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NOTES 7/7/77 

(a) Fig. 5.2 may be incomplete. 

(b) p.l43 : The Hoffman-Singleton graph on 50 points is an 

example of a transitive graph with M2 # 0. 

(c) Fig. 9.4 : Execution times are now considerably better for 

edge-sparse graphs. For random graphs, new time = old time 

X 0 X 1.05, 

(d) 9.53 : The assertions in this section are not in general true. 

Suppose r.;; = [c 1 lc2 1···1Ck] and define 

~={yE r(G)!c! n c. # ~' 1 ~ i ~ k}. 
J_ J_ 

It is easy to show that the set Y of all elements of r 

found by 9.21 or 9.24 lies in ~' but in general it may not be in 

However, if Y ~ rr.;;, then <Y> = rr.;;. 

rr.;; will be found correctly if 

one of the cells of are trivial), if 

or under various other conditions. 

~ = r (example : all but 
r.;; 

M - 0 2 - (for 9.21, not 9.24) 

In practice, rr.;; and f(G, r.;;) can be determined by extending 

G with a few extra vertices in the right way. 



PREFACE 

This thesis originally arose from the need for an algorithm 

suitable for canonically labelling a graph with a large automorphism 

group r(G). Since all the existing algorithms that we knew of had 

execution times highly dependent on lr(G)I, an effort was made to 

devise a program which did not suffer from this deficiency. Eventually, 

a system was devised by which elements of r(G) could be found during 

the labelling process and used to reduce the amount of work. It soon 

became evident that our algorithm was ideal for the study of r(G), 

since it appeared to find only a small set (less than IV(G)I) of 

generators for r(G). 

When it came to constructing rigorous proofs for the 

correctness of our algorithm, it became immediately obvious that a 

more general setting was possible. Very soon a theory had emerged of 

backtrack programming of a certain type and of the invariance group of 

such a program. This theory is presented in Chapters Six and Seven. 

Except as stated there, it is all original. 

In earlier chapters we develop the necessary groundwork. 

Chapters One to Three are devoted to the elementary concepts of 

permutation groups, graphs, lattices, partitions and various other 

objects. In Chapter Four we introduce the lattice 0(~) of partitions 

defined by the orbits of subgroups of~. In Chapter Five we treat a 

related lattice ~(G) of equitable partitions of the point-set of a 

graph G. The relationship between ~(G) and e(r(G)) is considered, 

and a new algorithm for finding the coarsest equitable partition finer 

than a given partition is presented. 

In Chapter Eight we give a reasonably general treatment of 

existing solutions to various "graph isomorphism problems". This 



treatment is probably new. We then concentrate on the problem of 

canonically labelling a graph, and devise a general method of solution 

which appears to include most existing algorithms. 

In Chapter Nine, we present several versions of our own 

algorithm for canonically labelling a graph. We show that it falls 

into the general class described in Chapter Eight but differs in that 

the methods developed in Chapter Seven have been applied. We demonstrate 

that the algorithm finds a set of no more than IV(G)I - p generators 

for r(G), where r(G) hasp orbits. The efficiency of the algorithm 

is then examined. For large random graphs we claim that it is impossible 

to devise an algorithm which is very much faster. 

There are many people without whose help this thesis might 

have been considerably more difficult to complete. Special thanks are 

due to Dr. B.D. Craven for his many efforts, and to Dr. D.A. Holton 

for his detailed criticisms of the manuscript. I would also like 

to acknowledge Mr. Chris Godsil for helping in the practical evaluation 

of the program and for the many spirited discussions which kept my 

enthusiasm alive. Finally, thanks are due to Miss Joan Beverley for 

helping to read the proofs and to Mrs. Ann Windsor for her excellent 

typing. 
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1. 

CHAPTER ONE 

INTRODUCTION 

1.1 In this chapter we introduce some of the basic concepts from 

the theories of matrices, permutation groups and graphs. 

1.2 
11 

If 11 is any set, 1111 is the cardinality of 11 and 2 is its 

power set. The null set will be denoted~. If /11 and /12 are sets, the 

set difference of /11 and /12 is denoted /11 \!12 = {xI x E /11 , but x ~ /12}. 

The cartesian product of /11 and /12 is denoted /11 x /12. The symbol iff 

is an abbreviation for "if and only if". 

To avoid confusion with our notation for permutations, a 

sequence (or vector) of elements of 11 will be denoted [x1 , x2 , ···, x ]. 
r 

The sequence with no elements is the nuZZ sequenae, and denoted[]. 

Let f(n) and g(n) be real-valued functions defined for 

positive integers n. If there is a constant M so that lf(n) I ~ Mlg(n) I 

for n > 0, we write f(n) = O(g(n)). 

1.3 Let A and B be matrices. The entry in the i-th row and 

j-th column of A is denoted A ... The transpose and inverse (if it 
1J 

exists) of A are respectively denoted A' and A- 1 • The tensor produat 

A® B of A and B is defined as follows. Suppose A is n x m. Then 

A ® B consists of n rows of m blocks, the j-th block in the i-th row 

being the matrix A .. B. The basic properties of the tensor product can 
1J 

be found in Lancaster [38], but we will only have need for the 

definition. 

1.4 Let V be a finite set. A permutation of V is a bijection 

from V onto itself. The set of all permutations of V is denoted S(V), 
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or S if V = {1, 2, ... nL If y E S(V) and v E V, the image of v • n 

under is denoted vY. Similarly, if Q :::. S (V), 
Q 

is the set y V 

{vyly E Q}. More generally, if uy is defined for U E U and 

y E Q c S(V), we define UQ = {uy lu E U, y E Q}. -

Permutations will be written using the familiar cyclic 

{ 4 6} [ y y y 4Y y 6YJ notation. Thus if V= 1, 2, 3, , 5, and 1 , 2 , 3 , , 5 , 

= [2, 1, 4, 5, 3, 6], y can be written as (1 2)(3 4 5). In this case 

(1 2), (3 4 5) and (6) are called the cycles of y. Trivial (unit-

length) cycles, like (6) are commonly omitted from the notation. The 

points (elements) of V they contain are said to be fixed by the 

permutation. The identity map on V, which fixes every point of V, is 

called the identity or trivial permutation, and denoted (1). A 

permutation of the form (vl v2), where v1, V2 E V is called a 

transposition. 

1.5 Two permutations can be multiplied in the manner usual for 

map composition. Thus if v E V and y, 8 E S(V) we have yo E S(V) 

where vyo = (vy) 0 . Under this operation S(V) forms a group, called the 

symmetric group on V. We can now define a permutation group on V as a 

subgroup of S(V). The smallest such group is the trivial group {(1)}. 

The theory of permutation groups additional to what we give here can be 

found in Wielandt [79] or Scott [64]. 

If '¥ s S(V) and v E V, then v'Jl is call:.ed an orbit of '¥. It 

is easy to see that every point of V is in some orbit (since (1) E 'Jl) 

and that no two orbits overlap. If 'J1 has just one orbit it is called 

transitive. 

1.6 If 'J1 
'¥ s S (V), U :::_ V and U = U, then '¥ induces a group of 



3. 

permutations on U, which we denote flu· Again, if U ~V we can define 

the (point-wise) stabiliser of U in f to be the group fu ={yE fiuy = u 

for all u E U}. We will find it convenient to write f instead of 
V 

f{v}' f instead off{ } and so on. v,w v,w 

If n ~ S(V), the group generated by n is defined to be the 

smallest subgroup (n) of S(V) which contains n. In particular, 

< cp > = { ( 1)}. 

If n ~ S(V) and yE S(V) we define yn = {yolo En} and 

similarly ny = {oyio E n}. If f ~ S(V) and n1, n2 ~ f we say that n1 

and n2 are conjugate in f if n2 = y- 1n 1y for some y E f. Conjugacy 

forms an equivalence relation on the power set 2f and partitions 2f 

into conjugacy classes. 

1.7 Suppose f, A~ S(V) and any point of V not fixed by f is 

fixed by A. Then the permutation group ( f u A) will be called the 

direct sum of f and A and denoted f $ A. 

Suppose that V= X x Y, where X= {xl, •••, x} and 
m 

• • • ' y } . 
m 

Let f ~ S(X) and A~ S(Y) . The wreath product 

f[A] is a permutation group on V defined as follows. Each element y of 

f[A] corresponds to a sequence [a, B1, •••, B ] where a E f and 
m 

B. EA (1 ~ i ~m). The action of y on V is defined by 
]_ 

( )y = ( a Bi) ( ) = ( ) x., Y. x. , Y. for x1., YJ. E V. If we set a 1 and 
]_ J ]_ J 

B. = (1) for i ~ k, for fixed k, we find a subgroup of f[A] isomorphic 
]_ 

to A, which we will call a copy of A in o/[ A]. 

1.8 In general, our graph-theoretic notation will follow that 

of Behzad and Chartrand [ 4], and any definitions we have inadvertantly 
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omitted can be found in that book. A directed graph (digraph) G consists 

of a finite non-empty set V = V(G) and a set E(G) of ordered pairs of 

distinct e.lements ofV. Elements of V(G) and E(G) are respectively 

called the points and directed edges of G. A graph G consists of a 

finite non-empty set V = V(G) and a set E(G) of unordered pairs of 

distinct elements of V. Elements of V(G) and E(G) are respectively 

called the points and edges of G. If {vi, v2} E E(G) we can say that 

the point VI is connected to the point v2, or alternatively that VI and 

v2 are adjacent. We can also say that the point VI and the edge 

{vi, v2} are incident. 

1.9 Two graphs are isomorphic if there is a bijection 

1/J: V(GI)-+ V(G2) which preserves adjacency. A labelled graph is a 

graph whose points are associated in a 1-1 fashion with a set of 

distinct labels. We will not always maintain a concise distinction 

between graphs and labelled graphs in this thesis for the reasons which 

follow. Almost invariably, we have used the set V= {1, 2, •••, n} 

both for the point-set of a graph and for the labels of a labelled 

graph. A graph with V as its point-set can be considered labelled if 

we think of the point v being labelled with the number v. Similarly, a 

labelled graph whose points have been labelled with the numbers 

{1, 2, •••, n} can be thought of as corresponding to a graph whose 

points are the labels of the labelled graph. In general, we will use 

the adjective "labelled" when we wish to emphasize that the properties 

we are considering may not be preserved under a re-labelling, or that 

we are taking a particular graph G with points {1, 2, •••, n} rather 

than any graph isomorphic to G. Thus when we define Q(V) to be the 

set of all labelled graphs with point-set V we mean that isomorphic 

but non-identical graphs are to be considered distinct elements of Q(V). 
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1.10 Let G E G(V) and yE S(V). We define Gy to be the graph with 

point-set V such that {vlY, v2y} E E(Gy) iff {vl, v2} E E(G), Obviously 

G and Gy are isomorphic. If they are actually identical we say that y 

is an automorphism of G. The set of all automorphisms of G form a group 

called the automorphism group of G and denoted r(G). G is said to be 

transitive if r(G) is. 

1.11 A graph H is called a subgraph of the graph G if V(H) ~ V(G) 

and E(H) cE(G). If V(H) = V(G), His called a spanning subgraph of G. 

If U c V (G) and U ~ cp the sub graph ( U) of G induced by U has point-

set U and all edges of G incident with two elements of U. 

1.12 Several important families of graphs are given special names. 

The complete graph on n points, K , has every pair of points adjacent. 
n 

K3 is also called a triangle. The cycle on n points, Z , has 
n 

V(Z ) = {VI> 
n 

v} and E(Z ) = {{v., v.}li- J. = 1 (mod n)}. We are 
n n 1 J 

avoiding the more common notation C since this will be used for the 
n 

cells of a partition. Finally, the path on n points, P , has 
n 

V(Pn) ={vl, •••, v} and E(P) = {{v., v. 1 }11:::; i < n}. The points n n 1 1+ 

v 1 and v and the enapoints of P and the length of P is n - 1. 
n n n 

path in G. 

A subgraph of G isomorphic to P for some n ~ 1 is called a 
n 

A subgraph of G isomorphic to Z for some n ~ 3 is called a 
n 

cycle in G. Spanning paths or cycles are commonly called Hamiltonian. 

1.13 If u, v E V(G), au-vpath in G is a path in G whose 

endpoints are u and v, If there exists a u- v path in G, we define the 

dtiJstance 3(u, v) from u to v to be the length of the shortest u - v 

path in G. In particular, 3(u, u) = 0. If there is no u - v path in 

G we define 3(u, v) = oo If v E V(G), U ~ V(G) we define 
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3(v, U) = min{3(v, u) lu E U}. The diameter of G is max{3(u, v) lu, v E V(G)}. 

If 3(u, v) is finite for all u, v E V(G), then G is called 

connected. The maximal connected subgraphs of G are called its components. 

If G has no cycles it is called a fo~st; if it is also connected it is 

called a tree. 

1.14 The degree dG(v) of a point v in a graph G is the number of 

edges incident with v. If v has zero degree it is called an isolated 

point of G; if it has degree one it is called an enapoint of G. If 

every point of G has the same degree, G is said to be regular. 

Generalizing the notion of degree, for any set U ~ V(G) and v E V(G) 

we can define the degree of v relative to U, dG(v, U), as the number 

of edges incident with both v and an element of U. If it is clear 

from the context which graph we are referring to, the notations 

dG(v) and dG(v, U) can be abbreviated d(v) and d(v, U) respectively. 

Let G E Q(V). Then G E Q(V) is the complement of G. 

of the following lemma is trivial. 

1.15 Lemma: If G E Q(V)~ then f(G) = f(G). 0 

Here and elsewhere, the symbol 0 indicates the end or 

absence of a proof. 

1.16 Let G E G(V) where V= {v ••• v }. The adjacency matrix 
~ 1' ' n 

of G is then x n matrix A= A(G) where A .. = 1 if {v., v.} E E(G) 
lJ l J 

and A .. = 0 otherwise. We use the adjacency matrix to simplify the 
lJ 

definition of two graph operations. For any m > 0 define I to be 
m 



7. 

the m x m identity matrix and J to be the m x m matrix with every m 

entry one. 

Let G, H be labelled graphs, where IV(G)I = n, IV(H)I =m. The 

cartesian product G x H is defined by 

A(G x H) = A(G) ®I +I ® A(H). 
m n 

The composition G[H] is defined by 

A(G[H]) = I ® A(H) + A(G) ® J . 
n m 
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CHAPTER TWO 

LATTICES AND PARTITIONS 

2.1 In this chapter we first introduce the idea of a lattice and 

give a few basic lemmas. We then define the lattice of partitions of a 

set and develop the elementary theory that will be needed later. All 

the results of this chapter are well-known. 

2.2 Let ~be any set. A binary relation~ on~ is called a 

partial order if for x, y, z E ~ we have 

(i) X ~ x, 

(ii) X ~ y, y ~ x implies X = y, and 

( iii) X ~ y, y ~ z implies X ~ z. 

If, in addition, either x ~ y or y ~ x for any pair of 

elements x, y of 6, then ~ is called a total order on 6. 

If ~ is a partial order on ~. then the pair (~, ~) is called 

a partially ordered set, or simply poset. We will normally write 

c~. ~) simply as ~. unless it is necessary to emphasise the order 

relation. 

Suppose ~ is a poset, and ~I c ~. An element x E ~ is the -

least upper bound (lub) of ~~ if 

( i) y ~ x for all y E ~~ • and 

(ii) if y ~ z for all y E ~~ 

' then x ~ z. 

Similarly, x is the greatest lower bound (glb) of ~~ if 
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(i) y ~ x for ally E 6', and 

(ii) if y ~ z for ally E 6 1 , then x ~ z. 

2.3 A poset 6 is called a lattice if every two-element subset 

{x, y} c 6 has a glb and a lub. The glb of x and y is called their 

meet and denoted x A y. The lub of x and y is called their join and 

denoted x v y. 

Information on lattices additional to what we give here can 

be found in Birkhoff [7]. The following two lemmas are standard. 

2.4 Lemma: [ 7 J Let (6, ~) be a lattice~ and let x~ y E 6. Then 

(i) X A X= X~ X V X= X~ 

(ii) X A y = y A X~ X V y = y V X~ 

(iii) X A (x V y) = X~ X V (x A y) = X. D 

2.5 Lemma: Let (~~ ~) be a lattice~ where 161 is finite. Then for 

any subset 6' ~ 6~ lub 6 1 and glb 6' exist. 

Proof: Let 6' = {xl, X2, ... X }. Then 
' r 

glb 6' = Xl A x2 A A X and r' 

lub 6' = XI v x 2 V V X . D r 

From now on we will assume that all our lattices are finite, 

since we have no need for infinite ones. Sometimes lub 6' and glb ~~ 

will be written v(6') and A(6') respectively. 
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2.6 Lemma: Let (~~ ~) be a lattice~ and let~~ ~ ~. Then if~~ is 

closed under v and contains A(~)~ (~ 1 3 ~) is a lattice. 

Proof: Let x, yE ~~. By definition x v y E ~~. Furthermore, the 

glb of x and y in~~ can be identified as v{z E ~'lz ~ x Ay}, where 

A is the meet operation in ~. 0 

2.7 Let V be a finite set. A partition of V is a set n of 

disjoint non-empty subsets of V whose union is V. The elements of TI 

are known as its cells . If a cell of TI contains just one element 

v E V, it will be called a trivial cell of n, and n will be said to 

fix v. 

Two partitions of V have special names. The discrete 

partition of V consists of lVI trivial cells. At the other extreme, 

the unit partition of V consists of the one cell V. 

Suppose the cells of n are C 1, C2, • • • , C . To emphasise 
r 

the fact that n is a partition we will write it as {C1IC2I·· • le } 
r 

rather than as {Cl, C2, ···, C }. This will be especially convenient 
r 

when actual values are given. For example, if the cells of TI are 

{1, 2}, {3} and {4, 5, 6}, then TI will be written as {1, 21314, 5, 6} 

or simply as {1, 214, 5, 6}, in which case elements of V not mentioned 

are assumed to be in trivial cells. 

2.8 The collection of all partitions of V will be denoted IT(V). 

We now proceed to define a partial order ~ on IT(V) and then to show 

that (IT(V), ~) is a lattice. 

Let n1, n2 E IT(V). We say that n1 is finer than n2, 

written n1 ~ n2 if for every cell C1 E n1 there exists a cell C2 E n2 
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such that c 1 ~ c 2 . In the same circumstances we call n2 coarser than 

nr (n2 ~ n1). For example, {1, 21314, 5} ~ {1, 2, 314, 5}. 

2.9 Lemma: ~is a partial order on IT(V). 

Proof: Referring to the definition of partial order (2.2) we see that 

conditions (i) and (ii) are satisfied trivially. Condition (iii) 

follows from the transitivity of set inclusion. 0 

2.10 Lemma: Suppose n 1 ~ n2 where n 13 n2 E IT(V). Then each cell of 

n2 is a union of cells of n1. 

Proof: If the lemma is not true, there are cells cl E TII and c2 E TI2 

such that both C1 n C2 and C1\C2 are not null. But then n1 is not 

finer than n2. 0 

2.11 Lemma: Suppose n 1 ~ n2 E IT(V). Then glb {n 13 n2} exists (under~). 

Proof: Define TI = {C ~~le= cl n c2, cl E Til, c2 E TI2}. Clearly 

TIE ll(V) and TI ~ TII, TI ~ TI2• 

Now suppose that for some n' E IT(V), we haven' ~ nr and 

n' ~ n2. Then for any C' En', there are cells Cr E TII and C2 E n2 

such that C' c C1 and C' ~ C2. Consequently, C' ~ Cr n C2 and so 

0 

2.12 Lemma: Suppose n1~ n2 E IT(V). Then lub {nr 3 n2} exists. 
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Proof: Define a graph G E Q(V) as follows. Two points v1, v2 E V 

are connected iff v1 7 v2 and v1 and v2 are either in the same cell 

of TII or in the same cell of n2. 

Let TI E TI(V) be the partition whose cells correspond to the 

components of G. Trivially, n1 ~ TI and n2 ~ TI. 

Now suppose that for some TI 1 E TI(V) we have n1 ~ TI 1 and 

TI2 ~ TI 1 • Let C E TI and v1, v2 E C. Then there is a path in G of the 

If WQ is in cell C' Of TI I , then either wo and WI are in the 

same cell of TI!, in which case Til ~ TI' implies Wl E C' ' or in the 

same cell of TI2' in which case TI2 ~ TI' implies Wl E C'. Continuing 

along the path in this fashion we see that VI and V2 are both in C 1 , 

and so C c c I • -

Therefore TI ~ n' and so TI = lub {nl, TI2}. D 

From 2.9, 2.11 and 2.12 we have the following result. 

2.13 Theorem: (TI(V)~ ~) is a lattice. D 

If n1, TI2 E TI(V), then the notations TII A n2 and TII v n2 

will always indicate the meet and join in the lattice (TI(V), ~) even 

though we consider other lattices of partitions. 

2.14 There is a natural correspondence between TI(V) and the family 

of equivalence relations on V. Given TIE TI(V), we can define the 

equivalence v1 ~ v2 iff v1 and v2 are in the same cell of n. Con­TI 

versely, given an equivalence relation defined on V, we can find 
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a partition whose cells are the equivalence classes. 

We conclude with a final point of notation. Suppose ~ E TI(V) 

and that U ~V is a union of cells of~. Then ~1u is the partition of 

U whose cells are those cells of~ contained in U. ~1u might be called 

the partition of U induced by~. For example, if~= {1, 21314, 5, 6} 

and U = {1, 2, 3}, then ~1u = {1, 213}. 



CHAPTER THREE 

TECHNICAL PREREQUISITES 

3.1 In this chapter we present various items of technical 

14. 

information which will be necessary for the proper evaluation of the 

material in later chapters. We begin by describing the computer on 

which our algorithms were implemented, and discuss the methods used 

for representing various data items. Also in this chapter we give an 

algorithm for computing a generalized form of the join of two partitions. 

Finally, the concept of a "random graph" is discussed. 

3.2 The algorithms described in this thesis have been implemented 

on a CDC Cyber 70 model 73. The languages used have been FORTRAN and 

assembly language (COMPASS). 

In order that the execution times we present may be approxi­

mately translated into the context of another machine, we list a few 

of the basic operations and their execution times in microseconds. 

FETCH 1•2 

STORE 1•0 

BOOLEAN OPERATION 0•5 

SHIFT (any length) 0•6 

POPULATION COUNT 6•8 

The population count instruction counts the number of one­

bits in a word, and has proved especially useful. The Cyber has a 

word size of 60 bits. Consequently our implementations have been 

restricted to graphs of from 1 to 60 points, although larger graphs 

may be accommodated with more complicated programming. 
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3.3 In the description of algorithms in this thesis we have 

attempted to adopt a free and simple format without sacrificing 

rigour, but without adhering to any formal code. Briefly, 

(1) The operator := indicates an assignment of value as in 

ALGOL. For example the statement 

i := i + 2 

means "increment i by 2", thus avoiding the contradiction 

i = i + 2. 

(2) Recursive definitions will be avoided (even if occasionally 

at the expense of elegance). 

(3) Semicolons will be used freely for punctuation. They do 

not have any special significance. 

(4) Unless otherwise specified, control flows from one step to 

the next. The statement "stop" terminates execution. 

As an example we give an algorithm for a generalized form 

of the join operation introduced in Section2.12. We shall need this 

algorithm in Chapter Seven. 

3.4 Let V be a finite set, and let V1 c V, V2 c V. Take 

We define a graph G as follows. The points of G are the 

elements of V1. If v1, v2 E V1, then v1 and v2 are connected iff 

or 

TII v n2 can now be defined as the partition in IT(VI) whose 

cells correspond to the components of G. 
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3. 5 Lemma: 

- -
TII V TI2 = TI2 V Til = TI1 V TI2• D 

We now give an algorithm for finding TI = Til v TI2· Suppose 

3.6 Algorithm: Compute TI = TII V TI2• 

(1) Set 'IT := Til; i .- l. Suppose TI is the partition 

{C1iC2I•••IC }. 
r 

(2) Set k .- l. 

(3) If k ;:::: r go to step ( 9) • 

(4) If D. n ck ;t: cp, go to step ( 5) • Otherwise set k .- k + 1 
l 

and go to step ( 3) . 

( 5) Set j := k + 1· 
' 

j I . - k . 

( 6) If C. n D. = cp set j I .- j I + 1 and c., .- c .. Otherwise 
J l J J 

set ck .- ck u c .. 
J 

(7) Set j := j + l. If j :::; k go to step ( 6) . 

(8) Set r .- j I • 

(9) Set i .- i + l. If i :::; Q, go to step ( 2) . Otherwise stop. 

3.7 Theorem: At the ter-mination of Algorithm 3.6~ TI 

is the generalized join TII v TI2· 

Proof: 

(1) Note that at step (6) we always have j' :::; j and so the 

assignment C., .-C. does not destroy cells which have not 
J J 

been examined. 

(2) The effect of steps (5)-(7) is to merge all those cells 
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of n which have non-zero intersection with D.. Since no 
l 

other changes are made to n (as an unordered collection of 

cells), we must have n :<:; nl V TI2• 

Suppose vl and v2 are in the same class of TII V n2· Then 

there exists (by definition) a sequence of points 

VI = wo, wl, ... wk = v2 of vl so that for l :<:; i :<:; k, 
' 

or 

Suppose that for some i, wi_1 and wi are not in the same 

cell of TII· Then there exists a cell D of n2 so that 

wi_1 and wi are in D. However, the cells of TI containing 

wi_1 and wi will be merged when D is being considered in 

steps (4)-(7) of the algorithm. Hence TI 2 n1 v n2. D 

3.8 The efficiency of most graph theoretic algorithms, including 

those presented here, is highly dependent on the way in which the 

data items are stored in the computer. In our case the data items 

to be considered are graphs and partitions. 

3.9 The two most common forms in which a graph (or digraph) can 

be stored in a computer are the adjacency matrix and the adjacency 

list. 

In the latter method, each point is associated with a list 

of those points adjacent to it. In this form questions like ."What is 

the next point adjacent to v?" are very easily answered. This type of 

representation is especially useful when the number of edges is small 

as, for example, in planar graphs. 

In the former method each of the n2 entries of the adjacency 
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matrix is stored. Since each entry is either 0 or 1, it requires 

only one bit. The usual system, and the one we employ here, is to 

store each row of the adjacency matrix in a separate machine word 

(assuming that n is not too large). This has several advantages: 

(1) Only n words are required to store the entire matrix. 

(2) Set operations between the rows (AND, OR etc.) can be 

performed in single machine operations, thus achieving a 

degree of parallelism. 

( 3) The position of one-bits in a word can be found by use 

of the floating-point normalisation instruction on most 

machines. This involves adding an exponent to all or part 

of a word and then observing the new exponent after normalisation. 

It does not involve a bit-by-bit search of the word as is 

often assumed, 

Further discussion and references can be found in Corneil [13] 

and Kirkpatrick [32]. Another means of representing a graph, the 

"K-formula" has been studied by Krider [35] and by Berztiss [ 5 ] . 

3.10 The following storage method for partitions has been found 

convenient. 

words w1 , 

Let TI = {C1IC2I••• ICk}. Then TI is represented by k machine 

wk where bit i of word j (1 ~ i ~ n, 1 ~ j ~ k) is 

set to one iff i E C .. 
J 

This form of representation was chosen to simplify 

partition operations and for compatibility with the structure used 

for graphs. 

In some circumstances it is convenient to keep track of 
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those cells which have exactly one element. This can be done by keeping 

an extra machine word whose one-bits indicate these cells. 

3.11 Once a graph-theoretic algorithm has been implemented there 

are several approaches which can be made towards its practical 

evaluation. 

In one approach the performance of the algorithm is examined 

when it is applied to a specifically selected class of graphs. For 

example, it can be applied to all the graphs on a small number of 

points or to members of recognised families (paths, cycles etc.). 

Alternatively, graphs may be constructed in an attempt to bring out 

the worst of an algorithm, in order to guess at its "worst-casen 

behaviour. 

A fundamentally different approach is to apply the algorithm 

to a collection of graphs chosen in some "random" manner from a 

larger class. For example KUhn [36], [37] has devised a procedure by 

which "random" graphs having a specified degree sequence can be con-

structed. 

For our own purposes we have found the following process 

convenient. Let 0 ~ cr ~ 1 be a real number, and let n ~ 1. Suppose 

the edges of the complete graph are labelled e 1, e2, where 

N = (~). Then we can construct a graph G on n points as follows. For 

each 1 ~ i ~ N generate a random number x from a population rectangularly 

distributed between 0 and 1. If x ~ cr then we include the edge e. in 
l 

G; otherwise we leave it out. 

A sequence of graphs produced in this manner for say cr = 0•5 

will be referred to as "random graphs with cr = 0• 5". The numbers of 
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edges in the graphs of the sequence clearly have a binomial distribution 

with mean Ncr and variance Ncr(l- cr). For a fixed number of edges m 

every labelled graph with n points and m edges has an equal probability 

of occurring. 
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CHAPTER FOUR 

PERMUTATION GROUPS 

4.1 In this chapter we consider a few basic results on permutation 

groups. Sections 4.2 to 4.6 are standard and can be found in any 

reasonable text. The results in Sections 4.7 to 4.11 are unlikely to 

be new, but we have not seen them previously in print. In the last 

part of the chapter we consider a lattice 8(~) defined by the orbits 

of subgroups of~. While this lattice seems to have been rarely 

defined, the results we obtain about it are well known. 

Let~ be a gr~up of permutations of the points V, where 

V= {1, 2, 3, n}. 

4.2 Lemma: ~ can be written as the disjoint union 

u • • • u 

where ~ is the stabiliser of v 1 in ~ and for 1 :::; i :::; s, y 1. is any 
vl 

element of ~ such that v 1 Yi = V • • 
1 

Proof: Clearly~ y u ~ y u ••• u ~ y is contained in~. If 
v 1 1 v 1 2 v 1 s 

i ~ j, then~ y. n ~ y. =~since elements of~ y. take v1 onto v. 
v 1 1 v 1 J v 1 1 1 

whereas elements of~ y. take v1 onto v .. 
VI J J 

Let y E ~. 

-1 
= v.Yi 

1 

Then v 1Y = v. for some i. 
1 

Hence yy.- 1 E ~ so that yE~ y .. 
1 Vl v 1 1 

Therefore 

D 
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4.3 Corollary: (Orbit-stabiliser relation) D 

The sets ~ y. (1 ~ i ~ s) are called the (right) cosets of 
VI l 

~vl in ~ and the set {y i }~ is a set of (right) coset representatives for 

~ in ~. 
vl 

Let {vl, •••, vr+1} ~V be a set of points such that the 

point-wise stabiliser ~ is trivial. For 1 ~ k ~ r+l denote 
vl • • • • 'Vr+1 

~ by ~(k) and ~ by ~(O). 
VI, ••• ' Vk 

In the manner of 4.2 write 

4.4 
s 

= J \l/(k+1)v, (k)' = 
I , 1 where sk 

i=1 

~(k) 
t vk+1 I ( 0 ~ k ~ r) . 

4.5 Lemma: For 0 ~ h ~ r, ~(h) is generated by the set 

~h = {yi(k) lh ~ k ~ r, 1 ~ i ~ sk}. 

Proof: The lemma is clearly true when h = r. Suppose it is true when 

( . ) 
h = j where 1 ~ j ~ r. In other words, suppose (~ .) = ~ J , 

J 

( . -1) 
Then by 4.2 and 4.4, any element of ~ J can be written 

( . -1) ( . ) ( . 1) 
(uniquely) in the form yyi J , where y E ~ J and yi J-

( j -1) 
Hence ~. 1 generates ~ , 

J-

4.6 Lemma: 
r 

1~1 = ns. 
k=O k 

Proof: From 4.3 and 4.4. 

E ~. 1 
J-

D 

D 

4.7 Theorem: Let Y be a subset of~. For 0 ~ k ~ r+l define 

Y = Y n ~(k). 
k Then if the orbit of < Yk) containing v is the same k+1 
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as the orbit of ~(k) containing vk+i for k ~ h ~ 0 we have 

(Yh) = ~(h). 

In particular" if h = 0 3 < Y > = ~. 

Proof: The theorem is trivially true for h = r + l. 

Suppose it is true for l ~ h = ~ + l ~ r + l. 

Obviously < Y ~) ~ ~ ( ~) . Let { w1 , • • • , w s} be the orbit 

of~(~) containing v~+i' By 4.2, ~(~) = ~(~+i)y 1 u ••• u ~(~+i)Ys where 

(~) Y· 
for l ~ i ~ s, yi is any element of~ such that w11 = wi. 

But {w1, •••, ws} is an orbit of (Y~) by hypothesis and so 

such a set { y 1 , • • •, y s} can be found in <Y ~). 

D 

4.8 Theorem: Let Y ~~satisfy the requirements of 4.? for h = 0. 

Then Y has a subset Y' satisfying these requirements and such that 

IY' I ~ n - p where ~ has p orbits. 

Proof: Label the elements of Y as y1 , yt in an order such that 

if y. ~ ~(k) and y. E ~(k) for some i, j, k then i < j. 
l J 

Then the required set Y' can be produced by the following 

algorithm. 

4.9 Algorithm: Compute the generators Y' for ~. 

( l) Set Y 1 : = <P; 

n .- discrete partition of V; 

i := l. 
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(2) Set TI 1 to the partition of V whose cells correspond to the 

cycles of y .. If TI' is not finer than TI set TI := TI' V TI and 
l 

Y' Y' u {y.}. 
l 

( 3) Set i .- i +1. If i :::; t go to step ( 2) ; otherwise stop. 

The element y. is not accepted into Y' if, and only if, 
l 

<yi, yi+i' •••, yt) has the same orbits as (yi+i' •••, yt). Hence, 

by the ordering of Y, (Y' n 'l'(k)) has the same orbits as (Y n 'l'(k)) 

for any k. Therefore the set Y' satisfies the requirements of 

Theorem 4.7 for h = 0. 

Now the partition TI has n cells at the start of the algorithm 

and p at the finish. Furthermore, the number of cells is decreased 

each time an element is added to Y'. 

Therefore IY' I :::; n - p. D 

4.10 Note: The set ~ 0 defined in 4.5 satisfies the requirements of 

Theorem 4.7. Therefore by 4.8 it contains a subset of at most n- p 

elements which generate '¥. 

4.11 Given a subset Y of '¥ which satisfies the requirements of 

4.7 for the sequence v 1 , v 2 , ••• v it is a straightforward matter 
' r+1 

to generate the whole of'¥. The first step requires the construction 

of coset representatives {y. (k)} satisfying 4.4. This can be done (for 
l 

each k) by defining a digraph Gas follows. The points of G are the 

elements of V. The edges of G are the directed pairs [v, vy] where 

v E V, y E Y n 'l'(k) and vy ~ v. The directed edge [v, vy] is labelled 

with the element y, with the proviso that no directed edge need be 

labelled with more than one group element. Now let {w1 , w } be 
s 



the component of G containing w1 = vk+i' For each w. (1 ~ i ~ s) 
l 

there is a path of directed edges from w1 to wi. Then define 

25. 

(k) 
yi = 8182•••8£ where o1 , •••, o£ are the labels of the edges of the 

path chosen. 

Clearly the above procedure generates coset representatives 

{y. (k)} satisfying 4.4. Once this has been done the generation of o/ 
l 

is routine. Every element of o/ can obviously be written in the form 

y. (i)y. ( 2 )•••y. (r), and by 4.6 this decomposition is unique. 
ll l2 lr 

Although we will not give further details here an algorithm based on 

these ideas can be devised which for large lo/l requires only 

marginally more than one permutation multiplication for each element 

of o/. 

Let y be an element of o/. Then y is said to fix a partition 

TIE IT(V) if v ~ vy for all v E V. The set of all elements of o/ which 
TI 

fix TI is denoted by o/ , and is called the stabiliser of TI in o/. 
TI 

For example, if n = 4, o/ = 84 and TI = {1,213,4} then 

o/ is the set {(1), (1 2), (3 4), (1 2)(3 4)}. 
TI 

4.12 Lemma: Let TI1~ TI2 E IT(V). 0 

4.13 Corollary: o/ ~ o/ for any nE IT(V). 
TI 

Proof: o/ = o/ where n 0 is the unit partition of V. 
TIQ 

0 

Let X be a subset of o/, Then we denote by 8X the partition 

whose cells correspond to the orbits of the group generated by X. 

In particular, if y E o/ then the cells of e{y}' which we 



26. 

write as ey' correspond to the cycles of y. If X is null eX will be 

taken to be the discrete partition of V. 

4.14 Theorem: 

Proof: Let v 1 and v2 be in the same cell of e 
X1uX2 

Then there is 

sequence YI, Y2, ... Yr of elements of X1 u Xz' such that vz = VIY 
' 

where y = Y1Y2" • •y · From this we can construct a sequence 
r 

a 

wo, Wl' 
... w of points by setting wo = vl, w. = wi-1 

Yi (1 ~ i ~ r). ' r l 

For 1 ~ i ~ r we see that w. 1 and w. are either in the 
l- l 

same cell of eX1 or of ex2 and so v 1 and v2 are in the same cell of 

exl v eXz 

The converse follows in a similar fashion. 0 

4.15 We can now define 

8(~) = {TI E rr(v) ITI =ex for some x ~ ~}. 

8(~) will be called the orbits lattice of ~ and its elements 

will be called orbital with respect to ~. 

8(~) is not in general isomorphic to the lattice of subgroups 

of~ since distinct subgroups may have the same orbits. 

Define a function e by e(TI) = e~ for any TIE IT(V). e(TI) is 
TI 

thus the coarsest orbital partition which is finer than TI. Note that 

e depends on ~ . 

Then we can equivalently define 8(~) as 

4.16 8(~) = {TI E IT(V) ITI = e(TI)}. 
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4.17 Example: Consider the group 

'¥ = {(1), (1 2), (7 8), (1 2)(7 8), (1 7)(2 8)(3 6)(4 5), 

(1 8 2 7)(3 6)(4 5), (1 7 2 8)(3 6)(4 5), (1 8)(2 7)(3 6)(4 5)}. 

Then 8('¥) is the lattice of Figure 4.1. 

{1, 2' 7' 8!3$ 614, 5} 

J 
{1, 217, 8} 

{1, 712, 8!3, 6!4, 5} /\ {1, 812, 7+3, 614, 5} 

2} {7, 8} 

~ p 
{1} 

Figure 4.1 

4.18 Lemma: 8('¥) is closed under v but is not necessarily closed 

under "· 

Proof: The first part is immediate from 4.14. For the second part 

consider the partitions 'ffl = {1, 712, 8!3, 614, 5} and7r2= {1, 2!7, 8} 

of Figure 4.1. Then 7f 1 "7f2 = {3, 6!4, 5} which is not in the 

lattice. 0 

4.19 Lemma: If 7TI 3 7f2 E 8('¥) then the meet of 'ffl and 7T2 in the 

Proof: From 2. 6 , noting that the discrete partition of V is always 

in 8( 'l'). 0 



CHAPTER FIVE 

EQUITABLE PARTITIONS 

28. 

5.1 In this chapter we examine the lattice of equitable partitions 

of the points of a graph. This lattice, although it is rarely defined 

as such, plays a central role in many existing algorithms for graph 

isomorphism [14, 46, 51, 62, 69] and in our own. Results not 

attributed to other authors are either new or trivial. Later in the 

chapter we present a new algorithm for computing the coarsest equitable 

partition finer than a given partition, an operation related to Unger's 

"extending" process [ 76]. We show that it is at least one order of n 

faster than the usual algorithm. 

5.2 Until otherwise specified, G is a graph with points 

V = {1, 2, n} and r = r(G) is its automorphism group. e(r) is 

the orbits lattice of r defined in 4.15. 

Let TIE TI(V) and C1, C2 E TI. Then C1 is said to be 

equitably joined to C2 (in G) if d(v, C2) is constant for all v E C1. 

If any pair of cells of TI (not necessarily distinct) are equitably 

joined to each other then, following Schwenk [63], we say that n is 

equitable. The set of all equitable partitions for G will be called 

the equitable partitions lattice of G and denoted by 3(G). 

Consider for example the graph drawn in Figure 5.1. The 

lattice 3(G) consists of the eight partitions illustrated. 
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{1,712,813,614,5} 

{1,2,4,5,7,813,6} 
I 

{1,2,7,813,614,5} 
I 

{1,217,8} 

/~ 
{1,2} {7,8} 
~~ 

{1} 

Figure 5.1 

8 

{1,812,7!3,614,5} 

A Graph and its Equitable Partitions Lattice 

29. 

The following result justifies, by 2.6 , our referring to 

~(G) as a lattice. 

5.3 Lemma: ~(G) 1.-s closed under v but not necessarily under A. 

Proof: Let ~1. ~2 E ~(G) and let~= ~1 v ~2. C E ~. 

Since ~1 ~ ~. C is a union of cells of ~1 (2.10). Hence if 

since 
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Similarly, 

Now suppose that v1 ; v2 • Then as in the proof of 2.12 there 

is a sequence of points 

with the property that whenever 1 ~ i ~ r, either wi_1 ; 1 wi or 

Hence d(w. 1 , C) = d(w., C) for 1 ~ i ~ r, and so 
1- 1 

d(vl, C)= d(v2, C). 

Thus 'IT E ::(G). 

To demonstrate the second part of the lemma, consider the 

partitions 'Tfl = {1, 712, 813, 614, 5}, 'Tf2 = {1, 812, 713, 6!4, 5} of 

Figure 5.1. Then 'Tfl A 'Tf2 = {3, 6!4, 5}, which is not equitable. 0 

It would be interesting to characterise those graphs for 

which ::(G) is closed under A, but nothing seems to be known about 

this problem. 

5.4 For any 'IT E IT(V) we define ~('IT) to be the coarsest equitable 

partition (with respect to G) which is finer than 'IT. For example, if 

G is the graph of Figure 5.1 and 'IT= {1, 2, 7, 813, 6, 4, 5} then 

~('IT) = {1, 2, 7, 8!3, 6!4, 5L 

Formally, ~('IT) = v{'Tf' E ::(G) !'IT' ~'IT}. The set here is not 

null since the discrete partition is always equitable. The join 

exists by 2.5 and is equitable by 5.3. 
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5.5 The meet of two partitions ~1 and ~2 in the lattice ~(G) 

can now be identified as ~(~1 A ~2). 

The following results (5.6-5.10) are elementary and well 

known. 

5.6 Lemma: Let ~ E ~(G) and~' ~ ~. If G' is the subgraph of G 

induced by the points in ~~, then ~~ E ~(G'). 

Proof: If C E ~·and v1 ~--;. v2, then dG 1 (vl, C)= dG(vl, C)= 

dG(v2, C) = dG' (v2, C). 0 

5.7 Corollary: The subgraph of G induced by the points in one cell 

of~ E ~(G) is ~gular. 0 

5. 8 Lemma: ~ (G) = ~ (G). 

Proof: Let ~ E ~(G), C E ~ and v E V. Then 

fCI - dG(v, C) if V E c 
dG( V' c) = 

!C I - dG(v, C) - l if V d c. 

Hence if v1; v2 then dG(vl, C)= dG(v2, C). Therefore 

~(G) c ~(G) and the opposite inequality follows similarly. 0 

5.9 Theorem: e(r) c ~(G). 

Proof: Let~ E 0(f). Then~= 8(~). 

Let C be a cell of~ and let v 1 ; v2. Then there is an 

element y of r such that vly = v2 . 
~ 



32. 

Now y maps C onto itself, and v1 is joined to v E C iff 

y . . . d t y 
Vz = VI lS JOlne 0 V 

Hence d(vl, C)= d(vz, C) and so TIE ~(G). D 

5.10 Corollary: For any TI E IT(V)3 8(TI) ~ s(TI). D 

The conclusion of the last theorem suggests the following 

definition. A graph G will be called simply-equitable (or s-e for 

brevity) if equality holds in 5.9. That is to say, G is s-e if 

e(r) =~(G). The characterization of s-e graphs appears to be very 

difficult and only partial results have been obtained. 

The smallest graphs which are not s-e are the disconnected 

graph 

D 
and its complement. In these cases the unit partition is equitable 

but not orbital. 

In practice it is very difficult to tell whether a given 

graph is s-e or not, due to the large size of IT(V) for moderate n. 

However, if it is s-e, then the coarsest equitable partition is also 

the coarsest orbital partition. That is, 

5.11 er= v(~(G)). 

This necessary (but not sufficient) condition is readily 

tested empirically. A search of all the graphs with 8 points has shown 

that 5.11 holds except for those shown in Figure 5.2, together with 
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their complements. The graph marked (*) is self-complementary. The 

coarsest equitable partition is indicated by the labelling; two 

points are in the same cell if they have the same label (or no 

label). It is not known whether there are any 8-point graphs satis-

fying 5.11 but not s-e. 

A similar search of the 274668 graphs with 9 points has 

revealed 168 for which 5.11 does not hold. 

1 

<N> 
1 

l 

@ 
1 

Figure 5.2 

8-Point Graphs not Satisfying 5.11 

It is not easy to find graphs which satisfy 5.11 but are not 

s-e. In fact it seems to be usually the case that all equitable 

partitions of G which are not orbital are coarser than er. The smallest 
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counter-example known to the author is the 16-point graph shown in 

Figure 5.3, which appeared in [66] in a different context. This graph 

is transitive and so 5.11 is satisfied. However, if 

TI = {112, 4, 5, 8, 13, 1413, 6, 7, 9, 10, 11, 12, 15, 16} then 

TI is equitable, but 8(TI) = {112, 4, 5, 8, 13, 1413, 9, 1116, 7, 10, 

12' 15' 16}. 

11 12 9 

Figure 5.3 

Points with the 

same label are 

to be identified. 

Corneil [ll] has proved that all trees satisfY 5.11. We can 

generalize this result considerably as follows. 

If G is tree define Q = K1 . If G is not a tree but is 

connected, define Q to be the largest induced subgraph of G which has 

no points of degree zero or one. 

5.12 Lemma: If G is connected~ then Q is miquely defined and connected. 

Proof: If G is a tree the lemma is trivial. 

Suppose G is not a tree and G1 and G2 are different induced 

subgraphs satisfying the definition of Q. Then let G3 be the subgraph 

of G induced by the points of G1, the points of G2 and the points of 

every path in G joining a point of G1 to a point of G2. Then G3 has 

no points of degree zero or one and is larger than either G1 or G2. 

If Q is disconnected, then by including the points of 



35. 

every path joining one component of g to another we derive a similar 

contradiction. 

If G is disconnected and has components G1, G2, 

then we define G to be the disjoint union G1 u ~ u • • • u G • 
=r 

For example the graph G of Figure 5.4 has ~as shown. 

G: I 

0 

Figure 5.4 

5.13 Theorem: If g is s-e, then so is G. 

D 

G 
r 

Proof: Suppose the theorem is not true. Then there is a s-e graph H 

and a graph G of smallest size (for H) that is not s-e but has g = H. 

Let TIE ~(G). We now proceed to show that TI is orbital, 

thus arriving at a contradiction. 

Since G ~ H, G has at least one point of degree one. We 

consider two cases: 

2~~~-~: Suppose G is of the form 

G' I I I 
m copies 

where m ~ 1 and G' is a (possibly disconne~ted) graph with no points 

of degree one. 
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Then H is clearly the graph 

G' 0 0 0 

m copies 

Since G' has no point of degree one, TI can be written in the form 

(0 s r and l s k) 

where 

( 5. 6) 

Consequently, 

where D is a cell containing the illustrated m isolated points of H. 

But His s-e by hypothesis, and son' E 8(H). 

Take points VI and v2 such that VI ; v2. We have two 

possibilities: 

(a) C. (l s i s r). 
l 

Since n' E 8(H) there is an element y' of r 1 (H) such that 
TI 

-- {vy' 
Defining y by vy 

V 

and v Y = v 1 2. 

(b) v1, v2 E D. ( l s i s k) . 
l 

if V E G' 

otherwise 
we find that y E r (G) 

TI 

Since the subgraph F of G induced by D. is regular (5.7) 
l 

it consists of copies of I or of isolated points. 

(l) If F consists of copies of I then Di is an orbit of r (G). 
TI 

(2) If F consists of isolated points, denote by v1 and v2 
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the points connected (in G) to v1 and v2 respectively. Suppose 

vl E D .. Then v2 E D. since 
J J 

d(vl, D.)= d(v2, D.). 
J J 

Hence the permutation (v1v2 )(v1v2 ) is an element of r (G) and takes 
7f 

Case B: If G is not of case A, then it must have a point v of 

degree one connected to a point of degree greater than one. 

Suppose v is in the cell C of TI. Then all points in C have 

degree one. 

DefineR= {v E VJd(v, C) ~ 0}. 

Let C' be a cell of 7f s.t. C' n R ~ ~· Let v 1 E C' n R. 

(1) Suppose there is a point v2 in C' \R. Then d( v1 , C) ~ 0 

but d(v2, C) = 0 which contradicts 7f being equitable, since v1 ~ v2. 
7f 

(2) Suppose there is a point v2 in R\C'. Then choosing v1 and v2 

in C connected to v1 and v2 respectively we find d(vl, C') = 1 but 

d(v2, C') = 0 which again gives us a contradiction. 

Consequently we must haveR = C' so that R is a cell of TI. 

Suppose R is the set {rl, r2, r } ( 1 :,; m). 
m 

Now define S = {v E V!v has degree one (in G) and 

d(v, R) ~ 0}. 

Let C' be a cell of 7f s.t. C' n S ~ ~. Let v 1 E C' n S. 

Suppose there is a point v2 in C'\S. Then d(vl, R) = 1 but d(v2, R) = 0 

which contradicts 7f being equitable, since v 1 ~ v2 and RE TI. Hence 
7f 
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C' c S, and so S is a union of cells of TI. 

Say S = C1 u Cz u ••• u C where each C. is a cell of TI. 
r 1 

For 1 ~ i ~ r, 1 ~ j ~ m define 

C.j = {v E C. lv is adjacent tor.}. 
l l J 

Since R E TI and d( r. , C. ) = I C. j I we find that I C. j I is independent 
J l l l 

of j. 

Our constructions so far may be made clearer by considering 

the following schematic diagram, where m= r = 2. 

s = c1 u c2 

c 11 = {1, 2}, c1 2 = {3, 4} 

,_ ~~ -----..--------

Figure 5.5 

Let G' be the subgraph of G induced by V\S and let 

c }. 
r 

Then TI 1 E ~(G') by 5.6. Furthermore, g 1 = ~ = H since we have 

only removed endpoints of G. Hence by our induction hypothesis, 

TI 1 E 8(G'). 

Now suppose v1 vz. 
TI 

(1) I vz · 
TI 

Hence there is an element y' 

y' 
of r ,(G') such that vl = vz. Construct Y as follows: 

TI 



(a) If v E V\S let vy y' = V 
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(b) 
. k 

For l ~ i ~ r, l ~ j ~m let y map C.J onto C. where r. 
l l J 

maps onto r according to part (a). Any bijective mapping will do. 
k 

Then it is easy to see that yE r (G), and that y takes 
7f 

(2) If v1, v2 E C. for some l ~ i ~ r, suppose that VI E C.j 
l l 

and v2 E c.k. Then we can find y' Er ,(G') which takes r. onto rk 
l 7f J 

and extend it to y E r (G) in the same way as in (l) above. This 
7f 

gives US y which takes C.j onto C.k and we can choose y to take VI onto 
l l 

So in any case we have y E r (G) which takes v 1 onto v2 . 
7f 

Therefore 7f E G(G). D 

5.14 Corollary 1: All trees and forests are s-e. D 

5.15 Corollary 2: For a graph G define a(G) to be the complement of 

Q with any isolated points {of g) removed. Then if ar(G) is nuU or 

s-e for any r _, then G is s-e. 

Proof: By applying 5.13 to G and G and using 5.8. D 

Let 7f E IT(V) and Cl, C2 E 7f. Then we say that C1 is 

trivially joined to c 2 (in G) if one of the following holds for all 

(l) d(v, C2) = 0. 

(2) cl~ c2 and d(v, C2) = IC21· 

(3) cl= c2 and d(v, C2) = IC21 - l. 
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Obviously, if TIE ~(G), then a trivial cell of TI is trivially 

joined to every cell of n. 

The following result is well known, for example to Levi [40]. 

5.16 Lemma: Let n E IT(V) and let C E n be trivially joined to every 

cell of n\C. If G1 and G2 are respectively the subgraphs of G 

Proof: Obviously fTI(G) ~ f(G 1 ) $ fn\C(G2). Suppose Y1 E f(Gl) and 

y2 E rn\C(G2), and define y = y 1y 2. Suppose {vl, v2} is an edge of 

G. If vr and v2 are both in C or both not in C, then obviously 

is an edge of G because C is trivially joined to the cell of TI con-

Thus y E f (G). TI 0 

5.17 Theorem: Let TI E ~(G)~ C E TI and suppose that 

(1) The subgraph of G induced by C is transitive. 

(2) For any C' E n\C~ then either ( ICI, IC' I)= 1 or !Cl = IC' I = 2. 

Then C is an orbit of r . 
TI 

Proof: 

(1) Suppose !Cl > 2, Let C' E n\C. 

Then counting the edges joining C to C', we have 

IC ld(v, C') = !C' ld(v', C) for any v E C, v' E C'. 

But !Cl and IC' I are coprime and so !Cl divides d(v', C) 

and !C' I divides d(v, C'). However, 0 ~ d(v', C)~ !Cl and 
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0 :::; d(v, C') :::; \C' \. Hence either d(v, C') = d(v', C) = 0 or 

d(v, C') = \C' I and d(v', C)= \Cl. Consequently, C satisfies the 

requirements of 5 .16 and so C is an orbit of r since < C ) is 
1T 

transitive. 

(2) Suppose the cells of size 2 of n are C1, C2, ck where 

for 1:::; i:::; k, C. = {v.lv.2}. 
l l l 

Two cells of size 2 can be equitably joined in one of 

these four ways: 

0 0 ® X 0 0__. 

Since <C.) is either K1 or :K2 for 1 :::; i :::; k we find that the 
l 

permutation 

Hence each C. is an orbit of r . 
l 1T 

is in r . 
1T 

(3) If \C\ = 1 then the theorem is trivial. D 

5.18 Corollary: If the conditions of the theorem are satisfied for 

each cell C of n then n E G(G). D 

5.19 Theorem: Let ·rr E ::!(G) have £ ceUs~ where n- £:::; 5. Let C 

he a cell of n of the smallest non-trivial size. Then C is an orbit 

of r . The bound is sharp. 
1T 

Proof: The possible sizes for the non-trivial cells of n are 
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2, 

22, 3, 

222, 23, 4, 

2222, 223, 33, 24, 5, 

22222, 2223, 233, 224, 34, 25, 6, 

Theorem 5.17 can be applied to all these cases except 24 and 224 

since all the regular graphs on ~6 points are transitive. Hence we 

need consider only the cases where n has a cell C1 consisting of 4 points 

and one or two cells consisting of two points each. 

For a start we notice that if n has a cell of size 2 joined 

trivially to C1 then that cell is an orbit of r by the same argument 
n 

as used in 5.17. In this situation the case 24 is proven and the 

case 224 reduces to the case 24. 

Consider the subgraph <:cl). Since it is regular (5.7), it 

must be K4, Z4 or the complement of one of these. Hence it can be 

labelled so that its automorphism group contains the group D4 of the 

square 

:o: 
Suppose c2 = {v1 , v2} is a cell of n which is not trivially 

joined to Cl. Then since C2 is equitably joined to C1 we must have 

can bisect Cr into two halves -- those points adjacent to v 1 and 

those adjacent to v2. This can be done in one of three non-equivalent 

ways: 
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b c 

A: aDd 
b c 

B: aDd 
b c 

C: aDd 
D A = {(be) (ad) , (bd) ( ac)} 

DB= {(ab)(cd), (ac)(bd)} 

DC= {(abed), (adcb), (ab)(cd), (ad)(bc)}. 

Note that DA consists of those elements of D4 which swap the 

two halves of C1 shown in A, and similarly for DB and DC. 

(i) In the case 24, r contains (vlv2)Y where y is from the 
1T 

set DA, DB or DC depending on the way c2 is joined to C1. 

(ii) Let C3 = {v3, v4} be another cell of TI, not joined trivially 

to C1. Now suppose that for example C2 gives the bisection A of C1 

and C3 gives the bisection B. Then we let y E DA n DB. This can 

always be done since any pair of the sets DA' DB and DC have an 

element in common. 

Now c2 and c3 can only be joined in one of the ways shown in 

5.17, and so the permutation Cv1v2)(v3v4)y is in r , which shows that 
1T 

both c2 and C3 are orbits of r . 
1T 

The graph marked (*) in Figure 5.2 is a counter-example 

where n - .!/, = 6. D 
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5.20 Theorem: Let 'IT E ::(G) where G is connected and let C E 'IT. Let 

'ITC be the partition of the points of G into cells of equal distance 

from C. Then 'IT ~ 'ITC. 

Proof: For any j ~ 0, let D. = {v E Vla(v, C) = j}. 
J 

We prove by induction on j that each D. is a union of 
J 

cells of 'IT. 

Firstly, Do = C E 'IT, 

Now suppose that for some j ~ 0, Dj is a union of cells 

of 'IT. 

Then whenever vl ~ v2 we have d(vl, D.)= d(v2, D.). 
'IT J J 

Now Dj+i = {v E Vla(v, C) > j and d(v, D.) 7 O}. 
J 

Therefore, if v1 E Dj+i' we must have v2 E Dj+i and so 

Dj+i is also a union of cells of 'IT. 

Hence 'IT ~ 'ITC. 0 

If G is transitive and 'ITC E ::(G) whenever ICI = l, then G is 

called distance-regular. Distance regularity is also defined for 

non-transitive graphs. If 'ITC E e(r) in the same circumstances, G 

is called distance-transitive. See Biggs [ 6 ] for further details. 

5.21 Let 'IT E IT(V) be the partition {C 1 IC2!••• IC£} and let the 

elements of V be vl, v2 • V in some order. We define an £ x n 
n 

matrix T = T(TI) by 

{: 
if V. E c. 

T .. = J l 

lJ otherwise. 
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Clearly TT' is the£ x £diagonal matrix diag( IC1!, •••, !C£1) 

and so (TT')- 1 exists. Let A be the adjacency matrix of G with the 

labelling v1, and define the £ x £ matrix 

B = TAT I (TT I ) - 1 . 

5.22 Theorem: 'IT E :;:;:(G) iff TA= BT. Furthermore~ if 'IT E :;:;:(G)~ then 

B .. = d(v, C.) for any v E c.~ where l ~ i ~ £3 1 ~ j ~ £. 
lJ l J 

Proof: Suppose TA = BT. Then for 1 ~ i ~ £, 1 ~ j ~ n we have 

and 

n 
(TA) .. = I T.k~' lJ k=1 l J 

= I Ak. 
kEC. J 

l 

= d( V., c.) 
J l 

£ 
(BT) .. = I B.kTk. lJ k=1 l J 

= BikTkj where V. E ck J 

= Bik" 

Hence for V. , V. E Ck (1 ~ k ~£),we have 
J l J2 

d(v. 'c.)= B.k = d(v. 'C.) (1 ~ i ~£)and so 'IT E :;:;:(G). 
Jl l l J2 l 

Conversely, if 'IT E :;:;:(G) define the £ x £ matrix B by 

~ 

B. . = d ( v, C. ) where v E C . ( 1 ~ i ~ £, 1 ~ j ~ £) . 
lJ l J 

~ 

Then, in a similar fashion, TA= BT, and this implies that 



B = TAT'(TT')-1 =B. 

5.23 If TIE ~(G), then the matrix B is sometimes called the 

46. 

0 

quotient matrix of A induced by TI, although some authors use this title 

for the transpose B'. It plays an important part in many algorithms 

for graph isomorphism, for example that of Corneil and Gotlieb 

[11, 14]. 

The matrix B also plays a central role in many other regions 

of graph theory, in particular spectral theory. For example, the 

characteristic polynomial of B divides that of A, a result first 

proved by Haynsworth [23]. We shall not be concerned with these 

matters here. For further information see Sachs, Petersdorff and 

Finck [19, 53, 60, 61], Schwenk [63] and Djokovic [15]. 

5.24 VIe turn now to the problem of computing !; ( TI). This problem 

is of central importance in many proposed algorithms for graph iso­

morphism for the following reason. Given any partition TI E TI(V) we 

have (by 5.10) 

8(TI) ~ !;(TI) ~ TI, 

Consequently I;(TI) is in general a better estimate of 8(TI) 

than is TI, and in many cases (s-e graphs for example) will equal 8(TI) 

exactly. I;(TI) can often be used in place of 8(TI), which is much 

harder to compute. 

5.25 In order to store a partition in the computer we need to 

assign an order to the cells. Similarly, we need to label the points 

of a graph. These matters have been discussed in sections 3.8 to 

3.10. They lead us to the following definitions. 



G is a labelled graph with points V= {1, 2, n}. 

IT(V) is the class of ordered partitions of V. In other 

words, IT(V) is the class of sequences [C1IC2I··· ICk] where 

If TIE IT(V), then n(i) denotes the i-th cell of TI. 

47. 

If n1 and n2 are in either IT(V) or IT(V) we write n1 ~ n2 

to indicate that n1 and n2 have the same cells in some order. 

Otherwise when relations and functions defined on IT(V) are 

applied to elements of IT(V) we understand that the corresponding 

unordered partitions are intended. For example, if n1, TI2 E IT(V), 
~ ~ ~ 

then by TII ~ n2 we mean that n1 ~ n2 where n1, n2 E IT(V), TII ~ n1 and 

5.26 We begin by presenting a very simple algorithm for computing 

~(n). The ideas behind this algorithm date back to Duijvestijn [17], 

Unger [76] and Morgan [46]. More recently, it has been proposed in a 

similar form by Corneil [11], Parris [50], Steen [69] and Tinhofer 

[72 J. 

Suppose n = [Cl I·· • I Ck] E IT(V). Then we define the vector 

.Q.(v, n) for each v E V by 

where V E TI (do) 

and d. = d( V, C. ) ( 1 ~ i ~ k). 
l l 

Note that all degrees are taken in the graph G. 
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5.27Algorithm: IR*. Compute 1f"" 1;(7r). 

( l) Set 1f • - 1f. 

(2) Compute £(v, ;) for each v E V. 

(3) Set 1r1 to the ordered partition of V whose cells contain 

points for which £(v, ;) is equal, and are ordered according to a 

lexicographic ordering of these vectors. 

(4) If 1fl ~ 1f stop. 

(5) Set 1f := 1r1. Go to step (2). 

Let dt*(1f) denote the value of 1f when the algorithm stops. 

5.28 Example: Let G be the graph of Figure 5.6 and let 

1f = [1, 2, 3, 4, 5, 6, 7, 8]. 

for v 

1 

4 

Figure 5.6 

( l) 1f = [1, 2, 3' 4' 5' 6. 7, 8]. 

(2) £(v, ;') = [1, 2], [1, 3], [1, 

[l, 3], [l' 3]' [1, 

= l, 2, 8 respectively. 

(3) 1fl = [1, 712, 3, 4, 5, 6, 8]. 

(5) 1f = [1, 712, 3, 4, 5, 6, 8]. 

3], 

2], 

7 

8 

[1, 3]. 

[1, 3]' 
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( 2) ~(v, ;) = [1, o, 2], [2, 1, 2], [2, 0, 3]' [2, 1, 2 J' 

[2, o, 3]' [2, 1, 2 J' [1, 0, 2], [2, 1, 2], 

for v = 1, 2, 8 respectively. 

( 3) 'IT I = [1, 713, 512, 4, 6, 8]. 

( 5) 'IT = [1, 713, 512, 4, 6, 8]. 

(2) ~(v, ;) = [1, o, o, 2], [3, 1, 1, 1], [2, o, 1, 2], [ 3' 1, 1, 1]. 

[2, 0, 1, 2], [ 3' 1, 1, 1], [1, o, 0, 2], [ 3. 1, 1, 1], 

for v = 1, 2, 8 respectively. 

(3) 'ITI = [1, 713, 512, 4, 6, 8]. 

(4) Stop. 

Hence IR*('IT) = [1, 713, 512, 4, 6, 8]. 

5.29 Theorem: (R*('IT) "'~('IT) for any 'IT E TI(V). 

Proof: Consider step (3). The first element of £(v, ;) for each v 

~ ~ ~ 

ensures that 'ITI :s: 'IT. Also, the condition 'ITI "' 'IT is just that for 'IT to 

be equitable. 

Hence ~('IT) is equitable, and 6t*('IT) :s: 'IT. Therefore, 

Let C be a cell of ~('IT) and let v 1 , v2 E C. Now ~('IT) :s: 'IT 

~ 

and so when step (2) is executed for the first time each cell of 'IT is 

a union of cells of ~('IT) (by 2.10). Therefore £(vl, ;) = ~Cv2, ;) 
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and so VI and v2 will be in the same cell of ~ 1 after executing step 

(3). Hence, at this stage ~(~) ~ ~1· Repeating this argument for 

each time steps (2) and (3) are executed we see that~(~) ~ Gt*(~), 

which completes the proof. 0 

5.30 Despite its simplicity the algorithm 6t* has several 

disadvantages: 

(l) We are required to sort vectors of varying lengths. In King's 

implementation [31] this problem is simplified by a process of 

11 compacting" the vectors. For example, if d( v, :;;:') = [ 12, 01, 03, 07] 

then we can write this as an integer 12010307. However, special 

handling is still required as such integers can be much too large to 

store as integers in the normal way. 

(2) Much unnecessary computation is performed. For example, 

suppose that after step (3) the partitions ~ and ~l have a common 

cell C. Then for all VI, v2 in the same cell of ~1 we have 

d(vl, C) = d(v2, C). Therefore there is no need to compute these 

degrees next time step (2) is executed since they will make no 

difference to the sorting. 

5.31 A few improvements to ot* have been suggested in special 

cases. If the initial partition ~ contains a trivial cell, say {v}, 

then Saucier [62] first divides V into cells of equal distance from v 

(compare 5.20). Then we know that cells c1 and c2 are trivially 

joined if 13 ( v, C d - 3 ( v, C2) I > 1. This would seem to save much 

time if the graph has a large diameter. Another variation is used by 

Levi [40] for the fundamentally different case where the cells of the 

partitions contain both the points and the edges of the graph. 
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We now present a new algorithm which, while not the final 

answer to the problem, has been found to work very satisfactorily in 

practice. 

Let TIE IT(V) haver cells. Let K be a positive integer. The 

value of K will be discussed later. 

5.32 

d(v, 

Algorithm: O{K: Compute TI "' 

(1) Set TI := TI' , 

k := K· 
' 

Q, .- r· 
' 

£' . - r . 

(2) If k > Q, or Q, = n, stop. 

( 3) Set c .- ;(k); 

i .- 1. 

(4) If I; ( i) I = l go to step 

( 5) Sort ;(i) into cells cl> 

C) for v E :;; ( i). 

(6) If s = 1, go to step (8). 

~(TI), 

( 8) • 

c2, C according to 
s 

(7) For 2 ~ j ~ s set ;(£' + j - l) .-

Set £' := £' + s - l. 

( 8) Set i : = i + 1. If i ~ £, go to step ( 4) . 

(9) Set £ := £ 1 ; 

k := k + l. Go to step (2). 

c .. 
J 



52. 

Let ~(n) denote the value of; (with £ cells) when the 

algorithm stops. 

5.33 We consider the example of 5.28 and apply algorithm 5.32 

with K = 1. 

( l) TI = [1, 2, 3, 4, 5, 6, 1, 8], k = £ = £' = 1. 

( 3) c = {1, 2, 3, 4, 5' 6, 1. 8}, i = 1. 

( 5) d(v, C) = 2, 3, 3, 3, 3, 3, 2, 3 for v = 1, 2, 

respectively. cl = {1, 7}, c2 = {2, 3, 4, 5, 6, 8}. 

(7) TI = [1, 1 12' 3, 4, 5, 6, 8], £' = 2. 

(9) £ = 2, k = 2. 

( 3) c = {2, 3, 4, 5. 6, 8}, i = 1. 

(5) d(1, C) = 2, d(7, C) = 2 so s = 1. 

(8) i = 2. 

( 5) d( v, C) = 2, 3, 2, 3, 2, 2 for v = 2, 3, 4, 5, 6, 8 

respectively. cl = {2, 4, 6, 8}, c2 = {3, 5}. 

(7) TI = [1, 712, 4, 6, 8!3, 5], £ 1 = 3. 

(9) £=3,k=3. 

(3) c = {3, 5}, i = 1. 

(5) d(1, C) = d(7, C) = 0 so s = 1. 

(8) i = 2. 

8 
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( 3) d(2, C) = d( 4' c) = d( 6' c) = d(8, C) = 1 so s = 1. 

( 8) i = 3. 

( 5) d( 3' c) = d( 5' c) = 1 so s = 1. 

(9) !(, = 3, k = 4. 

(2) k > !(, so stop: fKdn) = [1, 712, 4, 6, 813, 5]. 

5.34 Theorem: For any 7f E rr(v)~ ~l(n) ~ ~(n). 

Proof: 

(1) For each value of k, steps (4) to (8) are executed less 

than n times. Furthermore, k is incremented at step (9) and stops 

execution when it passes £. Hence the algorithm terminates and so 

lJt 1 (n) is defined. 

(2) The partition TI is altered only at step ( 7) where it is 

made finer. Let C be a cell of ~(n) and let v1, v2 E C. At step (1) 
~ 

we set TI ton, which is coarser than ~(n). 

Suppose that TI is coarser than ~(n) just before step (7) is 

~ 

executed. By 2.10 each cell of TI is a union of cells of ~(n). 

Therefore d(vl, C) = d(v2, C) and so v1 and v2 will be in the same 
~ 

cell of TI after step (7) is executed. 

(3) Suppose~l(n) is not an equitable partition. 

Then 6<.1 ( TI) contains cells C 1 and C2 and points v1, v2 E C 1 

such that 
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Since the partition TI is made successively finer during the 

execution of the algorithm, v1 and v2 must always be in the same cell 

~ 

of TI. We show that this leads to a contradiction. 

(a) Suppose that before and after some execution of step (7), 

c2 is contained in ;(p) and ;(q) respectively. Then clearly q ~ p, 

and also q ~ n. However, k is set to 1 initially and is incremented 

by 1 at each execution of step (9). 

Therefore at some execution of step (3) we have C2 ~ ~(k). 

(b) Since we are assuming VI and v2 are not separated, we must 

have 

But d(vl, C2) ~ d(v2, C2) and C2 ~ ;(k). Therefore, there is at least 

one cell, say C3, of O(l(n) which is contained in ;(k)\C2 and such that 

(c) Since C2 and C3 are distinct cells of ~1 (n) they must be 

separated at some execution of step (7). At least one of them, say 

C2, will then be a subset of some cell :;;:' ( j) where j > k. 

(d) As in (a), some cell containing C2 will again be encountered 

as :;;:'(k) at step (3). 

Clearly the argument from (a) to (d) can be repeated 

indefinitely and so the algorithm will never terminate. This 

contradicts (1). 

Therefore, ~l(n) is equitable, and so ~l(n) ~ s(n) by 

part (2). D 
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5.35 One of the greatest advantages that algorithm 5.32 has over 

algorithm 5.27 is that in many cases of practical concern the constant 

K can be set to a value greater than one, without destroying the 

validity of the algorithm. We now give a method for setting K which 

will later be seen to have an important application. 

Let ~1 E IT(V) be an equitable partition coarser than~. 

Suppose ~1 has £1 cells. Let q be an integer (1 ~ q ~ £1) such that 

for 1 ~ i ~ q, ~(j) ~ ~l(i) for at most one ~(j), (1 ~ j ~ q). 

5.36 Theorem: {R,K(~) "'t;(~) if K = q + l. 

Proof: 

(1) By the same arguments as for 5.34 the algorithm terminates 

and 

(2) Suppose etK(~) is not equitable. 

Then ~K(~) contains a cell C1 such that for some two points 

vl, v2 in the same cell of ~K(~), we have d(vl, Cl) 7 d(v2, Cl). 

Let ~ 1 be the equitable partition defined above. Since 

a{K(~) ~ ~ 1 , there is a cell C of ~1 of the form cl u c 2 u ... u c 
s 

where each c. is a cell of 0\K(~). 
l 

But ~1 is equitable and so d(vl, C) = d(v2, C). Therefore 

at least one of the cells C. (2 ~ i ~ s) also has d(vl, C.) 7 d(v2, C.). 
l l l 

Say i = 2. 

Hence the defined relationship between ~ and ~1 ensures 

that, if C1 and c 2 are contained in different cells of ~, one of them, 
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say C2, is contained in a cell TI(j) where j ~ K. In this case we 

can take up the proof of 5.34 at step (a) and derive the same 

contradiction. 

If however C1 and c2 are contained in the same cell of TI we 

can take up the proof of 5.34 at step (c), where we read C1 for C3. 

In either case we conclude that (}( K( TI) is equitable, and 

0 

5.37 We now study the efficiency of algorithms 5.27 and 5.32, for 

the data structures described in sections 3.8-3.10. In both algorithms 

the time taken for indexing etc., is quite trivial and so we may 

accurately write 

for tR,* 

or 

for (R,K 

where t. is the total time, N. is the number of times we must compute 
l l 

d(v, C) for some point v and cell C, d. is the average time for such 
l 

a computation, and si is the time taken in sorting, for i = l, 2. 

Suppose TI and ~(TI) have £o and £1 cells respectively. 

5.38 Consider algorithm 5.27. Let p be the number of times 

step (2) is executed. Since p ::; n and p = [n;1j when G = p we see 
n 

that p = O(n) in the worst cases. 

( l) At the j -th execution of step ( 2), TI has a least £o + j - l 

cells. 

p 
Therefore N1 ~ I n(£o + j- l) = ~np(2£ 0 + p- 1). 

j=1 
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(2) At the j-th execution of step (2) we are required to sort 

n vectors of length at least £o + j. Even if a very efficient means 

of packing the vectors is used the time for sorting will be at least 

of order n log n, [20]. 

Therefore s1 = O(pn log n) 

= O(n2 log n) (at least) in the worst cases. 

5.39 Consider algorithm 5.32 for some value of K. Clearly step 

(3) is executed £1 - K + 1 times. 

(1) For each value of k we must compute d(v, ;;.'(k)) for at most 

n points, depending on step (4). 

Therefore N2 ~ n(£1 - K + 1). 

(2) Sorting is performed at step (5) where we must order the 

points of ;;.'(i) according to their degree relative to C. Now 

0 ~ d(v, C) ~ n- 1 for any v E V, C ~V. This enables us to use the 

address-calculation sort (see [20]). This sorting method is not only 

the fastest but the simplest. The time it takes is of order l;(i) I 

and so the time taken in sorting for each value of k is of order 

£ 
L ITI(i) I = n. 

i=1 

Therefore s2 = O(n(£1- K + 1)). 

5.40 In the author's implementation a computation of the form 

d(v, C) takes a fixed time since the population count instruction can 

be used (see 3.2). Therefore we can say that in the worst cases 

we have 

while t 2 = 0( n ( £ 1 - K + 1 ) ) 

= O(n2) for fixed K. 
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The expression for t2 again emphasizes the advantage in 

being able to set K > 1 in some cases. 

5.41 The efficiency of algorithm 5.32 has been examined 

extensively for "random" graphs of the type described in Section 3.11. 

The results for the case where the initial partition is the unit 

partition are illustrated in Figure 5.7. Each point represents the 

average time for about 100 graphs. The cases where 0 = 0•75 or 

0 = 0•50 are seen to be very nearly linear. 

time 
(milliseconds) 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

I 

!J. 

~ 

"/0 V (J = 

0 0 = 

!J. A (J = 

10 20 30 40 

number of points 

Figure 5.7 

0·75 

0•50 

0·25 

50 60 



59. 

CHAPTER SIX 

BACKTRACK PROGRAMMING - I 

6.1 A large proportion of computing tasks in combinatorics can 

only be handled by something which amounts to an exhaustive search 

through a large set of possibilities. The most widely employed 

method for performing such a search in a systematic fashion is known 

as "backtrack programming" or "depth-first searching". Descriptions 

of backtrack programming with various degrees of generality can be 

found in Golomb and Baumert [22], Wells [(8], Tarjan [71] or Fillmore 

and Williamson [18]. 

We begin this chapter by giving a formal description of 

backtrack programming as applied to a problem of finding sequences 

satisfYing a given property. This gives us a program with a natural 

tree-like structure which we then explore. 

Following these basic results, which are well known, we 

introduce the invariance group T of the program and prove some of its 

properties. It is seen that the automorphism group of the graph, 

group or whatever object is under consideration is a subgroup of T 

under certain very common conditions. The invariance group does not 

appear to have been defined before, although some properties of 

certain of its subgroups have been utilised. We show that knowledge 

of a subgroup of T enables us to considerably reduce the amount of 

work required by the backtrack method. 

6.2 Let V be the set {1, 2, ···, n}. Then for 0 s k s n define 

Q(k)(V) to be the set of sequences [vl, •••, vk] of distinct 

elements of V. If k = 0 then the symbol [vl, •••, vk] indicates the 

null sequence []. 
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Define Q(V) = U Q(k)(V). Let P be a property defined on 
k=O 

Q(n)(V) and let U = {T E Q(n)(V) IT has property P}. We shall direct 

our attention to the problem of finding U when P is given. For 

example, if G is a graph with points V, then we might say that 

T = [VI, vn' VI is a Hamiltonian 

cycle of G. 

One possible way to determine U is by testing each of the 

(n) ( ) n! elements of Q V to see which of them satisfy P. However, this 

technique is obviously impractical except for very small values of n, 

and so some more efficient means is required. The success of the 

"backtrack" process lies in its capability for eliminating elements 

of Q(n)(V) without examining them explicitly. To continue our 

example, if VI, v2, v3 is a path in G, but v4 is not connected to v3, 

then U contains no elements of the form [vl, v2, v3, v4, V J • 
n 

6.3 If v = [vl, •• •, vk] E Q(V), define Xv = {v E VIU contains an 

element of the form [v1 , •••, vk, v, •••]}. Let W 

be any function so that for v = [vl, •••, vk] E Q(V) we have 

6.4 

The backtrack algorithm we now present produces all 

sequences [vl, •••, v] such that for 1 ~ i ~ n, vl. E W([vl, •••, v. 1 J). 
n l-

The condition 6.4 shows that every element of U is of the form. In 

practice a trade-off will usually be necessary between the size of 

W(v) and the effort expended in computing it. If W(v) = X for all v, 
\) 

then only elements of U will be produced. At the other extreme, if 

W([vl, •••, vk]) = V\{vl, •••, vk} for all [vl, ···, vk], then the whole 

of Q(n)(V) will be produced. 
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Algorithm: Find U given p 

( 1) Set k := 0. 

(2) Set uk .- W( [ v 1 , vk]). 

( 3) If uk = ~. go to step ( 7) . 

(4) Choose and delete any element vk+i from Uk. Set k .- k + 1. 

(5) If k < n, go to step (2). 

(6) Output [vl, v ] if it satisfies P. 
n 

(7) Set k .- k- 1. If k ~ 0, go to step (3); otherwise stop. 

6.6 We illustrate this algorithm by continuing our example of 

finding Hamiltonian cycles in a graph G, namely the graph of Figure 

6 .1. 

(1) 

:~5 
3 

Figure 6.1 

Define Was follows: 

W([]) =V (t) 

vk]) = {vE V\{vl, •••, vk}lvis connectedto 

vk in G} (k ~ 1). 

(t) We have set W([J) = V because it makes our example more instructive 
in later sections. In practice, we would set W([]) = {1} to avoid 
each cycle appearing 5 times. For a more sophisticated algorithm 
for finding cycles in a graph see Johnson [29]. 
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6. 7 We follow the progress of the algorithm until it finds the 

first solution. 

(1) k = 0 

(2) Uo = {1, 2, 3, 4' 5} 

(3) Do ~ ~ 

(4:) VI = 1, Do = {2, 3, 4, 5}, k = 1 

(5) k < n so go to (2) 

(2) u1 = {2, 4} 

(3) u1 ~ ~ 

(4) v2 = 2, ul = {4}, k = 2 

(5) k < n so go to (2) 

(2) u2 = {3, 5} 

( 3) u2 ~ ~ 

(4) v3 = 3, u2 = {5}, k = 3 

(5) k < n so go to (2) 

(2) u3 = {4, 5} 

( 3) u3 ~ ~ 

(4) v4 = 4, u3 = {5}, k = 4 

(5) k < n so go to (2) 

(2) u4 = {5} 

( 3) u4 ~ ~ 

(4) v5 = 5, u4 = ~. k = 5 



( 5) k = n 

(6) [1, 2, 3, 4, 5] is not a Hamiltonian cycle 

( 7) k = 4· 
' 

go to ( 3) 

( 3) u4 = <P so go to (7) 

(7) k = 3; go to ( 3) 

(4) v4 = 5, u 3 = </>, k = 4 

(5) k < n so go to (2) 

(2) u4 = {4} 

(3) u4 ;Z <P 

(4) v 5 = 4, u4 = </>, k = 5 

(5) k = n 

(6) [1, 2, 3, 5, 4] is a Hamiltonian cycle 

etc. 
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6.8 This process can be conveniently described in terms of a 

program tree T as shown (for our example) in Figure 6.2. The points 

of the tree are called nodes. The node at the top of the tree is 

called its root and corresponds to the start of the algorithm. The 

other nodes correspond to a choice of vk+i at step (4) of the algorithm. 

Each node is considered to be labelled with the sequence [vl, vk] 

which is current after step (4) has been completed. For clarity, 

however, only the value of vk is shown in Figure 6.2. Thus the label 

of the node marked A is [3, 2, 1, 4]. The algorithm 6.5 begins at the 

root of the tree and works downwards where possible, taking the 

left-most branches on the way down (hence the phrase "depth-first"). 

If it reaches a dead-end, it "backtracks" to find another path downwards, 

and thus continues until it has traversed the entire tree. 



4 1 YS Yl YS 92 Y4 

4 YS Y3 Y4 Y2 YS Y2 Y3 3 YS 3 Ao4 Y4 Y2 92 91 Yl 

5 •4 ~4 03 os •2 03 •2 5 <!113 1 <!111 5 °1 llllS 0 1 •4 (lll2 

Figure 6.2 

3 3 Y2 

5 <!113 ill 1 

3 92 94 91 9 3 

4 Y4 91 Y 1 Y2 Y2 

3 °1 lilll4 'lll2 <!113 01 

0'­
_J::-



A node of the form [v1 , ···, vk, vk+i] (k <:: 0) is called a 

successor of the node [ v 1 , • • • , vk]. Edges of T join each node to its 

successors (if any). Since the edges ofT are simply determined by 

the labels of its nodes we will normally regard T as just the set of 

its nodes, although we still refer to it as a tree. 

Extending the successor relationship, a node v1 of the 

form [vl, v ••• v] (r > k) is called a descendant of the node 
k' ' r 

vk]. Conversely v2 is called an ancestor of vl. If v 

is a node ofT (we write this simply as vET), then the subset ofT 

consisting of v and all its descendants is called the subtree of T 

rooted at v and is denoted T(v). 

If a node has no successors (and hence no descendants), it 

is called an endnode ofT. If vis an endnode and lvl = n, then vis 

a terminal node of T. Those terminal nodes in 6.2 which satisfy P 

are drawn as solid circles. 

6.9 Backtrack programs are notoriously sensitive to slight 

changes in W, and theoretical timing studies are very difficult to 

carry out. However, it is often possible in practice to estimate the 

. efficiency of such a program by examining a random selection of 

subtrees of T. See Knuth [34] for further details. 

6.10 In our analysis of program trees we shall focus our 

attention on the terminal nodes rather than on the solution nodes, 

which depend on P. In this sense the program tree is defined by the 

function W. In fact, we shall refer to W as a defining function for 

T. However, T may have many defining functions since it is not 

affected by the value of W(v) when v ~ T. 
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6.11 From now on we will assume that T has at least two nodes. 

The successor function for T is the map 

defined by 

F(v) 
= f: 

T 
F Q(V) + 2 

E Q(V) I~ is a successor of v} \) E T 

v ~ T 

It is generally more convenient to work with F rather than with W, 

since F and T uniquely define each other. 

Let\)= [vl, ···, vk] E Q(V), yE sn. Then we write 

v Y for [v Y 
1 ' 

6.12 Theorem: T is invariant under y iff F commutes UJith y in the 

sense that for any v E Q(V)_, F(vY) = (F(v))Y. 

Proof: 

(a) Suppose F commutes with y. Let v E T. 

If v is not an endnode of T, then F( v) ~ cp. Hence 

If v is an endnode of T, then there exists ~ E T such that 

(b) Suppose T is invariant under y. 

If v ~ T, then vy ~ T and so F(v) = F(vy) =cp. 

If v E T, then vY ET. Suppose ~ E F(v). Then ~yET and 

so ~yE F(vY). 



Similarly, if ~yE F(vY), then ~yET, which shows that 

~ET and hence~ E F(v). 

6.13 Theorem: Let E be the set of encmodes ofT. 

T = T y i ff E = E y • 

Let y E s . 
n 

Proof: By definition, E = {v E TIF(v) = ~}. 

(a) Suppose T = TY. Let V E E. 

Then vy E T and F(vY) = (F(v))Y by 6.12. Hence vy E E. 

(b) Suppose E = EY. Let vET where v = [vl, vk]. 

Then T has an endnode of the form~= [vl, 

where k ::; r ::; n. 

Hence ~ Y = [ v1 Y, 

vy = [vlY, V y] T k E • 

v Y] E T, and so 
r 

6.14 Theorem: If T = TY and X is the set of terwrinal nodes ofT_, 

then X = xY. 

Proof: lvl for any v E T, yE S . 
n 

6.15 Theorem: Let T(T) = {y E S IT = TY}. Then T(T) is a group. 
n 

D 

Then 

D 

D 

D 

V J 
r 

6.16 The group T(T) will be called the invariance group ofT. 
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For example, if T is the program tree of Figure 6.2, then T(T) is the 

group {(1), (24), (35), (24)(35)}. In this case T(T) is precisely 

the automorphism group of the graph G. This situation is very common 

and will be considered in more depth later. 

Recall that T(v) is the subtree ofT rooted at v. The 

motivation for the study of T(T) can be found in the following 

result. 

6.1( Theorem: Let yE T(T) and v E T. Then T(vY) = (T(v))Y. 

Proof: Suppose v = [vl, vk] . Then V y = [VI y , V YJ T k E • 

If ~ is a descendant of v, then it has the form 

~ = [vl, ···, vk, •••, vr] (k < r :s: n). Thus 

~Y = [vlY, vky' ···, vry] E T(vY). 

Similarly, if ~yE T(v'Y), then~ E T(v) since 

y- 1 E T(T) by 6.15. 0 

6.18 We consider the consequences of 6.1(. Given any subtree 

T(v) and permutation yE T(T), we can construct the subtree T(vy) without 

the need for producing it by using the backtrack Algorithm 6.5. In 

particular, the terminal nodes of T(vy) can be determined from those 

of T(v). 

Taking this idea a step further, let ~be a subgroup of 

T(T), and let v, ~ E X. Then we write v ~~if~= vY for some 

y E ~. 

By 6.14 the relation ~ (written as ~ if ~ is understood) 



is an equivalence relation on X. Consequently X can be determined 

from.the group '¥ and any subset R ~ X containing at least one node 

from each equivalence class under ~ This can produce a considerable 

saving if l'¥1 is large. A means of producing R using algorithm 6.5 

will be given as soon as a few additional results are discussed. 

If'¥~ T(T) and v = [v1 , vk] ET, then 'l'v denotes the 

point-wise stabiliser of {vl, vk} in'¥. 

6.19 Lemma: Let vET~ T = T(T). Then T ~ T(T(v)). 
V 

Proof: Let y E T and ]J = [vb ' V ' V J (k ~ r ~ n) where 
V k r 

V = [V}' vk] and ]J E T(v). 

Then ]Jy = [ Vl y' y 
vk+1 

y V y] 
vk ' ' r 

= [vb vk' vk+1 
y V y] 

' r E T(v). D 

Unfortunately, we do not always have equality in 6.19. For 

example, if vis the node marked Bin Figure 6.2, T(T(v)) = {(1), (15)} 

but T = { ( l) }. 
V 

6.20 Lemma: Let v E T~ '¥ ~ T(T) and let W be a defining function 

for T. Then W(v) is a union of orbits of'¥ . 
V 

Proof: Let yE '¥ . Then vy = v. Hence W(v) = W(vy) = (W(v))Y 
V 

by 6.12. D 

6.21 Let '¥ ~ T(T) and suppose W is a defining function forT. We 

define a quotient tree T/'l' as the program tree given by a defining 

function W/'l' constructed as follows: 



( 1) 

( 2) 

Let v = [vl, 

If v 4 T set (W/~)(v) = ~. 

If v E T then by 6.20 W(v) is a union of orbits of ~ . 
\) 
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Define (W/~)(v) to be any set consisting of exactly one element from 

each of these orbits. 

The tree T/~ depends on the method of choosing orbit 

representatives of ~v and so is not uniquely defined. 

6.22 For example, we take the tree T of Figure 6.2 and the group 

~ = {(1), (24), (35), (24)(35)}. Then a quotient tree T/~ is shown in 

Figure 6.3. The nodes are labelled in the same fashion as for 

Figure 6.2. 

As indicated earlier, the value of W(v) when v J T is 

arbitrary and does not affect T. Since also T/~ ~ T by its 

definition, we can construct W/~ from Wand~ and so Algorithm 6.5 

can be used to find T/~. The example suggests that T/~ is considerably 

smaller than T and this is indeed true in the sense of the following 

result. 

2 5 

04 

11 r 3 4 

r: r 1: os 5 -1 

Figure 6.3 
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6.23 Theorem: Let X and R be the sets of termina~ nodes ofT and 

T/~ respective~y. Consider the equiva~ence c~asses of X defined in 

6.18. Then R contains exact~y one member of each equiva~ence c~ass. 

Proof: R c X since T/~ c T. 

( 1) Let v = [v1 , •••, v] EX. 
n 

such that v ~ ~ as follows: 

Then we can construct ~ E R 

For 0 ~ k ~ n let vk = [vl, ···, vk]. Then vk ET. Suppose 

we have found, for some k, ~k = [wl, •••, wk] ET/~ and yE~ such 

that~= vky' Now vk+l E W(vk) and so by 6.12, vk+ly E W(~k). 

Consequently there is wk+l E (W/~)(~k) and 8 E ~ 
~k 

such 

that wk+l So ~k+l E T/~ where ~k+l = 

and since 8 E ~~ , ~k+l 
k 

y8 = vk+l where y8 E ~. 

Continuing this process we find that ~n ~ v. 

(2) Suppose there are distinct elements vl, v2 ER and yE~ 

ae•,v], 
n 

Then vl and v2 have a 

common ancestor of greatest length~= [vl, •••, vk]. 

Hence, by the definition of W/~, we have vk+l = vk+ly 

the maximality of ~. 

6.24 Corollary: lXI = I~IIR J, 

Then y E ~ 
~ 

contradicting 

0 

0 

6.25 We have shown that knowledge of a subgroup ~ ~ T(T) can be 

used to significantly reduce the amount of work required by the 

backtrack algorithm. However, we have not indicated how such a 

subgroup could be found. There seems to be no way of doing this in 
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general, except by computing the entire tree T, and this is what we are 

aiming to avoid. However, when the elements of the set V are the 

objects of a set with "suitable structure" (for example, the points 

of a graph, the elements of a group, or the vertices of a polyhedron) 

then the "automorphisms" (structure-preserving permutations) can very 

commonly be identified as elements of T(T). So that we can avoid the 

difficulties in defining these ideas in a precise general fashion, we 

shall describe the case where V is the set of points of a graph. 

In order to represent a graph in a computer, it is necessary 

to label the points of the graph in some manner. To take the most 
I 

common situation, we are given a set of labels, normally {1, •••, n} 

and must assign each label to a point of the graph in some arbitrary 

(one-to-one) fashion. The condition we require is that computation of 

the defining function W does not depend on the way in which this 

labelling is performed. Let us make this rigorous. 

Suppose the computation of W is carried out by a procedure 

iV: Q(V) x Q(v) -+ 2v 

so that forGE Q(V), v E Q(V),the computed value of W(v) will be 

UJ( G, v). The procedure t.Y can be said to be independent of the 

labelling of G if for y E S , v E Q(V) we have 
n 

6.26 

6.27 Theorem: If ~is independent of the labelling of G3 then 

r(G) :::; T(T). 

Proof: If yE f(G), then Gy =G. Hence for any v E Q(V), 6.26 
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becomes 

or equivalently, 

Therefore, if F is the successor function forT, then F(vy) = (F(v))Y 

and so y E T(T) by 6.12. D 

In practice, it is usually quite easy to decide whether 0 

is independent of the labelling of G. Roughly speaking, this will be 

the case if~ treats the labels as objects without any ordering and 

makes no arbitrary choices. However, there is another method of 

showing f(G) ~ T(T) which is often easier to apply. This method 

consists of identifying the endnodes of T and using Theorem 6 .13. 

To illustrate this we take our former example and the function W 

defined in 6.6. If y is an automorphism of G and [vl, •••, vk] is 

an endnode ofT, then so is [v1Y, •••, vkY] since y preserves 

adjacency. Effectively, we need only verify 6.26 for those v where 

iJ(G, v) =cp. 

6.28 Although our development so far has been quite straight-

forward, these ideas have received only scant attention. This is 

perhaps partly explained by the following practical difficulties: 

(1) Computation of r(G) is required. Although many known 

algorithms are capable of computing r(G), they invariably generate 

each element of r(G) individually. When If( G) I is large this may 

take impossibly long. In any case, finding r(G) may take longer than 

using the original version of the backtrack algorithm. 

(2) Once r(G) has been computed we have the problem of storing 
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it in the computer. The methods described in Chapter 4 may be used, 

but these do not seem to be widely known. 

(3) The evaluation of the defining function W/f requires the 

orbits of the stabiliser r for a possibly large number of nodes v. 
V 

Unfortunately, in the notation of 4.4, there seems to be no easy way 

(k) 
of converting a set {y. } of coset representatives corresponding 

l 

to a sequence [vl, •••, v 1 J to a set corresponding to another r+ 

sequence [wl, wr+i]. The constant need to compute the orbits 

of r may take more time than it saves, unless the computation of 
V 

W(v)takes a similar amount of time. 

6.29 In order to avoid these problems we can use various 

compromises. For example, 

(1) We can use only a small subgroup of f(G). The result 6.24 

indicates that even the subgroup ~ generated by a single element of 

r(G) may considerably reduce the size of the program tree. In this 

case the computation of ~ is trivial. 
V 

(2) We can restrict our attention to subgroups of f(G) of 

special type. In Sections 6.30-6.33 we shall consider the subgroup 

of r(G) generated by its transpositions. This method will of course 

be useless if f(G) has no transpositions. 

(3) We can use a more sophisticated means of reducing the size 

of the program tree. Several such methods will be presented in 

Chapter 7. 

6.30 Lemma: Let G E Q(V) and v~ wE V. Then the transposition (vw) 

is in r(G) iff v is adjacent to the same points in V\{v~ w} as is w. 
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Proof: Trivial. D 

This result shows that the transpositions in r(G) can be 

easily found. The next three results show how the subgroup they 

generate may be handled. 

6.31 Lemma: [54] Let V1 be a subset of V. Then if Z c S(Vl) is a 

set of transpositions_, z generates S(V1 ) iff ez = V1. D 

6.32 Lemma: If~ ~ S(V)_, then ~is generated by transpositions iff 

~ = S(V)TI where TI = e~. 

Proof: Suppose TI = { C 1 I C2l• • • I Ck}. Then by applying 6. 31 to each 

cell C. we see that 
l 

D 

6.33 Lemma: If~ ~ S(V) is generated by transpositions 3 and n E IT(V) 3 

then eA= e~ A TI where A= ~ . TI 

Proof: Clearly eA ~ er (4.14) and ell. ~ TI (trivial). 

Hence eA ~ er A TI. 

But eA ~ er A TI by 6.32. 

Lemmas 6.32 and 6.33 show that only the partition e~ is 

required in order to evaluate W/~. If v E Q(V) the orbits 

of ~ which lie in W(v) are simply the non­v 

D 

null sets of the form W(v) n Ci where e~ = {Cli···ICk}. Thus the 

quotient tree T/~ can be generated very easily. In the context of 



graph isomorphism this idea was first used by Morgan [46] who 

considered the canonical labelling of chemical compounds. A more 

general treatment was given later by Steen [69]. 

76. 
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CHAPTER SEVEN 

BACKTRACK PROGRAMMING - II 

7.1 We are now in a position to present a number of techniques 

by which we can reduce the size of a program tree T without prior 

explicit knowledge of T(T). In order for these techniques to work we 

require a means for "recognising" some subgroup '¥ of T(T), in the 

sense that, given yE S , we can decide whether or not yE '¥. For 
n 

example, if we are working with a graph G and r(G) ~ T(T), then by 

permuting the adjacency matrix of G we can tell whether or not 

y E f(G). Clearly any subgroup of T(T) is "recognisable" in 

principle, but our techniques will not be practically useful unless 

the recognition can be performed with reasonable efficiency. 

Throughout this chapter, we continue the notation of Chapter Six, 

and assume that'¥~ T(T). Except as indicated in 7.28, all of 

this chapter is original. 

Let T be the program tree with defining function W and 

having successor function F. Let X be the set of terminal nodes ofT; 

for convenience we assume that X is not empty. The elements of X 

will be assumed to be in the order in which they are produced; for 

example, from left to right in Figure 6.2. Hence, for example, we 

can talk of T1 E X being earlier than T2 E X. Similarly, if 

v1, v2 ET we can say that T(vl) is earlier than T(v2) if every 

terminal node of T(vl) is earlier than those of T(v2). Following 

6.18 we denote Tl ~ T2 if for some y E '¥, T2 Such terminal 

nodes will be called equivalent (under '¥). The earliest terminal nodes 

in each equivalence class will be called identity nodes and denoted 

{el, ···,er} in the order in which they are produced, where 

!XI= r!'¥1. 



78. 

Let T 1 ' '2 E X where Tl 7 '2· Suppose Tl = [vl' ... V J ' n 

and '2 = [wl' ... w J where v. = w. (0 ~ i ~ k) and vk+i 7 wk+1' ' n l l 

Then we denote TI - '2 = [vl • ... ' vk' vk+1] and 

'2 - 'I = [wl' wk' wk+1] = [vr, vk' wk+1] · For 

example, if TI = [1, 2, 3, 5' 4J and '2 = [1, 2, 5, 3, 4 J' 

Tl - '2 = [1, 2, 3] and '2 - TI = [1, 2, 5]. Since Tl and '2 are 

descendants of '1 - '2 and '2 - '1 respectively, '1 - '2 and 

'2 - T 1 are both in T. 

for some y E '¥_, but v2 7 v1. Then if T(vr) is earlier than T(v2)_, 

T(v2) contains no identity nodes. 

Proof: By 6.17, T(v2) = (T(v 1))Y. Therefore, if T(v2) contains an 
-1 

identity node e, ey is earlier than e, which is a contra-

diction. D 

Suppose that at some stage during the execution of 

Algorithm 6.5 we have encountered the identity nodes {el, 

and now find the terminal node T. There are two possibilities: 

(1) T is a new identity node. 

(2) T ~ e. 
l 

for some i (1 ~ i ~ s) . Suppose T = e. 
y 

where 
l 

y E '¥. Then, if e. - T = [vl' vk' vk+i] we have 
l 

T - e. = [vl' vk' vk+1 Y]. 
l 

Hence T - e. = (e. - ,)Y 
l l 

and so T(T- e.)= (T(e.- T))Y. 
l l 

e } 
s 

Since also T(e. - T) is earlier than T(T- e.) we conclude 
l l 

from 7.2 that T(T- e.) contains no identity nodes. Thus we can 
l 



remove T(T -e.) from the tree without losing identity nodes. 
l 

These ideas lead us to the following simple algorithm, 

which is modelled on 6.5. 

7.3 Algorithm: Find the identity nodes ofT. 

(l) Set k := 0; s := 0. 

(2) Set Uk := W([vl> 

(3) If Uk =~go to step (9). 
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(4) Choose and delete any element vk+i from Uk. Set k .- k + l. 

( 5) If k < n go to step ( 2) . 

(6) We have found a terminal node T = [VI' V J • n 

If T ~e. for some j (l 
J 

:::; j :::; s) go to step ( 8) . 

(7) Set s s + l; e ·- T • Go to step ( 9) . .- s 

(8) Set k := IT - e .1. 
J 

(9) Set k .- k - l. If k 2:: 0 go to step ( 3) ; otherwise stop. 

7.4 We now apply Algorithm 7.3 to the example of 6,6, taking 

~ = r(G). For the first two terminal nodes ofT, Algorithm 7.3 

behaves the same as Algorithm 6.5 and so we will not repeat this 

part. Instead, we take up the workings where we left off in 6.7. At 

this stage we have found two non-equivalent terminal nodes. The 

various symbols have values as follows: 



el = [1, 2, 3, 4, 5] 

e2 = [1, 2, 3, 5' 4J 

VI = 1, Uo = {2, 

v2 = 2, ul = {4} 

v3 = 3, u2 = {5} 

V4 = 5, u3 = <I> 

vs = 4, u4 = <I> 

k = 5' s = 2. 

(9) k = 4. 

( 3) u4 = <I> so go to ( 9). 

(9) k = 3. 

( 3) u3 = <I> so go to ( 9) . 

(9) k = 2. 

(4) v3 = 5' u2 = </>, k = 

(5) k < n so go to (2). 

(2) u3 = {3, 4}. 

(3) u3 7 <f>. 

3, 

3. 

(4) v4 = 3, u3 = {4}, k = 4. 

(5) k < n so go to (2). 

(2) u4 = {4}. 

( 3) u4 7 <1>. 

(4) vs = 4, u4 = </>, k = 5. 

(5) k = n. 

4, 5} 

(6) T = [1, 2, 5, 3, 4J; T ~ e2; go to (8). 

(8) k = IC1, 2, 5JI = 3. 

(9) k = 2. 

etc. 

80. 
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Continuing this process we obtain the program tree shown in 

Figure 7.1. Comparing this with Figure 6.2 we see that the number of 

terminal nodes has been reduced from 28 to 15. The terminal nodes 

in Figure 7.1 are labelled according to their equivalence classes 

and the automorphisms a= (24) and S = (35). 

7.5 We have shown that Algorithm 7.3 produces the full set of 

identity nodes {el, ···, e }. These can be thought of as the terminal 
r 

nodes of some quotient tree T/1¥. In many applications the set 

{el, •••, e }, since it represents all terminal nodes not equivalent 
r 

under ~!',will be all that is required. However, if we need the entire 

set of terminal nodes ofT, we first need to find I¥. It turns out 

that I¥ can be constructed quite simply from those elements of I¥ 

which are encountered during the execution of the algorithm. 

Let T and T1 be respectively the program trees produced by 

Algorithms 6. 5 and 7. 3. 

Suppose that during the execution of 7.3 we have found an 

identity node e. and a terminal node T such that T 7 e. butT= e.Y 
J J J 

for some yE I¥. Then we say that T- e. is absorbed onto e. - T by y. 
J J 

In Figure 7.1 such absorptions are indicated by dashed arrows. 

In our analysis of T1 we are assuming that the orders of 

choosing the vk+i from Uk at step (4) of Algorithms 6.5 and 7.3 are 

the same. 

7.6 Lemma: Let e. = [vl, ···, v J be an identity node ofT. 
l n 

Then 

any node v ofT of the form [v1 , ···, vk, w] (0 ~ k < n) will also 
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Proof: If vis not in T1, then some ancestor ~2 of v must have been 
-l 

absorbed by an element y of~ onto a node ~l· But then e.Y is 
l 

earlier than ei' contradicting the assertion that ei is an identity 

node. 

7.7 Corollary: If T E X_, then T - e. E T1. 
l 

Proof: T - e. is of the form required by 7.6. 
l 

D 

D 

7.8 Lemma: Let e. = [vl' V J be an identity node ofT. Let 
l n 

vl = [VI' vk, vk+i] and 

V2 = [ Vl' vk' w] where v2 E T and v2 = vly 

for some y E ~ .. but v2 ~ V l• Then v2 will be absorbed onto v1 (but 

not necessarily by y). 

Proof: Let T be the first terminal node of T(v2). Then v1 = e. - T 
l 

T - e .. 
l 

Since T(vl) is earlier than T(v2), T is not an 

identity node, by 7.2. Hence there is an identity node e. and an 
J 

0 
element o E ~ such that T = e. 

J 

NowT -e. and v2 are both ancestors ofT. 
J 

(1) Suppose T - ej is an ancestor of v2. 

Then e. E T(T -e.) since e. E T(vl) and T -e. is an 
l J l J 

ancestor of v 1 . 

0 
ButT -e. = (e. - T) and T(e. - T) is earlier than 

J J J 

T(T- e.), which contradicts 7.2. 
J 

(2) Suppose v2 is an ancestor ofT- e .. 
J 
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Then e. E T(v2) since e. E T(e. - T) and v2 is an ancestor 
J J J 

of e. - T. 
J 

But v2 = v1Y and T(vl) is earlier than T(v2), which again 

contradicts 1.2. 

o-1 
Hence we must have v2 = T - e. . Let v3 = v2 

J 
Then 

Therefore v1 = e. - T and v2 = T 
J 

e., and so v2 will be absorbed onto 
J 

VI by o. D 

Let e. = [vl ••• v ] be an identity node ofT. For 
J • • n 

0 ~ k ~ n define v = [v1 ••• v ] and ~(k) = ~ 
k ' ' k vk 

1.9 Theorem: For 0 ~ k < n (following 4.4) we have the disjoint 

union 
s 

~(k) = u~(k+l)y. (k) 

i=l l 

where y i ( k) = ( 1) and {y 2 ( k) , ys (k)} are the elements of~ by 
k 

which nodes of T are absorbed onto vk+l. 

Proof: Let the orbit of ~(k) which contains vk+l be Z = {wl, 

where w1 = vk+l' 

By 6.20 Z ~ W(vk), and so by 1.6, ~i E T1 where 

~i = [vl, •••, vk, wi] (1 ~ i ~ sk). Note that ~1 = vk+l and 

consider ~i' where 2 ~ i ~ sk. 

By 1.8, ~. will be absorbed onto ~l by an 
l 

(k) 
element y. of~. 

l 

Since vk is a common ancestor 

(k) 
yi maps w1 onto wi. 

(k) 
of ~ 1 and ~2 , y. E ~ 

l vk 

The theorem follows from 4.2. 

= ~(k). Further-

more, D 



7.10 Corollary: For any 0 ~ h < n~ ~(h) is generated by the set 

Q = {y. (k) lh ~ k < n, 1 ~ i ~ sk}. 
h l 

In particuZar3 Q0 generates ~. 

Proof: By 4.5. 0 

Theorem 7.9 shows that in order to find~ we must only look 

at those nodes which are absorbed onto ancestors of a single fixed 

identity node-- for example, the first terminal node e1. 

For the tree of Figure 7 .1, we find 

~ = ~(0) = ~(1) 
' 

~(1) = ~(2) u~( 2 )(24), 
~(2) = ~(3) u ~( 3 )(3 5), 

~(3) = ~(4) ' 
~(4) = ~(5) :{(1)}. 

Hence ~ = <(2 4)' ( 3 5)) as expected. 

Theorem 7.9 also enables us to find a bound for the number 

of terminal nodes of T1. Recall that the terminal nodes ofT are the 

set X where lXI = rl~l. 

7.11 Theorem: T1 has t terminal nodes~ where t ~ r((B) + 1). 

Proof: Let e be an identity node ofT. By 7.9 the number of nodes 

absorbed onto ancestors of e is 

n-1 
I ( sk - 1). 

k=O 



But sk ~ n - k for 0 ~ k ~ n - 1, and so 

n-1 
L ( sk - 1) ~ 

k=O 

n-1 
L (n - k - 1) = 

k=O 
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Therefore the number of non-identity terminal nodes associated 

with each identity node in this way is bounded above by (2). The 

theorem follows immediately. 0 

The bound of 7.11 is realized only when~= S and is generally 
n 

too large. Since 1~1 can be as large as n! the work saved by using 

7.3 instead of 6.5 can be enormous. 

In Theorem 4.8 we showed that the set ~0 can be reduced to 

a set Y' of at most n- p generators of~. where ~hasp orbits. Hence 

we can find such a generating set by producing ~0 via Algorithm 7.3 

and then applying Algorithm 4.9. However a closer look at the ideas 

behind 7.3 reveals a way in which such a set can be produced directly. 

7.12 Before proceeding further we shall establish the following 

conventions. It has been assumed that V= {1, •••, n}, If 

w1, w2 E V, then by w1 < w2 we simply mean that w1 is smaller than 

w2 numerically. Furthermore, we shall assume that when required to 

choose an arbitrary element from a subset of V (for example, the set 

Uk at step (4) of Algorithm 6.5 or 7.3) we shall choose the numerically 

smallest element. This convention has already been adhered to in our 

examples. The following result is now obvious. 

7.13 Lemma: Let v 1 ~ v2 ET where v1 = [vl, ···, vk, w1J, 

v2 = [vl, ···, vk, w2J and w1 < w2. Then T(vl) is earlier than 



(.14 

0 s:; q < n. 

Let e. = [ v1, 
J 

v ] be an identity node of T and suppose 
n 

For 0 s:; k s:; h define vk = [vl, 

Let {y1 , •••, ym} be a set of elements of~ by which nodes 

of T are absorbed onto nodes vk where k > q. 

some y E 

Then E ~(q) (1 yi s:; i s:; m). Therefore A s:; ~( q), where 

y ). 
m 

By 6.20, W(v ) is a union of orbits of A. 
q 

Let 1T = 8~ = 8 V ... V 
yl 

Now if WI < w2 where wl' 

~. w2 = y 
WI • 

8 
ym 

w2 E 

by 4.14. 

W(v ) 
q and w1 ~ w2 then for 

1T 

V , WI] and 
q 

v , w2J. 
q 

Therefore T(~2) = (T(~l))y by 6.11 and so T(~2) contains no 

identity nodes, by (.2 and (.13. 

(.15 To implement these ideas, additional data items are required. 

Upon creating a node v = [vl, •••, vk] we compute W(v) and create a 

partition 1T E IT(W(v)). Initially, 1T is set equal to the discrete 
V V 

partition of W(v). Thereafter, whenever we encounter an element 

y E ~ by which a node is absorbed onto a descendant of v we set 

1T := 1T v 8 , where v denotes the generalized join operation 
V V y 

introduced in 3.4. This operation can be performed by Algorithm 3.6. 

At any stage during the execution of the following algorithm, we 

require partitions only for the current node and its ancestors 
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(excepting that we do not need a partition for a terminal node) and so 

no more than n partitions need to be stored at one time. 

For convenience we shall assume that the cells of a 

partition n are stored so that if an element of a cell C1 is smaller 
V 

than every element of another cell C2, C1 is stored before C2. The 

structure of Algorithm 3.6 ensures that if n is in this form, then 
V 

TI V e will be als~ irrespective of the order of the cells of e . 
V y y 

In the following algorithm a cell of n is regarded as having been 
V 

chosen if any element of the cell has been chosen. Our conventions 

ensure that the chosen cells of n are always stored before those 
V 

which have not been chosen. 

1.16 Algorithm: Find the identity nodes ofT. 

(l) Set k 0; s := 0. 

(2) Compute Z .- W([vl, vk]). If Z =~go to step (9). 

(3) Set Tik := discrete partition of Z. 

(4) Set c := first cell of nk not yet chosen; 

vk+1 .- smallest point in C· 
' 

k .- k + l. 

(5) If k < n go to step (2). 

(6) We have found a terminal node T = [vl, V ]. 
n 

If T ~e. for some j (l ~ j ~ s) go to step (8). 
J 

(7) Set s := s + l; e := T. 
s 

Go to step (9). 

(8) Compute y such that T = e.Y. Set k := IT- e. I. 
J J 

For 0 ~ i < k set TI. := TI. V e . 
l l y 



(9) If k = 0 stop. 

Set k := k - 1. 

(10) If all cells of Tik have been chosen go to step (9); otherwise 

go to step ( 4) • 

7.17 We again consider the example of 6.6. For brevity we only 

include those steps of the algorithm where variables change value. 

(1) k = 0, s = 0. 

( 2) z = {1, 2' 3, 4' 5}. 

(3) n 0 = {112131415}. 

(4) C = {1}, VI = 1, k 

(2) z = {2, 4}. 

(3) Til = {214}. 

= 1. 

(4) C = {2}, v2 = 2, k = 2. 

(2) z = {3, 5L 

(3) TI2 = {315L 

(4) C = {3}, V3 = 3, k = 3. 

(2) z = {4, 5L 

(3) TI3 = {415L 

(4) C = {4}, V4 = 4, k = 4. 

(2) z = {5}. 

(3) TI4 = {5}. 

(4) c = {5}, vs= 5, k = 5. 



(6) T = [1, 2, 3, 4, 5]- an identity node. 

(7) s = 1, e1 = [1, 2, 3, 4, 5]. 

(9) k = 4. 

(9) k = 3. 

(4) C = {5}, V4 = 5, k = 4. 

(2) z = {4}. 

(3) 1T4 = {4}. 

(4) c = {4}, vs = 4, k = 5. 

(6) T = [1, 2, 3, 5, 4] -an identity node. 

(7) s = 2, e2 = [1, 2, 3, 5, 4J. 

(9) k = 4. 

(9) k = 3. 

(9) k = 2. 

(4) c = {5}, V3 

(2) z = {3, 4}. 

(3) 1T3 = {314}. 

= 5, k = 3. 

(4) C = {3}, V4 = 3, k = 4. 

(2) z = {4}. 

( 3) 1T4 = {4}. 

(4) c = {4}, vs = 4, k = 5. 

90. 
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(6) T = [1, 2' 5 ' 3, 4] - equivalent to e 2 . 

(8) y = ( 3 5) ' 8 = {11213, 514}. y 

k = 3. 

Tio = {11213, 514}. 

7fl = {214}. 

7f2 = {3, 5}. 

(9) k = 2. 

(9) k = 1. 

(4) c = {4}. 

Continuing this process we obtain the program tree shown in 

Figure 7.2. The labelling is the same as in Figure 7.1. 

As before, if at step (8) of Algorithm 7.16, we have 

T = ejy for an identity node ej and a terminal node T we say that 

T - ej is absorbed onto ej - T by y. 

We denote by T, T1, T2 the program trees produced by 

Algorithms 6.5, 7.3 and 7.16 respectively. We have shown that 

both T1 and T2 contain the identity nodes ofT. 

7.18 Suppose that at step (8) of Algorithm 7.16 we have T 

where ej is an identity node, T a terminal node and y E ~. 

Let T = [v1 , v ], and 0 ~ i < IT- e. I. 
n J 

= e.Y 
J 

Then in step (8) we set TI. ·= TI v 8 . Suppose for some 
l • i y 

node v = [vl, ···,vi' w] of T2 this operation causes the cell of Tii 

containing w to be increased in size. Then we say that y is active 

at v. 
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7.19 Lemma: y is active at ej - T. 

Proof: e. - T is in T2 because it is an ancestor of e .. Also e. - T 
J J J 

is clearly of the form [VI' ... vi' w] where i = IT - e .I - 1. Then 
' J 

the operation 'IT • . - 'IT. V 8 brings vi+1 into the same cell as w. 0 
l l y 

7.20 Theorem: Let e.= [vl, ··•, v] be an identity node ofT. Let 
J n 

Y be the set of e le men ts of IJI found by 7. 16 which are active at 

ancestors ofe.. Then Y generates IJI and IY I :::; n - p where IJI has p 
J 

orbits. 

Proof: We verify that Y satisfies the requirements of Theorem 4.7 

for h = 0. 

For 0 :::; k :::; n, define vk = [vl' vk]' 

ljl(k) = '¥ 
\)k 

Consider the partition 'Tfk when the subtree T2(vk) has been 

completely generated by the algorithm (say at step (9)). 

Let Z be the orbit of IJI(k) containing vk+i 

by 6.20. 

Also, Z is a union of cells of 'Tfk' since the cells of 'Tfk 

are orbits of some group generated by elements of IJI(k). 

Suppose C1 and C2 are distinct cells of 'Tfk contained in Z, 

where vk+1 E cl. Let w be the smallest element of c2. Then w must 

sometime have been chosen at step (4). But this would have resulted 

in w being absorbed onto some element of C1 (the proof is like that 

of 7.8) and C2 and C1 will have been merged (7.19). 
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Hence Z is a cell of nk. But since vk+i E Z, Tik is an 

orbit of the group generated by elements active at v for each q > k. 
q 

Therefore, the set Y satisfies the conditions of 4.7 for h = 0. 

Hence < Y ) = '¥. 

Now let Y = {yl, ···, yt} in the order these elements are 

found. For 0 :::: Q, :::: t define 

( Q,) 
n = e 

yl 
V • • • V 6 

YQ, 

Then since each y. is active at some ancestor of e., 
l J 

TI(£+i) is always strictly finer than TI(£) (0:::: Q, < t). But TI(O) and 

TI (t) have d ll t · l d t < n an p ce s respec lVe y, an so - n - p. D 

7.21 Corollary: For 0 :::; k :::: n., lfl(k) = <Y n lfl(k)) . 

Proof: Immediate from 4.7. D 

7.22 Theorem: T2 has at most r(n - p + l) terminal nodes., whe~ 

lXI = r!l¥1 and'¥ hasp orbits. 

Proof: Let T be a terminal node which is not an identity node. Then 

for some identity node e. we have T ~e .. Hence by 7.19 every element 
J J 

of'¥ found by 7.16 is active at an ancestor of some identity node. 

The result now follows from 7.20. D 

7.23 Despite the power of Algorithm 7.16, its efficiency can be 

increased still further. Upon creating a node v of T2 , Algorithm 7.16 

initialises a partition Tiv as the discrete partition of W(v). In this 

sense it assumes no prior knowledge of \flv, However, if we have a set 
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{y 1 , •••, ym} of previously discovered elements of~. then some of them, 

say {y 1 , •••, yq}' may be in ~v· Then clearly we can initialise 

'ITk := (8 
yl 

8 )I without losing identity nodes. In fact, 
Yq W(v) 

we could set 'ITk := 8AI W(v) where A= <Yp ... ' ym>v· but in practice 

this seems to be rarely worth the additional computation required. 

Several points are worth mentioning here. 

(l) Only the partitions 1f 

only the non-trivial cells of 1f 

( i) 

( i) 

= 8 need to be stored. 
yi 

are required. 

In fact, 

(2) There is no need to store all the elements of ~ discovered. 

Storing too many elements can actually slow down the algorithm since 

the constant initialisation of partitions 1rk may become too laborious. 

In practice, we can choose a small integer J and store only the first 

J elements of ~ discovered. 

These ideas give rise to the following algorithm, which is a 

variation on 7.16. 

7.24 Algorithm: Find the identity nodes ofT. 

(l) Set k .- 0; s .- 0; t .- 0. 

(2) Compute Z .- W([vl• vk]). If Z =~go to step (10). 

( 3) Set 1fk .- discrete partition of Z. 

For l ~ i ~ t such that 1f 
( i) 

fixes [VI' 

'ITk := 1fk 
- (i) 
V 1f • 

(4) Set C .- first cell of 1rk not yet chosen; 

vk+i smallest point in C; 

k .- k + l. 



(5) If k < n go to step (2). 

(6) We have found a terminal node T = [vl, V]. 
n 

If T ~ e. for some j 
J 

(l :s; j :s; s) go to step ( 8) • 

(7) Set s .- s + 1· e := T. , 
s 

Go to step ( 10). 

( 8) Compute y such that T = e.Y. 
J 

Set k .- IT- e. I. 
J 

For 0 :s; i < k set TI •• - TI. V e . 
l l y 

(9) If t = J go to step ( 10). 

Otherwise set t := t + 1; 
( t) 

TI .- e . 
y 

( 10) If k = 0 stop. 

Set k := k - 1. 

(11) If all cells of Tik have been chosen go to step (10); 

otherwise go to step (4). 
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If J = 0, then Algorithm 7.24 is identical to Algorithm 

7.16. If J ~ 2, then applying Algorithm 7.24 to the example of 6.6 

produces the program tree of Figure 7.3. In the process of the 

algorithm, we have only needed to store the partitions for (3 5) and 

( 2 4) • 

The activity of an element of~ discovered by 7.24 is 

defined as for 7.16. 

(.25 Theorem: Let Y be the set of elements of~ discovered by 

Algorithm ?.24 (for any J) which are active at ancestors of the first 

terminal node e 1 • Then Y generates ~and IYI :s; n- p 3 where ~hasp 

orbits. 
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Proof: When the ancestors of e1 are created during 7.24 we have 

t = 0 since no elements of~ have been found. The proof of 7.20 

can therefore be applied. 0 

Let T3 denote the program tree produced by Algorithm 7.24. 

If J is large enough, the number of terminal nodes of T3 seems to be 

typically of order r + n. However, no bound better than that for T2 

has been proven. For program trees with a lot of endnodes which are 

not terminal nodes, T3 is often vastly smaller than T2, since the 

size of subtrees without terminal nodes can be reduced. 

7.26 We now turn to a variation on Algorithms 7.3, 7.16 and 7.24. 

In all of these algorithms, it is necessary to store the full set of 

identity nodes. If this set is required exactly, there seems to be 

no alternative, since otherwise further identity nodes could not be 

positively identified. However, in some applications a larger set 

of terminal nodes, known to contain the identity nodes, will be 

sufficient. In these cases we can store a subset of the identity 

nodes. Terminal nodes which are equivalent to identity nodes that 

are not stored will then be recognised as "possibly an identity node". 

One method which appears to work very well is to choose an 

integer L ~ 0 and to store the first identity node e1 and the latest L 

terminal nodes which are "possibly identity nodes". The reason for 

storing e1 is that then Theorems 7.9, 7.20 and 7.25 will still hold for 

this identity node. 

7.27 The simplest case here is when L = 0 so that only the first 

identity node is stored. When Algorithm 7.24 with this change is 

applied to the example of 6.6, the program tree T4 of Figure 7.4 is 
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produced. It is seen (in this example at least) that T4 is only 

marginally larger than T3. An advantage of this case (L = 0) is that 

the set Y of Theorem 7.25 contains all the elements of~ discovered 

by 7.24. In fact, it is the set Y' which would be produced by 

Algorithm 4.9 from the set ~0 of all elements of ~ discovered by 

Algorithm 7.3 with L = 0. 

7.28 After work on this chapter was completed, it was discovered 

that a method akin to that of Algorithm 7.16 had previously been used 

in a special case by Arlazarov et al. [2 ], who were concerned with 

the problem of canonically labelling a graph. However, to the best 

of our knowledge, Algorithm 7.24 and all our results on the generation 

of ~ and on the size of T1 and T2 are original. 

7.29 In practical problems it is very common for many nodes of 

the program tree T to have only one successor. In other words, for 

many nodes vET, we have IW(v)J = 1. For such nodes there is 

clearly no need to have a set Uk (as in 6.5 or 7.3) or a partition Tiv 

(as in 7 .16 or 7. 24) since these will always be trivial. Similarly, 

on "backtracking" out of the subtree T( v) there is no need to examine v 

since there cannot be further paths downwards from v. Therefore we 

can consider such nodes (excepting the root) to be omitted from the 

tree. For example, the tree T of Figure 7.5 can be reduced to the 

tree T of Figure 7.6. 
lll 

Figure 7.5 Figure 7.6 
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Since T is determined by its endnodes (all other nodes are 

ancestors of endnodes), it is trivial to reconstruct T from T and so 

both trees contain the same information. "Reduced" trees like T can 

be analysed by generalising the ideas of defining and successor 

functions. For example, the tree T of Figure [.6 is described by a 

generalised successor function F such that 

F(f.ld = { f-12} 

F(f.l2) = {f-13, 'J.l4} 

F('J.l3) = {v3, v4} 

F(J14) = { \) 1 ' \!2} 

F(v.) = <P (i = 1, 2, 3, 4), 
l 

7.30 There is no reason why we could not delete just some of the 

nodes ofT with one successor. If this is done so that T is still 

invariant under ~. all the results of Chapters Six and Seven can be simply 

adapted to this case. Such reduced trees will occur in our 

applications in later chapters. 
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CHAPTER EIGHT 

GRAPH ISOMORPHISM PROBLEMS 

8.1 There are several related problems which fall under the 

general title of "graph isomorphism problems". The main ones can be 

stated approximately as follows. 

Let G1, G2 and G be labelled graphs. 

Pl. (a) Are G1 and G2 isomorphic? 

(b) If G1 and G2 are isomorphic, find one (or all) isomorphisms 

between them. 

P2. Find a canonical labelling of G. 

P3. Determine the group f(G). 

P4. Find one (or all) subgraphs of G1 isomorphic to G2. 

P5. Find the common subgraphs (or maximal common subgraphs) of 

G1 and G2. 

8.2 Apart from their obvious impact on graph-theoretic 

research, solutions to these problems have many direct practical 

applications. A much-quoted example concerns the storage and 

recognition of chemical compound structures [42, 43, 52], where a 

molecule can be represented as a graph with points and edges labelled 

by atom type and bond type respectively. Another application is in 

pattern recognition [74], where shapes can often be described in 

terms of graphs and need to be recognised despite their orientation 

and distortion. 

8.3 Problems P4 and P5 will not be considered in this thesis, 
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although future research may be directed towards an extension of our 

procedures to these cases. Problem P4, usually called the "subgraph 

isomorphism problem" has received attention from Sussenguth ['70], 

Penny [52], Levi [39], Levi and Luccio [41 J, Berztiss [ 5 ] and 

Ullmann [75]. The special case where G1 and G2 are trees has been 

considered by Matula [45]. Problem P5 has been treated only rarely, 

for example by Levi [39]. 

8.4 Proposed methods for solving problem Pl generally fall into 

one of two broad classes. The first approach, which we shall call 

approach A, treats G1 and G2 together. In the usual system, G1 is 

relabelled in some way and then an attempt is made to relabel G2 in 

such a way that G1 and G2 become identical. 

The second approach, approach B, is to devise a map f from 

Q(V) into some convenient set ~ such that f(Gl) = f(G2) if and only if 

G1 and G2 are isomorphic. Unsuccessful or conjectural suggestions 

for f(G) in the past have included the characteristic polynomial of 

the adjacency matrix of G [10, 21, 59] and certain more general 

matrix functions [44, '73]. More success has been had in devising 

maps f as follows. 

8.5 Let f : Q(V) ~ Q(V) be a map such that for each G E Q(V) 

and y E s we have n 

( 1) f(G) is isomorphic to G, and 

(2) f(GY) = f( G). 

f(G) can be called the canonical Zahe Uing of G. Its 

computation is the subject of problem P2. 
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8.6 The practical choice between these two basic approaches will 

depend on the application required. If graphs are to be compared in 

pairs only, then, under the current state of the art, approach A will 

undoubtedly be the more efficient. However, if larger collections of 

graphs need to be compared this will not necessarily be so. 

Suppose we have a collection of N graphs which we wish to 

divide into isomorphic families. If the number of such families is 

almost as large as N and each comparison of two (labelled or 

N 
unlabelled) graphs gives only a yes/no answer, approximately ( 2 ) such 

comparisons are required. Define average execution times as follows. 

t1 for comparing two unlabelled graphs 

t2 for comparing two labelled graphs 

t3 for canonically labelling a graph. 

Approaches A and B will then take approximate times 

t A and tB, where 

N = t1C 2 ) and 

N 
= Nt3 + t2(2). 

Hence, as N + oo, tB/tA + t 2/t 1 which, for existing algorithms, 

is considerably less than one. 

8.7 The great majority of existing algorithms for solving 

problem Pl, whether by approach A or approach B, can be described in 

terms of a canonical map. This is defined to be a map 

g 

such that for G E Q(V) and y E S we have 
n 
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(1) g(GY) = g(G) and 

(2) G is isomorphic to every member of g(G). 

8.8 In terms of a canonical map g, approach A to solving problem 

Pl can be described as follows. 

(1) Find one member G1' of g(Gl). 

(2) Search g(G2) in some systematic fashion for a labelled 

graph identical to G1 1 • 

Commonly, steps (l) and (2) are carried out together, and 

intermediate information is used to help the search in (2). However, 

since we will not be particularly concerned with approach A, we will 

not go into these details here. 

8.9 A canonical map g can also be used to canonically label a 

graph G. Firstly, we must devise a total order on Q(V). For example, 

we can apply the usual ordering of the integers by writing an 

adjacency matrix row-by-row as an n2-bit binary number. Another 

simple method uses the incidence matrix [49, 55] in a similar way. 

Relative to whatever order on Q(V) we have chosen, we can 

define a canonical labelling of G E Q(V) by 

f(G) = max g(G). 

The first use of this method was probably by Nagle [48], 

who defined g(G) to be the set of all labelled graphs isomorphic to 

G. A better choice was made by Heap [24], who required each member 

of g(G) to have its points in ascending order of degree. A similar 
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system, counting triangles as well as edges, was used by Baker et al. 

[ 3] when generating 9-point graphs. 

8.10 Clearly the efficiency of any of these techniques will 

depend heavily on the choice of the canonical map g. A great many 

such maps have been used, explicitly or not, in published algorithms. 

However, almost all of them fall in the class we now describe. 

8.11 V 
Let tJ: Q(V) x Q(V) -+ 2 be a map such that the following 

hold for each G E G(V) and v E Q(V). 

( 1 ) t.J ( G, V ) ~ V\ V • 

(2) ttYis independent of the labelling of G (as defined 

in 6. 26). 

(3) The program tree TG with defining function t.J"(G, •) has 

at least one terminal node. 

Since every terminal node of TG is in Q(n)(V), it corresponds 

to an ordering of V and hence to a relabelling of G. If we define 

g(G) to be the set of labelled graphs corresponding to the terminal 

nodes of TG then g is canonical by 6.27. 

Explicit uses of this method for finding a canonical map 

have been given by Berztiss [ 5], Proskurowski [49, 55], Ullmann [75] 

and Arlazarov et al. [ 2]. However, most of the so-called "parti tioning11 

procedures also fall into this class, as we shall demonstrate shortly. 

8.12 Obviously, any terminal nodes of TG which are equivalent 

under r(G) correspond to the same labelled graph. Consequently at 
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most one member of each equivalence class under f(G) is required for 

the determination of g(G). Therefore, any of the methods described 

in Chapter Seven for reducing the size of TG can be used. However, 

except as mentioned in (.28, they have not been used in any published 

algorithm that we know of. This is the main reason why we believe 

our own algorithms (described in the next chapter) to be superior 

to any previous algorithms. 

8.13 We now proceed to give a formal account of "partitioning" 

procedures and show how they lead to maps tU of the type described 

in 8.11. We first require a few definitions. 

8.14 Let TI =[Cl IC2l••• ICk] E IT(V) and yE Sn. Then TIY denotes 

the ordered partition [C1Yic2YI··· lckY]. 

Let ~be a totally ordered set. A map 

~ : Q(V) X IT(V) X V~ ~ 

will be called an indicator function if, for each G E Q(V), TIE IT(V), 

v E V, y E S ,we have 
n 

Similarly a map 

dP Q(V) X IT(V) ~ IT(V) 

will be called a partition function if, for each G E Q(V), TIE ll(V), 

y E S , we have n 
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Let ~(V) and !l?Cv) denote, respectively, the families of all 

indicator functions and partition functions for V. 

8.15 The sets ~(V) and f:, (V) are closely related as follows. 

Let :/ E ~ (V) . Then we can find a corresponding partition 

function tP= tP(;/) where forGE Q(V) and 'TT E IT(V), {/)(G, TI) is the 

ordered partition whose cells contain points with the same value of 

~(G, TI, v) and are in the order induced from 6. 

Similarly, let (? E £E (V). Then we can find a corresponding 

indicator function ~ = 1 ((f) as follows. Let 6 be the natural 

numbers. ForGE Q(V), 'TT E TI(V) and v E V let ;{ (G, 'TT, v) = i, where 

v is in the i-th cell of (JJ (G, 'TT). 

The following lemma is trivial. 

8.16 Lemma: Let 1 E ~(V).. (fE fE(v). Then tf(tP) E ~(V) and 

cP( 1 ) E rf,Cv). Furthermore_, 

(2) For any G E Q(V)_, 'TT E TI(V) and v 1_, v2 E V~ 

iff 

D 

8.17 We have already mentioned (8.9) the indicator function used 

by Heap [24]. In this case we have 
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Similar functions used by other authors include 

(1) the number of points at a given distance from v [40,[6], 

(2) the number of points adjacent to v (or at a given distance 

from v) which lie in a given cell of n[40, 76], and 

(3) the components corresponding to v in the eigenvectors of 

the adjacency matrix of G [36]. 

The next few results show how partition functions can be 

combined to give other partition functions. 

8.18 Theorem: Let lf>b lP2 E ~(V). Then tf2 ( 0\) E tf:Cv) where 

Cff 2 ( d\))(G, n) = lP2(G, 11'dG, n))_, forGE Q(V) and TIE IT(V). 

Proof: For y E S , 
n 

0 

For ordered partitions n1, n2 E IT(V) we define n1 A n2 to 

be the meet of the unordered partitions corresponding to n1 and n2, 

with the cells in the order induced from TII and n2. Precisely, if 

and 
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8 .19 Lemma: For any yE S and n1~ n2 E IT(V)~ n1Y A n2Y = (nl A n2)Y. 
n 

Proof: Trivial. 0 

8.20 Theorem: Let (? 13 CP 2 E tf,(v). Then 6\ A (J2 E (f(v) where 

for G E Q;(V)~ n E IT(V). 

Proof: For any y E S , 
n 

by 8.19. 

8.21 Theorem: Let y E r where r = r(G)~ G E Q;(V)~ TI E rr(V)3 let 
TI 

Then [ tP ( G, n) J Y = rP ( G, TI) • 

Proof: If y E r ' then Gy = G and TIY = TI. 
TI 

The most common method of obtaining partition functions 

0 

0 

is via indicator functions as shown in 8.15. From these partition 

functions others can be constructed using 8.18 or 8.20. The following 

few results indicate a related method which was first treated 

systematically by Tinhofer [72] but used previously by Unger [(6] and 

other authors. 

Let &t*(G, n) and ~K(G, n) denote, respectively, the 
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resulting partitions when Algorithms 5.27 and 5.32 are applied to 

G E Q(V) and 'IT E TI(V). 

8.22 Theorem: (Jt* E <f:(v) and (RK E t{!, (V) for any K > 0. 

Proof: The vector d(v, 'IT) of 5.26 is clearly an indicator function 

and so ot* E f(V) by 8.18 and 8.20. Similarly, the transformation 
~ 

of 'IT from step (5) to step (7) of Algorithm 5.32 constitutes a 

partition function. D 

8.23 Let c Q(V) + Q(V) be a map such that for any G E Q(V), 

y E S we have 
n 

For example v1, v2 E V might be adjacent in c(G) exactly 

when Cl ( v1, v2) = k in G (for some fixed k) . If y E r (G) , then 

( c (G) ) y = c ( G y) = c (G) and so y E f ( c (G) ) . Hence r (G) :::;; r ( c (G) ) . 

8.24 Theorem: Let c : Q(V) + Q(V) be a map satisfying 8.23. Let 

(P E ~(V). Then ~ E fP(v) where for G E Q(V) and 'IT E IT(V), 
c 

if (G, TI") = (f> (c(G), TI"), 
c 

Proof: For any y E S , 
n 

D 

8.25 Theorem: [72 J Let G E Q(V) and let TI"o be the unit partition 

of V. Then there is a sequence cl-' c2_, • • • _, ck of maps satisfying 

8.23 such that the cells of TI"k are orbits of r(G)_, where 
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n. = d{*(c.(G), n. 1 ) for 1 ~ i ~ k. 
l l l-

D 

We now demonstrate how partition functions can help us to 

find functions "'U/ satisfying 8 .11. 

An ordered partition n E IT(V) will be said to fix a 

sequence v E Q(V) if each element of v is in a trivial cell of n. 

8.26 Let (f3 : Q(V) x Q(V) + IT(V) be a map such that for G E Q(V), 

v E Q(V), yES we have 
n 

(2) (B(G, v) fixes v. 

Given ~ E ~(V), one such map can be found as follows. If 

eee V.] 
' k ' 

let Then we can take 

{B(G, v) = n A (f(G, n). Other similar schemes are possible. 

8.2'7 Let ,; 
~ V 
IT(V) x Q(V) + 2 be a map such that for v E Q(V), 

y E S and n E IT(V) which fixes v we have the following. 
n 

( 2) If I vI = n, then ' ( n, v) = <P. 

(3) If lvl < n, then &:(n, v) is a cell of n not containing an 

element of v. 

For example, we might take ' ( n, v) to be the first cell of 

n not containing an element of v, or the first such cell of smallest 

size. 
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8.28 Theorem: Let the maps lB and C satisfy 8.26 and 8.2? respectively. 

Then the map 

tJ: Q(V) x Q(V) + 2v 

defined by 

4J(G, v) = £(t8(G, v), v) 

for G E Q(V) and v E Q(V) satisfies the conditions of 8.11. 

Proof: Condition (1) follows from 8.27 (3). If y E S , G E G(V), n ~ 

and v E Q(V), we have 

= ( £: ((B ( G, v) , v)) y 

so that 1.J satisfies condition (2). Finally, the program tree TG 

contains terminal nodes since ~(G, v) 7 ~if lvl < n. 0 

8.29 Given the map f.J defined in 8,28 we can define a function f 

satisfying 8.5 as we indicated in 8.9. However, in practice, the 

following method may be more convenient. Suppose we have decided on 

a total ordering of Q(V). 

For G E Q(V) define TG as in 8.11 (3) and let X(G) be the 

set of its terminal nodes. For any T E X(G) define GT to be the 

labelled graph formed by labelling the vertices of G in the order they 

appear in <B ( G, T). Then define 

f(G) = max{GT!T E X(G)}. 
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8.30 Theorem: The function f Q(V) ~ Q(V) defined above satisfies 

8.5. 

Proof: For any G E Q(V), f(G) and G are obviously isomorphic. Now 

let yES . Then if T E X(G), Ty E X(GY) by 6.27. 
n 

Therefore f(Gy) = f(G). 0 

8.31 
Ty 

If G E Q(V), T E X(G) and yE r(G), then G = GT. 

Consequently any of the methods described in Chapter Seven can be 

used to eliminate terminal nodes equivalent under r(G) without changing 

f(G). These methods have an additional advantage in that a small set 

of generators for r(G) can be found, for example, as described in 

7.25. 

8.32 Very commonly in implementing these ideas we find that 

tJ(G,v) consists of just one point for many nodes of the program 

tree. Nodes of this type can be removed from the tree, as described 

in 7.29. A very convenient arrangement for doing this is as follows. 

The function t: of 8.27 can be defined so that' (n, v) will be a 

non....;tri vial cell of 'IT if there are any. Furthermore, the map tB of 

8.26 can be defined so that if VI is an ancestor of v2 in the tree 

TG we have 

and if ~(G, vl) is discrete, 
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In this situation the partition ~ ( G, T) for T E X( G) can be found 

from the earliest v of its ancestors for which f8 ( G, v) is discrete. 

Later ancestors can be ignored. 
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CHAPTER NINE 

A NEW CANONICAL LABELLING ALGORITHM 

9.1 In this chapter we present several versions of a new 

algorithm for canonically labelling a graph and for determining its 

automorphism group. This algorithm was originally inspired by King's 

implementation [31] of the method of Parris and Read [50, 51], and 

retains a superficial similarity to this method. Hov.rever, many 

improvements have been made. Most importantly, the methods of Chapter 

Seven have been applied, making the algorithm useful for graphs with 

large automorphism groups. Secondly, the use of Algorithm 5.32 

instead of 5.27 has effected a great increase in efficiency. Finally, 

several ad hoc features to be described later have been incorporated. 

Once the algorithm has been presented and examples given, we treat 

the problem of efficiency in some detail. Evidence is presented in 

support of our claim that for large random graphs the algorithm is 

close to the fastest possible. All of this chapter is original. 

9.2 The basic structure of the algorithm is as described in 

8.29 and 8.32. Therefore, our first step will be to define maps 

C, a3 and 0satisfying 8.2(, 8.26 and 8.11 respectively. 

9.3 Define a map ~ IT(V) x Q(V) + 2V as follows. Let 

\! E Q(V)' 7T E IT(V). 

( 1) If TI does not fix v, or I v I = n, define ~ ( 7T. v) = ~. 

(2) If TI fixes v and TI is not discrete, define 
' ( 7T' 

v) to be 

the first of the non-trivial cells of TI of smallest size. 

(3) If TI is discrete and lvl < n, define ~(TI, v) to be the 
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first cell of TI not containing an element of v. 

9. 4 Lemma: ~ satisfies the conditions of 8. 2?. 

Proof: Trivial. 0 

9.5 Define a map i) IT(V) x V-+ IT(V) as follows. Let 

V E V, TIE IT(V). 

(1) If vis in a trivial cell of n, define {j)(n, v) =TI, 

(2) If TI = [C1I••• ICt] and vis in the non-trivial cell Cr' 

define 

9.6 Lemma: Let v E V3 n E IT(V) and y E S . Then 
n 

Proof: In case (1) the lemma is trivial. In case (2) we have 

0 

9.7 As before, let otK(G, n) denote the result of Algorithm 5.32 

when applied to G E Q(V) and TIE IT(V). Define a map 

<8 : Q(V) x Q(V) -+ IT(V) as follows. Let G E Q(V) and 

V E Q(V). 

(1) If lvl = 0, define IB(G, v) = l1<dG, no), where n0 is the 

unit partition of V. 
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(2) Suppose v = [vl, vk], where 0 < k :::; n. Then define 

where 

and SI,= !£8(G, Jl)l. 

9.8 Lemma: lB satisfies the conditions of 8.26. 

Proof: If lv I = O, the result follows trivially from 8.22. Otherwise 

it follows, by simple induction on !vi, from 8.22 and 9.6. D 

9.9 Theorem: For any G E Q(V) and v E Q(V) we have fR ( G, v) ~ 'TT 

where rr is the coarsest element of 3(G) which fixes v. 

Proof: If !vi = 0 the result follows from 5.34. 

Suppose the theorem is true for Jl = [vl, vk_1 ] (0 < k :::: n). 

Let v = [vl, 

Then, by definition, cB ( G, v) = O<S/,+1 ( G, 3?J ('TT 1, vk)) where 

TI 1 = {B(G, Jl) has SI, cells. The induction hypothesis says that 

cB (G, )1) ~ 1T2 where TI2 is the coarsest element of 2(G) fixing ]1. 

Suppose fB ( G, v ) ~ TI E IT (V). By 5. 36, rr is the coarsest 

element of 3 (G) finer than 3J ('TT 1, vk) . But the coarsest element of 

3(G) fixing v is finer than the coarsest fixing J1 (trivially) and so 

is finer than !D ('TT I, vk) · 

Hence rr is the coarsest element of 3(G) fixing v. D 

9.10 Following 8. 28, define a map {lj: Q(V) x Q(V) -+ 2 V by 
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iJ( G, \!) = "C ( fB ( G, \!), \!) for any G E Q(V) and \! E Q(V). A canonical 

labelling f(G) of G can then be defined as in 8.29. We have used a 

total ordering of Q(V) derived from a lexigraphic ordering of the 

adjacency matrices of its elements. 

We shall find the following notation convenient. If 

G E Q(V) and TI E IT(V) is discrete, we define G(n) to be the labelled 

graph formed by labelling the points of G in the order that they 

appear in n. 

9.11 Clearly, any of the methods of Chapter Seven can be used to 

find the set X(G) or a subset of X(G) containing the identity nodes 

of TG with respect to r(G). The method which we will describe is 

based on 7.24 but altered so that L = 0, as described in 7.27. 

For convenience, we list a few of the variables used in the 

description of the algorithm and note their usage. For 0 ~ k ~ n 

E: = t8(G, e1) where e1 is the first terminal node. 

p = d3 ( G, T) where T is the terminal node for which 

GT. t t f lS grea es so ar. 

nk is the (ordered) partition of ~(G, vk) as in 7.24. 

( i) 
n is the orbits partition of the i-th element of 

r(G) discovered. Only the non-trivial cells of 

(i) 
TI need be stored. 

( i) 
J ~ 0 is the maximum number of partitions n to be stored. 
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h = {0 if no terminal nodes have been 

le1- Tl if T is the next terminal node 

found. 

to be 

found, and T ~ e1. 

We use the conventions of 7.12 and 7.15 throughout. 

9.12 Algorithm: Canonically label G E Q(V). 

(1) Set k .- 0; t .- 0; h .- 0. 

(2) Compute l;k := (8 (G, vk), where vk = [vl' vk]. 

If l;k is discrete go to step ( 6) • 

( 3) Set Z : = "t: ( l;k, vk) , where vk = [vl' Cl • • V. J ' k . 

(4) Set nk := discrete partition of Z with cells in numerical order. 

( 5) 

For 1 ~ i ~ t such that TI(i) fixes [vl, 

- (i) 
Tik := Tik V TI 

Set C .- first cell of nk not yet chosen; 

vk+1 .- smallest element of C; 

k .- k +1. 

Go to step ( 2) . 

(6) If h ~ 0 go to step (7). 

Set p .- s := l;k; 

h := k. 

Go to step (10). 

(7) If G(s) ;e G(t;k) go to step (9). 

Compute y such that l;k = sY. 

Set k := h. 

For 0 ~ i < k set TI. . - TI. V e . 
l l y 



(8) If t = J go to step (10). 

(9) 

(10) 

Set t : = t + 1; 1r ( t) . - e 
y 

Go to step ( 10) . 

If G( ~k) :::; G(p) go to step 

Set p .- sk· 

If k = 0 stop. 

(10). 

Set h := min(h, k); k := k - 1. 

( 11) If all cells of nk hcwe been chosen go to step ( 10). 

Otherwise go to step (5). 
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9.13 As an example we label the graph G of Figure 9.1 with J ~ 2. 

1 2 

3 

Figure 9.1 

( 1) k = t = h = 0. 

(2) ~0 = [1, 2, 314. 5' 6 J. 

( 3) z = {1, 2, 3}. 

(4) 1TQ = [11213]. 

(5) c = {1}; VI = 1; k = 1. 

(2) ~1 = cR3(G,[2, 314, 5, 611]) = [2, 315, 61114]. 

(3) z = {2, 3}. 

(4) 1Tl = [213]. 

(5) C = {2}; V2 = 2; k = 2. 



(2) s2 =lR5(G,[315, 6111412]) = [31611141215]. 

(6) p = E = [31611141215] 

h = 2. 

( 10) k = 1. 

(5) C = {3}; V2 = 3; k = 2. 

(2) s2 = <Rs(G,[215, 6111413]) = [21511141316]. 

(6} Go to ('7) . 

(7) G(E) = G(/;2) 

y=(23)(56) 

k = 2 

n0 = [112, 3J; n 1 = [2, 3]. 

(8) t = 1 

( 1) 
TI = {2, 315, 6}. 

( 10) k = 1. 

(11) Go to (10). 

(10) h = 1; k = 0. 

( 11) Go to ( 5) . 

(5) C = {2, 3}; VI = 2; k = 1. 

(2) s1 = IR3(G,[1, 314, 5, 612J) = [1, 314. 61215J. 

(3) z = {1, 3}. 

(4) Til = [113]. 

(5) C = {1}; v2 = 1; k = 2. 

(2) s2 = <Rs(G,[314, 6121511]) = [31612151114]. 

(6) Go to (7). 
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(7) G(E) = G(~2) 

y = (1 2)(4 5) 

k = 1 

7fQ = [1, 2, 3]. 

(8) t = 2 

(2) 
7f = {1, 214, 5}. 

( 10) k = 0. 

(11) Go to (10). 

(10 ) Stop: f ( G) = G ( p ) 

where p = [31611141215]. 
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9.14 The program tree of Algorithm 9.12 applied to the example 

of 9.13 is shown in Figure 9.2. For convenience, the nodes of the 

tree are labelled with the partitions ~k, with the cell ( ( ~k, vk) 

underlined. 

~ 
/i:..:l.~ [LJ_j4,61215l 

[31611141215] [21511141316] [31612151114] 

E 
(2 3)(5 6) 

E 
(12)(45) 

Figure 9.2 

A more complicated example is shown in Figure 9.3, where 

J ~ 3. 

9.15 Algorithm 9.12 provides a particularly convenient means 



1~5 3 7 9 8 

2 6 4 

[5,611,2,3,417,819] 

[611,2,3,41~1915] [511,2,3,41~1916] , ...... 

I 
[611,217f9151813,4J [513,41819161711,2] 

[6131~19151711.214] 
\ \ 

[61418151'151711,213] [612171915181~11] [514181916171~13] 

[61418191517121311] 
\ I I 

[61418191517111312] [61318191517121411] [61217191518141113] 
f--1 

(1 2) (3 4) (1 3)(2 4)(7 8) (5 6) [\) 
-!=""" 

r:: r:: r:: r:: r:: 

Figure 9.3 
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of computing the automorphism group r(G). While many published 

algorithms for graph isomorphism, for example by Levi [40] or Yang 

[8oJ, can be used to find r(G), there seem to be no algorithms other 

than our own for finding a small set of generators for r(G). All 

other methods find each element of r(G) individually, and so are 

practically useless if lr(G) I is very large. 

9.16 In Algorithm 9.12, suppose the first terminal node is 

For 0 ~ j ~ n, define v. = [vl, ···, v] and 
J j 

let v 9., be the shortest such node for which tB ( G, v 9.,) is the discrete 

partition E:. 

Suppose 0 ~ j ~ 9.-. 
( . ) 

Definer J = r where r = f(G). 
V. 

If 
J 

j = 0, consider the point of time when the algorithm terminates. 

Otherwise consider the instant when h is set to j - 1 for the first 

time at step (10). In other words, consider the algorithm immediately 

it has finished with v. and its descendants. At this point of time, 
J 

define n = n. and let Y. be the set of all elements of r(G) so far 
j J J 

discovered. Then from 7.20, 7.21 and 7.25 we have the following 

result. 

9.17 Theorem: (a) Y. generates r(j). 
J 

(b) IY. I ~ n- p. where r(j) hasp. orbits. 
J J J 

(c) The ceZZs of n. a~ orbits of r(j) 3 (j < 9.-). 
J 

(d) lr(j) I = lr(j+i) 11:;'.(1)1_. (j < £). 
J 

D 

We now consider a few simple means by which Algorithm 9.12 

can be improved. 
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9.18 Let 0 < j ~ t and again consider the point of time when 9.12 

has finished with v. and its descendants. For 0 ~ i < j the cells of 
J 

the partition TI. at this stage are orbits of r(j). In the algorithm 
l 

these partitions have been produced by applying the operation 

TI ·= TI. v 8 for each yE Y •• We introduce a new partition~ E IT(V) i . l y J 

which is initially the discrete partition in numerical order. Each 

time we find an element y E r(G) we set ~ .- ~ v e . y Then (at the 

point of time to which we are referring) the cells of ~ are the orbits 

of r(j) and so we can set TI. 1 to the partition of~(~. 1 , v. 1 ) 
J- J- J-

induced from ~- This method has the added advantage that at the end 

of the algorithm the cells of~ are the orbits of r. 

9.19 Another source of inefficiency occurs at step (4) of 9.12. 

The computing of Tik V (i) f 'bl .- Tik TI or possl y many t 't' (i) par l lons TI 

will be unnecessary if no cell of Tik other than the first is ever 

chosen. This will be the case, for example, if the terminal node 

T 7 e1 descended from the current node is absorbed onto an ancestor 

of e1. Hence we can defer these computations until they are actually 

required. 

9.20 Let v be a node of the program tree produced by Algorithm 

9.12 and let TI = ~ (G, v). If n- \TI\ ~ 5, then by 5.19 and 9.9, 

'(TI, v) is an orbit of r , where r = r(G). Consequently all the 
TI 

terminal nodes descended from v are equivalent. If e 1 is descended 

from v, then we know that G(E) = G(~k) at step (7) of 9.12 without 

computing G(~k), where ~k corresponds to a node descended from v. On 

the other hand, if the terminal nodes descended from v are not 

equivalent to e1, they can be identified as such by examination of 

the first of them. In the following algorithm this change has been 
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handled by the variable q in a way best seen by examining the algorithm. 

It has led to more than a two-fold improvement in efficiency in many 

cases. 

9.21 Algorithm: Canonically label G E Q(V) and find generators for 

r (G) • 

(1) Set k .- 0; t := 0; h := 0; q := 0; m := 1; 

~ .- discrete partition of V in numerical order. 

(2) Compute ~k := IB (G, vk) where vk = [vl, vk]. 

(4) 

( 5) 

( 6) 

If ~k is discrete go to step (5). 

If n- l~kl > 5 set q := k + 1. 

Tik .- discrete partition of Z in numerical order. 

Set C .- first cell of Tik not yet chosen; 

vk+1 := first element of C· , 

k .- k +1. 

Go to step ( 2) . 

If h > q go to step ( 8) • 

Compute G(~k). 

If h ~ 0 go to step ( 7) • 

Set p .- E .- ~k; 

h .- k· , 

k .- k - 1. 

Go to step ( 11). 
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(7) If G( E) ;;t G(~k) go to step ( 10) . 

(8) Compute y such that ~ = E:y k . 

Set ~ .- ~ V 8 
y' 

k .- h 1· 
' 

1Tk .- 1Tk V 8 
y 

(9) If t = J go to step ( 11). 

Set t := t + 1· • 
(t) 

1T .- 8 • 
y 

Go to step (11). 

(10) If G(~k) > G(p) set p .- ~k. 

Set k := q - 1. 

(11) If k < 0 stop: f(G) = G(p). 

If k = h - 1 or vk is not in the first cell of 1Tk, go to step ( 13) . 

- ( i) 
.- 1Tk V 1T 

(13) If k < q set q := k + 1. 

If not all the cells of 1Tk have been chosen go to step ( 4). 

(14) Set k := k - 1. 

If k ~ h- 1 go to step (11), 

Set h := k + 1; 

(15) If k < 0 stop: f(G) = G(p). 

Set 1Tk :=partition of'(~, vk) induced from~. 

If k < q set q := k + 1. 

Gotostep(4). 
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9.22 Algorithm 9.21 produces the same program tree as does 

Algorithm 9.12 except for the occasional lopping of an unwanted 

subtree, as described in 9.20. Theorem 9.17 will still hold. In 

addition, at the termination of the algorithm we have m= lr(G) I and 

the partition~ gives the orbits of r(G). 

9.23 In many applications we may be interested in r(G) but not in 

the canonical labelling f(G). Clearly, in this case any terminal 

nodes of the program tree other than those equivalent to e 1 can be 

ignored. A convenient way in which many such nodes can be 

eliminated is by defining a function 

i z(v) x Q(v) ~ ~ 

where~ is any convenient set, and such that forGE Q(V), v E Q(V) 

and y E S we have 
n 

v] and for some v = [wl, 
n 

then none of the terminal nodes descended from v are equivalent to e1. 

Hence the subtree T(v) can be ignored. 

A possible choice of ~(G, v) is the quotient matrix of G 

induced by a3(G, v), as defined in 5.23. This matrix has been used 

for related purposes by Levi [40], and Corneil and Gotlieb [11, 14]. 

However, because of the large amount of time needed to compute this 

matrix for each node of the tree, and because of the large amount of 

storage space required to hold as many as n of these matrices, we have 

adopted a simpler system. 



Let G E Q(V), V E Q(V), 1T = (}j ( G, V), and define 

r1 = l1rl, 

r2 = i, where .,: ( 1T, v) = 1T ( i) , 

q = l1r ( i ) I , and 
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r4 = a computer word whose one-bits indicate the 

position of the trivial cells in 1T (see 3.10). 

These four variables were chosen as being already available to the 

program. If 1T is discrete we define ~(G, v) = 0. Otherwise 

Jf(G, v) is a single machine word formed from [rl, r2, r3, r4J using 

the shift and exclusive-or operations of the machine. Despite the 

simplicity of this system, it seems to be only rarely less powerful 

than the use of the quotient matrix. 

9.24 Algorithm: Find generators for r(G). 

(l) Set k .- 0; t := 0; h := 0; q := 0; m := l; 

~ := discrete partition of V in numerical order. 

( 2) Compute ~k : = lB ( G, vk) where vk = [ vl , vk J . 

If ~k is discrete go to step (6). 

Set q 0 := q. 

If n- l~kl > 5 set q := k + l. 

If h = 0 go to step (3). 

If L (G, vk) = Ak go to step (4). 

Set q := q 0 • 

Go to step (12). 
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~k .- discrete partition of Z in numerical order. 

( 5) Set c first cell of ~k not yet chosen; 

vk+1 first element of C· 
' 

k := k + L 

Go to step ( 2) • 

(6) If h = 0 go to step (7). 

If \k 7 0 go to step (12). 

(7) If h > q go to step (10). 

Compute G( ~k). 

If h 7 0 go to step (9). 

(8) Set E: .- ~k; 

h .- k· 
' 

k .- k- L 

Go to step ( 13) . 

(9) If G(E:) 7! G(~k) go to step (12). 

(10) Compute y such that ~k = E:Y. 

Output y. 

Set ~ := ~ V e y' 

k .- h 1· 
' 

~k .- ~k V e y 

(11) If t = J go to step ( 13). 

Set t t + 1; 
( t) e .- ~ := y 

Go to step ( 13). 

(12) Set k := q - 1. 
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(13) If k < 0 stop. 

If k = h- 1, or vk is not in the first cell of ~k' go 

to step ( 15) . 

( 14) F 1 . h th t ( i) f. [ or ~ l ~ t sue a ~ lxes v1, 

- (i) 
.- ~k V ~ 

(15) If k < q set q := k + 1. 

If not all the cells of ~k have been chosen go to step (5). 

(16) Set k := k - 1. 

If k ~ h- 1 go to step (13). 

Set h := k + 1; 

(17) If k < 0 stop. 

Set ~k : = partition of -G' ( l;;k, vk) induced from s. 
If k < q set q := k + 1. 

Go to step (5). 

9.25 Since Algorithm 9.24 produces the same elements of f(G) as 

does Algorithm 9.21, Theorem 9.17 will still hold. Given the set of 

generators Y0 , we can construct the whole group r(G) if desired, as 

described in 4.11. However, a certain amount of information about the 

group can be deduced directly from Y0 • We have seen that the size and 

the orbits of r(G) are given by the algorithm. For the next few 

results we continue the notation of 9.16. 

9.26 Theorem: Suppose Yo contains an element of the fonn y6 whe~ 

y3 6 E r(G) and any point of V not fixed by y is fixed by 6. Then 

either y or 6 is trivial. 
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Proof: Without loss of generality, suppose that for some r where 

0 ~ r < £we have vry = vr = vr 0 but that v~+1 ~ vr+1 . Then 

o (r+1) 
V 1 = V 1 and SO 0 E f . r+ r+ 

yo 
Therefore the terminal node e 1 is in the subtree 

T(v~+1 ). Let T be the first terminal node of T(v~+1 ) such that for 

some S E r(r+1 ) which fixes points of V not fixed by y we have 

T = elYB. 

Let X(y) be the set of points fixed by y. We prove by 

induction that S is trivial. 

Suppose that for some j, where 0 ~ j <£,we have 

y 
V. • This is true for example if j ~ r + 1. 

J 

= ( UJ'( G , V • )) y by 8 . 2 8 . 
J 

V = v for convenience. j+1 

( l) If v 4 x(y) then v8 = v by assumption, and so vYB = 

since yS = Sy. 

(2) If V E X(y) then 

v = min{tV(G, v.)} = min{UJ(G, v.) n x(y)} 
J J 

since v E x ( y) . 

min { ( .W ( G, v . ) ) Y n x ( y) } 
J 

= min{W(G, v.) n x(y)} 
J 

since wy = w if w E x(y) 

= V 

= VY, since V E x(y). 

Let 



induction. 

yB 
Hence in either case vo 1 = 

J+ 
vy and so T 

j+1' 
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= e 1Y by 

Since the node v~+1 will be absorbed onto the node vr+1 , 

no terminal node of T(vy 1 ) equivalent to e1 other than e1y will be 
r+ 

encountered. 

Hence 8 = B and so 8 is trivial. D 

9.27 Corollary: Suppose that for some subset Y ~ Yo we have 

(Y) = IJI( 1 ) E9 '1'( 2 ), where IJI(i) and IJI( 2 ) are non-trivial subgroups of 

Then we can write Y = Y ( 1 ) u Y ( 2 ) where < Y ( 1 ) > = IJI ( 1 ) and 

= ljl(2). 

Proof: Any element of Y is of the form oy where y E IJI( 1 ) and 

By the theorem one of y and 8 is trivial. D 

9.28 Theorem: For some v E Q(V) suppose rv has exaatly one non~trivia.l 

orbit_, where r = r (G) • Then there is a suhset Y* ~ Y 0 such that ( Y* ) 

is conjugate to r in r. 
\) 

Proof: For any subgroup A ~ r let x(A) denote the set of points fixed 

by A and let £(A) denote the maximum value of j for which 

v.} ~ x(A). 
J 

Let 'l' be a subgroup of r(G) conjugate to r for which 
\) 

r = £(1J1) is the greatest. Let C be the non-trivial orbit of IJI. 

By assumption, V 1 E c. Also, since ljl ~ r(r). c is 
r+ 

contained in some orbit c1 of r(r). 
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Suppose there 

r (r) d Y 
y E an vr+i = v , 

exists a point v in C1\C. Then if 

y-l~y is in f(r) and fixes V i 
r+ 

This contradicts the maximality of£(~), and so C = C1. 

Now suppose c2 is another orbit of r(r) and w E c2. Since 

the partition e~ is equitable (5,9) and fixes w, the cell {w} is 

trivially joined to the cell C. 

However, the equitable partition er(r) also has Cas a cell, 

and so c2 is trivially joined to c. 

6 (r) (r)l (r)l Hence by 5.1 , r = f C $ f V\C and so by 9.2!, 

Y0 contains a subset generating r(r)lc = ~. 0 

9.29 Corollary: If r(G) contains transpositions 3 then Y 0 contains at 

least one member from each conjugacy class of transpositions. 

Proof: The subgroup of r(G) generated by a single transposition 

satisfies the conditions of the theorem. 0 

It is not clear when Theorem 9.28 will hold without the 

restriction that r have just one non-trivial orbit. We conjecture 
\) 

that a sufficient condition is that for any v E V not fixed by 

r the stabliser (r ) is trivial. 
\! \! V 

9.30 Theorem: If r(G) = ~[~] 3 where ~and ~ are non-trivial3 then 

Y0 contains a subset generating one of the copies of~ in r(G). 

Proof: For subgroups A E r(G) define £(A) as before and let ~* be 

the copy of ~ for which r = £(~*) is greatest. Then r(r) is a direct 



136. 

sum with one factor I:*. The result follows from 9. 27. D 

9.31 We now give a sequence of examples of the performance of 

Algorithms 9.21 and 9.24. The following abbreviations are used: 

n number of points of G. 

first ancestor of e1 for which fB(G, v!l,) is discrete. 

number of terminal nodes equivalent to e1. 

Mz number of terminal nodes not equivalent to e 1 . 

orbits partition of r = f(G). 

unit partition of V. 

t execution time in milliseconds, excluding time 

for output. 

If both 9.21 and 9.24 behave the same way and take about the 

same time, only the figures for 9.21 are given. 

9.32 

9.33 

012 

6 3 

5 4 

n = 6. 

v!l, = [1, 2]; M1 = 3, M2 = 0. 

Jrl = 12; ; = TI 0 . 

Y0 = {(2 6)(3 5), (1 2)(3 6)(4 5)}. 

t = 5·8. 
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n = 8. 

v£ = [1, 2, 3]; M1 = 4, M2 = 0. 

1r1 = 48; ~=no. 

Y0 = {(3 5)(4 6), (2 3)(6 7), (1 2)(3 4)(5 6)(7 8)}. 

t = 10·3. 

n = 10. 

V£= [1, 2, 3, 4, 5, 6, 7, 8, 9]; M1 = 10, M2 = 0. 

lrl = 3,628,800; ~ = n 0 . 
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y 0 = { ( 9 10)' ( 8 9 ), ( 7 8) ' ( 6 7) • ( 5 6) ' ( 4 5) ' ( 3 4) ' ( 2 3) ' ( 1 2)}. 

t = 36·4. 

10 

n = 13. 

V£= [4, 8, 1, 2, 9, 10, 5, 6]; M1 = 9, M2 = 0. 

1r1 = 1296; ~ = {1, 2, 3, 5, 6, 7, 9, 10, 1114, 8, 12113}. 

y 0 = { ( 6 7) ' ( 5 6 ) ' ( 2 3) ' ( 1 2) ' ( 10 11) ' ( 9 10 ) ' 

(5 9)(6 10)(7 11)(8 12), (1 5)(2 6)(3 7)(4 8)}. 

t = 38·6. 
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1 2 3 4 0-:r 
7 8 5 

9 10 11 12. 

13 14 15 16 

n = 16. 

V£ = [1, 12]; M1 = 3, M2 = 0. 

1r1 = 8; t; = {1, 4, 13, 1612, 3, 5, 8, 9, 12, 14, 1516, 7, 10, 11}. 

Y0 = {(2 5)(3 9)(4 13)(7 10)(8 14)(12 15), 

(1 4)(2 3)(5 8)(6 7)(9 12)(10 11)(13 16)(14 15)}. 

t = 21•5. 

n = 25. 

V£ = [1, 13, 5]; M1 = 4, M2 = 0. 

lrl = 2oo; t; = ~o-

y 0 = { ( 2 6) ( 3 11) ( 4 16) ( 5 21) ( 8 12) ( 9 17) ( 10 22) ( 14 18) ( 15 23) ( 20 21+) ' 

( 2 5) ( 3 4) ( 7 10) ( 8 9) ( 12 15) ( 1314) ( 17 20) ( 18 19) ( 22 25) ( 23 24) ' 

( 1 2 3 4 5) ( 6 7 8 9 10) ( 1112 13 14 15) ( 16 17 18 19 20) ( 21 22 23 24 25)}. 

t = 60·9. 

9.38 G = C5[C5J, where C5 is labelled in a circular fashion. The 

group r(G) is~[~], where~= r(C5), [58]. 



9.39 

where for 
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n = 25. 

V£ = [1, 3, 11, 13, 21, 23, 16, 18, 6, 8]; M1 = 13, M2 = 0. 

lrl = 1,ooo,ooo; ~ = TI 0. 

Y0 = { ( 7 10) ( 8 9) , ( 6 7 8 9 10) , ( 17 20) ( 18 19) , 

(16 17 18 19 20)' (22 25) (23 24). (21 22 23 24 25)' 

(12 15)(13 14), (11 12 13 14 15), 

(6 21) (7 22) (8 23) (9 24) (10 25) (1116) (12 17) (1318) (14 19) (15 20)' 

(2 5)(3 4), (1 2 3 4 5), 

( 1 6 11 16 21) ( 2 7 12 17 22) ( 3 8 13 18 23) ( 4 9 14 19 24) ( 5 10 15 20 25 ) } . 

t = 160. 

G is the graph with points {1, 2, 13' 1 1 > 2 I ' 13'} 

1 ::; i ::; 13, 1 ::; j ::; 13, 

i and j are adjacent iff i - j = 2, 5' 6, 7, 8 or 11, 

i 1 and j 1 " " 11 " = 1, 3, 4, 9, 10 or 12, 

i and j 1 11 11 " 11 = 0, 1, 3 or 9, 

all differences being taken modulo 13, [1 ]. 

n = 26. 

v£ = [1, 3]; M1 = 3; M2 = 5 (for 9.24), 7 (for 9.21). 

I r I = 39 ; ~ = { 1 , 2 , 1311 1 , 2 I , 0 0 0 , 13 1 }. 

Y o = {a a 1 , SS 1 } 

where a= (2 10 4)(3 6 7)(5 11 13)(8 12 9), 

s = (1 2 3 4 56 7 8 9 10 11 12 13), 

and a', S' denote the corresponding permutations acting 

on the second half of G. 

t = 99 (for 9.24), 116 (for 9.21). 
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9.40 G is the strongly regular graph with degree 10, 26 points 

and trivial automorphism group, as given in [65]. 

n = 26. 

v£ = [1, 17, 7]; M1 = 1, M2 = 7 (for 9.24), 267 (for 9.21). 

Jrl = 1; Y0 =cp. 

t = 1•15 seconds (for 9.24), 2·60 seconds (for 9.21). 

The algorithm of Arlazarov et al. [ 2 ] produced 756 terminal 

nodes for this graph, and 40 for the graph of 9.39. They do not state 

their execution times. 

9.41 We now consider the efficiency of Algorithm 9.21. Although 

Algorithm 9.24 is always at least as fast as 9.21, we have not been 

able to find any simple estimates for its execution time which are better 

than those for 9.21. Furthermore, we have not been able to estimate 

the effect of the improvement described in 9.20 although, as we have 

said, it is often considerable. Consequently, we will assume that at 

step (2) we always haven- l~kl > 5. 

Define M= M1 + M2, where M1 and M2 are as defined in 9. 31. 

Let t be the total time taken by Algorithm 9.21 when applied to G E Q(V). 

9.42 We first consider the time t1 taken for the computation of 

tB ( G, v) for each node v. Let T = [ vl, 

For 0 ~ j ~ n define v. = [vl, ••• v] 
J ' j ' 

1Tj = <8(G, vj), 

£. = ITI.J. 
J J 

v ] be a terminal node. 
n 

Let k be the smallest value of j for which£. = n. 
J 

By definition (9.7), 
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1TJ.+1 = (](£ +1(G, :£) (1T., v.+1)), 
j J J 

for 0 :::;; j < k. 

The computation of ~(1Tj' vj+1 ) requires time of order 1, and 

so the computation of 1Tj+1 takes time of order n(£j+1 - £j), by 5.40. 

Similarly the computation of 1TQ requires time of order n£o. 

Hence the time taken to compute 1Tj for vk and its ancestors is 

of order 
k-1 

n£o + I n(£.+1 £.) = n£o + n(£k- £o) 
j=O J J 

= n£k 

= n2. 

Summing over all terminal nodes we have 

9.43 

form 

order 

( i) 
1T . 

Next we consider the time t2 required for calculations of the 

- (i) 
1Tk := 1Tk v 1T at step (12). One such computation takes time of 

!1r !w(1T(i)) where w(1T(i)) is the number of non-trivial cells of 
k 

Define 

I w ( 1T ( i)), where m = M 1 - L 

i=1 

Then t2 is of order ~L!1Tk!' where the sum is taken over all ancestors 

of terminal nodes not equivalent to e1. We conjecture that for any n, 

Q :::;; ~n{log 2 n}, where {log 2 n} is the smallest integer not smaller than 

log 2 n. This bound has been proven for graphs whose automorphism 

groups r have the property that, for any V E V not fixed by r, the 

stabiliser r is trivial, and for a few other similar cases. However, 
V 

the best bound we have been able to prove for an arbitrary graph is 

~:::;;% (3n- 2). Hence the best we can say for certain is that t2 is 

of order n4M2, although no class of graphs has been found for which an 

order worse than n 2M2 holds. 
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9.44 Other contributions to the execution time of 9.21 are easily 

bounded. We list them below. 

(i) For the computation of ~(~k' vk) at step (3): O(n2M). 

(ii) For computing the adjacency matrix of G(~k) at step (5): 

O(n2M). 

(iii) For comparison of G(~k) with G(E:) and G(p): O(nM). 

(iv) For computing y, ey, ~ v ey and ~k v ey at step (8): O(n2M1 ). 

(v) For setting ~kat step (15): O(n2 ). 

(vi) For indexing and other minor computations: O(n2M). 

Most of these bounds follow from the fact that TG has M 

terminal nodes and not more than nM + 1 nodes. Bound (iv) follows from 

the observation that y is only computed for terminal nodes equivalent 

to e1. 

9.45 Putting these estimates together, we find that the total time 

t is at worst of order n2M1 + n4M2, although, as stated in 9.43, we 

know of no class of graphs for which t > O(n2Ml + n2M2) = O(n2M). 

By Theorem 9.17, M1 ~nand sot = O(n 3 + n4M2). No realistic 

estimate for M2 has been found, since it depends on two factors, both 

of them difficult to determine. 

(i) The number of identity nodes depends on the relationship 

between 8( Gr) and ~-(G). 

(ii) The efficiency of the technique of 7.23 in reducing the 

number of terminal nodes equivalent to identity nodes other than e1 
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is difficult to estimate. In fact, it depends on the labelling of G. 

9.46 Fortunately, the proportion of graphs for which M2 > 0 is 

quite small. For graphs with 7, 8 or 9 points the proportions are 

respectively 2/1044, 15/12346 and 70/274668 and in no graph with ~9 

points have we observed M2 > 5. 

9.47 Theorem: The following condition is sufficient to ensure that 

M2 = 0 for G. 

For any v E Q(V)~ let n be the coarszst element of ~(G) 

which fixes v. Then the non-trivial cells of n of smallest size are 

orbits of r, where r = r(G). 
V 

Proof: From 9.9 we have ~(G, v) ~ n. The result follows from 

9.3 (2) and the definition of~. 0 

9.48 Corollary: If G is s-e, M2 = 0. 

Proof: If G is s-e, then all equitable partitions are orbital. 0 

Unfortunately, the conditions of 9.47 and 9.48 are both very 

difficult to verify, both theoretically and experimentally. Incidentally 

we do not know of any transitive graph for which M2 ~ 0. 

Let M2(n) be the maximum value of M2 for any graph with n 

points. The following result shows that M2(n) is not bounded above by 

any polynomial in n. 

9.49 Theorem: Let G be a connected regular graph with m points~ whose 



automorphism group r(G) has p orbits. Then for any k > 03 

M2(km) ~ pk - 1. 
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Proof: Let kG denote the graph consisting of k disjoint copies of G, 

{Gl, •••, Gk} with point sets {Vl, ···, Vk} respectively, and define 

(a) Suppose k = 1. 

Since G1 is regular, tU(Gl, []) = V1, and so contains p 

orbits of r(Gl). Hence TG has at least p identity nodes. 
1 

(b) Suppose TrG has at least pr identity nodes, for some r > 0. 

Let H = (r + l)G. Since H is regular, ~(H, []) =V and so contains p 

orbits of r(H). Hence TH hasp equivalence classes (under r(H)) of 

nodes of length one. 

Suppose vl = [v] E TH is the first node in one of these 

classes. Without loss of generality we can assume that v E V1. By 

9.9, d3(H, vr) contains one cell C = V2 u •• • u V . All its other r+1 

cells are proper subsets of V1, and hence smaller than C. If any of 

these cells is non-trivial, we have Ul(H, vl) ~ V1, by the definition 

of C. 

Continuing in this manner down the subtree TH(vl), we 

eventually find a node v. for which tB (H, v.) contains exactly one 
J J 

non-trivial cell, namely v2 u ••• u Vr+l' Since the trivial cells of 

cB (H, v.) will have no further effect on the computation of tJ(H, •) 
J 

for nodes of TH(vj), we can apply the induction hypothesis and say that 

TH(vj), and hence TH(vr),has at least pr identity nodes. Considering 

the other equivalence classes of unit-length nodes, we see that TH has 

r+1 
at least p identity nodes. 0 
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9.50 We now give some experimental data on the performance of 

Algorithms 9.21 and 9.24 for a few common families of graphs. The 

execution times are shown in Figure 9.4, where both scales are 

logarithmic. The approximate gradient of the curve for large n is 

given below as the constant K. As before, only data for 9.21 is 

given, unless 9.24 behaves appreciably different. 

(a) 

(b) 

(c) 

(d) 

The path on n points, P , labelled from one end to the other. 
n 

For all n, M1 = 2 and M2 = 0. K ~ 1•8. 

The cycle on n points, Z , labelled in a circular fashion. 
n 

For all n, M1 = 3 and M2 = 0. K ~ 1·9. 

The complete graph on n points, K . 
n 

For each n, M1 =nand M2 = 0. K ~ 2•7. 

The generalised cube on 2m points, Q , defined by Ql = P2, 
m 

Qm = Q x P2 (m > 1) . 
m-1 

For each m, M1 =m+ 1 and M2 = 0. K ~ 2·0. 

(e) Random graphs, as defined in 3.11. 

The two curves marked RG in Figure 9.4 show average 

execution times for 0 = 0•50 and 0 = 0•75. In both cases, no graphs 

with non-trivial automorphism groups were encountered for n > 25, and 

no graphs for which M2 7 0 were encountered for n ~ 10. Hence the 

measured times for 9.21 and 9.24 were almost identical. 

To illustrate how fast these algorithms are on random graphs 

we have plotted (as a dashed line in Figure 9.4) the time required for 

a single permutation of an n x n adjacency matrix. For n = 30 and 

n = 60 this time represents about 58% and 73%, respectively, of the 

time taken by 9.21 on random graphs. Since at least one such matrix 
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permutation is an essential step for any canonical labelling algorithm 

which employs an adjacency matrix representation of a graph, we believe 

that it is not possible to devise such an algorithm which is very much 

faster than our own on large random graphs. 

9.51 Only a few other authors have given execution times for their 

algorithm's performance on random graphs. In Table 9.1 we list the 

execution times (in seconds) of Algorithm 9.21, Corneil and Gotlieb's 

algorithm [11, 14] and Ullmann's algorithm [75], for random graphs 

with cr = 0•5. Both these other algorithms test for isomorphism 

between two graphs. It is clear that Algorithm 9.21 is by far the 

fastest, even after allowing for machine-speed differences (perhaps a 

factor of 4 in both cases). Times marked with a dagger (t) in Table 

9.1 were estimated from related figures given by the relevant authors. 

n 9•21 

20 0•0065 

40 0•020 

60 0•039 

Corneil and Gotlieb 

0•27 

0•95(t) 

1•98 

Table 9.1 

Ullmann 

0•90 

6·l(t) 

19 ( t) 

9.52 Let Hk denote the graph with 2k components, k isomorphic to 

Z3 and k isomorphic to Z4. We define ~( 1 ) and ~( 2 ) to be particular 

labelled graphs isomorphic to Hk. In Hk( 1 ) all the copies of z4 are 

labelled before the copies of z3 , and in Hk( 2 ) copies of z4 and Z3 are 

labelled alternately. For example, 

H2 ( 1 ) = D' 2 tJ A 
4 3 8 7 ~10 

12 E, and 

14 13 
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r=r L 11 10 14 13 

( 2k) For any k, the program tree T~ has k identity nodes, and 

so we can expect Algorithms 9.21 and 9.24 to be comparatively 

inefficient on these graphs. However, for both labellings, Algorithm 

9.24 finds no identity nodes not equivalent to e1, showing that the 

technique described in 9.23 has been very successful. The behaviour 

of Algorithm 9.21 can be seen from Table 9.2. M1 was the same for 

both labellings. 

k n lr(Hk)l (2k) 
k Ml M2 for H ( 1) 

k 
M2 for H (2) 

k 

1 7 48 2 5 1 1 

2 14 9216 6 11 5 10 

3 21 3981312 20 17 19 57 

4 28 3·06 X 109 70 23 69 276 

5 35 3•67 X 1012 252 29 251 1257 

6 42 6· 34 X 1015 924 35 923 5555 

7 49 1•49 X 1019 3432 41 3431 24000(t) 

8 56 4•58 X 1022 12870 47 12869 104000(t) 

[ ( t )estimated] 

Table 2.2 

(2) (1) 
The reason why M2 is larger for Hk than for Hk seems 

to be that terminal nodes not equivalent to e1 are encountered before 

very many elements of f(Hk) have been found, so that the process in 

step (12) of 9.21 is not so effective. However, for k = 8 we still 

have only about 8 terminal nodes per identity node, which is very small 

compared with lf(Hk) I. Execution times for both algorithms, and both 

labellings, are shown in Figure 9.5. 
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9.53 A minor extension of Algorithms 9.21 and 9.24 enables them 

to solve hro somewhat more general problems. Suppose G E G(V) and 

SE IT(V). One problem is the determination of r , where r = r(G). s 
The other is to find a map 

f Q(V) X IT(V) ~ Q(V) 

so that the following hold for each G E Q(V), r;; E IT(V) and yE S . 
n 

(1) f(G, r;;) is isomorphic to G. 

(3) f(G, r;;Y) = f(G, r;;) iff r;;Y = 7; 0 for some o E r(G). 

Clearly,this definition generalises that of a canonical labelling as 

given in 8.5. We can think of it as the problem of canonically 

labelling a graph with coloured points, each colour corresponding to 

a cell of r;;. 

Although we shall not prove it here, the only change 

required to 9.21 and 9.24 is to alter 9.7(1) to read 

"If lvl = 0, define a3(G, v) = lRl(G, r;;)." 

9.54 A particular application of this technique can be described 

as follows, Suppose G, HE Q(V) and that G and Hare known to be 

transitive, If G and Hare isomorphic and v E V, there is an isomorphism 

from G to H which takes v E V(G) onto v E V(H), Therefore we can 

compare G and H by using Algorithm 9.21 with r;; = [viV\{v}], This will 

generally save a considerable amount of time. The elements of r(G) 

found by 9.21 (or 9.24) will generate the stabiliser r(G) . 
V 
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In one of the first practical applications of Algorithm 9.21, 

this method was used to generate all the circulant graphs with fewer 

than 38 points. A graph G with n points is circulant if r(G) 

contains a cycle of length n; hence G is transitive. In one run, for 

example, the isomorphic copies amongst 23423 circulant graphs with 36 

points were found in less than 30 minutes. For these graphs, M2 was 

always zero, and M1 averaged about 2·4. 

9.55 Algorithms 9.21 and 9.24 can also be easily extended so that 

they apply to more general graph-like objects, for example digraphs, 

loop-graphs or multigraphs. We have used 9.21 and 9.24 with con­

siderable success on both digraphs and loop-graphs. The only necessary 

change was to suspend the technique described in 9.20, since Theorem 

5.19 no longer holds. 

Finally, we mention a few simple methods by which our 

algorithms might be improved. Basic directions we might try to take 

are towards reducing the number of identity nodes, and towards 

reducing the number of non-identity nodes. 

Considering the first possibility, suppose G E G(V) and that 

tJ1 and tJ2 are maps satisfying 8.11. If r1 and r2 are the number of 

identity nodes of the program trees defined by ~l(G, •) and tJ2(G, ·) 

respectively, we say that ~1 is stronger than tJ2 if r 1 ~ r 2 . If 

r1 = 1, then tJl is optimal (for G). The well-known Corneil-Gotlieb 

algorithm [14] uses a defining function stronger than ours, but 

requiring much more time for its evaluation. In fact, these authors 

conjecture their choice of ~to be always optimal, but unfortunately 

counter-examples have since been found [13]. On the other hand, 

Arlazarov et al. [2] use a defining function which can be very rapidly 
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evaluated, but which is weaker than ours. The maps used by Overton 

and Proskurowski [49] probably also fall into this category. We 

believe that for most graphs our own choice of tJ is a reasonable 

compromise, since it is fast to compute (5.41) and usually optimal 

(9.46). However, to help those cases (like the graphs in 9.52) where 

iJ is far from optimal, it should be possible to devise a system 

whereby a stronger version of iJ is automatically "turned on" by the 

appearance of too many identity nodes. Even if the algorithm must be 

restarted in these cases (which is not certain), this system should 

substantially improve the "worst-case" behaviour without damaging the 

average efficiency. For this purpose, we are currently examining 

several possible choices for a map c (or a sequence of maps) satisfying 

8.23. The idea is to apply Algorithm 5.32 first on c(G) and then on G 

during the computation of ~ • 

9.57 The other,possibility for improvement could be to reduce the 

number of non-identity terminal nodes. Since the number equivalent 

to e1 is already very small (9.17), these nodes would no longer be a 

problem if the number of identity nodes was sufficiently reduced. 

Nevertheless there may be some merit in having L > 0, as described in 

7.27. 
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