2+1.84776 4 6 
K=(18 9,6 2) 12/2107 

P63 DEG=6 F=A AUT=1 P=(1/6/8/1) GIR=3 CN=4,4 
A=1 1 5 1,35 61 134 2 422,734 410 5102 15042 5406,74600 
E=2-3.41421 2-2 2-1.41421 2-.58579 3+0 2+1.41421 2 4 6 K=(18 9,6 2) 6/365 

P64 DEG=6 F=A AUT=1 P=(1/6/8/1) GIR=3 CN=4,4 
A=1 1 1 5,35 31 154 2 422,734 410 5006 4502 35042,35600 
E=2-3.23607 4-2 5+0 2+1.23607 2 4 6 K=(18 9,6 1) 6/5064 

P65 DEG=6 F=I AUT=2 P=(1,222,12222) GIR=3 CN=4,6 
A=1 1 5 3,13 25 6 130 470,304 242 3222 4614 26500,57040 
E=2-2.61313 5-2 2-1.08239 2+1.08239 2+2 2+2.61313 6 K=(18 6,6) 1/62 12/2215 

P66 DEG=6 F=I AUT=2 P=(1,222,1222,2) GIR=3 CN=4,6 
A=1 1 1 11,23 55 6 134 72,242 2304 3022 4414 34600,73200 
E=2-3.41421 2-2.17958 2-.64885 2-.58579 2-.43355 2+0 2 2+3.26197 6 K=(18 10,6) 
-D(P77) 1/224 12/6402 

P67 DEG=6 F=A AUT=1 P=(1/6/8/1) GIR=3 CN=4,6 
A=1 1 5 1,1 51 74 62 12,1624 2050 5106 1526 4162,55600 
E=2-4.14626 -2 2-1.31784 2-.68216 4+0 2+2 2+2.14626 6 K=(21 18 5,3) 12/1245 

P68 DEG=6 F=I AUT=2 P=(l,222,12222) GIR=3 CN=4,6 
A=1 1 5 13,1 1 146 14 422,1250 2720 5110 12460 11146,20546 
E=2-4 2-1.84776 2-1.41421 2-.76537 2+.76537 2+1.41421 2+1.84776 2 6 K=(21 15,3) 
1/144 12/5220 

P69 DEG=6 F=I AUT=2 P=(l,222,1222,2) GIR=4 CN=2,8 
A=l 1 1 1,1 1 36 174 172,162 154 116 66 36600,37200 
E=-6 2-1.84776 2-1.41421 2-.76537 2+0 2+.76537 2+1.41421 2+1.84776 6 
K=(24 35 35 21 7 1,) 1/250 12/536 



TRANSITIVE GRAPHS ON 16 VERTICES (CONTD) 
160. 

P70 DEG=6 F=I AUT=256 P=(l,24,144) GIR=4 CN=3,8 
A=l 1 1 1,1 1 176 120 450,450 3120 3126 4456 3126,4456 
E=2-4.82843 -2 8+0 2+.82843 2+2 6 K=(24 28 15 3,) D(P20) D(P23) D(P50) D(P53) 
H6[Bl] 1/70 2/506 6/3324 9/516 10/305 12/4740 13/312 14/34 

P71 DEG=6 AUT=2 P=(l,1122,12222) GIR=3 CN=4,4 
A=1 1 5 15,21 51 6 164 554,1002 2402 4212 12222 26300,56240 
E=4-2.73205 2-2 3+0 4+.73205 2 4 6 K=(18 8,6 1) 8/2072 11/125 12/2644 13/1124 

P72 DEG=6 F=I AUT=2 P=(1,1122,1222,2) GIR=3 CN=4,4 
A=1 1 5 15,21 51 6 164 554,222 2212 4102 12042 35200,72600 
E=2-3.41421 2-2 2-1.41421 2-.58579 3+0 2+1.41421 2 4 6 K=(l8 10,6 1) B2XH12 
2/63 6/4644 12/2047 

P73 DEG=6 F=IA AUT=2 P=(1,222,2222,1) GIR=3 CN=4,6 
A=1 3 3 5,1 1 132 74 144,142 2110 5060 12314 5462,17600 
E=2-4.02734 3-2 4+0 2+.33182 2+1.19891 2+2.49661 6 K=(21 17 5,3) 1/214 
12/1522 

P74 DEG=6 F=I AUT=4 P=(1,24,1224) GIR=3 CN=4,6 
A=1 1 5 5,13 23 170 340 230,1002 404 6502 7024 26442,17014 
E=2-2.82843 3-2 4-1.41421 4+1.41421 2+2.82843 6 K=(18 7,6) 1/150 12/1603 
13/245 14/320 

P75 DEG=6 F=I AUT=16 P=(1,114,144) GIR=3 CN=4,4 
A=1 1 5 5,25 15 6 60 510,460 3110 5242 2702 15222,22612 
E=2-2.82843 5-2 4+0 2+2 2+2.82843 6 K=(18 2,6 2) 2/415 6/1352 9/2161 10/123 
12/1234 

P76 DEG=6 F=A AUT=4 P=(1,114,11114,1) GIR=3 CN=4,4 
A=1 1 5 5,25 15 170 2 770,4 2442 6412 2502 22422,76200 
E=-4 3-2 4-1.41421 2+0 4+1.41421 4 6 K=(18 9,6 2) 6/2362 8/255 

P77 DEG=6 F=I AUT=2 P=(1,222,222,12) GIR=3 CN=4,4 
A=1 1 3 5,33 75 24 12 452,324 1402 2204 14600 36200,75400 
E=2-2.49661 3-2 2-1.19891 2-.33182 4+0 2+4.02734 6 K=(15 1,9 4) 1/244 12/1017 

P78 DEG=6 AUT=1 P=(1/6/9) GIR=3 CN=4,6 
A=1 1 1 5,1 61 30 306 116,650 2024 4152 5252 3422,54244 
E=-4 2-3.23607 2-2 5+0 2+1.23607 3+2 6 K=(21 14,3) 6/6610 

P79 DEG=6 F=A AUT=1 P=(1/6/8/l) GIR=3 CN=4,4 
A=1 1 1 11,37 5 134 32 442,314 3002 4104 11422 34500,57200 
E=2-3.41421 -2 2-1.41421 2-1.23607 2-.58579 2+0 2+1.41421 2+3.23607 6 
K=(18 8,6 1) 12/1642 

P80 DEG=6 AUT=1 P=(1/6/9) GIR=3 CN=4,6 
A=l 1 1 11,1 61 24 256 16,14 2304 6062 5072 3702,13340 
E=-4 2-3.26197 -2 2-1.41421 0 2+.43355 2+.64885 2+1.41421 2+2.17958 6 
K=(21 14,3) D(P34) 12/1303 

P81 DEG=6 F=TVI AUT=72 P=(l,6.9) GIR=3 CN=4,4 T=1 
A=1 3 7 1.21 61 104 22 430,1624 442 5050 16244 4702,51310 E=9-2 6+2 6 
K=(l8 6,6 2) L(HS) D4XD4 -D4*D4 3/423 4/217 5/1274 6/3066 9/433 10/423 11/243 
13/1403 



TRANSITIVE GRAPHS ON 16 VERTICES (CONTD) 161. 

P82 DEG=6 F=I AUT=768 P=(1,6,16,2) GIR=4 CN=2,8 T=1 
A=l 1 1 1,1 1 176 170 170,146 146 36 36 37400,37400 E=-6 3-2 8+0 3+2 6 
K=(24 36 35 21 7 1,) H7[B1] B2*H13 D3*D4 2/640 3/540 4/2131 5/74110 6/5501 
7/310 8/1414 9/3200 10/540 11/213 12/707 13/417 14/142 

P83 DEG=6 F=A AUT=l P=(l/6/8/1) GIR=3 CN=4,4 
A=l 1 1 5,35 51 130 6 402,1310 2640 1026 11036 5502,56600 
E=-4 2-2.17958 -2 2-1.41421 2-.64885 2-.43355 0 2+1.41421 2+3.26197 6 
K=(18 8,6 2) 12/1107 

P84 DEG=6 F=RI AUT=12 P=(1,6,36) GIR=3 CN=4,6 T=1 SHRIKHANDE GRAPH 
A=1 3 5 3,11 61 30 104 42,614 3222 1250 11406 7540,30720 E=9-2 6+2 6 
K=(18 4,6) 3/310 6/4550 11/640 13/1411 

P85 DEG=6 F=I AUT=2 P=(l,222,12222) GIR=3 CN=4,6 
A=l 1 1 11,21 11 140 56 526,264 2312 4044 12102 30624,31212 
E=2-3.41421 2-3.26197 2-.58579 2+0 2+.43355 2+.64885 2 2+2.17958 6 K=(21 14,3) 
1/122 12/3022 

P86 DEG=6 AUT=8 P=(1,1122,12222) GIR=3 CN=4,4 
A=1 1 5 15,5 45 6 170 570,1202 2602 222 10212 36100,76040 
E=2-3.23607 4-2 5+0 2+1.23607 2 4 6 K=(18 8,6 2) D(P22) 6/2607 9/507 12/2072 
13/324 

P87 DEG=6 F=I AUT=16 P=(l,24,124,2) GIR=4 CN=2,8 
A=l 1 1 1,1 1 170 174 172,126 56 146 36 36600,37200 
E=-6 -2 4-1.41421 4+0 4+1.41421 2 6 K=(24 35 35 21 7 1,) 2/305 6/1171 8/2224 
11/310 12/635 13/611 14/304 

P88 DEG=6 AUT=1 P=(1/6/7/2) GIR=3 CN=4,4 
A=l 1 7 1,15 31 160 6 412,1022 3120 1446 364 26600,56600 
E=-4 4-2 2-1.23607 5+0 2 2+3.23607 6 K=(18 9,6 1) 6/5062 

P89 DEG=6 F=I AUT=16 P=(1,114,124,2) GIR=3 CN=4,4 
A=1 1 5 5,15 25 6 170 570,242 2212 302 10222 37000,76400 E=-4 5-2 6+0 2+2 4 6 
K=(18 10,6 2) B2XH11 2/446 4/256 5/4545 6/317 7/446 8/1123 9/2442 11/146 
12/746 13/1061 

P90 DEG=6 F=I AUT=4 P=(1,222,1224) GIR=3 CN=4,6 
A=1 1 1 11,11 21 146 146 146,320 2250 5024 4422 32414,33012 
E=2-4 -2 4-1.41421 2+0 4+1.41421 2+2 6 K=(21 15,3) D(P54} 2/125 6/10151 8/545 
11/223 12/2407 13/540 14/52 

P91 DEG=6 F=IA AUT=4 P=(1,24,1124,1) GIR=3 CN=4,6 
A=1 1 3 5,23 15 170 6 320,250 2442 1504 12412 5424,77000 
E=2-2.82843 5-2 4+0 2+2 2+2.82843 6 K=(18 8,6) 2/610 6/11150 9/1430 10/310 
12/3300 

P92 DEG=6 AUT=1 P=(l/6/9) GIR=3 CN=4,4 
A=l 1 5 1,31 17 164 16 502,1040 2002 6264 5412 7420,66220 
E=4-2.73205 -2 2-1.23607 2+0 .73205 2+3.23607 6 K=(18 8,6 1) 13/261 

P93 DEG=6 F=N AUT=2 P=(1,11112,111222) GIR=3 CN=4,6 
A=1 3 5 11,1 1 30 206 762,510 450 6122 6062 14344,22344 
E=-4 2-3.23607 4-1.41421 0 2+1.23607 4+1.41421 2 6 K=(21 13.3) 



TRANSITIVE GRAPHS ON 16 VERTICES (CONTD) 162. 

P94 DEG=6 F=I AUT=l2 P=(l,123,36) GIR=3 CN=4,4 
A=1 3 7 1,1 1 162 162 162,450 230 6224 6444 31110,47104 E=2-4 3-2 6+0 4+2 6 
K=(21 15,3 1) D(P45) 3/605 4/2151 5/54064 6/2417 9/3101 10/605 

P95 DEG=6 AUT=2 P=(1,11112,111222) GIR=3 CN=4,4 
A=1 3 7 1,1 1 30 224 762,550 550 4304 2244 34122,32062 
E=-4 2-3.23607 2-2 5+0 2+1.23607 3+2 6 K=(21 13,3 1) 6/751 9/364 

P96 DEG=7 F=XTI AUT=203212800 P=(1,7,+) GIR=3 CN=8,2 T=2 
A=1 3 7 17,37 77 177 0 400,1400 3400 7400 17400 37400,77400 2[H14] SW(Hl4) 
SW(H5) 02[04] H5[B2] 1/125 2/132 3/147 4/2446 5/62311 6/14206 7/612 8/2602 
9/2503 10/147 11/164 12/7040 13/720 14/215 

P97 DEG=7 F=I AUT=4 P=(l,124,224) GIR=3 CN=4,4 
A=l 3 7 11,5 51 25 60 700,1540 3620 5152 14546 2632,43226 E=4-3 5-1 4+1 2+3 7 
K=(l2 2,9 1) 3/311 6/4463 11/324 13/163 

P98 DEG=7 AUT=l P=(1/7/8) GIR=3 CN=4,4 
A=1 1 5 11,5 75 45 330 426,1442 3102 7430 4252 26222,70246 
E=2-3.14626 2-3 3-1 2-.31784 2+.31784 2+1 2+3.14626 7 K=(12 1,9 4) 12/1722 

P99 DEG=7 AUT=1 P=(1/7/8) GIR=3 CN=4,4 
A=1 3 7 11,5 61 45 324 430,1426 3140 5252 7102 24720,70252 
E=3-3 2-2.23607 4-1 3+1 2+2.23607 3 7 K=(12 3,9 2) 6/13121 

PlOO DEG=7 AUT=1 P=(1/7/8) GIR=3 CN=4,4 
A=1 1 7 1,15 61 123 124 606,1434 1246 2032 11512 16260,74540 
E=2-3 2-2.23607 4-1.73205 -1 4+1.73205 2+2.23607 7 K=(l2 2,9 2) 13/1413 

P101 DEG=7 F=I AUT=2 P=(1,1222,2222) GIR=3 CN=4,4 
A=1 1 5 7,33 11 105 350 324,1102 2602 4056 12036 17540,27620 
E=2-3.17958 2-2.41421 2-1.64885 2-1.43355 2+.41421 2+1 2+2.26197 3 7 
K=(12 4,9 1} 1/131 12/3043 

P102 DEG=7 AUT=1 P=(1/7/8) GIR=3 CN=4,4 
A=1 1 3 5,25 17 105 214 450,1542 3604 4260 13162 14232,51432 
E=2-3.17958 -3 2-1.64885 2-1.43355 -1 2-.41421 1 2+2.26197 2+2.41421 7 
K=(12 2,9 3) 12/4646 

Pl03 DEG=7 F=I AUT=2 P=(1,1222,11222) GIR=3 CN=4,4 
A=1 3 3 7,13 11 105 74 474,1110 3204 2342 14322 16540,66620 
E=3-3 2-2.41421 2-1 2-.41421 2+.41421 1 2+2.41421 3 7 K=(12 4,9 2) 2/261 
6/14013 12/2323 

P104 DEG=7 AUT=2 P=(1,1222,11222) GIR=3 CN=4,4 
A=l 3 3 7,13 5 111 74 474,142 2222 7104 17210 12740,64720 
E=3-3 4-1.73205 2-1 1 4+1.73205 3 7 K=(12 2,9 2) 8/1245 11/622 12/2722 13/156 

P105 DEG=7 F=I AUT=2 P=(1,1222,11222) GIR=3 CN=4,4 
A=l 3 3 13,7 1 1 360 714,1502 1602 2354 4334 26270,16164 
E=-5 -3 2-2.41421 2-1 2-.41421 2+.41421 3+1 2+2.41421 7 K=(15 8,6 2) D(P33) 
D(P83) 2/541 6/3711 12/1706 

Pl06 DEG=7 AUT=2 P=(1,1222,11222) GIR=3 CN=4,6 
A=1 3 3 3,3 21 41 360 714,1406 1412 2354 4334 26264,16170 
E=-5 -3 4-1.73205 2-1 3+1 4+1.73205 7 K=(l5 8,6) 8/2524 11/341 12/5424 13/642 



TRANSITIVE GRAPHS ON 16 VERTICES (CONTD) 

P107 DEG=7 F=I AUT=8 P=(1,124,44) GIR=3 CN=4,4 
A=1 3 7 11,5 31 45 252 126,1126 652 6300 15220 32540,71460 E=4-3 5-1 4+1 2+3 7 
K=(l2 4,9 3) 3/607 4/1076 5/3217 6/1725 9/317 10/427 11/247 13/463 

Pl08 DEG=7 AUT=! P=(l/7/8) GIR=3 CN=4,4 
A=1 3 1 7,31 51 61 300 504,1414 3432 6132 646 23246,31710 
E=3-3 2-2.41421 2-1 2-.41421 2+.41421 1 2+2.41421 3 7 K=(l2 3,9 3) 6/12701 

Pl09 DEG=7 F=I AUT=768 P=(l,l6,6,2) GIR=3 CN=4,4 
A=l 3 7 3,23 3 103 360 760,74 314 2074 4314 37400,77400 E=-5 11-1 3+3 7 
K=(12 8,9 3) SW(H11) SW(H2) SW(H7) -D(P132) -D(P44) H7[B2] 2/447 3/324 4/2067 
5/72510 6/10307 7/512 8/742 9/3201 10/541 11/147 12/5070 13/1260 14/123 

PllO DEG=7 F=N AUT=2 P=(l,ll1112,11222) GIR=3 CN=4,4 
A=1 1 7 15,23 5 105 56 466,230 2130 5302 13302 26540,56640 
E=-3 4-2.41421 2-2.23607 4+.41421 1 2+2.23607 3 7 K=(12 2,9 2) 

Pl11 DEG=7 F=I AUT=256 P=(l,124,44) GIR=3 CN=6,4 
A=1 3 7 3,3 23 43 240 520,1520 3640 3254 4534 13254,24534 
E=2-3.82843 9-1 2+1.82843 2+3 7 K=(12,9 3) D(P31) H6[B2] 1/223 2/57 6/2627 
9/333 10/307 12/1741 13/525 14/251 

Pll2 DEG=7 F=IA AUT=4 P=(1,124,124,1) GIR=3 CN=4,4 
A=1 3 7 11,5 51 25 360 640,1520 2152 5146 2232 21226,77400 
E=2-3.82843 9-1 2+1.82843 2+3 7 K=(12 6,9 1) SW(H12) SW(H6) -D(P138) -D(P49) 
2/522 6/10564 9/2245 10/131 12/3340 

P113 DEG=7 AUT=l P=(l/7/8) GIR=3 CN=4,4 
A=l 3 5 1,7 71 121 234 116,434 1152 3022 14640 33602,36260 
E=3-3 2-2.23607 4-1 3+1 2+2.23607 3 7 K=(12 3,9 2) 6/11215 

P114 DEG=7 AUT=l P=(l/7/8) GIR=3 CN=4,4 
A=1 1 1 15,15 75 75 374 202,1010 3402 3022 17006 17102,76042 
[=2-2.84776 2-2.41421 2-1.76537 -1 2-.23463 2+.41421 2+.84776 1 5 7 
K=(9 2,12 8) 12/2266 

Pl15 DEG=7 F=I AUT=2 P=(1,1222,2222) GIR=3 CN=4,6 
A=1 1 5 11,5 1 1 250 524,1352 726 5252 12526 1372,766 
E=2-5.02734 3-1 2-.66818 2+.19891 4+1 2+1.49661 7 K=(18 16 5,3) D(P18) D(P36) 
D(P42) D(P67) D(P73) 1/47 12/4057 

P116 DEG=7 AUT=4 P=(l,1114,11114) GIR=3 CN=4,4 
A=l 1 1 15,35 55 135 374 10,1402 1006 7102 17022 17042,67202 
E=-3 4-2.41421 3-1 4+.41421 2+1 5 7 K=(9 2,12 8) -D(P88) 6/3626 8/3013 

P117 DEG=7 AUT=1 P=(1/7/8) GIR=3 CN=4,4 
A=1 1 1 1,15 61 45 314 336,1322 2016 4462 12414 24472,34322 
E=2-4.26197 -3 -1 2-.56645 2-.41421 2-.35115 1 2+1.17958 2+2.41421 7 
K=(15 8,6 1) D(P79) 12/1354 

P118 DEG=7 AUT=2 ?=(1,111112,11222) GIR=3 CN=4,4 
A=l 3 1 17,31 5 105 56 456,1340 3340 4222 12122 34610,72510 
E=3-3 2-2.23607 4-1 3+1 2+2.23607 3 7 K=(12 2,9 3) 6/557 9/565 

P119 DEG=7 AUT=1 P=(1/7/8) GIR=3 CN=4,6 
A=1 1 5 1,1 65 45 232 122,502 3654 3454 372 13232,23066 
E=2-4.23607 2-2.41421 -1 2-.41421 2+.23607 2+.41421 2+1 2+2.41421 7 K=(15 8,6) 
12/3403 



TRANSITIVE GRAPHS ON 16 VERTICES (CONTD) 

P120 DEG=7 AUT=l P=(l/7/8) GIR=3 CN=4,4 
A=1 1 1 5,25 21 105 344 116,106 3430 6252 772 7252,13432 
E=2-4.23607 -3 4-1 2+.23607 5+1 3 7 K=(15 8,6 1) D(P64) 6/5245 

P121 DEG=7 F=I AUT=4 P=(1,1222,224) GIR=3 CN=4,4 
A=1 1 5 7,33 3 103 36 456,360 2360 4610 15104 32510,73204 
E=2-3 4-2.41421 -1 4+.41421 2+1 2+3 7 K=(12 4,9 2) 2/622 6/10706 8/1246 
11/624 12/2370 13/334 14/53 

P122 DEG=7 F=I AUT=2 P=(1,1222,2222) GIR=3 CN=6,4 
A=l 1 5 11,5 55 35 12 406,1230 2544 3262 4562 25642,13522 

164. 

E=2-3.49661 2-2.19891 2-1.33182 3-1 4+1 2+3.02734 7 K=(12,9 4) 1/311 12/1552 

P123 DEG=7 F=I AUT=2 P=(l,l222,2222) GIR=3 CN=4,4 
A=l 1 1 13,27 51 25 310 704,1152 626 5410 13404 32132,34246 
E=2-3.61313 2-2.08239 5-l 2+.08239 2+1.61313 2+3 7 K=(l2 4,9 1) D(P9) 1/33 
12/2255 

P124 OEG=7 AUT=1 P=(1/7/8) GIR=3 CN=4,4 
A=1 1 1 15,25 1 121 344 156,1252 2422 4116 4716 14342,53430 
E=-5 -3 2-2.23607 4-1 5+1 2+2.23607 7 K=(15 8,6 1) 6/5252 

P125 DEG=7 F=I AUT=2 P=(l,l222,2222) GIR=3 CN=4,4 
A=1 3 3 11,25 7 13 262 562,314 2314 5044 12430 34620,73140 
E=2-3 2-2.84776 2-1.76537 2-.41421 2-.23463 2+.84776 2+2.41421 3 7 K=(12 4,9 2) 
1/305 12/5260 

P126 DEG=7 AUT=1 P=(1/7/8) GIR=3 CN=4,6 
A=1 3 5 1,21 1 125 340 526,474 434 5172 7202 22352,24552 
E=2-4.23607 4-1.73205 -1 2+.23607 2+1 4+1.73205 7 K=(15 8,6) 13/1304 

P127 DEG=7 F=I AUT=2 P=(1,1222,2222) GIR=3 CN=4,4 
A=l 3 3 1,1 13 7 22 42,770 1364 1670 11564 5654,3534 
E=-5 2-2.84776 2-1.76537 2-.41421 2-.23463 2+.84776 2+1 2+2.41421 7 
K=(15 8,6 2) D(P32) 1/53 12/676 

P128 DEG=7 AUT=l P=(1/7/8) GIR=3 CN=4,4 
A=1 3 1 11,15 21 127 350 36,444 3122 6120 13016 16642,31550 
E=2-3 2-2.41421 2-2.23607 -1 2-.41421 2+.41421 2+2.23607 2+2.41421 7 
K=(l2 2,9 2) 12/1632 

P129 DEG=7 F=I AUT=4 P=(1,124,1124) GIR=3 CN=4,6 
A=l 1 1 11,5 51 25 360 414,652 526 5312 3306 25072,13066 
E=2-3.82843 2-3 3-1 6+1 2+1.82843 7 K=(15 7,6) D(P91) 2/431 6/13013 9/2330 
10/644 12/4625 

P130 DEG=7 F=TIA AUT=5040 P=(1,7,7,1} GIR=4 CN=2,8 T=2 
A=1 1 1 1,1 1 1 374 372,366 356 336 276 176,77400 E=-7 7-1 7+1 7 
K=(21 35 35 21 7 1,) SW(H1) SW(H8) -W8(B2) -B2XH14 B2*H14 2/644 4/1231 5/2754 
6/6262 7/644 8/2454 9/1254 11/541 12/736 13/607 

P131 DEG=7 F=I AUT=2 P=(1,1222,2222) GIR=3 CN=4,4 
A=1 3 7 1,1 11 105 262 162,352 2326 5450 13424 21270,50564 
E=2-4.26197 2-2.41421 2-.56645 2-.35115 2+.41421 2+1 2+1.17958 3 7 K=(l5 8,6 1) 
D(P41) 1/321 12/6043 



TRANSITIVE GRAPHS ON 16 VERTICES (CONTD) 

P132 DEG=7 F=IA AUT=48 P=(1,16,16,1) GIR=3 CN=4,4 
A=1 1 1 15,15 75 75 374 202,1006 1012 7022 7042 36102,77400 E=3-3 7-1 4+1 5 7 
K=(9 3,12 8) SW(Hl3) SW(H3) SW(H9) -D(P61) -D(P89) B2XH13 2/464 4/1454 5/65405 
6/7604 7/461 8/1231 9/2443 11/231 12/2531 13/701 

P133 DEG=7 F=I AUT=l6 P=(1,124,224) GIR=3 CN=4,4 
A=1 1 1 3,3 43 23 6 12,770 3364 1654 11534 1714,41474 
E=-5 4-2.41421 -1 4+.41421 4+1 3 7 K=(15 8,6 2) D(P47) 2/217 6/5207 8/2512 
11/154 12/5142 13/1074 14/305 

P134 DEG=7 AUT=1 P=(1/7/8) GIR=3 CN=4,6 
A=1 3 5 5,33 41 111 220 466,1700 2426 2510 17022 34710,10356 
E=2-3.14626 2-3 3-1 2-.31784 2+.31784 2+1 2+3.14626 7 K=(12 5,9) 12/3026 

Pl35 DEG=7 AUT=l P=(1/7/8) GIR=3 CN=4,4 
A=l 1 5 1,35 1 105 350 136,1262 242 4132 16506 17424,4732 
E=2-4.23607 2-2.23607 3-1 2+.23607 4+1 2+2.23607 7 K=(15 8,6 1) D(P60) 9/712 

Pl36 DEG=7 AUT=8 P=(1,1222,11222) GIR=3 CN=4,4 
A=1 1 1 3,3 43 23 360 774,64 70 6314 6314 26416,16416 
E=2-4.23607 -3 4-1 2+.23607 5+1 3 7 K=(15 7,6 2) D(P24) D(P62) D(P63) 6/2566 
9/2136 12/2613 13/515 

P137 DEG=7 AUT=8 P=(1,1222,11222) GIR=3 CN=4,6 
A=1 3 3 1,1 43 23 314 774,406 412 6360 6360 26074,16074 
E=-5 -3 2-2.23607 4-1 5+1 2+2.23607 7 K=(15 9,6) 6/14450 9/1604 12/5203 
13/1450 

P138 DEG=7 F=IA AUT=4 P=(1,124,124,1) GIR=3 CN=4,4 
A=1 1 1 13,7 73 67 14 132,246 1510 2604 15430 16444,77400 
E=2-3 2-1.82843 7-1 2+1 2+3.82843 7 K=(9 1,12 6) SW(H10) SW(H4) -D(P112) 
-D(P21) -D(P43} -D(P72) 2/614 6/6512 9/3015 10/132 12/3112 

P139 DEG=7 F=I AUT=4 P=(1,124,224) GIR=3 CN=6,4 
A=1 1 1 13,27 33 147 132 246,1010 2404 6510 7204 36430,37044 
E=4-2.41421 2-1.82843 3-1 4+.41421 2+3.82843 7 K=(9,12 6) D(P16) -D(P17) 
-D(P66) 1/151 12/4174 13/1432 14/47 

Pl40 DEG=7 F=I AUT=16 P=(1,124,1124) GIR=3 CN=4,4 
A=1 1 1 3,3 43 23 360 774,406 412 6254 16134 6254,46134 E=-5 2-3 5-1 6+1 3 7 
K=(15 9,6 2) D(P76) 3/614 4/616 5/3750 6/3534 7/621 8/634 9/1075 10/622 

P141 DEG=7 AUT=1 P=(1/7/8) GIR=3 CN=4,4 
A=1 1 1 5,31 21 121 344 356,1152 2422 4216 12424 24616,34152 
E=-5 -3 2-2.41421 2-1 2-.41421 2+.41421 3+1 2+2.41421 7 K=(15 9,6 1) D(P35) 
6/5072 

P142 DEG=7 AUT=2 P=(l,l222,11222) GIR=3 CN=4,4 
A=1 1 1 11,25 47 33 60 414,1112 3206 5524 3650 12532,24646 
E=2-3 4-2.23607 3-1 2+1 4+2.23607 7 K=(12 3,9 2) 9/3007 

P143 DEG=7 AUT=2 P=(1,1222,11222) GIR=3 CN=4,6 
A=1 1 1 11,25 27 53 60 414,1212 3106 3544 5630 12532,24646 
E=2-3 4-2.23607 3-1 2+1 4+2.23607 7 K=(12 1,9) 11/641 



TRANSITIVE GRAPHS ON 17 VERTICES 

Ql DEG=O F=XTVIAP P=(1,+) CN=1,17 

Q2 DEG=2 F=TVIP AUT=2 P=(l,2,2,2,2,2,2,2,2) GIR=17 CN=3,9 POLYGON 
A=1 1 4 2,20 10 100 40 400,200 2000 1000 10000 4000,40000 120000 
E=2-1.9659 2-1.7004 2-1.2053 2-.5473 2+.1845 2+.8915 2+1.4780 2+1.8649 2 
K=(78 220 330 252 84 8,) 1/100 

Q3 DEG=4 F=VI AUT=4 P=(1,4,44,4) GIR=4 CN=3,9 T=1 
A=1 1 1 1,2 4 120 50 214,70 122 406 4040 22200,30100 141400 
E=4-2.90570 4-.48793 4+.34415 4+2.04948 4 K=(48 80 55 12,) 1/11 

Q4 DEG=4 F=VI AUT=2 P=(1,22,22,22,22) GIR=3 CN=4,6 
A=1 1 3 15,24 12 44 102 500,240 1400 2200 12000 5000,70000 164000 
E=2-2.2478 2-1.7814 2-1.7526 2-.8090 2-.3138 2-.1010 2+1.6626 2+3.3430 4 
K=(45 56 15,3) D(Q2) 1/210 

Q5 DEG=4 F=VI AUT=2 P=(l,22,2222,22) GIR=4 CN=3,9 
A=1 1 1 1,2 4 24 12 122,1054 50 120 14400 14200,40440 120300 
E=2-3.1712 2-2.5133 2-1.0207 2-.2224 2+.1645 2+1.0760 2+1.3176 2+2.3695 4 
K=(48 80 55 12,) 1/14 

Q6 DEG=4 F=VI AUT=2 P=(1,22,222,222) GIR=4 CN=3,9 
A=l 1 1 1,34 32 4 2 14,22 400 4200 12500 5240,12400 105200 

166. 

E=2-3.66638 2-1.51590 2-1.07447 2-.36279 2+.27275 2+.65968 2+.93069 2+2.75642 4 
K=(48 84 75 36 7,) 1/300 

Q7 DEG=6 F=VI AUT=2 P=(1,222,22222) GIR=3 CN=5,6 
A=1 3 3 5,1 1 70 130 212,1424 1344 2542 10304 4442,61120 162050 
[=2-3.4818 2-2.7749 2-2.0632 2-.2746 2+.7905 2+1.1152 2+1.5512 2+2.1377 6 
K=(27 20,3) 1/130 

Q8 DEG=6 F=VI AUT=2 P=(1,222,222,22) GIR=3 CN=5,5 
A=1 1 3 5,33 75 24 12 452,324 1402 2204 14200 34400,65400 172200 
[=2-2.32874 2-2.27974 2-1.80144 2-.76974 2-.62442 2+.11235 2+.45729 2+4.23444 6 
K=(21 4,9 4) -D(Q6) 1/61 

Q9 DEG=6 F=VI AUT=2 P=(1,222,22222) GIR=3 CN=5,6 
A=l 1 5 3,25 13 142 344 510,260 3020 7010 10014 24022,72202 65404 
E=2-2.7212 2-2.1884 2-1.6932 2-1.6218 2-1.0408 2+1.5022 2+1.8222 2+2.9410 6 
K=(24 12,6) 1/141 

Q10 DEG=6 F=VI AUT=2 P=(1,222,2222,2) GIR=3 CN=4,6 
A=1 1 1 11,23 55 134 72 4,1002 2214 1422 12042 5104,73400 67200 
E=2-3.4530 2-2.0142 2-1.3563 2-.8611 2-.3034 2+.0835 2+1.3770 2+3.5275 6 
K=(24 16 5,6) 1/64 

Q11 DEG=6 F=VI AUT=2 P=(1,222,2222,2) GIR=3 CN=4,6 
A=1 3 3 5,1 1 132 74 462,314 2102 5044 4150 10160,65200 172400 
E=2-4.2137 2-1.5681 2-1.3063 2-.8899 2-.0379 2+1.0560 2+1.1642 2+2.7956 6 
K=(27 28 10,3) -D(Q8) 1/112 

Q12 DEG=6 F=VI AUT=2 P=(1,222,22222) GIR=4 CN=3,9 
A=1 1 1 1,1 1 172 174 64,1112 2204 5402 12024 25012,50164 24152 
E=2-4.87165 2-1.42769 2-1.03525 2+.34905 2+.40355 2+.52869 2+.84421 2+2.20910 6 
K=(30 40 25 6,) 1/51 



TRANSITIVE GRAPHS ON 17 VERTICES (CONTD) 

Q13 DEG=6 F=VI AUT=2 P=(l,222,22222) GIR=3 CN=4,6 
A=1 1 1 11,21 11 56 326 40,100 3064 3112 12044 25102,23224 43412 
[=2-3.71854 2-2.98668 2-.64833 2-.38282 2-.12926 2+.66906 2+1.64253 2+2.55403 6 
K=(27 24 5,3) 1/106 

Q14 DEG=8 F=VIS AUT=4 P=(1,44,44) GIR=3 CN=5,5 
A=1 3 5 13,31 15 23 7 724,652 2552 1364 3242 32160,74510 165604 
E=4-3.39363 4-.85622 4-.14378 4+2.39363 8 K=(12 4,12 4) D(Q3) -D(Q3) 1/226 

Q15 DEG=8 F=VIS AUT=2 P=(1,2222,2222) GIR=3 CN=5,5 
A=1 3 3 5,11 61 27 17 660,1710 2532 1274 16114 15062,61544 162342 
E=2-3.5340 2-2.3488 2-2.0952 2-1.8536 2+.8536 2+1.0952 2+1.3488 2+2.5340 8 
K=(12 4,12 4) 1/56 

Q16 DEG=8 F=VI AUT=2 P=(1,2222,2222) GIR=3 CN=6,5 
A=1 1 5 13,35 33 21 211 122,1054 2706 1646 11650 26720,33506 47246 
E=2-3.9802 2-1.9750 2-1.6169 2-1.1717 2-.8507 2+1.0038 2+2.2685 2+2.3222 8 
K=(12,12 4) -Q21 1/232 

Q17 DEG=8 F=VI AUT=2 P=(l,2222,2222) GIR=3 CN=6,5 
A=1 1 3 15,37 37 105 43 472,334 2402 5204 16700 35640,55412 136224 
E=2-3.0067 2-2.7357 2-1.4373 2-1.2431 2-.8017 2+.2969 2+1.2405 2+3.6871 8 
K=(9,15 8) -Q19 -D(Q5) 1/152 

Q18 DEG=8 F=TVIS AUT=8 P=(l,8,8} GIR=3 CN=6,6 T=1 
A=l 3 3 5,21 55 43 231 624,1170 2432 4066 11514 33252,7306 134740 
E=8-2.56155 8+1.56155 8 K=(l2,12) 1/213 

Q19 DEG=8 F=VI AUT=2 P=(1,2222,2222) GIR=3 CN=5,6 
A=1 3 3 5,23 15 5 3 214,1422 2674 5732 1562 22354,23750 43760 
E=2-4.6871 2-2.2405 2-1.2969 2-.1983 2+.2431 2+.4373 2+1.7357 2+2.0067 8 
K=(15 8,9) -Q17 D(Q5) 1/143 

Q20 DEG=8 F=VIS AUT=2 P=(1,2222,2222) GIR=3 CN=5,5 
A=1 3 5 13,21 11 27 17 714,662 2364 1552 13104 27042,70560 164350 
E=2-4.02917 2-2.59037 2-.90996 2-.58521 2-.41479 2-.09004 2+1.59037 2+3.02917 8 
K=(12 4,12 4) 1/305 

Q21 DEG=8 F=VI AUT=2 P=(1,2222,2222) GIR=3 CN=5,6 
A=1 1 3 15,15 63 105 43 572,374 324 4452 6406 31206,75610 76620 
[=2-3.32223 2-3.26849 2-2.00383 2-.14928 2+.17175 2+.61690 2+.97501 2+2.98017 8 
K=(12 4,12) -Q16 1/145 

Q22 DEG=8 F=VI AUT=2 P=(1,2222,2222) GIR=3 CN=4,6 
A=l 3 5 13,5 3 1 1 774,772 764 752 10724 24652,52524 125252 
[=2-5.41898 2-1.12173 2-.67658 2-.53621 2+.50866 2+.58809 2+.82969 2+1.82706 8 
K=(18 16 5,6) -Q23 D(Q10) D(Q11) -D(Q4) 1/216 

Q23 DEG=8 F=VI AUT=2 P=(1,2222,2222) GIR=3 CN=6,4 
A=1 1 3 5,13 65 173 375 524,252 2052 1124 16012 35024,77004 177002 
E=2-2.8271 2-1.8297 2-1.5881 2-1.5087 2-.4638 2-.3234 2+.1217 2+4.4190 8 
K=(6,18 16 5) -Q22 D(Q4) -D(Q10) -D(Q11) 1/126 



TRANSITIVE GRAPHS ON 18 VERTICES 

Rl DEG=O F=XTVIAP P=(l,+) CN=l,l8 

R2 DEG=l F=XTIP AUT=l0321920 P=(l,l,+) CN=2,9 T=l 
A=l 0 4 0,20 0 lOO 0 400,0 2000 0 10000 0,40000 0 200000 

R3 DEG=2 F=XTIP AUT=1866240 P=(1,2,+) GIR=3 CN=3,6 
A=1 3 0 10,0 30 40 0 240,400 0 2400 4000 0,24000 40000 240000 2[12] 3[F3] 
6[C2] 1/100 2/100 3/200 4/4000 5/1000 

R4 DEG=2 F=XTIP AUT=576 P=(1,2,2,1,+) GIR=6 CN=2,9 
A=l 1 4 2,30 0 lOO 0 400,0 1200 500 2000 0,40000 120000 42000 3[F4] 82*12 
C2*F2 1/10 2/20 3/6 4/14 5/12 

R5 DEG=2 F=XTIP AUT=36 P=(l,2,2,2,2,+) GIR=9 CN=3,10 

168. 

1 4 2,20 10 100 240 0,1000 0 0 0 12000,5000 30000 24000 2[13] 1/20 4/10000 

R6 DEG=2 F=TIAP AUT=2 P=(l,2,2,2,2,2,2,2,2,1) GIR=18 CN=2,9 POLYGON 
A=l 1 4 2,20 10 lOO 40 400,200 2000 1000 10000 4000,40000 20000 300000 
E=-2 2-1.87939 2-1.53209 2-1 2-.34730 2+.34730 2+1 2+1.53209 2+1.87939 2 
K=(91 286 495 462 210 36 1,) B2*I3 1/200 4/401 

R7 DEG=3 F=XTI AUT=l24416 P=(l,3,2,+) GIR=4 CN=2,9 T=3 
A=l 1 1 16,16 0 100 0 100,100 3200 3200 400 400,400 160000 160000 3[F5] F2[C1] 
1/11 2/41 3/7 4/141 5/13 

R8 DEG=3 F=XIP AUT=576 P=(l,l2,2,+) GIR=3 CN=3,6 
A=1 1 5 12,26 0 100 0 200,100 3200 3100 400 400,20000 140400 160000 3[F6] 
W3(F2) B2XI2 C2XF2 1/101 2/11 3/201 4/4001 5/10040 

R9 DEG=3 F=I AUT=2 P=(l,l2,22,22,22,2) GIR=4 CN=2,9 
A=l 1 1 12,6 10 4 240 120,200 lOO 5000 2400 2000,4000 150000 160000 
E=-3 2-2.53209 2-1.34730 2-.87939 4+0 2+.87939 2+1.34730 2+2.53209 3 
K=(73 180 225 146 49 8 1,) D(R6) 1/41 4/421 

R10 DEG=3 F=IP AUT=2 P=(l,l2,22,22,22,2) GIR=4 CN=3,9 PRISM 
A=l 1 1 12,6 10 4 240 120,200 100 5000 2400 4000,42000 120000 250000 
[=2-2.87939 2-2 2-.87939 2-.65270 2+0 2+.53209 1 2+1.34730 2+2.53209 3 
K=(73 180 225 146 49 8,) B2XI3 1/5 4/10001 

Rll DEG=3 F=TIA AUT=12 P=(1,3,6,6,2) GIR=6 CN=2,9 T=3 PAPPUS GRAPH 
A=1 1 1 10,4 2 4 10 2,500 440 220 1040 1020,300 32000 144000 
E=-3 6-1.73205 4+0 6+1.73205 3 K=(73 178 210 116 35 8 1,) 3/22 5/620 

R12 DEG=3 AUT=4 P=(l,l2,22,24,4) GIR=3 CN=3,6 
A=1 1 5 2,22 10 4 40 20,100 200 2100 4200 11000,20400 45000 102400 
E=4-2 4-1.30278 4+0 1 4+2.30278 3 K=(72 166 165 52,1) Wl(F5} 3/401 

R13 DEG=3 AUT=l P=(1/3/6/6/2) GIR=6 CN=2,9 
A=l 1 1 10,10 2 4 2 4,1100 200 420 120 640,1040 124000 16000 
E=-3 2-1.9696 2-1.7321 2-1.2856 2-.6840 2+.6840 2+1.2856 2+1.7321 2+1.9696 3 
K=(73 178 210 117 35 8 1,) 4/61 

Rl4 DEG=4 F=XTIP AUT=36864 P=(l,4,1,+) GIR=3 CN=3,6 T=1 
A=l 1 7 7,36 0 100 0 100,1300 1300 7200 400 400,60400 60400 360000 3[F7] L(L7) 
I2[Bl] 1/110 2/12 3/220 4/4014 5/10030 



TRANSITIVE GRAPHS ON 18 VERTICES (CONTD) 

R15 DEG=4 F=XTI AUT=576 P=(l,4,4,+) GIR=3 CN=3,6 T=l 
A=l 3 1 11,24 12 154 162 0,1000 0 7000 2000 21000,74000 26000 245000 2[14] 
L(l8) C2XF3 C2*F3 2/300 3/410 5/6000 

R16 DEG=4 F=XI AUT=36 P=(1,22,22,+) GIR=3 CN=3,6 
A=l 3 1 1,34 32 124 252 0,1000 0 2000 1000 26000,35000 36000 55000 2[15] 1/120 
4/5000 

R17 DEG=4 F=XI AUT=36 P=(l,22,22,+} GIR=3 CN=3,6 
A=1 1 3 15,12 24 144 342 0,1000 0 2000 14000 36000,25000 13000 305000 2[16] 
1/420 4/12000 

R18 DEG=4 AUT=72 P=(1,13,233,23) GIR=4 CN=2,9 
A=1 1 1 1,34 34 20 4 10,2 2 2 16100 16040,11600 3600 5600 
E=-4 2-2.64575 6-1 6+1 2+2.64575 4 K=(58 114 115 69 28 8 1,) 3/106 4/622 
5/720 

R19 DEG=4 AUT=1 P=(1/4/8/5) GIR=4 CN=2,9 
A=1 1 1 1,14 2 12 4 30,20 2 24 6440 5500,2700 12140 15200 
E=-4 2-2.20893 2-1.62871 2-1.21157 2-1 2+1 2+1.21157 2+1.62871 2+2.20893 4 
K=(58 112 105 62 28 8 1,) 4/621 

R20 DEG=4 F=IAP AUT=2 P=(1,22,22,22,22,1) GIR=3 CN=3,6 ANTIPRISM 
A=l 1 3 15,24 12 44 102 500,240 1400 2200 12000 5000,30000 144000 360000 
E=2-2.22668 2-2 2-1.53209 2-1.18479 2-.34730 3+0 2+1.87939 2+3.41147 4 
K=(55 84 35 1,3) 1/6 4/1003 

R21 DEG=4 AUT=2 P=(1,22,2222,122) GIR=3 CN=3,6 
A=1 3 1 1,4 42 20 10 12,24 1010 2020 740 4240,10500 106400 51200 
E=2-3 2-2 4-1.30278 3+0 2+1 4+2.30278 4 K=(57 102 75 21,1) 3/1020 

R22 DEG=4 F=I AUT=2 P=(1,22,2222,122) GIR=4 CN=2,9 
A=1 1 1 1,24 12 14 22 20,10 2 4 3140 11600,6600 16040 15100 
E=-4 2-2 2-1.87939 2-1.53209 2-.34730 2+.34730 2+1.53209 2+1.87939 2+2 4 
K=(58 112 105 63 28 8 1,) 82*16 1/240 4/630 

R23 DEG=4 F=I AUT=2 P=(1,22,2222,122) GIR=4 CN=3,9 
A=1 1 1 1,2 4 24 12 120,50 122 4054 3000 20440,20300 102400 241200 
E=2-3 2-2.87939 2-.87939 2-.65270 0 2+.53209 2+1 2+1.34730 2+2.53209 4 
K=(58 112 95 29,) 1/30 4/1041 

R24 DEG=4 F=I AUT=2 P=(l,22,222,122,2) GIR=4 CN=2,9 
A=l 1 1 1,32 34 4 2 14,22 600 2400 1200 2440,1300 74000 134000 
E=-4 2-2.87939 2-1 2-.65270 2-.53209 2+.53209 2+.65270 2+1 2+2.87939 4 
K=(58 116 120 71 28 8 1,) 82*15 1/210 4/650 

R25 DEG=4 F=I AUT=2 P=(1,22,2222,122) GIR=4 CN=3,9 
A=1 1 1 1,24 12 4 2 14,22 2010 5020 740 10440,4300 102400 241200 
E=2-3.41147 2-2 2-1.53209 2-.34730 3+0 2+1.18479 2+1.87939 2+2.22668 4 
K=(58 112 100 43 7,) 1/22 4/1030 

R26 DEG=4 F=IA AUT=2 P=(1,22,222,222,1) GIR=3 CN=3,6 
A=1 1 1 11,24 12 4 2 54,122 240 500 12400 5200,40400 120200 314000 
E=2-2.87939 2-2.53209 2-1.34730 2-.65270 0 2+.53209 2+.87939 2+1 2+3 4 
K=(57 104 80 21,1) 1/102 4/4600 



TRANSITIVE GRAPHS ON 18 VERTICES (CONTD) 

R27 DEG=4 F=I AUT=4 P=(l,22,24,14,2) GIR=3 CN=3,6 
A=1 1 1 11,4 2 22 24 212,414 140 1100 2040 10300,20440 144000 234000 
E=2-3 4-2 5+0 4+1 2+3 4 K=(57 104 80 22,1) C2XF4 2/6 3/50 5/1005 

R28 DEG=4 F=I AUT=512 P=(1,4,14,4,4) GIR=4 CN=3,9 T=1 
A=1 1 1 1,36 30 6 6 30,600 1100 600 1100 24000,52000 124000 252000 

170. 

E=2-3.75877 2-2 9+0 2+.69459 2+3.06418 4 K=(58 118 130 82 28 4,) I3[Bl] 1/402 
4/2401 

R29 DEG=4 F=I AUT=8 P=(1,4,44,14) GIR=4 CN=2,9 T=1 
A=1 1 1 1,10 2 20 4 30,6 14 22 740 14500,14240 3300 3440 E=-4 4-2 4-1 4+1 4+2 4 
K=(58 112 105 64 28 8 1,) B2*I4 C2*F4 2/420 3/120 5/740 

R30 DEG=5 F=XTI AUT=l24416000 P=(l,5,+) GIR=3 CN=6,3 T=2 
A=1 3 7 17,37 0 lOO 0 300,1300 3300 7300 400 20400,60400 160400 360400 3[F8] 
F2[C2] I2[B2] 1/111 2/13 3/304 4/4414 5/1520 

R31 DEG=5 F=I AUT=512 P=(1,14,4,4,4) GIR=3 CN=5,5 
A=1 3 7 3,23 14 60 114 260,1200 500 3200 4500 24000,52000 164000 352000 
E=2-2.75877 11-1 2+1.69459 2+4.06418 5 K=(40 32,6 2) I3[B2] 1/61 4/2106 

R32 DEG=5 AUT=2 P=(1,122,22222,2) GIR=3 CN=3,6 
A=1 1 5 1,21 50 24 330 344,10 4 2042 14022 2402,45002 116200 66100 
E=2-3 4-2.30278 2-1 2+0 4+1.30278 2+2 3 5 K=(44 58 25 2,2) 3/411 

R33 DEG=5 AUT=72 P=(1,23,233,13) GIR=4 CN=2,9 
A=1 1 1 1,1 74 72 60 50,30 6 6 6 34300,33400 27400 17400 
E=-5 2-2.64575 6-1 6+1 2+2.64575 5 K=(46 78 80 57 28 8 1,) 3/124 4/263 5/760 

R34 DEG=5 AUT=l P=(1/5/A/2) GIR=3 CN=3,6 
A=1 1 5 1,31 10 22 202 604,140 60 2006 16402 1214,44120 13100 304500 
E=2-2.7321 2-2.5634 2-1.6223 2-1.1953 -1 2+.2465 2+.7321 2+2.3169 2+2.8177 5 
K=(43 50 10 1,3) 4/2051 

R35 DEG=5 F=I AUT=2 P=(1,122,2222,22) GIR=3 CN=3,6 
A=1 1 1 11,25 10 104 12 6,330 344 1042 10422 1200,40500 155000 162400 
E=2-3 2-2.53209 2-1.34730 2-1 2-.53209 2+.65270 2+.87939 2+2.87939 3 5 
K=(43 52 15 2,3) B2XI6 1/405 4/3001 

R36 DEG=5 F=I AUT=2 P=(1,122,2222,22) GIR=3 CN=3,6 
A=1 1 1 1,21 50 124 254 134,42 2022 12 6 24200,52100 135000 72400 
E=2-3.87939 2-1.87939 2-1.65270 2-.46791 2+0 2+.34730 2+1.53209 2+2 3 5 
K=(45 68 45 12,1) B2XI5 1/501 4/14001 

R37 DEG=5 AUT=1 P=(1/5/8/4) GIR=4 CN=2,9 
A=1 1 1 1,1 54 12 6 34,70 22 44 62 15300,31600 26500 16600 
E=-5 2-2.20893 2-1.62871 2-1.21157 2-1 2+1 2+1.21157 2+1.62871 2+2.20893 5 
K=(46 76 75 56 28 8 1,) 4/334 

R38 DEG=5 F=N AUT=8 P=(1,14,444) GIR=3 CN=4,6 
A=1 1 1 11,5 60 124 150 614,202 2402 1002 10102 14020,52040 64004 322010 
E=8-2.30278 8+1.30278 3 5 K=(44 56 20,2) 

R39 DEG=5 F=I AUT=8 P=(1,14,44,4) GIR=3 CN=3,6 
A=1 1 1 11,5 60 124 150 614,42 22 2006 4012 14200,22400 171000 146100 
E=4-3 4-1 4+0 4+2 3 5 K=(44 60 30 4,2) B2XI4 C2XF6 2/301 3/211 5/3001 



TRANSITIVE GRAPHS ON 18 VERTICES (CONTD) 

R40 DEG=5 F=I AUT=2 P=(1,122,2222,22) GIR=4 CN=2,9 
A=l 1 1 1,1 66 72 32 46,4 10 44 30 36400,37000 26600 17100 
E=-5 2-2.87939 2-1 2-.65270 2-.53209 2+.53209 2+.65270 2+1 2+2.87939 5 
K=(46 80 80 56 28 8 1,) D(R9) 1/203 4/703 

R41 DEG=5 F=I AUT=2 P=(l,l22,22222,2) GIR=3 CN=3,6 
A=1 1 1 1,21 24 50 206 112,510 1204 4042 12022 230,144 165000 152400 
E=2-3.53209 2-2.34730 2-1.87939 -1 2-.12061 2+.34730 2+1.53209 4+2 5 
K=(45 64 35 6,1) D(R26) 1/301 4/4700 

R42 DEG=S F=I AUT=2 P=(l,122,2222,22) GIR=4 CN=3,9 
A=1 1 1 1,1 72 66 46 32,10 2004 4030 2044 24400,53000 124600 53100 
£=2-4.41147 5-1 2-.53209 2+.18479 2+.65270 2+1.22668 2+2.87939 5 
K=(46 80 75 36 7,) 1/45 4/2130 

R43 DEG=S AUT=1 P=(1/5/7/5) GIR=3 CN=3,6 
A=1 1 1 15,11 6 102 50 206,10 1066 2460 2400 22200,61100 120300 252400 
E=2-3.1650 2-2.7321 -1 2-.5938 2-.4375 2-.3367 2+.7321 2+1.0313 2+3.5017 5 
K=(43 56 25 1,3) 4/1121 

R44 DEG=S F=I AUT=6 P=(1,23,226,2) GIR=4 CN=3,9 
A=1 1 1 1,1 70 70 104 202,1024 442 5014 422 21044,2412 124200 252100 
E=2-4 4-1.87939 -1 4+.34730 4+1.53209 2+2 5 K=(46 72 50 14,) 1/15 4/2222 

R45 DEG=5 AUT=1 P=(1/5/9/3) GIR=3 CN=3,6 

171. 

A=1 3 5 11,21 40 6 340 202,1020 2460 14 3002 10110,41700 36000 270100 
E=2-2.73205 4-1.79129 5-1 2+.73205 4+2.79129 5 K=(42 44 10 1,4) 3/1102 

R46 DEG=5 AUT=1 P=(1/5/7/5) GIR=3 CN=3,6 
A=1 1 1 15,15 2 10 74 42,220 1102 1106 200 26200,35100 22600 262100 
E=2-2.9696 2-2.2856 2-1.6840 -1 2-.3160 2+.2679 2+.2856 2+.9696 2+3.7321 5 
K=(42 48 20 3,4) 4/4620 

R47 DEG=5 F=I AUT=12 P=(l,23,66) GIR=3 CN=3,6 
A=1 3 1 1,1 40 120 310 20,1040 3010 2422 2214 21112,4242 14124 101444 
E=6-2.73205 -1 6+.73205 4+2 5 K=(45 62 30 6,1) D(R11) 3/112 5/1026 

R48 DEG=5 F=I AUT=8 P=(1,14,44,4) GIR=4 CN=2,9 
A=1 1 1 1,1 62 16 16 62,44 50 24 30 35400,33200 26500 16300 
E=-5 4-2 4-1 4+1 4+2 5 K=(46 76 75 56 28 8 1,) 2/23 3/47 5/325 

R49 DEG=5 F=I AUT=2 P=(1,122,2222,22) GIR=4 CN=2,9 
A=1 1 1 1,1 70 64 16 16,42 22 30 44 35200,32500 16600 27100 
E=-5 2-2 2-1.87939 2-1.53209 2-.34730 2+.34730 2+1.53209 2+1.87939 2+2 5 
K=(46 76 75 56 28 8 1,) 1/211 4/615 

R50 DEG=5 F=I AUT=2 P=(1,122,2222,22) GIR=3 CN=4,6 
A=1 1 1 11,25 10 4 244 130,6 12 2042 14022 25200,12500 103300 44700 
E=2-3.22668 2-2.18479 5-1 2-.53209 2+.65270 2+2.41147 2+2.87939 5 
K=(43 52 20,3) D(R10) D(R20) 1/7 4/1403 

R51 DEG=5 F=A AUT=1 P=(1/5/B/1) GIR=4 CN=3,9 
A=1 1 1 1,1 24 74 110 4,1602 1442 424 11002 20050,41022 120150 56100 
E=2-3.8490 2-2.7321 -1 2-.9383 2+.0902 2+.7321 2+.8480 2+1.6329 2+2.2161 5 
K=(46 72 50 13,) D(Rl3) 4/2602 



TRANSITIVE GRAPHS ON 18 VERTICES (CONTD) 172. 

R52 DEG=5 AUT=2 P=(l,l22,1222,1112) GIR=3 CN=3,6 
A=1 1 5 5,31 74 2 202 412,1206 40 4020 14000 23600,14100 130400 324200 
E=4-2.73205 5-1 2+.26795 4+.73205 2+3.73205 5 K=(42 48 20 2,4) 3/244 5/1007 

R53 DEG=5 F=I AUT=24 P=(1,23,26,4) GIR=3 CN=3,6 
A=l 3 1 1,1 70 70 44 14,1012 22 4024 442 26100,51500 26200 211600 
E=2-4 9-1 6+2 5 K=(45 68 50 14,1) C2XF5 2/501 3/207 5/2441 

R54 DEG=6 F=XTI AUT=l86624 P=(1,6,2,+} GIR=3 CN=3,6 T=1 
A=l 1 1 17,17 17 176 176 0,1000 1000 1000 17000 17000,17000 176000 176000 
2[!7] -D(Rl39) F3[C1] 1/424 2/214 3/1600 4/13000 5/15000 

R55 DEG=6 F=XI AUT=36 P=(1,222,2,+) GIR=3 CN=5,6 
A=l 3 5 13,27 17 174 372 0,1000 1000 3000 6000 36000,37000 77000 175000 2[18] 
1/504 4/15000 

R56 DEG=6 AUT=72 P=(l,l23,233,3) GIR=3 CN=6,3 
A=l 1 5 15,35 75 12 206 100,1020 3040 602 10602 30602,27000 147000 317000 
E=7-2 2-.64575 6+0 2+4.64575 6 K=(27,10 10 51) W3(C2) 3/246 4/4514 5/10071 

R57 DEG=6 F=A AUT=! P=(1/6/A/l) GIR=3 CN=4,6 
A=l 1 1 1,31 21 44 116 402,1214 1624 2220 1016 1320,30152 50142 276000 
E=2-4.08832 3-2 2-1.28142 2+0 2+.32052 2+.32955 2+1.97601 2+2.74366 6 
K=(34 38 15,3) 4/1621 

R58 DEG=6 AUT=1 P=(1/6/9/2) GIR=3 CN=5,5 
A=l 1 1 5,11 75 100 2 402,650 640 5406 2270 1026,41036 54600 227200 
[=2-3.50810 3-2 2-.86428 2-.67684 2-.25067 2+0 2+1.55887 2+3.74102 6 
K=(31 24,6 2) 4/10407 

R59 DEG=6 F=I AUT=2 P=(l,222,122222) GIR=3 CN=3,6 
A=l 1 3 15,1 1 146 12 24,50 120 3504 15442 5310,42660 6504 207042 
E=2-3.41147 2-3 2-1.87939 2-1 2+.34730 2+1.18479 2+1.53209 2 2+2.22668 6 
K=(34 32 5 1,3) 1/64 4/3204 

R60 DEG=6 F=I AUT=2 P=(1,222,122222) GIR=3 CN=3,6 
A=1 1 3 15,1 1 146 50 120,12 24 7042 6504 5310,42660 13504 25442 
E=2-3.41147 2-3 -2 2-1.53209 2-.34730 2+1 2+1.18479 2+1.87939 2+2.22668 6 
K=(34 32 5 1,3) 1/442 4/10630 

R61 DEG=6 F=A AUT=4 P=(1,24,2224,1) GIR=3 CN=5,6 
A=1 3 5 15,3 43 30 140 660,710 6 4006 5440 12500,25220 52210 374000 
E=9-2 4+0 4+3 6 K=(30 16,7 2) L(I4) 3/426 

R62 DEG=6 AUT=2 P=(l,222,122222) GIR=3 CN=3,6 
A=l 3 1 11,21 51 170 12 24,44 102 6440 7100 23414,15422 23204 214602 
E=2-3 4-2.30278 4-1 4+1.30278 2 2+3 6 K=(32 26 5 1,5) 3/620 

R63 DEG=6 F=I AUT=2 P=(l,222,12222,2) GIR=3 CN=3,6 
A=l 3 5 13,1 1 36 50 520,544 1142 4104 12042 11110,20460 162600 155200 
E=2-3.87939 2-1.87939 2-1.65270 2-1 2-.46791 2+.34730 2+1.53209 2 2+3 6 
K=(33 32 15 3,4) 1/510 4/6404 

R64 DEG=6 F=I AUT=2 P=(1,222,12222,2) GIR=3 CN=3,6 
A=1 3 5 13,1 1 36 50 120,544 1142 4504 3042 11110,20460 162600 155200 
E=2-3.87939 -2 2-1.65270 2-1.53209 2-.46791 2-.34730 2+1 2+1.87939 2+3 6 
K=(33 32 15 3,4) 1/150 4/4017 



TRANSITIVE GRAPHS ON 18 VERTICES (CONTD) 

R65 DEG=6 F=IA AUT=4 P=(1,24,2224,1) GIR=3 CN=3,6 
A=1 1 1 1,21 11 124 52 146,36 740 630 12104 12042,45024 25012 360600 
E=2-4 2-3 2-1 6+0 5+2 6 K=(35 42 20 3,2) C2*F6 2/124 3/1406 5/5005 

R66 DEG=6 F=I AUT=2 P=(1,222,222,122) GIR=3 CN=5,5 
A=1 1 3 5,33 75 52 124 212,424 2404 1202 14000 31000,66000 171200 166400 
E=2-2.53209 3-2 2-1.34730 2-1.22668 2-.18479 2+0 2+.87939 2+4.41147 6 
K=(28 10,9 4) 1/230 4/10074 

R67 DEG=6 F=I AUT=2 P=(1,222,2222,12). GIR=3 CN=4,6 
A=1 1 3 5,23 55 152 164 202,404 2024 1012 11210 6420,17000 172000 365000 
E=2-2.87939 2-2.53209 -2 2-1.34730 2-.65270 2+0 2+.53209 2+.87939 2+4 6 
K=(30 22 5,7) 1/142 4/4303 

R68 DEG=6 F=IA AUT=2 P=(l,222,22222,1) GIR=3 CN=5,6 
A=l 1 5 3,25 13 150 360 22,1014 1420 2210 13002 7004,50244 24502 374000 
E=2-2.53209 2-2.41147 3-2 2-1.34730 2+0 2+.87939 2+2.18479 2+3.22668 6 
K=(31 22,6) 1/610 4/10146 

R69 DEG=6 F=I AUT=2 P=(l,222,12222,2) GIR=3 CN=3,6 
A=1 1 5 13,5 43 170 14 22,44 102 3404 15402 5320,2650 126400 257000 
E=2-3 2-2.22668 2-1.87939 2-1.18479 2-1 2+.34730 2+1.53209 2 2+3.41147 6 
K=(31 24 5 1,6) 1/406 4/3210 

R70 DEG=6 F=I AUT=2 P=(l,222,12222,2} GIR=3 CN=3,6 
A=1 1 3 5,15 23 170 44 102,24 12 3404 15402 5310,2660 126400 257000 
E=2-3 2-2.22668 -2 2-1.53209 2-1.18479 2-.34730 2+1 2+1.87939 2+3.41147 6 
K=(31 24 5 1,6) 1/602 4/10154 

R71 DEG=6 F=I AUT=2 P=(l,222,2222,12) GIR=3 CN=3,6 

173. 

A=l 1 1 11,23 55 42 104 72,134 604 4602 2414 1222,74000 151200 326400 
E=2-3.06418 2-3 2-1 2-.69459 6+0 2 2+3.75877 6 K=(31 26 5 1,6) 1/26 4/3005 

R72 DEG=6 F=IA AUT=2 P=(l,222,22222,1) GIR=3 CN=3,6 
A=1 1 1 1,21 51 72 134 42,104 1204 6402 13014 7022,2454 1322 374000 
E=2-3.75877 2-3 -2 6+0 2+.69459 2+1 2+3.06418 6 K=(34 38 15 1,3) 1/640 
4/10123 

R73 DEG=6 F=A AUT=l P=(1/6/A/1) GIR=3 CN=5,5 
A=1 1 1 11,35 45 30 2 422,630 2204 5042 504 21412,60704 15102 236200 
[=2-3.09096 3-2 2-1.86164 2-.66781 2-.09662 2+0 2+2.55623 2+3.16080 6 
K=(31 18,6 2) 4/1254 

R74 DEG=6 F=IA AUT=2 P=(l,222,22222,1) GIR=3 CN=4,6 
A=l 3 1 11,11 21 24 12 622,614 2144 1142 11050 26120,10304 104442 360600 
E=2-3.22668 2-2.53209 2-2.18479 2-1.34730 2+0 2+.87939 3+2 2+2.41147 6 
K=(33 30 5,4) 1/106 4/6420 

R75 DEG=6 F=IA AUT=2 P=(1,222,22222,1) GIR=3 CN=3,6 
A=l 3 1 1,1 1 142 144 134,72 264 4512 2224 21412,50060 124110 303600 
E=2-4.41147 2-2.53209 2-1.34730 2+0 2+.18479 2+.87939 2+1.22668 3+2 6 
K=(36 46 25 6,1) 1/700 4/14021 

R76 DEG=6 F=I AUT=8 P=(l,24,144,2) GIR=3 CN=3,6 
A=1 3 1 1,1 1 170 104 422,412 3044 1164 2154 4072,532 143200 234600 
E=2-4.75877 6-1 2-.30541 2+0 3+2 2+2.06418 6 K=(36 52 35 9,1) -O(R66) 1/160 
4/6110 



TRANSITIVE GRAPHS ON 18 VERTICES (CONTD) 

R77 DEG=6 AUT=2 P=(1,11112,122222) GIR=3 CN=3,6 
A=1 3 3 15,1 1 36 60 120,1410 1410 4300 2240 22542,15142 32444 35104 
E=2-3.64575 5-2 4+0 2+1 2+1.64575 2+3 6 K=(33 30 10 1,4) 3/33 5/2720 

R78 DEG=6 F=I AUT=4 P=(1,24,224,12} GIR=3 CN=3,6 
A=1 3 5 13,5 43 36 146 140,30 1500 2220 12210 5440,74000 163000 317000 
E=2-3 5-2 6+0 2+1 2+4 6 K=(30 22 5 1,7) 2/640 3/70 5/4660 

R79 DEG=6 AUT=1 P=(1/6/B) GIR=3 CN=3,6 

174. 

A=1 1 1 1,31 21 120 12 426,504 214 2204 10152 4740,23212 17440 54026 
E=2-3.6458 2-2.8794 -2 2-.8794 2-.6527 2+.5321 2+1.3473 2+1.6458 2+2.5321 6 
K=(34 34 10 1,3) 4/2143 

R80 DEG=6 AUT=l P=(1/6/8/3) GIR=4 CN=2,9 
A=l 1 1 1,1 1 164 142 72,134 66 154 16 132,76400 71600 27600 
E=-6 2-1.9696 2-1.7321 2-1.2856 2-.6840 2+.6840 2+1.2856 2+1.7321 2+1.9696 6 
K=(37 60 70 56 28 8 1,) 4/475 

R81 DEG=6 F=I AUT=8 P=(1,24,1244) GIR=4 CN=3,9 
A=1 1 1 1,1 1 170 204 202,1104 2442 2422 15014 11154,20562 5134 2472 
E=2-4.75877 3-2 2-.30541 2+0 6+1 2+2.06418 6 K=(37 52 35 9,) D(R24) D(R51) 
1/214 4/2132 

R82 DEG=6 AUT=1 P=(1/6/B) GIR=3 CN=3,6 
A=1 1 5 11,21 41 24 106 422,1640 2214 1032 1240 16500,20306 134002 260150 
E=2-3.64575 3-2 4-1.30278 2+0 2+1.64575 4+2.30278 6 K=(33 30 10 1,4) 3/423 

R83 DEG=6 F=A AUT=2 P=(1,222,22222,1) GIR=3 CN=3,6 
A=1 1 1 11,1 41 120 50 246,506 664 712 1124 22052,1422 102214 374000 
E=2-4 4-2.30278 4+0 4+1.30278 3+2 6 K=(35 40 15 2,2) 3/1030 

R84 DEG=6 F=IA AUT=2 P=(l,222,22222,1) GIR=3 CN=3,6 
A=l 1 1 11,21 11 56 326 40,1100 3064 3112 2044 21102,21224 42412 374000 
E=2-4 2-2.53209 2-1.34730 2-.53209 2+0 2+.65270 2+.87939 2 2+2.87939 6 
K=(34 38 15 2,3) 1/34 4/3014 

R85 DEG=6 F=I AUT=2 ?=(1,222,2222,12) GIR=4 CN=2,9 
A=1 1 1 1,1 1 134 72 172,174 106 46 62 114,74600 76200 75400 
E=-6 2-2.53209 2-1.34730 2-.87939 4+0 2+.87939 2+1.34730 2+2.53209 6 
K=(37 62 70 56 28 8 1,) B2*I8 1/212 4/770 

R86 DEG=6 F=I AUT=16 P=(1,24,18,2) GIR=3 CN=3,6 
A=1 3 1 1,31 31 170 102 14,1412 422 4024 11044 26042,11504 46600 331200 
E=4-3 6-1 2+0 3+2 2+3 6 K=(32 28 10 2,5) C2XF7 2/144 3/250 5/6014 

R87 DEG=6 F=I AUT=16 P=(1,24,128) GIR=3 CN=3,6 
A=1 1 1 1,31 31 170 204 202,502 1024 6412 2422 21014,45104 130442 47044 
E=4-3 3-2 2+0 6+1 2+3 6 K=(33 28 10 2,4) D(R27) 2/540 3/226 5/1350 

R88 DEG=6 F=I AUT=l2 P=(1,6,26,3) GIR=4 CN=2,9 T=l 
A=1 1 1 1,1 1 52 124 154,132 66 74 162 116,33600 56600 65600 
E=-6 6-1.73205 4+0 6+1.73205 6 K=(37 60 70 56 28 8 1,) 3/123 5/672 

R89 DEG=6 AUT=l P=(1/6/B) GIR=3 CN=4,6 
A=1 1 5 1,11 45 154 102 120,404 2060 5006 2622 15430,15220 102412 223042 
E=2-3.20893 2-2.62871 2-2.21157 -2 2+.21157 2+.62871 2+1 2+1.20893 2+3 6 
K=(33 28 5,4) 4/4407 



TRANSITIVE GRAPHS ON 18 VERTICES (CONTD) 175. 

R90 DEG=6 F=I AUT=31104 P=(1,6,26,3) GIR=4 CN=2,9 T=1 
A=1 1 1 1,1 1 176 176 160,160 160 16 16 16,77000 77000 77000 
E=-6 2-3 12+0 2+3 6 K=(37 66 75 57 28 8 1,) F4[C1] B2*I7 C2*F5 1/242 2/62 
3/125 4/636 5/752 

R91 DEG=6 AUT=4 P=(1,222,1244) GIR=3 CN=3,6 
A=1 3 1 11,21 11 36 204 202,1044 502 3104 4442 30520,31050 106450 47120 
E=4-3 -2 4-1.30278 4+1 4+2.30278 6 K=(33 30 10 2,4) 3/460 

R92 DEG=7 F=A AUT=1 P=(l/7/9/1) GIR=3 CN=3,6 
A=l 1 1 15,1 15 1 374 56,214 2322 252 4204 33062,22342 31162 137400 
E=2-4.8490 2-1.9383 2-.9098 2-.7321 2-.1520 2+.6329 1 2+1.2161 2+2.7321 7 
K=(27 30 15 3,4) 4/14450 

R93 DEG=7 AUT=72 P=(l,223,133,3) GIR=3 CN=6,3 
A=1 3 5 13,7 47 147 36 300,1240 3140 430 10430 30430,67000 157000 337000 
E=-3 6-2 2-.64575 6+0 2+4.64575 7 K=(18,13 10 5 1} 3/261 4/4551 5/10466 

R94 DEG=7 AUT=1 P=(1/7/A) GIR=3 CN=5,5 
A=1 1 5 15,5 45 1 270 206,1062 1430 4342 6502 10350,66406 3312 271220 
[=2-4.08832 -3 2-2 2-1.28142 2+0 2+.32052 2+.32955 2+1.97601 2+2.74366 7 
K=(25 16,6 2) D(R73) 4/2247 

R95 DEG=7 AUT=2 P=(l,11122,112222) GIR=3 CN=3,6 
A=1 1 5 5,5 31 51 6 412,254 134 5700 3700 26442,16422 61262 111162 
E=2-3.64575 -3 4-2 4+0 2+1 2+1.64575 2+3 7 K=(24 14 5 1,7) 3/71 5/2271 

R96 DEG=7 F=I AUT=2 P=(1,1222,22222) GIR=3 CN=4,6 
A=1 1 1 5,11 31 145 350 324,1032 446 4072 2066 15410,23404 164202 352102 
E=2-3.87939 -3 2-1.65270 2-1.53209 2-.46791 2-.34730 2+1 2+1.87939 2+3 7 
K=(24 16 5,7) 1/303 4/4172 

R97 DEG=7 AUT=1 P=(l/7/A) GIR=3 CN=5,6 
A=l 1 5 5,11 31 141 350 406,12 1134 3064 2462 17222,13102 122604 324242 
E=2-3.20893 -3 2-2.62871 2-2.21157 2+.21157 2+.62871 2+1 2+1.20893 2+3 7 
K=(24 12,7) 4/4217 

R98 DEG=7 AUT=1 P=(1/7/A) GIR=3 CN=3,6 
A=1 1 5 11,1 45 61 150 222,1444 1424 4072 2254 2126,31312 65502 56602 
E=2-3.7321 2-2.8177 2-2.3169 2-.2679 2-.2465 1 2+1.1953 2+1.6223 2+2.5634 7 
K=(25 18 5 1,6) 4/3444 

R99 DEG=7 AUT=1 P=(1/7/A) GIR=3 CN=5,6 
A=l 3 5 1,31 13 25 220 560,62 604 4310 16450 7046,57120 32602 201516 
E=4-2.79129 4-2 2-.73205 1 4+1.79129 2+2.73205 7 K=(23 10,8) 3/622 

R100 DEG=7 AUT=2 P=(1,11122,112222) GIR=3 CN=3,6 
A=1 1 5 1,21 41 121 6 772,650 2530 4610 12510 24026,52046 120126 250246 
E=4-3.73205 2-.73205 4-.26795 5+1 2+2.73205 7 K=(26 24 10 2,5) 3/254 5/14502 

R101 DEG=7 F=I AUT=6 P=(1,223,226) GIR=3 CN=6,3 
A=1 3 1 1,7 47 147 34 32,1024 2412 3120 4610 33060,24510 153220 134450 
E=4-2.87939 2-2 4-.65270 4+.53209 1 2+4 7 K=(21,10 10 5 1) 1/115 4/14141 

R102 DEG=7 F=I AUT=2 P=(1,1222,22222) GIR=3 CN=5,5 
A=l 1 1 5,11 65 171 250 124,1016 416 3042 4422 34102,72202 65450 113424 
E=3-3 2-2.22668 2-1.53209 2-1.18479 2-.34730 2+1 2+1.87939 2+3.41147 7 
K=(22 4,9 4) 1/451 4/2456 



TRANSITIVE GRAPHS ON 18 VERTICES (CONTD) 

R103 DEG=7 AUT=4 P=(1,124,2224) GIR=3 CN=4,6 
A=1 1 5 11,11 65 65 374 374,1002 2402 6010 6004 34102,72202 134042 272022 
E=4-3.30278 4-1 4+.30278 4+1 5 7 K=(22 18 5,9) D(R12) 3/611 

R104 DEG=7 F=I AUT=6 P=(1,223,226) GIR=3 CN=3,6 
A=1 3 5 3,1 1 1 10 420,1762 1754 724 664 564,31312 51152 61252 

176. 

E=2-5 4-1.53209 4-.34730 3+1 4+1.87939 7 K=(28 32 15 2,3) D(R44) D(R84) 1/35 
4/11222 

R105 DEG=7 F=I AUT=2 P=(1,1222,22222) GIR=3 CN=5,5 
A=1 1 5 7,13 23 43 216 516,1024 450 6240 16120 24120,52240 164610 153104 
E=2-2.87939 2-2.41147 4-2 2-.65270 2+.53209 1 2+2.18479 2+3.22668 7 
K=(22 8,9 2) 1/423 4/3442 

R106 DEG=7 F=I AUT=2 P=(1,1222,22222) GIR=3 CN=5,5 
A=1 1 5 7,13 23 43 120 240,216 2116 5024 2450 31520,31640 63610 115504 
E=-3 2-2.53209 2-2.41147 2-2 2-1.34730 2+0 2+.87939 2+2.18479 2+3.22668 7 
K=(22 8,9 2) 1/443 4/10315 

R107 DEG=7 F=I AUT=2 P=(1,1222,22222) GIR=3 CN=6,3 
A=1 3 7 17,37 1 1 102 202,1520 1640 2710 5304 25220,12540 165210 152504 
E=-3 2-2.87939 2-2.53209 2-1.34730 2-.65270 2+0 2+.53209 2+.87939 2+4 7 
K=(21,10 10 51) 1/311 4/4435 

R108 DEG=7 AUT=1 P=(l/7/A) GIR=3 CN=3,6 
A=l 1 1 5,21 15 51 54 22,1424 3050 1744 5216 32302,1562 44132 306602 
E=2-3.6458 -3 2-2.8794 2-.8794 2-.6527 2+.5321 2+1.3473 2+1.6458 2+2.5321 7 
K=(25 18 5 1,6) D(R34} 4/2155 

Rl09 DEG=7 F=A AUT=l P=(1/7/9/1) GIR=3 CN=5,5 
A=l 1 1 5,11 55 135 264 202,1012 3022 3520 11424 152,44056 166042 77400 
E=2-3.50810 -3 2-2 2-.86428 2-.67684 2-.25067 2+0 2+1.55887 2+3.74102 7 
K=(22 10,9 4) 4/10247 

R110 DEG=7 AUT=4 P=(1,1222,244) GIR=3 CN=5,5 
A=l 3 7 1,1 63 163 16 16,620 1140 4540 3220 35050,16444 67030 132424 
E=-3 8-2 4+0 4+3 7 K=(21 2,10 4) 3/1122 

Rl11 DEG=7 F=I AUT=2 P=(1,1222,2222,2) GIR=3 CN=5,5 
A=1 1 5 11,25 55 35 370 764,12 2006 4042 12022 26202,16102 175000 372400 
E=2-3.53209 2-2.34730 2-1.53209 2-1 2-.34730 2-.12061 2+1 2+1.87939 5 7 
K=(21 12,10 4) B2XI8 1/125 4/7004 

R112 DEG=7 F=I AUT=2 P=(l,l222,22222) GIR=3 CN=5,6 
A=l 1 1 5,31 41 121 350 324,1216 516 3042 14422 25050,12424 160212 350106 
E=2-4.06418 4-2 2-1.69459 7+1 2+2.75877 7 K=(25 16,6) 1/445 4/12250 

R113 DEG=7 F=I AUT=144 P=(1,16,26,2) GIR=4 CN=2,9 
A=l 1 1 1,1 1 1 374 374,172 346 316 326 272.76 177000 176400 
E=-7 2-2 6-1 6+1 2+2 7 K=(31 56 70 56 28 8 1,} 1/243 2/423 3/161 4/676 5/774 

Rll4 DEG=7 F=I AUT=2 P=(1,1222,22222) GIR=3 CN=5,6 
A=l 1 1 5,11 31 45 310 704,1050 2424 5016 2416 11162,20662 66222 116142 
E=2-3.41147 3-3 2-1.53209 2-.34730 2+1 2+1.18479 2+1.87939 2+2.22668 7 
K=(25 16,6) D(R68) 1/611 4/1623 



TRANSITIVE GRAPHS ON 18 VERTICES (CONTD) 

R115 DEG=7 F=I AUT=2 P=(1,1222,22222) GIR=3 CN=4,6 
A=1 1 5 1,21 21 41 310 304,1252 2526 1152 10626 5450,3424 160146 150232 
[=2-4.22668 2-3.18479 2-1.53209 2-.34730 5+1 2+1.41147 2+1.87939 7 
K=(27 24 5,4) D(R74) 1/107 4/6052 

R116 DEG=7 F=I AUT=4 P=(1,124,2224) GIR=3 CN=5,6 
A=l 1 5 5,11 31 45 254 134,1240 520 6012 16006 25302,22462 55062 112702 
E=S-3 2-2 2+0 6+1 2+3 7 K=(24 12,7) 2/47 3/74 5/2266 

Rl17 DEG=7 F=A AUT=2 P=(1,1222,111222,1} GIR=3 CN=3,6 
A=1 1 1 13,7 7 13 60 14,1314 3120 3240 11650 5524,4632 10546 374400 
E=2-3.73205 4-2 4-.73205 2-.26795 1 4+2.73205 7 K=(23 14 5 1,8) -D(R52) 
3/1422 5/14602 

R118 DEG=7 F=I AUT=2 P=(l,l222,2222,2) GIR=3 CN=5,5 
A=1 1 1 13,27 33 147 132 246,430 1044 6010 16004 25204,12510 175000 372400 
E=2-2.87939 4-2 2-1.22668 2-.65270 2-.18479 2+.53209 1 2+4.41147 7 
K=(19 4,12 6) 1/461 4/12106 

R119 DEG=7 F=I AUT=2 ?=(1,1222,2222,2) GIR=3 CN=5,5 
A=1 1 1 7,13 73 67 152 226,510 1204 6010 16004 25024,12450 175000 372400 
E=-3 2-2.53209 2-2 2-1.34730 2-1.22668 2-.18479 2+0 2+.87939 2+4.41147 7 
K=(19 4,12 6) l/245 4/2346 

R120 DEG=7 AUT=1 P=(1/7/A) GIR=3 CN=5,6 

177. 

A=1 3 1 5,15 21 105 324 122,6 1250 3450 6112 24640,62170 57022 13612 
E=2-3.5634 2-2.6223 2-2.1953 2-.7535 2-.7321 1 2+1.3169 2+1.8177 2+2.7321 7 
K=(24 12,7) 4/5045 

R121 DEG=7 F=I AUT=16 P=(1,124,28) GIR=3 CN=6,3 
A=1 1 1 3,23 63 163 16 16,1210 504 7030 4604 13110,64424 73050 126444 
E=3-3 4-2 6+0 2+1 2+4 7 K=(21,10 10 5 1) 2/621 3/307 5/2613 

R122 DEG=7 AUT=1 P=(1/7/A) GIR=3 CN=3,6 
A=1 1 1 11,21 55 11 250 406,106 1102 7620 7620 366,26406 46056 111270 
E=2-3.7321 2-3.5017 2-1.0313 2-.2679 2+.3367 2+.4375 2+.5938 1 2+3.1650 7 
K=(25 20 5 1,6) 4/12212 

R123 DEG=7 F=I AUT=8 P=(1,124,244) GIR=3 CN=5,5 
A=1 1 5 3,3 43 23 6 412,1330 744 3270 4564 21030,50444 142504 345210 
E=2-3.75877 6-2 2+.69459 5+1 2+3.06418 7 K=(24 16,7 2) 1/161 4/6460 

R124 DEG=7 F=I AUT=8 P=(1,124,244) GIR=3 CN=5,5 
A=1 1 1 3,3 43 23 16 16,1330 744 3270 4564 21210,50504 142444 345030 
E=2-3.75877 3-3 6+0 2+.69459 2+1 2+3.06418 7 K=(25 16,6 2) 1/215 4/10654 

R125 DEG=7 AUT=1 P=(1/7/A) GIR=3 CN=3,6 
A=1 3 1 11,1 25 41 310 216,74 1624 6452 10322 21150,3542 62604 344062 
E=2-3.73205 4-2.79129 2-.26795 5+1 4+1.79129 7 K=(26 20 5 1,5) 3/512 

R126 DEG=7 F=I AUT=240 P=(1,25,A) GIR=3 CN=6,3 
A=1 3 1 11,31 71 171 204 12,1414 1022 6424 5042 32444,25102 152504 125602 
E=10-2 5+1 2+4 7 K=(20,11 10 5 1) C2XF8 -C2*F8 2/113 3/704 5/14441 

R127 DEG=7 F=I AUT=2 P=(1,1222,22222) GIR=3 CN=4,6 
A=l 1 5 1,1 11 5 350 324,1052 2426 5050 2424 21272,10566 34342 32322 
E=2-4.75877 -3 2-2 2-.30541 2+0 6+1 2+2.06418 7 K=(28 28 10,3) D(R57) D(R72) 
1/47 4/1546 



TRANSITIVE GRAPHS ON 18 VERTICES (CONTD) 

R128 DEG=7 AUT=4 P=(1,124,2224) GIR=3 CN=5,6 
A=1 1 5 11,5 31 45 250 124,16 2016 5620 3540 25302,12702 113062 64462 
E=S-3 4-1.30278 4+1 4+2.30278 7 K=(24 12,7 2) D(R61) 3/427 

R129 DEG=7 F=I AUT=2 P=(1,1222,22222) GIR=3 CN=3,6 
A=1 1 5 1,1 1 1 366 372,352 326 4450 13024 24250,52124 120252 250126 
E=2-5.41147 2-1.53209 2-.81521 2-.34730 2+.22668 5+1 2+1.87939 7 
K=(30 40 25 6,1) D(R41) D(R75) 1/701 4/6244 

R130 DEG=7 F=I AUT=2 P=(1,1222,2222,2) GIR=4 CN=2,9 
A=l 1 1 1,1 1 1 372 366,156 236 346 332 274,174 176400 177000 
E=-7 2-1.87939 2-1.53209 2-1 2-.34730 2+.34730 2+1 2+1.53209 2+1.87939 7 
K=(31 56 70 56 28 8 1,) 1/53 4/537 

R131 DEG=7 AUT=1 P=(1/7/A) GIR=3 CN=3,6 

178. 

A=l 1 5 7,31 41 101 34 602,1062 1510 306 12604 16042,72510 45216 25360 
E=2-3.64575 -3 2-2 4-1.30278 2+0 2+1.64575 4+2.30278 7 K=(24 14 5 1,7} 3/1061 

R132 DEG=7 F=I AUT=144 P=(1,16,26,2) GIR=3 CN=3,6 
A=1 1 1 15,21 55 55 374 374,202 2006 2042 2012 34022,34102 177000 176400 
E=2-4 2-2 6-1 6+1 5 7 K=(22 20 10 2,9) -D(R93) B2XI7 1/425 2/215 3/1411 
4/13200 5/7100 

R133 DEG=7 F=A AUT=l P=(1/7/9/1) GIR=3 CN=5,5 
A=l 3 1 5,21 51 117 130 6,1460 1210 2534 3062 24540,15016 64242 347400 
E=2-3.09096 -3 2-2 2-1.86164 2-.66781 2-.09662 2+0 2+2.55623 2+3.16080 7 
K=(22 10,9 2) 4/10354 

R134 DEG=7 F=A AUT=1 P=(l/7/9/1) GIR=3 CN=4,6 
A=l 3 1 15,15 5 101 350 252,6 74 2322 7022 16520,3342 70610 327400 
E=2-4.1650 2-1.5938 2-1.4375 2-1.3367 2-.7321 2+.0313 1 2+2.5017 2+2.7321 7 
K=(24 18 5,7) -D(R43) 4/5424 

Rl35 DEG=7 F=I AUT=24 P=(l,34,226) GIR=3 CN=3,6 
A=l 1 1 1,1 41 21 240 120,1716 1476 1254 1252 20534,10532 141246 30526 
E=2-5 4-2 11+1 7 K=(29 32 15 2,2) D(R32) D(R65) D(R83) 2/125 3/1504 5/14520 

Rl36 DEG=7 F=A AUT=1 P=(1/7/9/1) GIR=3 CN=3,6 
A=1 3 5 13,11 11 161 350 26,340 3500 1024 14006 22540,77002 10276 77400 
E=2-3.7321 2-2.2161 2-1.6329 2-.8480 2-.2679 2-.0902 2+.9383 1 2+3.8490 7 
K=(22 16 5 1,9) -D(R46) 4/12302 

R137 DEG=8 F=XTI P=(1,8,+) GIR=3 CN=9,2 T=2 
A=1 3 7 17,37 77 177 377 0,1000 3000 7000 17000 37000,77000 177000 377000 
2[19] SW(I9) F3[C2] 1/524 2/314 3/1610 4/17000 5/17000 

R138 DEG=8 AUT=1 P=(1/8/9) GIR=3 CN=5,5 
A=1 1 3 5,35 41 43 141 204,624 3512 7112 12724 15224,63252 41532 201536 
E=2-4.50810 2-1.86428 2-1.67684 2-1.25067 3+0 2+.55887 2+2 2+2.74102 8 
K=(18 8,10 2) 4/14207 

R139 DEG=8 F=I AUT=31104 P=(l,26,6,3) GIR=3 CN=6,3 
A=1 3 7 17,7 37 47 247 640,1640 3640 130 10130 30130,77000 177000 377000 
E=-4 14-1 2+5 8 K=(9,19 20 10 2) SW(I2) -D(R132) -D(R172) -D(R21) -D(R53) 
F4[C2] 1/342 2/66 3/170 4/4363 5/4336 



TRANSITIVE GRAPHS ON 18 VERTICES (CONTD) 

R140 DEG=8 AUT=1 P=(1/8/9) GIR=3 CN=5,5 
A=1 1 5 15,15 51 65 221 724,156 406 7420 14302 15612,22512 175042 126162 
E=-4 2-3.1650 2-2.7321 2-.5938 2-.4375 2-.3367 2+.7321 2+1.0313 2+3.5017 8 
K=(16 4,12 6) 4/10732 

R141 DEG=8 F=I AUT=2 P=(1,2222,12222) GIR=3 CN=5,5 
A=1 3 5 13,5 43 33 35 146,350 2560 626 10616 23300,55440 157120 167050 
E=2-3.53209 2-2.34730 2-2 2-1.53209 2-.34730 2-.12061 2+1.87939 2+2 4 8 
K=(15 6,13 4) -D(Rll9) 1/134 4/7220 

Rl42 DEG=8 AUT=l P=(l/8/9) GIR=3 CN=5,5 
A=1 1 5 1,5 55 65 361 132,222 3154 2122 15414 2672,33052 52426 335202 
E=2-3.74102 2-3 2-1.55887 2-1 0 2+.25067 2+.67684 2+.86428 2+3.50810 8 
K=(16 4,12 6) 4/12213 

R143 DEG=8 AUT=l P=(1/8/9) GIR=3 CN=3,6 

179. 

A=1 1 1 11,5 5 153 21 764,1512 1112 2224 14562 16456,30550 106076 114626 
E=2-4.64575 4-2.30278 3+0 2+.64575 4+1.30278 2+2 8 K=(20 14 5 1,8) D(R45) 
3/433 

R144 DEG=8 AUT=l P=(1/8/9) GIR=3 CN=6,3 
A=1 1 1 5,25 15 65 275 312,222 2402 3514 15130 6072,46342 35152 167006 
E=-4 2-2.9696 2-2.2856 2-1.6840 2-.3160 2+.2679 2+.2856 2+.9696 2+3.7321 8 
K=(15,13 10 5 1) 4/4655 

R145 DEG=8 F=I AUT=2 P=(1,2222,12222) GIR=3 CN=5,6 
A=1 3 5 3,3 5 103 45 630,1054 1122 4374 12572 6720,46650 103322 245454 
E=2-4.41147 2-3 2-1 2-.87939 0 2+.18479 2+1.22668 2+1.34730 2+2.53209 8 
K=(19 10,9) 1/614 4/11231 

Rl46 DEG=8 F=I AUT=2 P=(1,2222,12222) GIR=3 CN=5,6 
A=1 3 5 13,11 21 61 111 36,254 2522 714 10662 15644,23702 127144 57142 
E=2-3.53209 2-3.41147 2-2.34730 2-.12061 3+0 2+1.18479 2+2 2+2.22668 8 
K=(18 6,10) 1/132 4/14231 

R147 DEG=8 F=N AUT=2 P=(l,2222,12222) GIR=3 CN=5,6 
A=l 3 5 3,21 51 111 261 146,454 322 1624 11612 17244,27502 116134 66072 
E=4-3 4-2.30278 0 4+1.30278 4+2 8 K=(17 6,11 2) 

R148 DEG=8 AUT=2 P=(1,2222,12222) GIR=3 CN=3,6 
A=l 3 1 11,21 51 55 123 146,512 264 674 732 17054,27122 117404 267202 
E=2-4 4-2.30278 2-1 3+0 4+1.30278 2+3 8 K=(17 12 5 1,11) 3/1070 

R149 DEG=8 F=I AUT=2 P=(1,2222,12222) GIR=3 CN=5,5 
A=1 3 1 1,31 71 115 263 606,334 472 5042 3104 35014,73022 72254 134522 
E=2-3.53209 2-2.34730 2-2.22668 2-1.18479 2-.12061 3+0 2+2 2+3.41147 8 
K=(15 6,13 4) -D(Rll8) -D(R71) 1/550 4/6306 

R150 DEG=8 AUT=l P=(1/8/9) GIR=3 CN=6,3 
A=1 1 5 15,35 3 175 7 612,1462 1300 4504 16142 7422,74124 53412 334150 
E=2-3 4-2.30278 2-1.64575 2-1 0 4+1.30278 2+3.64575 8 K=(14,14 10 5 1) 3/1305 

Rl51 DEG=8 F=I AUT=2 P=(l,2222,12222) GIR=3 CN=5,5 
A=1 3 7 7,11 61 23 215 146,1342 1544 632 10634 26300,56440 165050 353120 
E=2-3.22668 2-2.87939 2-2.18479 2-1 2-.65270 2+.53209 2+1 2+2.41147 4 8 
K=(l5 6,13 4) 1/324 4/15003 



TRANSITIVE GRAPHS ON 18 VERTICES (CONTD) 180. 

R152 DEG=8 AUT=1 P=(1/8/9) GIR=3 CN=6,3 
A=1 3 5 15,1 35 45 135 650,452 2006 5342 11250 35360,26122 106642 327022 
E=2-3.8794 2-1.8794 2-1.6527 2-1.6458 2-.4679 0 2+.3473 2+1.5321 2+3.6458 8 
K=(15,13 10 5 1) 4/5622 

R153 DEG=8 F=I AUT=2 P=(1,2222,12222) GIR=3 CN=5,5 
A=1 3 1 1,5 43 107 47 630,764 2752 5024 13012 21134,51072 130530 270270 
E=2-4.41147 2-2.87939 2-1 2-.65270 2+.18479 2+.53209 2+1 2+1.22668 4 8 
K=(18 10,10 4) 1/522 4/15011 

R154 DEG=8 F=I AUT=2 P=(1,2222,12222) GIR=3 CN=5,5 
A=1 1 5 3,35 33 61 111 36,410 2220 7226 7416 2744,44742 127302 57444 
E=-4 2-3.22668 2-2.18479 4-1 2-.53209 2+.65270 2+2.41147 2+2.87939 8 
K=(16 6,12 4) 1/72 4/2725 

R155 DEG=8 F=I AUT=2 P=(1,2222,12222) GIR=3 CN=5,6 
A=1 1 5 3,35 33 61 311 36,1102 3044 5226 3416 22650,54720 66244 316502 
E=2-3.22668 2-2.53209 2-2.18479 2-1.34730 2-1 0 2+.87939 2+2.41147 2+3 8 
K=(15 2,13 4) -D(R23) 1/702 4/5243 

R156 DEG=8 F=I AUT=4 P=(1,224,1224) GIR=3 CN=3,6 
A=1 3 5 13,5 43 43 305 36,746 746 630 170 35220,75410 133120 273050 
E=2-4 4-2 4-1 4+1 2+2 4 8 K=(16 10 5 1,12) -D(R78) 2/614 3/1413 5/7600 

R157 DEG=8 F=I AUT=2 P=(1,2222,12222) GIR=3 CN=5,5 
A=1 3 7 7,1 1 25 13 170,764 752 1544 11342 25504,13242 164530 152270 
E=2-4.41147 -4 4-1 2-.53209 2+.18479 2+.65270 2+1.22668 2+2.87939 8 
K=(19 10,9 4) D(R109) l/216 4/10764 

R158 DEG=8 F=IA AUT=2 P=(1,2222,2222,1) GIR=3 CN=5,5 
A=l 3 5 13,5 43 47 107 742,1744 530 270 15120 36050,50234 124432 377000 
E=2-4.06418 2-1.69459 8-1 2+1 2+2.75877 4 8 K=(15 8,13 4) SW(I8) -D(R180) 
1/544 4/7120 

R159 DEG=8 F=I AUT=2 P=(1,2222,12222) GIR=3 CN=5,6 
A=1 1 5 13,11 61 13 25 170,1700 1640 4346 2546 23246,15506 126232 56434 
E=-4 2-3.53209 2-2.34730 2-1.87939 2-.12061 2+.34730 2+1.53209 4+2 8 
K=(18 6,10) 1/152 4/4467 

R160 DEG=8 F=I AUT=2 P=(1,2222,12222) GIR=3 CN=3,6 
A=1 1 5 13,3 45 101 241 170,524 252 726 656 27224,57412 17264 27512 
E=2-4 2-3.41147 2-1.87939 3+0 2+.34730 2+1.18479 2+1.53209 2+2.22668 8 
K=(19 14 5 1,9) D(R69) 1/226 4/3162 

R161 DEG=8 F=I AUT=2 P=(1,2222,12222) GIR=3 CN=3,6 
A=1 3 1 1,13 65 111 261 146,524 252 672 734 27224,17412 117024 267012 
E=2-4 2-3 4-1 5+0 2+2 2+3 8 K=(17 10 5 1,11) 2/252 5/11350 

R162 DEG=8 F=I AUT=2 P=(1,2222,12222) GIR=3 CN=3,6 
A=1 1 5 3,25 53 121 251 36,754 762 322 454 35024,73012 133404 275202 
E=2-4 2-2.22668 2-1.87939 2-1.18479 3+0 2+.34730 2+1.53209 2+3.41147 8 
K=(16 10 5 1,12) 1/644 4/12606 

R163 DEG=8 F=I AUT=2 P=(1,2222,12222) GIR=3 CN=5,5 
A=1 1 5 3,27 57 5 203 740,232 2434 4114 12062 33224,35412 115660 63710 
E=2-3.22668 2-3 2-2.18479 2-1 2-.87939 0 2+1.34730 2+2.41147 2+2.53209 8 
K=(16 2,12 4) 1/234 4/3314 



TRANSITIVE GRAPHS ON 18 VERTICES (CONTD} 

R164 DEG=8 AUT=2 P=(1,111122,12222) GIR=3 CN=6,3 
A=1 3 5 13,11 51 151 351 36,1120 3060 7520 17260 2506,44246 164206 352406 
E=4-3 2-1.64575 4-1 3+0 2+2 2+3.64575 8 K=(14,14 10 5 1) 3/315 5/3225 

R165 DEG=8 F=I AUT=2 P=(1,2222,12222) GIR=3 CN=3,6 
A=l 3 5 13,5 43 43 305 170,434 232 746 746 27220,57410 117120 267050 
E=2-4 2-2 2-1.87939 2-1.53209 2-.34730 2+.34730 2+1.53209 2+1.87939 4 8 
K=(16 10 5 1,12) -D(R67) 1/464 4/13003 

R166 DEG=8 AUT=2 P=(l,2222,12222) GIR=3 CN=5,6 
A=l 3 5 13,5 43 13 225 146,636 636 5060 13110 34540,32340 151520 361250 
E=4-3.30278 2-2 2-1 4+.30278 2+1 2+2 4 8 K=(l6 8,12) 3/1230 

R167 DEG=8 F=I AUT=6 P=(1,26,2223) GIR=3 CN=3,6 
A=1 1 3 3,25 3 15 105 134,642 640 4130 5770 12770,17146 17416 17226 

181. 

E=3-4 4-1.87939 4+.34730 4+1.53209 2+2 8 K=(19 14 5 1,9) D(R70) 1/642 4/10555 

Rl68 DEG=8 AUT=2 P=(l,l1222,111222) GIR=3 CN=6,3 
A=1 1 5 15,21 51 35 235 602,1170 2144 5022 15012 26542,56342 31306 231446 
E=-4 4-2.73205 4-1 2+.26795 4+.73205 2+3.73205 8 K=(l5,13 10 51) 3/265 
5/10770 

Rl69 DEG=8 AUT=l P=(l/8/9) GIR=3 CN=5,5 
A=l 3 5 11,21 57 161 171 620,1006 2012 7240 17240 34016,44536 67006 213660 
E=2-3 2-2.74366 2-1.97601 2-1 2-.32955 2-.32052 0 2+1.28142 2+4.08832 8 
K=(l3 2,15 8) 4/3126 

Rl70 DEG=8 F=I AUT=2 P=(l,2222,12222) GIR=3 CN=5,6 
A=l 3 3 5,23 55 5 3 630,572 374 3204 15402 21264,51512 132650 74720 
E=2-4.41147 2-2.53209 2-1.34730 2-1 0 2+.18479 2+.87939 2+1.22668 2+3 8 
K=(l8 10,10) 1/306 4/6550 

Rl71 DEG=8 F=I AUT=2048 P=(l,8,18) GIR=3 CN=3,6 T=l 
A=l 1 7 1,7 21 101 221 776,550 226 6270 6270 6506,70550 70226 306506 
E=4-4 9+0 4+2 8 K=(20 20 10 2,8) D(R86) I4[Bl] C2*F7 2/624 3/313 5/5452 

Rl72 DEG=8 F=IA AUT=144 P=(l,26,26,1) GIR=3 CN=3,6 
A=l 1 1 1,31 41 131 131 774,772 606 4116 4126 4036,70446 70246 377000 
E=2-5 8-1 6+1 4 8 K=(l9 20 10 2,9) SW(I7) -D(R56) 1/434 2/134 3/1603 4/13014 
5/7050 

Rl73 DEG=8 F=TIA AUT=40320 P=(l,8,8,1) GIR=4 CN=2,9 T=2 
A=1 1 1 1,1 1 1 1 774,772 766 756 736 676,576 376 377000 E=-8 8-1 8+1 8 
K=(28 56 70 56 28 8 1,) SW(Il) -W9(B2) -B2XI9 B2*I9 1/252 2/462 3/163 4/776 
5/377 

R174 DEG=8 AUT=1 P=(1/8/9} GIR=3 CN=3,6 
A=l 1 1 15,1 55 45 121 374,256 416 3402 16300 34472,34262 123446 14732 
E=2-4.6458 2-2.5321 2-1.3473 2-.5321 0 2+.6458 2+.6527 2+.8794 2+2.8794 8 
K=(19 14 5 1,9) D(Rl36) 4/3262 

Rl75 DEG=8 F=I AUT=512 P=(l,44,144) GIR=3 CN=3,6 
A=1 3 5 13,1 1 1 1 776,764 752 752 764 14624,62152 114624 262152 
E=2-5.75877 2-1.30541 9+0 2+1.06418 2+2 8 K=(24 28 15 3,4) D(R63} D(R64) 
D(R76) O(R92) -D(R31) I5[Bl] 1/314 4/6245 



TRANSITIVE GRAPHS ON 18 VERTICES (CONTD) 

R176 DEG=B AUT=1 P=(1/8/9) GIR=3 CN=5,5 
A=1 1 7 15,21 61 7 251 460,1216 206 7500 17114 4672,51720 16146 325142 
[=2-3.16080 2-3 2-2.55623 2-1 0 2+.09662 2+.66781 2+1.86164 2+3.09096 8 
K=(l6 6,12 2) 4/3312 

R177 DEG=8 AUT=1 P=(l/8/9) GIR=3 CN=5,5 
A=1 3 5 1,21 7 55 221 550,1044 2152 2232 15330 5530,72426 6762 53446 
E=2-4.09096 2-2.86164 2-1.66781 2-1.09662 3+0 2+1.55623 2+2 2+2.16080 8 
K=(18 10,10 2) 4/5701 

R178 DEG=8 AUT=1 P=(l/8/9} GIR=3 CN=5,5 
A=1 1 5 15,27 1 105 163 330,642 36 7606 6014 33312,27500 124152 321360 

182. 

E=-4 2-2.7321 2-2.5634 2-1.6223 2-1.1953 2+.2465 2+.7321 2+2.3169 2+2.8177 8 
K=(16 4,12 4) 4/2754 

R179 DEG=8 AUT=2 P=(1,2222,12222) GIR=3 CN=5,5 
A=1 1 5 13,23 55 41 301 740,522 254 6246 6506 27224,17412 111434 261232 
E=6-3 2-1 3+0 6+2 8 K=(17 4,11 2) 3/455 

R180 DEG=8 F=IA AUT=2 P=(1,2222,2222,1) GIR=3 CN=5,5 
A=1 1 3 15,37 37 105 43 472,334 2300 1440 14604 34602,55412 36224 377000 
E=-4 2-2.75877 10-1 2+1.69459 2+4.06418 8 K=(13 4,15 8} SW(I3) -D(R111) 
-D(R158) 1/650 4/10665 

R181 DEG=8 F=I AUT=24 P=(1,26,234) GIR=3 CN=3,6 
A=1 3 5 5,13 23 5 203 770,770 606 56 126 35540,75230 36540 236230 
E=3-4 8-1 6+2 8 K=(18 10 5 1,10) 2/464 3/1160 5/1167 

R182 DEG=8 AUT=l P=(1/8/9) GIR=3 CN=6,5 
A=1 3 7 15,31 15 105 61 660,1016 1304 3642 12012 24560,64702 166422 37340 
E=-4 2-2.73205 4-1.79129 4-1 2+.73205 4+2.79129 8 K=(15,13 6) 3/523 

R183 DEG=8 AUT=2 P=(1,11222,111222) GIR=3 CN=3,6 
A=1 1 5 5,21 11 105 45 170,1602 1144 5622 5612 26532,16272 22566 12356 
E=2-4.64575 2-3 2-1 5+0 2+.64575 4+2 8 K=(20 14 5 1,8) D(R117) 3/1423 5/5425 

R184 DEG=8 AUT=1 P=(1/8/9} GIR=3 CN=4,6 
A=1 1 1 5,15 15 1 205 760,732 3216 4462 7440 31036,30356 40762 230332 
E=2-5.08832 2-2.28142 2-.67948 2-.67045 3+0 2+.97601 2+1.74366 2+2 8 
K=(21 18 5,7) D(R134) 4/6164 

R185 DEG=8 F=IA AUT=2 P=(l,2222,2222,1) GIR=3 CN=4,6 
A=1 3 5 13,25 13 5 3 572,374 664 712 10704 24642,51520 126250 377000 
E=2-4.75877 8-1 2-.30541 0 2+2.06418 2+3 8 K=(18 16 5,10) SW(I5) -D(Rl90) 
-D(R35) 1/146 4/6303 

Rl86 DEG=8 F=IA AUT=8 P=(1,44,44,1) GIR=3 CN=5,5 
A=1 3 3 15,25 53 31 207 612,170 1624 2146 11502 34444,23310 146260 377000 
E=4-3 8-1 0 4+3 8 K=(14 4,14 4) SW(I4) -D(R186) -D(R39) 2/74 3/1503 5/3252 

R187 DEG=8 AUT=l P=(l/8/9} GIR=3 CN=5,5 
A=l 1 1 15,1 51 111 145 470,1126 416 4162 6264 35306,7662 11256 232612 
E=-4 2-3.8490 2-2.7321 2-.9383 2+.0902 2+.7321 2+.8480 2+1.6329 2+2.2161 8 
K=(19 8,9 2) D(Rl33) D(R58) 4/10273 



TRANSITIVE GRAPHS ON 18 VERTICES (CONTD) 

R188 DEG=8 F=I AUT=512 P=(l,44,144) GIR=3 CN=3,6 
A=l 1 1 1,7 71 107 271 776,530 246 530 246 36030,76006 76006 336030 
E=2-4 2-3.06418 2-.69459 9+0 2+3.75877 8 K=(16 12 5 1,12) D(R28) I6[B1] 1/606 
4/3360 

R189 DEG=8 F=I AUT=12 P=(1,26,36) GIR=3 CN=5,6 
A=1 3 5 13,5 43 5 203 36,606 146 5660 13550 36330,3360 105710 306470 
E=-4 6-2.73205 6+.73205 4+2 8 K=(18 4,10) 3/136 5/10356 

R190 DEG=8 F=IA AUT=2 P=(1,2222,2222,1) GIR=3 CN=6,4 
A=1 1 3 5,13 65 173 375 524,252 2052 1124 6012 31024,75004 176002 377000 
E=2-3 2-2.06418 8-1 0 2+.30541 2+4.75877 8 K=(10,18 16 5) SW(I6) -D(R185) 
-D(R25) -D(R36) -D(R42) -D(R50) 1/36 4/12446 

TRANSITIVE GRAPHS ON 19 VERTICES 

S1 DEG=O F=XTVIAP P=(1,+) CN=1,19 

S2 DEG=2 F=TVIP AUT=2 P=(1,2,2,2,2,2,2,2,2,2) GIR=19 CN=3,10 POLYGON 
A=1 1 4 2,20 10 100 40 400,200 2000 1000 10000 4000,40000 20000 200000 500000 
E=2-1.973 2-1.759 2-1.355 2-.803 2-.165 2+.491 2+1.094 2+1.578 2+1.892 2 
K=(l05 364 715 792 462 120 9,) 1/2 

S3 DEG=4 F=VI AUT=2 P=(1,22,22,22,22,2) GIR=3 CN=4,7 
A=1 1 3 15,24 12 44 102 500,240 1400 2200 12000 5000,44000 30000 320000 740000 
E=2-2.158 2-2.138 2-1.520 2-1.268 2-.665 2-.081 2+.291 2+2.069 2+3.470 4 
K=(66 120 70 6,3) D(S2) 1/401 

S4 DEG=4 F=VI AUT=2 P=(1,22,2222,222) GIR=4 CN=3,10 
A=1 1 1 1,24 12 2 4 420,210 422 4214 2100 21040,42000 21000 300300 300440 
E=2-3.114 2-2.776 2-1.482 2-.312 2+.133 2+.537 2+.929 2+1.413 2+2.672 4 
K=(69 152 155 66 7,) 1/22 

S5 DEG=4 F=VI AUT=2 P=(l,22,2222,222) GIR=4 CN=3,10 
A=1 1 1 1,10 60 24 12 2,4 114 62 13000 7000,20440 40300 201400 502200 
E=2-3.327 2-2.562 2-.969 2-.394 2-.261 2-.181 2+1.585 2+1.726 2+2.383 4 
K=(69 152 160 78 14,) 1/402 

S6 DEG=4 F=VI AUT=2 P=(1,22,222,222,2) GIR=4 CN=3,10 
A=1 1 1 1,34 32 4 2 14,22 2400 1200 10400 24200,2500 1240 250000 524000 
E=2-3.7317 2-1.9241 2-.8788 2-.8636 2+.2237 2+.3258 2+.7749 2+1.0882 2+2.9855 4 
K=(69 156 185 126 49 8,) 1/30 

S7 DEG=6 F=VI AUT=2 P=(l,222,222,222) GIR=3 CN=5,5 
A=1 1 3 5,33 75 124 52 412,224 2204 1402 10000 24000,71400 66200 171000 666000 
E=2-2.623 2-1.840 2-1.682 2-1.647 2-.830 2-.266 2+.059 2+1.266 2+4.564 6 
K=(36 20,9 4) 1/601 

S8 DEG=6 F=VI AUT=2 P=(1,222,22222,2) GIR=3 CN=4,7 
A=1 1 5 3,25 13 102 44 550,1360 22 14 11410 6220,14404 114202 270200 564400 
E=2-2.727 2-2.233 2-2.153 2-1.749 2-.984 2+.230 2+.923 2+2.217 2+3.477 6 
K=(39 36 5,6) 1/242 

S9 DEG=6 F=VI AUT=2 P=(1,222,2222,22) GIR=3 CN=4,7 
A=l 1 1 11,23 55 134 72 214,422 2 4 6042 11104,55200 36400 256000 535000 
E=2-3.492 2-2.323 2-1.468 2-1.064 2-.246 2-.174 2+.310 2+1.497 2+3.961 6 
K=(39 40 15,6) D(S3) 1/520 



TRANSITIVE GRAPHS ON 19 VERTICES (CONTD) 184. 

SlO DEG=6 F=VI AUT=2 P=(1,222,22222,2) GIR=3 CN=4,7 
A=1 1 1 1,21 51 134 72 4,1002 42 104 12014 25022,12254 5522 57400 37200 
E=2-3.9169 2-2.9413 2-1.4357 2-.4258 2+.0965 2+.6237 2+.7815 2+.9132 2+3.3048 6 
K=(42 56 30 6,3) 1/124 

S11 DEG=6 F=VI AUT=2 P=(1,222,222222) GIR=4 CN=4,10 
A=1 1 1 1,1 1 160 150 104,1042 2134 1072 5602 12604,2214 101422 220054 540122 
E=2-4.535 2-2.836 2-1.535 2-.032 2+.610 2+.699 2+1.420 2+1.579 2+1.631 6 
K=(45 68 45 12,) 1/510 

S12 DEG=6 F=VI AUT=2 P=(1,222,22222,2) GIR=4 CN=3,10 
A=1 1 1 1,1 1 174 172 74,132 2004 5002 10044 24102,50054 24122 252400 525200 
E=2-5.086 2-1.198 2-.671 2-.478 2-.388 2-.346 2+1.028 2+1.318 2+2.820 6 
K=(45 80 75 36 7,) -D(S7) 1/222 

S13 DEG=6 F=VI AUT=2 P=(1,222,222222) GIR=3 CN=4,7 
A=1 1 3 15,1 1 12 24 344,542 50 120 12110 25060,14304 114442 26604 51602 
E=2-3.279 2-3.241 2-1.667 2-1.044 2-.884 2+1.227 2+1.869 2+1.904 2+2.115 6 
K=(42 48 10,3) D(S6} 1/441 

S14 DEG=6 F=VI AUT=6 P=(1,6,66) GIR=3 CN=5,7 T=1 
A=1 1 7 5,21 43 14 102 340,424 60 4012 12402 35040,6420 114210 301700 63204 
E=6-2.28514 6-1.22188 6+2.50702 6 K=(39 32,6) 1/301 

S15 DEG=6 F=VI AUT=2 P=(1,222,22222,2) GIR=3 CN=4,7 
A=1 3 5 3,1 1 130 70 144,142 414 4222 12304 5442,42120 21050 312400 705200 
E=2-3.897 2-2.638 2-1.433 2-1.029 2-.580 2+.715 2+1.013 2+2.182 2+2.667 6 
K=(42 52 20,3) 1/620 

S16 DEG=6 F=VI AUT=2 P=(1,222,22222,2) GIR=3 CN=4,7 
A=1 1 1 11,21 11 56 326 40,1100 1064 2112 1224 2412,41102 22044 336000 355000 
E=2-4.131 2-2.071 2-2.020 2-.560 2+.125 2+.372 2+.410 2+1.711 2+3.163 6 
K=(42 56 30 6,3) 1/203 

S17 DEG=8 F=VI AUT=2 P=(1,2222,22222} GIR=3 CN=4,7 
A=1 3 5 3,25 13 5 3 100,1040 1472 6334 3664 3712,42704 121642 113270 207530 
E=2-4.7DO 2-2.339 2-1.258 2-1.059 2-.342 2+.065 2+.458 2+2.501 2+2.673 8 
K=(24 20 5,9) 1/660 

S18 DEG=8 F=VI AUT=2 P=(1,2222,22222) GIR=3 CN=5,7 
A=1 1 3 5,15 23 101 241 634,632 2434 1232 14304 34442,41506 122246 252160 525150 
E=2-3.992 2-2.552 2-2.319 2-2.237 2+.863 2+.908 2+1.504 2+1.809 2+2.017 8 
K=(24 16,9) D(S8) 1/131 

Sl9 DEG=8 F=VI AUT=2 P=(l,2222,22222) GIR=3 CN=4,7 
A=1 1 5 13,11 61 101 241 416,226 1220 2410 15724 16652,15162 16154 112506 605246 
E=2-4.296 2-2.823 2-1.601 2-1.229 2-.977 2+1.332 2+1.404 2+1.988 2+2.202 8 
K=(24 16 5,9) 1/560 

S20 DEG=8 F=VI AUT=2 P=(1,2222,22222) GIR=3 CN=5,5 
A=1 1 7 17,1 1 25 13 712,664 2250 5520 6346 11546,52110 125060 310342 704544 
E=2-4.595 2-2.643 2-1.700 2-.553 2-.104 2+.225 2+1.061 2+1.101 2+3.209 8 
K=(24 16,9 4) 1/151 

S21 DEG=8 F=VI AUT=2 P=(1,2222,22222) GIR=3 CN=5,6 
A=1 1 7 7,25 13 15 23 570,1370 2250 1520 14604 34602,46044 131102 344502 730244 
E=2-3.508 2-2.957 2-1.742 2-1.149 2-.836 2-.655 2+1.414 2+2.122 2+3.311 8 
K=(21 8,12 4) -D(S4) 1/702 



TRANSITIVE GRAPHS ON 19 VERTICES (CONTD) 

S22 DEG=8 F=VI AUT=2 P=(1,2222,22222) GIR=3 CN=5,5 
A=1 3 7 7,13 65 101 41 334,472 1440 6300 15604 16602,54410 134220 342454 321322 
E=2-3.406 2-2.803 2-2.788 2-.746 2-.089 2+.209 2+.550 2+1.312 2+3.760 8 
K=(21 8,12 4) 1/47 

S23 DEG=8 F=VI AUT=2 P=(1,2222,22222) GIR=3 CN=4,7 
A=1 1 3 15,15 63 105 43 572,374 1002 2004 14604 34602,55410 136220 254324 134452 
E=2-4.082 2-2.399 2-1.662 2-1.050 2-.573 2+.110 2+.143 2+1.718 2+3.796 8 
K=(21 16 5,12) -D(S26) 1/612 

S24 DEG=8 F=VI AUT=2 P=(1,2222,22222) GIR=3 CN=5,7 
A=1 1 3 15,11 21 15 23 320,450 452 4324 7304 33442,1754 102762 57106 37046 
E=2-4.044 2-3.640 2-1.387 2-.394 2-.128 2+.356 2+.534 2+1.704 2+2.998 8 
K=(24 16,9) 1/36 

S25 DEG=8 F=VI AUT=2 P=(1,2222,22222} GIR=3 CN=5,5 
A=1 1 5 3,33 75 41 301 22,1014 1614 2622 7062 13114,5710 112660 165406 272206 
E=2-3.441 2-3.001 2-2.005 2-1.044 2-.745 2-.339 2+.828 2+2.591 2+3.157 8 
K=(21 4,12 4) 1/621 

S26 DEG=8 F=VI AUT=2 P=(1,2222,2222,2) GIR=3 CN=7,4 
A=1 1 3 5,13 65 173 375 524,252 2012 1024 15004 36002,46052 31124 375000 776000 
E=2-3.037 2-1.914 2-1.634 2-1.529 2-.493 2-.431 2-.262 2+.245 2+5.055 8 
K=(15,18 16 5) -D(S9) 1/161 

S27 DEG=8 F=VI AUT=2 P=(1,2222,22222) GIR=3 CN=5,5 
A=l 1 3 5,21 51 173 175 564,352 24 4012 12202 25404,76004 175002 255064 136112 
E=2-3.195 2-2.450 2-2.025 2-1.191 2-.731 2-.707 2+.748 2+1.152 2+4.399 8 
K=(18 4,15 8) -D(S5) 1/701 

S28 DEG=B F=VI AUT=2 P=(1,2222,22222) GIR=3 CN=5,5 
A=1 3 3 5,11 61 27 17 412,1224 2460 1310 16270 15530,4544 110342 327042 353104 
E=2-3.426 2-2.239 2-2.185 2-1.847 2-1.349 2-.069 2+1.950 2+2.360 2+2.805 8 
K=(21 8,12 4) 1/123 

S29 DEG=8 F=VI AUT=2 P=(1,2222,22222) GIR=3 CN=4,7 
A=1 3 5 13,1 1 3 5 734,672 2364 1552 12104 25042,60760 60750 250524 524252 
E=2-5.2514 2-2.1468 2-1.8321 2+.1451 2+.4232 2+.5142 2+.6938 2+.8476 2+2.6063 8 
K=(27 28 10,6) D(S15) 1/614 

S30 DEG=8 F=VI AUT=2 P=(1,2222,22222) GIR=3 CN=4,7 
A=1 3 5 3,1 1 1 1 774,772 2124 5052 10724 24652,50524 124252 210764 104752 
[=2-5.890 2-1.363 2-.945 2-.441 2-.180 2+.616 2+1.190 2+1.466 2+1.546 8 
K=(30 40 25 6,3) D(SlO) D(Sl2) D(S16) 1/74 



Additional Information 

(a) Two graphs are cospectral if their adjacency matrices 

have the same eigenvalues and multiplicities. We list here all 

families of cospectral graphs in the catalogue. The complements of 

each member of a family form another family. 

12 vertices: 115 121, 127 129. 

16 vertices: P33 P49, P35 P45, P61 P88, P63 P72, 

P64 P86, P75 P91, P78 P95, P81 P84, 

P97 Pl07, P98 Pl34, P99 Pll3 Pl18, Pl03 Pl08, 

Pl05 Pl41, Plll Pll2, Pl20 Pl36, Pl24 Pl37, 

Pl42 Pl43. 

186. 

(b) The following graphs are the only ones in the catalogue 

which are not Cayley graphs : 

J7, 07, 021, P20, P52, P93, PllO, R38, Rl47. 

(c) The switching classes of transitive graphs of even 

order are shown in Table 1. It is easy to show that G and H are 

switching equivalent if and only if G and H are. Thus each family 

in Table 1 provides another by complementing each member. However 

the following graphs are actually switching equivalent to their own 

complements: 

Bl, J3, J6, J7, Rl5, R32, R38, R39, Rl47, Rl48, Rl61, Rl79. 

Table 1 does not include the following graphs, as they are unique in 

their switching classes: 110, 116, 137, P74 and Pl39. It may be 

worth noticing that each family of cospectral graphs is related also 

by switching. In fact, two switching equivalent regular graphs of 



the same degree are necessarily cospectral. 

(d) The self-complementary transitive graphs in the 

catalogue are E2, I4, M6, M7, Ql4, Ql5, Ql8 and Q20. 

(e) The connected planar transitive graphs (excluding 

polygons) with 4 ~ n ~ 19 are D4, F6, F7, H7, HlO, J6, Jll, 110, 

113, 120, 121, 137, N6, N9, PlO, Pl6, RlO and R20. 

(f) The distance-regular connected graphs in the catalogue, 

excluding polygons and those with k > (n- l)/2, are H7, I4, J7, JlO, 

134, 137, M6, N7, Nl3, N24, 07, 021, P27, P55, P8l, P84, Pl30, Ql8, 

Rll and Rl73. Of these, only P84 is not distance-transitive. 

(g) r will act primitively on V if n is prime or if G is 

an empty graph. Excluding complements, the only other examples in 

the catalogue where this occurs are for I4, J7, 021, P55 and P8l. 

(h) The following are all those graphs in the catalogue 

whose arc-transitivity is at least one. We exclude disconnected 

graphs, polygons, and those whose complements are disjoint unions 

of complete graphs. 

H7, I4, J7, J9, JlO, J7, 120, 123, 134, 137, 130, M3, M6, 

N7, Nl2, Nl3, N24, 07, 012, 021, 023, 020, 021, Pl2, P23, P27, 

P55, P8l, P82, P84, Pl30, P55, P8l, Q3, Ql8, Rll, R28, R29, 

R88, R90, Rl7l, Rl73, Rl26, Sl4. 

(i) The only connected graph in the catalogue which has no 

Hamiltonian cycle is Petersen's graph (J7), which has Hamiltonian 

paths and cycles of length 9. 



188. 

Bl -Bl • 
Dl -02 • 
Fl -F3 • F2 F4 • 
Hl -H5 H2 -H3 H7 ' H4 -H6 • 
Jl -J8 • J2 JlO J3 -J3 • J4 J5 
J6 -J6 • J7 -J7 • J9 -J 11 • 
Ll -L25 , L2 -Ll4 L34 • L3 -L8 L4 L23 -L35 • 
L5 -L9 Ll9 • L6 Ll7 -L31 • L7 L26 
Lll -L22 L36 • Ll2 L27 L29 , Ll3 -Ll8 L32 
Ll5 L21 -L28 • L20 -L33 • L24 -L30 • 
Nl -N20 N2 N24 , N3 -N8 • N4 Nl9 • N5 ~no 
N6 -Nl7 , N7 Nl3 , N9 -N22 , Nll -N25 

' 
Nl2 -N27 

Nl4 N28 , N15 N26 , Nl6 N21 , N18 N23 • 
Pl -P96 , P2 -P56 Pl30, P3 -P29 P82 -P132, 
P4 -P30 P87 -Pl16, P5 P69 -P114, P6 -P13 Pl09, 
P7 -P14 P48 -P89 Pl40, P8 -Pl5 -P76 P133, 
pg -P62 Pl27, PlO P40 -P63 -P72 Pl05 P141, 

1 P37 -P64 -P86 P124 Pl37, 
Pl2 P39 -P71 Pl06, Pl6 P83 -P131, 
P17 -P32 -Pl25, Pl8 P80 -PlOl, Pl9 -Pl23, 
P20 -P52 P93 -PllO, P21 -P33 -P49 P57 -Pl03 -P108, 
P22 -P53 P61 P88 -Pl20 -Pl36, P23 -Plll ll2, 
P24 -P35 -P45 P78 P95 -P99 -Pll3 -Pll8, 
P25 -P47 P90 -P121, P26 -P41 P68 
P27 -P44 P94 -P97 -P107, P28 -P54 P58 -P 104, 
P31 -P70 Pl38, P34 Pl28, P36 -P85 Pl02, 
P38 PlOO, P42 -P66 Pll7, P43 -P67 P98 Pl34, 
P46 -P59 Pl42 Pl43, P50 -P75 -P91 Pl29, 
P51 -P65 • P55 -P81 -P84 , P60 -Pl35, P73 -P122, 
P77 -Pll5, P79 -Pll9, P92 -Pl26 • 
Rl -R137. R2 Rl73, R3 -R54 , R4 Rll3, R5 -R55 , 
R6 R130, R7 R90 • R8 132, R9 R85 , RlO -Rlll, 
Rll R88 , Rl2 -Rl03, Rl3 R80 • Rl4 -Rl72, Rl5 -Rl5 , 
Rl6 -R17 , R18 R33 , R19 R37 , R20 153, R21 -Rl66, 
R22 R49 , R23 -Rl41, R24 R40 , R25 -Rl51, R26 -Rl65, 
R27 -Rl56, R28 -Rl58, R29 R48 , R30 Rl39, R31 Rl80, 
R32 -R32 , R34 R178, R35 -R36 , R38 -R38 , R39 -R39 • 
R41 Rl59, R42 Rl57, R43 Rl40, R44 Rl67, R45 Rl82, 
R46 Rl44, R47 R189, R50 R154, R51 Rl87, R52 Rl68, 
R53 Rl81, R56 R93 , R57 R94 , R58 Rl09, R59 -R74 , 
R60 Rl14, R61 RllO, R62 -R83 , R63 -R84 , R64 R96 , 
R65 -R86 , R66 Rl19, R67 Rl07, R68 Rl06, R69 -R75 • 
R70 Rl02, R71 -R76 , R Rl24, R73 R133, R77 R95 , 
R78 R121, R79 Rl08, R81 R127, R82 Rl31, R87 Rl16, 
R89 R97 , R91 Rl28, R92 -Rl36, R98 -Rl20, R99 • RlOO -Rl17, RlOl -R104, Rl05 -Rll5, Rll2 -Rl23, Rll8 -Rl29, 
Rl22 -Rl34, Rl26 -R135, Rl38 -Rl42, Rl43 -Rl50, Rl45 -R149, 
Rl46 -R163, Rl47 -R147, Rl48 -R148, Rl52 -Rl74, R155 -Rl60, 
Rl61 -Rl61, R162 -Rl70, Rl64 -Rl83, R169 -R184, Rl71 -R186, 
R175 -Rl90, Rl76 -Rl77, Rl79 -Rl79, Rl85 -R188 . 

TABLE 1- Switching classes of transitive graphs {-X is the complement of X) 



APPENDIX THREE 

EXAMPLES OF ALGORITHM 2•31 OUTPUT 

In this Appendix we give two examples of the automorphism 

group generators produced by Algorithm 2•31. In each case we will 

use the notation defined in Section 2•32. 

Example 1 

In our first example G is the 5-dimensional cube defined as 

follows. 

V(G) = {(i,j,k,t,m) I i,j,k,t,m E {0,1}} 

The elements of V(G) are numbered 1, 2, ••• , 32 in lexicographic order. 

For this graph we find K = 5, w1 = 1, w2 = 16, w3 = 24, 

w4 = 28 and w5 = 30. The output produced is as below. The execution 

time was 0•18 seconds. 

(2 3)(6 7)(10 11)(14 15)(18 19)(22 23)(26 27)(30 31) 

lr( 4 )1 = 2 le(r( 4 ))1 = 24 

(3 5)(4 6)(11 13)(12 14)(19 21)(20 22)(27 29)(28 30) 

I r < 3 > 1 = 6 I e ( r < 3 > ) 1 = 16 

(5 9)(6 10)(7 11)(8 12)(21 25)(22 26)(23 27)(24 28) 

lr{ 2 )1 = 24 le(r( 2 ))1 = 10 

(9 17)(10 18)(11 19)(12 20)(13 21)(14 22)(15 23)(16 24) 

lr( 1 )1 = 120 le(r( 1 ))1 = 6 

(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18)(19 20)(21 22) 

(23 24)(25 26)(27 28)(29 30)(31 32) 

lrl = 384o le(r)l=l 
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Example 2 

In our first example G = C5[c 5J where each c5 is labelled 

in cyclic order and the product is labelled as in the definition 

(Section 1•3). The elements V(G) will be called 1, 2, •••, 25 in 

lexicographic order. 

For this graph we find K = 10, w = 1, w = 3, w = 11, 
1 2 3 

w = 13 w = 16, w = 18 w = 21 w = 23 w = 6 and w = 8. 
4 ' 5 6 ' 7 ' 8 ' 9 10 

The output below was generated in 0•23 seconds. 

( 7 10) ( 8 9) 

jr(9)1 = 2 

(6 7 8 9 10) 

lr(s)l = 10 

(22 25)(23 24) 

jr( 7 )l = 20 

(21 22 23 24 25) 

Jr( 6 )j =lOO 

( 17 20) ( 18 19) 

jr(s)l = 200 

( 16 17 18 19 20) 

1 r c 4 ) 1 = 1ooo 

(12 15)(13 14) 

Jr( 3 )1 = 2000 

(11 12 13 14 15) 

(6 21)(7 22)(8 23)(9 24)(10 25)(11 16)(12 17)(13 18)(14 19)(15 20) 

Jr( 2 )1 = 2oooo Je(r( 2 ))J = 7 

(2 5)(3 4) 

jr( 1 )1 = 4oooo 



191. 

(1 2 3 4 5) 

(1 6 11 16 21)(2 7 12 17 22)(3 8 13 18 23)(4 9 14 19 24)(5 10 15 20 25) 

lrl = 1oooooo !e(r)l = 1 
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