
BACKTRACK PROGRAMMING

AND THE

GRAPH ISOMORPHISM PROBLEM

BY

BRENDAN DAMIEN McKAY

A THESIS SUBMITTED FOR THE DEGREE OF

MASTER OF SCIENCE

AT THE

UNIVERSITY OF MELBOURNE

JULY 1976

NOTES 7/7/77

(a) Fig. 5.2 may be incomplete.

(b) p.l43 : The Hoffman-Singleton graph on 50 points is an

example of a transitive graph with M2 # 0.

(c) Fig. 9.4 : Execution times are now considerably better for

edge-sparse graphs. For random graphs, new time = old time

X 0 X 1.05,

(d) 9.53 : The assertions in this section are not in general true.

Suppose r.;; = [c 1 lc2 1···1Ck] and define

~={yE r(G)!c! n c. # ~' 1 ~ i ~ k}.
J_ J_

It is easy to show that the set Y of all elements of r

found by 9.21 or 9.24 lies in ~' but in general it may not be in

However, if Y ~ rr.;;, then <Y> = rr.;;.

rr.;; will be found correctly if

one of the cells of are trivial), if

or under various other conditions.

~ = r (example : all but
r.;;

M - 0 2 - (for 9.21, not 9.24)

In practice, rr.;; and f(G, r.;;) can be determined by extending

G with a few extra vertices in the right way.

PREFACE

This thesis originally arose from the need for an algorithm

suitable for canonically labelling a graph with a large automorphism

group r(G). Since all the existing algorithms that we knew of had

execution times highly dependent on lr(G)I, an effort was made to

devise a program which did not suffer from this deficiency. Eventually,

a system was devised by which elements of r(G) could be found during

the labelling process and used to reduce the amount of work. It soon

became evident that our algorithm was ideal for the study of r(G),

since it appeared to find only a small set (less than IV(G)I) of

generators for r(G).

When it came to constructing rigorous proofs for the

correctness of our algorithm, it became immediately obvious that a

more general setting was possible. Very soon a theory had emerged of

backtrack programming of a certain type and of the invariance group of

such a program. This theory is presented in Chapters Six and Seven.

Except as stated there, it is all original.

In earlier chapters we develop the necessary groundwork.

Chapters One to Three are devoted to the elementary concepts of

permutation groups, graphs, lattices, partitions and various other

objects. In Chapter Four we introduce the lattice 0(~) of partitions

defined by the orbits of subgroups of~. In Chapter Five we treat a

related lattice ~(G) of equitable partitions of the point-set of a

graph G. The relationship between ~(G) and e(r(G)) is considered,

and a new algorithm for finding the coarsest equitable partition finer

than a given partition is presented.

In Chapter Eight we give a reasonably general treatment of

existing solutions to various "graph isomorphism problems". This

treatment is probably new. We then concentrate on the problem of

canonically labelling a graph, and devise a general method of solution

which appears to include most existing algorithms.

In Chapter Nine, we present several versions of our own

algorithm for canonically labelling a graph. We show that it falls

into the general class described in Chapter Eight but differs in that

the methods developed in Chapter Seven have been applied. We demonstrate

that the algorithm finds a set of no more than IV(G)I - p generators

for r(G), where r(G) hasp orbits. The efficiency of the algorithm

is then examined. For large random graphs we claim that it is impossible

to devise an algorithm which is very much faster.

There are many people without whose help this thesis might

have been considerably more difficult to complete. Special thanks are

due to Dr. B.D. Craven for his many efforts, and to Dr. D.A. Holton

for his detailed criticisms of the manuscript. I would also like

to acknowledge Mr. Chris Godsil for helping in the practical evaluation

of the program and for the many spirited discussions which kept my

enthusiasm alive. Finally, thanks are due to Miss Joan Beverley for

helping to read the proofs and to Mrs. Ann Windsor for her excellent

typing.

CONTENTS

CHAPTER ONE: INTRODUCTION 1

CHAPTER TWO: LATTICES AND PARTITIONS 8

CHAPTER THREE : TECHNICAL PREREQUISITES 14

CHAPTER FOUR: PERMUTATION GROUPS 21

CHAPTER FIVE : EQUITABLE PARTITIONS 28

CHAPTER SIX: BACKTRACK PROGRAMMING - I 59

CHAPTER SEVEN: BACKTRACK PROGRAMMING - II

CHAPTER EIGHT : GRAPH ISOMORPHISM PROBLEMS 102

CHAPTER NINE: A NEW CANONICAL LABELLING ALGORITHM 116

BIBLIOGRAPHY 153

1.

CHAPTER ONE

INTRODUCTION

1.1 In this chapter we introduce some of the basic concepts from

the theories of matrices, permutation groups and graphs.

1.2
11

If 11 is any set, 1111 is the cardinality of 11 and 2 is its

power set. The null set will be denoted~. If /11 and /12 are sets, the

set difference of /11 and /12 is denoted /11 \!12 = {xI x E /11 , but x ~ /12}.

The cartesian product of /11 and /12 is denoted /11 x /12. The symbol iff

is an abbreviation for "if and only if".

To avoid confusion with our notation for permutations, a

sequence (or vector) of elements of 11 will be denoted [x1 , x2 , ···, x].
r

The sequence with no elements is the nuZZ sequenae, and denoted[].

Let f(n) and g(n) be real-valued functions defined for

positive integers n. If there is a constant M so that lf(n) I ~ Mlg(n) I

for n > 0, we write f(n) = O(g(n)).

1.3 Let A and B be matrices. The entry in the i-th row and

j-th column of A is denoted A ... The transpose and inverse (if it
1J

exists) of A are respectively denoted A' and A- 1 • The tensor produat

A® B of A and B is defined as follows. Suppose A is n x m. Then

A ® B consists of n rows of m blocks, the j-th block in the i-th row

being the matrix A .. B. The basic properties of the tensor product can
1J

be found in Lancaster [38], but we will only have need for the

definition.

1.4 Let V be a finite set. A permutation of V is a bijection

from V onto itself. The set of all permutations of V is denoted S(V),

2.

or S if V = {1, 2, ... nL If y E S(V) and v E V, the image of v • n

under is denoted vY. Similarly, if Q :::. S (V),
Q

is the set y V

{vyly E Q}. More generally, if uy is defined for U E U and

y E Q c S(V), we define UQ = {uy lu E U, y E Q}. -

Permutations will be written using the familiar cyclic

{ 4 6} [y y y 4Y y 6YJ notation. Thus if V= 1, 2, 3, , 5, and 1 , 2 , 3 , , 5 ,

= [2, 1, 4, 5, 3, 6], y can be written as (1 2)(3 4 5). In this case

(1 2), (3 4 5) and (6) are called the cycles of y. Trivial (unit-

length) cycles, like (6) are commonly omitted from the notation. The

points (elements) of V they contain are said to be fixed by the

permutation. The identity map on V, which fixes every point of V, is

called the identity or trivial permutation, and denoted (1). A

permutation of the form (vl v2), where v1, V2 E V is called a

transposition.

1.5 Two permutations can be multiplied in the manner usual for

map composition. Thus if v E V and y, 8 E S(V) we have yo E S(V)

where vyo = (vy) 0 . Under this operation S(V) forms a group, called the

symmetric group on V. We can now define a permutation group on V as a

subgroup of S(V). The smallest such group is the trivial group {(1)}.

The theory of permutation groups additional to what we give here can be

found in Wielandt [79] or Scott [64].

If '¥ s S(V) and v E V, then v'Jl is call:.ed an orbit of '¥. It

is easy to see that every point of V is in some orbit (since (1) E 'Jl)

and that no two orbits overlap. If 'J1 has just one orbit it is called

transitive.

1.6 If 'J1
'¥ s S (V), U :::_ V and U = U, then '¥ induces a group of

3.

permutations on U, which we denote flu· Again, if U ~V we can define

the (point-wise) stabiliser of U in f to be the group fu ={yE fiuy = u

for all u E U}. We will find it convenient to write f instead of
V

f{v}' f instead off{ } and so on. v,w v,w

If n ~ S(V), the group generated by n is defined to be the

smallest subgroup (n) of S(V) which contains n. In particular,

< cp > = { (1)}.

If n ~ S(V) and yE S(V) we define yn = {yolo En} and

similarly ny = {oyio E n}. If f ~ S(V) and n1, n2 ~ f we say that n1

and n2 are conjugate in f if n2 = y- 1n 1y for some y E f. Conjugacy

forms an equivalence relation on the power set 2f and partitions 2f

into conjugacy classes.

1.7 Suppose f, A~ S(V) and any point of V not fixed by f is

fixed by A. Then the permutation group (f u A) will be called the

direct sum of f and A and denoted f $ A.

Suppose that V= X x Y, where X= {xl, •••, x} and
m

• • • ' y } .
m

Let f ~ S(X) and A~ S(Y) . The wreath product

f[A] is a permutation group on V defined as follows. Each element y of

f[A] corresponds to a sequence [a, B1, •••, B] where a E f and
m

B. EA (1 ~ i ~m). The action of y on V is defined by
]_

()y = (a Bi) () = () x., Y. x. , Y. for x1., YJ. E V. If we set a 1 and
]_ J]_ J

B. = (1) for i ~ k, for fixed k, we find a subgroup of f[A] isomorphic
]_

to A, which we will call a copy of A in o/[A].

1.8 In general, our graph-theoretic notation will follow that

of Behzad and Chartrand [4], and any definitions we have inadvertantly

4.

omitted can be found in that book. A directed graph (digraph) G consists

of a finite non-empty set V = V(G) and a set E(G) of ordered pairs of

distinct e.lements ofV. Elements of V(G) and E(G) are respectively

called the points and directed edges of G. A graph G consists of a

finite non-empty set V = V(G) and a set E(G) of unordered pairs of

distinct elements of V. Elements of V(G) and E(G) are respectively

called the points and edges of G. If {vi, v2} E E(G) we can say that

the point VI is connected to the point v2, or alternatively that VI and

v2 are adjacent. We can also say that the point VI and the edge

{vi, v2} are incident.

1.9 Two graphs are isomorphic if there is a bijection

1/J: V(GI)-+ V(G2) which preserves adjacency. A labelled graph is a

graph whose points are associated in a 1-1 fashion with a set of

distinct labels. We will not always maintain a concise distinction

between graphs and labelled graphs in this thesis for the reasons which

follow. Almost invariably, we have used the set V= {1, 2, •••, n}

both for the point-set of a graph and for the labels of a labelled

graph. A graph with V as its point-set can be considered labelled if

we think of the point v being labelled with the number v. Similarly, a

labelled graph whose points have been labelled with the numbers

{1, 2, •••, n} can be thought of as corresponding to a graph whose

points are the labels of the labelled graph. In general, we will use

the adjective "labelled" when we wish to emphasize that the properties

we are considering may not be preserved under a re-labelling, or that

we are taking a particular graph G with points {1, 2, •••, n} rather

than any graph isomorphic to G. Thus when we define Q(V) to be the

set of all labelled graphs with point-set V we mean that isomorphic

but non-identical graphs are to be considered distinct elements of Q(V).

5'

1.10 Let G E G(V) and yE S(V). We define Gy to be the graph with

point-set V such that {vlY, v2y} E E(Gy) iff {vl, v2} E E(G), Obviously

G and Gy are isomorphic. If they are actually identical we say that y

is an automorphism of G. The set of all automorphisms of G form a group

called the automorphism group of G and denoted r(G). G is said to be

transitive if r(G) is.

1.11 A graph H is called a subgraph of the graph G if V(H) ~ V(G)

and E(H) cE(G). If V(H) = V(G), His called a spanning subgraph of G.

If U c V (G) and U ~ cp the sub graph (U) of G induced by U has point-

set U and all edges of G incident with two elements of U.

1.12 Several important families of graphs are given special names.

The complete graph on n points, K , has every pair of points adjacent.
n

K3 is also called a triangle. The cycle on n points, Z , has
n

V(Z) = {VI>
n

v} and E(Z) = {{v., v.}li- J. = 1 (mod n)}. We are
n n 1 J

avoiding the more common notation C since this will be used for the
n

cells of a partition. Finally, the path on n points, P , has
n

V(Pn) ={vl, •••, v} and E(P) = {{v., v. 1 }11:::; i < n}. The points n n 1 1+

v 1 and v and the enapoints of P and the length of P is n - 1.
n n n

path in G.

A subgraph of G isomorphic to P for some n ~ 1 is called a
n

A subgraph of G isomorphic to Z for some n ~ 3 is called a
n

cycle in G. Spanning paths or cycles are commonly called Hamiltonian.

1.13 If u, v E V(G), au-vpath in G is a path in G whose

endpoints are u and v, If there exists a u- v path in G, we define the

dtiJstance 3(u, v) from u to v to be the length of the shortest u - v

path in G. In particular, 3(u, u) = 0. If there is no u - v path in

G we define 3(u, v) = oo If v E V(G), U ~ V(G) we define

6.

3(v, U) = min{3(v, u) lu E U}. The diameter of G is max{3(u, v) lu, v E V(G)}.

If 3(u, v) is finite for all u, v E V(G), then G is called

connected. The maximal connected subgraphs of G are called its components.

If G has no cycles it is called a fo~st; if it is also connected it is

called a tree.

1.14 The degree dG(v) of a point v in a graph G is the number of

edges incident with v. If v has zero degree it is called an isolated

point of G; if it has degree one it is called an enapoint of G. If

every point of G has the same degree, G is said to be regular.

Generalizing the notion of degree, for any set U ~ V(G) and v E V(G)

we can define the degree of v relative to U, dG(v, U), as the number

of edges incident with both v and an element of U. If it is clear

from the context which graph we are referring to, the notations

dG(v) and dG(v, U) can be abbreviated d(v) and d(v, U) respectively.

Let G E Q(V). Then G E Q(V) is the complement of G.

of the following lemma is trivial.

1.15 Lemma: If G E Q(V)~ then f(G) = f(G). 0

Here and elsewhere, the symbol 0 indicates the end or

absence of a proof.

1.16 Let G E G(V) where V= {v ••• v }. The adjacency matrix
~ 1' ' n

of G is then x n matrix A= A(G) where A .. = 1 if {v., v.} E E(G)
lJ l J

and A .. = 0 otherwise. We use the adjacency matrix to simplify the
lJ

definition of two graph operations. For any m > 0 define I to be
m

7.

the m x m identity matrix and J to be the m x m matrix with every m

entry one.

Let G, H be labelled graphs, where IV(G)I = n, IV(H)I =m. The

cartesian product G x H is defined by

A(G x H) = A(G) ®I +I ® A(H).
m n

The composition G[H] is defined by

A(G[H]) = I ® A(H) + A(G) ® J .
n m

8.

CHAPTER TWO

LATTICES AND PARTITIONS

2.1 In this chapter we first introduce the idea of a lattice and

give a few basic lemmas. We then define the lattice of partitions of a

set and develop the elementary theory that will be needed later. All

the results of this chapter are well-known.

2.2 Let ~be any set. A binary relation~ on~ is called a

partial order if for x, y, z E ~ we have

(i) X ~ x,

(ii) X ~ y, y ~ x implies X = y, and

(iii) X ~ y, y ~ z implies X ~ z.

If, in addition, either x ~ y or y ~ x for any pair of

elements x, y of 6, then ~ is called a total order on 6.

If ~ is a partial order on ~. then the pair (~, ~) is called

a partially ordered set, or simply poset. We will normally write

c~. ~) simply as ~. unless it is necessary to emphasise the order

relation.

Suppose ~ is a poset, and ~I c ~. An element x E ~ is the -

least upper bound (lub) of ~~ if

(i) y ~ x for all y E ~~ • and

(ii) if y ~ z for all y E ~~

' then x ~ z.

Similarly, x is the greatest lower bound (glb) of ~~ if

9.

(i) y ~ x for ally E 6', and

(ii) if y ~ z for ally E 6 1 , then x ~ z.

2.3 A poset 6 is called a lattice if every two-element subset

{x, y} c 6 has a glb and a lub. The glb of x and y is called their

meet and denoted x A y. The lub of x and y is called their join and

denoted x v y.

Information on lattices additional to what we give here can

be found in Birkhoff [7]. The following two lemmas are standard.

2.4 Lemma: [7 J Let (6, ~) be a lattice~ and let x~ y E 6. Then

(i) X A X= X~ X V X= X~

(ii) X A y = y A X~ X V y = y V X~

(iii) X A (x V y) = X~ X V (x A y) = X. D

2.5 Lemma: Let (~~ ~) be a lattice~ where 161 is finite. Then for

any subset 6' ~ 6~ lub 6 1 and glb 6' exist.

Proof: Let 6' = {xl, X2, ... X }. Then
' r

glb 6' = Xl A x2 A A X and r'

lub 6' = XI v x 2 V V X . D r

From now on we will assume that all our lattices are finite,

since we have no need for infinite ones. Sometimes lub 6' and glb ~~

will be written v(6') and A(6') respectively.

10.

2.6 Lemma: Let (~~ ~) be a lattice~ and let~~ ~ ~. Then if~~ is

closed under v and contains A(~)~ (~ 1 3 ~) is a lattice.

Proof: Let x, yE ~~. By definition x v y E ~~. Furthermore, the

glb of x and y in~~ can be identified as v{z E ~'lz ~ x Ay}, where

A is the meet operation in ~. 0

2.7 Let V be a finite set. A partition of V is a set n of

disjoint non-empty subsets of V whose union is V. The elements of TI

are known as its cells . If a cell of TI contains just one element

v E V, it will be called a trivial cell of n, and n will be said to

fix v.

Two partitions of V have special names. The discrete

partition of V consists of lVI trivial cells. At the other extreme,

the unit partition of V consists of the one cell V.

Suppose the cells of n are C 1, C2, • • • , C . To emphasise
r

the fact that n is a partition we will write it as {C1IC2I·· • le }
r

rather than as {Cl, C2, ···, C }. This will be especially convenient
r

when actual values are given. For example, if the cells of TI are

{1, 2}, {3} and {4, 5, 6}, then TI will be written as {1, 21314, 5, 6}

or simply as {1, 214, 5, 6}, in which case elements of V not mentioned

are assumed to be in trivial cells.

2.8 The collection of all partitions of V will be denoted IT(V).

We now proceed to define a partial order ~ on IT(V) and then to show

that (IT(V), ~) is a lattice.

Let n1, n2 E IT(V). We say that n1 is finer than n2,

written n1 ~ n2 if for every cell C1 E n1 there exists a cell C2 E n2

11.

such that c 1 ~ c 2 . In the same circumstances we call n2 coarser than

nr (n2 ~ n1). For example, {1, 21314, 5} ~ {1, 2, 314, 5}.

2.9 Lemma: ~is a partial order on IT(V).

Proof: Referring to the definition of partial order (2.2) we see that

conditions (i) and (ii) are satisfied trivially. Condition (iii)

follows from the transitivity of set inclusion. 0

2.10 Lemma: Suppose n 1 ~ n2 where n 13 n2 E IT(V). Then each cell of

n2 is a union of cells of n1.

Proof: If the lemma is not true, there are cells cl E TII and c2 E TI2

such that both C1 n C2 and C1\C2 are not null. But then n1 is not

finer than n2. 0

2.11 Lemma: Suppose n 1 ~ n2 E IT(V). Then glb {n 13 n2} exists (under~).

Proof: Define TI = {C ~~le= cl n c2, cl E Til, c2 E TI2}. Clearly

TIE ll(V) and TI ~ TII, TI ~ TI2•

Now suppose that for some n' E IT(V), we haven' ~ nr and

n' ~ n2. Then for any C' En', there are cells Cr E TII and C2 E n2

such that C' c C1 and C' ~ C2. Consequently, C' ~ Cr n C2 and so

0

2.12 Lemma: Suppose n1~ n2 E IT(V). Then lub {nr 3 n2} exists.

12.

Proof: Define a graph G E Q(V) as follows. Two points v1, v2 E V

are connected iff v1 7 v2 and v1 and v2 are either in the same cell

of TII or in the same cell of n2.

Let TI E TI(V) be the partition whose cells correspond to the

components of G. Trivially, n1 ~ TI and n2 ~ TI.

Now suppose that for some TI 1 E TI(V) we have n1 ~ TI 1 and

TI2 ~ TI 1 • Let C E TI and v1, v2 E C. Then there is a path in G of the

If WQ is in cell C' Of TI I , then either wo and WI are in the

same cell of TI!, in which case Til ~ TI' implies Wl E C' ' or in the

same cell of TI2' in which case TI2 ~ TI' implies Wl E C'. Continuing

along the path in this fashion we see that VI and V2 are both in C 1 ,

and so C c c I • -

Therefore TI ~ n' and so TI = lub {nl, TI2}. D

From 2.9, 2.11 and 2.12 we have the following result.

2.13 Theorem: (TI(V)~ ~) is a lattice. D

If n1, TI2 E TI(V), then the notations TII A n2 and TII v n2

will always indicate the meet and join in the lattice (TI(V), ~) even

though we consider other lattices of partitions.

2.14 There is a natural correspondence between TI(V) and the family

of equivalence relations on V. Given TIE TI(V), we can define the

equivalence v1 ~ v2 iff v1 and v2 are in the same cell of n. Con­TI

versely, given an equivalence relation defined on V, we can find

13.

a partition whose cells are the equivalence classes.

We conclude with a final point of notation. Suppose ~ E TI(V)

and that U ~V is a union of cells of~. Then ~1u is the partition of

U whose cells are those cells of~ contained in U. ~1u might be called

the partition of U induced by~. For example, if~= {1, 21314, 5, 6}

and U = {1, 2, 3}, then ~1u = {1, 213}.

CHAPTER THREE

TECHNICAL PREREQUISITES

3.1 In this chapter we present various items of technical

14.

information which will be necessary for the proper evaluation of the

material in later chapters. We begin by describing the computer on

which our algorithms were implemented, and discuss the methods used

for representing various data items. Also in this chapter we give an

algorithm for computing a generalized form of the join of two partitions.

Finally, the concept of a "random graph" is discussed.

3.2 The algorithms described in this thesis have been implemented

on a CDC Cyber 70 model 73. The languages used have been FORTRAN and

assembly language (COMPASS).

In order that the execution times we present may be approxi­

mately translated into the context of another machine, we list a few

of the basic operations and their execution times in microseconds.

FETCH 1•2

STORE 1•0

BOOLEAN OPERATION 0•5

SHIFT (any length) 0•6

POPULATION COUNT 6•8

The population count instruction counts the number of one­

bits in a word, and has proved especially useful. The Cyber has a

word size of 60 bits. Consequently our implementations have been

restricted to graphs of from 1 to 60 points, although larger graphs

may be accommodated with more complicated programming.

15.

3.3 In the description of algorithms in this thesis we have

attempted to adopt a free and simple format without sacrificing

rigour, but without adhering to any formal code. Briefly,

(1) The operator := indicates an assignment of value as in

ALGOL. For example the statement

i := i + 2

means "increment i by 2", thus avoiding the contradiction

i = i + 2.

(2) Recursive definitions will be avoided (even if occasionally

at the expense of elegance).

(3) Semicolons will be used freely for punctuation. They do

not have any special significance.

(4) Unless otherwise specified, control flows from one step to

the next. The statement "stop" terminates execution.

As an example we give an algorithm for a generalized form

of the join operation introduced in Section2.12. We shall need this

algorithm in Chapter Seven.

3.4 Let V be a finite set, and let V1 c V, V2 c V. Take

We define a graph G as follows. The points of G are the

elements of V1. If v1, v2 E V1, then v1 and v2 are connected iff

or

TII v n2 can now be defined as the partition in IT(VI) whose

cells correspond to the components of G.

16.

3. 5 Lemma:

- -
TII V TI2 = TI2 V Til = TI1 V TI2• D

We now give an algorithm for finding TI = Til v TI2· Suppose

3.6 Algorithm: Compute TI = TII V TI2•

(1) Set 'IT := Til; i .- l. Suppose TI is the partition

{C1iC2I•••IC }.
r

(2) Set k .- l.

(3) If k ;:::: r go to step (9) •

(4) If D. n ck ;t: cp, go to step (5) • Otherwise set k .- k + 1
l

and go to step (3) .

(5) Set j := k + 1·
'

j I . - k .

(6) If C. n D. = cp set j I .- j I + 1 and c., .- c .. Otherwise
J l J J

set ck .- ck u c ..
J

(7) Set j := j + l. If j :::; k go to step (6) .

(8) Set r .- j I •

(9) Set i .- i + l. If i :::; Q, go to step (2) . Otherwise stop.

3.7 Theorem: At the ter-mination of Algorithm 3.6~ TI

is the generalized join TII v TI2·

Proof:

(1) Note that at step (6) we always have j' :::; j and so the

assignment C., .-C. does not destroy cells which have not
J J

been examined.

(2) The effect of steps (5)-(7) is to merge all those cells

(3)

of n which have non-zero intersection with D.. Since no
l

other changes are made to n (as an unordered collection of

cells), we must have n :<:; nl V TI2•

Suppose vl and v2 are in the same class of TII V n2· Then

there exists (by definition) a sequence of points

VI = wo, wl, ... wk = v2 of vl so that for l :<:; i :<:; k,
'

or

Suppose that for some i, wi_1 and wi are not in the same

cell of TII· Then there exists a cell D of n2 so that

wi_1 and wi are in D. However, the cells of TI containing

wi_1 and wi will be merged when D is being considered in

steps (4)-(7) of the algorithm. Hence TI 2 n1 v n2. D

3.8 The efficiency of most graph theoretic algorithms, including

those presented here, is highly dependent on the way in which the

data items are stored in the computer. In our case the data items

to be considered are graphs and partitions.

3.9 The two most common forms in which a graph (or digraph) can

be stored in a computer are the adjacency matrix and the adjacency

list.

In the latter method, each point is associated with a list

of those points adjacent to it. In this form questions like ."What is

the next point adjacent to v?" are very easily answered. This type of

representation is especially useful when the number of edges is small

as, for example, in planar graphs.

In the former method each of the n2 entries of the adjacency

18.

matrix is stored. Since each entry is either 0 or 1, it requires

only one bit. The usual system, and the one we employ here, is to

store each row of the adjacency matrix in a separate machine word

(assuming that n is not too large). This has several advantages:

(1) Only n words are required to store the entire matrix.

(2) Set operations between the rows (AND, OR etc.) can be

performed in single machine operations, thus achieving a

degree of parallelism.

(3) The position of one-bits in a word can be found by use

of the floating-point normalisation instruction on most

machines. This involves adding an exponent to all or part

of a word and then observing the new exponent after normalisation.

It does not involve a bit-by-bit search of the word as is

often assumed,

Further discussion and references can be found in Corneil [13]

and Kirkpatrick [32]. Another means of representing a graph, the

"K-formula" has been studied by Krider [35] and by Berztiss [5] .

3.10 The following storage method for partitions has been found

convenient.

words w1 ,

Let TI = {C1IC2I••• ICk}. Then TI is represented by k machine

wk where bit i of word j (1 ~ i ~ n, 1 ~ j ~ k) is

set to one iff i E C ..
J

This form of representation was chosen to simplify

partition operations and for compatibility with the structure used

for graphs.

In some circumstances it is convenient to keep track of

19.

those cells which have exactly one element. This can be done by keeping

an extra machine word whose one-bits indicate these cells.

3.11 Once a graph-theoretic algorithm has been implemented there

are several approaches which can be made towards its practical

evaluation.

In one approach the performance of the algorithm is examined

when it is applied to a specifically selected class of graphs. For

example, it can be applied to all the graphs on a small number of

points or to members of recognised families (paths, cycles etc.).

Alternatively, graphs may be constructed in an attempt to bring out

the worst of an algorithm, in order to guess at its "worst-casen

behaviour.

A fundamentally different approach is to apply the algorithm

to a collection of graphs chosen in some "random" manner from a

larger class. For example KUhn [36], [37] has devised a procedure by

which "random" graphs having a specified degree sequence can be con-

structed.

For our own purposes we have found the following process

convenient. Let 0 ~ cr ~ 1 be a real number, and let n ~ 1. Suppose

the edges of the complete graph are labelled e 1, e2, where

N = (~). Then we can construct a graph G on n points as follows. For

each 1 ~ i ~ N generate a random number x from a population rectangularly

distributed between 0 and 1. If x ~ cr then we include the edge e. in
l

G; otherwise we leave it out.

A sequence of graphs produced in this manner for say cr = 0•5

will be referred to as "random graphs with cr = 0• 5". The numbers of

20.

edges in the graphs of the sequence clearly have a binomial distribution

with mean Ncr and variance Ncr(l- cr). For a fixed number of edges m

every labelled graph with n points and m edges has an equal probability

of occurring.

21.

CHAPTER FOUR

PERMUTATION GROUPS

4.1 In this chapter we consider a few basic results on permutation

groups. Sections 4.2 to 4.6 are standard and can be found in any

reasonable text. The results in Sections 4.7 to 4.11 are unlikely to

be new, but we have not seen them previously in print. In the last

part of the chapter we consider a lattice 8(~) defined by the orbits

of subgroups of~. While this lattice seems to have been rarely

defined, the results we obtain about it are well known.

Let~ be a gr~up of permutations of the points V, where

V= {1, 2, 3, n}.

4.2 Lemma: ~ can be written as the disjoint union

u • • • u

where ~ is the stabiliser of v 1 in ~ and for 1 :::; i :::; s, y 1. is any
vl

element of ~ such that v 1 Yi = V • •
1

Proof: Clearly~ y u ~ y u ••• u ~ y is contained in~. If
v 1 1 v 1 2 v 1 s

i ~ j, then~ y. n ~ y. =~since elements of~ y. take v1 onto v.
v 1 1 v 1 J v 1 1 1

whereas elements of~ y. take v1 onto v ..
VI J J

Let y E ~.

-1
= v.Yi

1

Then v 1Y = v. for some i.
1

Hence yy.- 1 E ~ so that yE~ y ..
1 Vl v 1 1

Therefore

D

22.

4.3 Corollary: (Orbit-stabiliser relation) D

The sets ~ y. (1 ~ i ~ s) are called the (right) cosets of
VI l

~vl in ~ and the set {y i }~ is a set of (right) coset representatives for

~ in ~.
vl

Let {vl, •••, vr+1} ~V be a set of points such that the

point-wise stabiliser ~ is trivial. For 1 ~ k ~ r+l denote
vl • • • • 'Vr+1

~ by ~(k) and ~ by ~(O).
VI, ••• ' Vk

In the manner of 4.2 write

4.4
s

= J \l/(k+1)v, (k)' =
I , 1 where sk

i=1

~(k)
t vk+1 I (0 ~ k ~ r) .

4.5 Lemma: For 0 ~ h ~ r, ~(h) is generated by the set

~h = {yi(k) lh ~ k ~ r, 1 ~ i ~ sk}.

Proof: The lemma is clearly true when h = r. Suppose it is true when

(.)
h = j where 1 ~ j ~ r. In other words, suppose (~ .) = ~ J ,

J

(. -1)
Then by 4.2 and 4.4, any element of ~ J can be written

(. -1) (.) (. 1)
(uniquely) in the form yyi J , where y E ~ J and yi J-

(j -1)
Hence ~. 1 generates ~ ,

J-

4.6 Lemma:
r

1~1 = ns.
k=O k

Proof: From 4.3 and 4.4.

E ~. 1
J-

D

D

4.7 Theorem: Let Y be a subset of~. For 0 ~ k ~ r+l define

Y = Y n ~(k).
k Then if the orbit of < Yk) containing v is the same k+1

23.

as the orbit of ~(k) containing vk+i for k ~ h ~ 0 we have

(Yh) = ~(h).

In particular" if h = 0 3 < Y > = ~.

Proof: The theorem is trivially true for h = r + l.

Suppose it is true for l ~ h = ~ + l ~ r + l.

Obviously < Y ~) ~ ~ (~) . Let { w1 , • • • , w s} be the orbit

of~(~) containing v~+i' By 4.2, ~(~) = ~(~+i)y 1 u ••• u ~(~+i)Ys where

(~) Y·
for l ~ i ~ s, yi is any element of~ such that w11 = wi.

But {w1, •••, ws} is an orbit of (Y~) by hypothesis and so

such a set { y 1 , • • •, y s} can be found in <Y ~).

D

4.8 Theorem: Let Y ~~satisfy the requirements of 4.? for h = 0.

Then Y has a subset Y' satisfying these requirements and such that

IY' I ~ n - p where ~ has p orbits.

Proof: Label the elements of Y as y1 , yt in an order such that

if y. ~ ~(k) and y. E ~(k) for some i, j, k then i < j.
l J

Then the required set Y' can be produced by the following

algorithm.

4.9 Algorithm: Compute the generators Y' for ~.

(l) Set Y 1 : = <P;

n .- discrete partition of V;

i := l.

24.

(2) Set TI 1 to the partition of V whose cells correspond to the

cycles of y .. If TI' is not finer than TI set TI := TI' V TI and
l

Y' Y' u {y.}.
l

(3) Set i .- i +1. If i :::; t go to step (2) ; otherwise stop.

The element y. is not accepted into Y' if, and only if,
l

<yi, yi+i' •••, yt) has the same orbits as (yi+i' •••, yt). Hence,

by the ordering of Y, (Y' n 'l'(k)) has the same orbits as (Y n 'l'(k))

for any k. Therefore the set Y' satisfies the requirements of

Theorem 4.7 for h = 0.

Now the partition TI has n cells at the start of the algorithm

and p at the finish. Furthermore, the number of cells is decreased

each time an element is added to Y'.

Therefore IY' I :::; n - p. D

4.10 Note: The set ~ 0 defined in 4.5 satisfies the requirements of

Theorem 4.7. Therefore by 4.8 it contains a subset of at most n- p

elements which generate '¥.

4.11 Given a subset Y of '¥ which satisfies the requirements of

4.7 for the sequence v 1 , v 2 , ••• v it is a straightforward matter
' r+1

to generate the whole of'¥. The first step requires the construction

of coset representatives {y. (k)} satisfying 4.4. This can be done (for
l

each k) by defining a digraph Gas follows. The points of G are the

elements of V. The edges of G are the directed pairs [v, vy] where

v E V, y E Y n 'l'(k) and vy ~ v. The directed edge [v, vy] is labelled

with the element y, with the proviso that no directed edge need be

labelled with more than one group element. Now let {w1 , w } be
s

the component of G containing w1 = vk+i' For each w. (1 ~ i ~ s)
l

there is a path of directed edges from w1 to wi. Then define

25.

(k)
yi = 8182•••8£ where o1 , •••, o£ are the labels of the edges of the

path chosen.

Clearly the above procedure generates coset representatives

{y. (k)} satisfying 4.4. Once this has been done the generation of o/
l

is routine. Every element of o/ can obviously be written in the form

y. (i)y. (2)•••y. (r), and by 4.6 this decomposition is unique.
ll l2 lr

Although we will not give further details here an algorithm based on

these ideas can be devised which for large lo/l requires only

marginally more than one permutation multiplication for each element

of o/.

Let y be an element of o/. Then y is said to fix a partition

TIE IT(V) if v ~ vy for all v E V. The set of all elements of o/ which
TI

fix TI is denoted by o/ , and is called the stabiliser of TI in o/.
TI

For example, if n = 4, o/ = 84 and TI = {1,213,4} then

o/ is the set {(1), (1 2), (3 4), (1 2)(3 4)}.
TI

4.12 Lemma: Let TI1~ TI2 E IT(V). 0

4.13 Corollary: o/ ~ o/ for any nE IT(V).
TI

Proof: o/ = o/ where n 0 is the unit partition of V.
TIQ

0

Let X be a subset of o/, Then we denote by 8X the partition

whose cells correspond to the orbits of the group generated by X.

In particular, if y E o/ then the cells of e{y}' which we

26.

write as ey' correspond to the cycles of y. If X is null eX will be

taken to be the discrete partition of V.

4.14 Theorem:

Proof: Let v 1 and v2 be in the same cell of e
X1uX2

Then there is

sequence YI, Y2, ... Yr of elements of X1 u Xz' such that vz = VIY
'

where y = Y1Y2" • •y · From this we can construct a sequence
r

a

wo, Wl'
... w of points by setting wo = vl, w. = wi-1

Yi (1 ~ i ~ r). ' r l

For 1 ~ i ~ r we see that w. 1 and w. are either in the
l- l

same cell of eX1 or of ex2 and so v 1 and v2 are in the same cell of

exl v eXz

The converse follows in a similar fashion. 0

4.15 We can now define

8(~) = {TI E rr(v) ITI =ex for some x ~ ~}.

8(~) will be called the orbits lattice of ~ and its elements

will be called orbital with respect to ~.

8(~) is not in general isomorphic to the lattice of subgroups

of~ since distinct subgroups may have the same orbits.

Define a function e by e(TI) = e~ for any TIE IT(V). e(TI) is
TI

thus the coarsest orbital partition which is finer than TI. Note that

e depends on ~ .

Then we can equivalently define 8(~) as

4.16 8(~) = {TI E IT(V) ITI = e(TI)}.

27.

4.17 Example: Consider the group

'¥ = {(1), (1 2), (7 8), (1 2)(7 8), (1 7)(2 8)(3 6)(4 5),

(1 8 2 7)(3 6)(4 5), (1 7 2 8)(3 6)(4 5), (1 8)(2 7)(3 6)(4 5)}.

Then 8('¥) is the lattice of Figure 4.1.

{1, 2' 7' 8!3$ 614, 5}

J
{1, 217, 8}

{1, 712, 8!3, 6!4, 5} /\ {1, 812, 7+3, 614, 5}

2} {7, 8}

~ p
{1}

Figure 4.1

4.18 Lemma: 8('¥) is closed under v but is not necessarily closed

under "·

Proof: The first part is immediate from 4.14. For the second part

consider the partitions 'ffl = {1, 712, 8!3, 614, 5} and7r2= {1, 2!7, 8}

of Figure 4.1. Then 7f 1 "7f2 = {3, 6!4, 5} which is not in the

lattice. 0

4.19 Lemma: If 7TI 3 7f2 E 8('¥) then the meet of 'ffl and 7T2 in the

Proof: From 2. 6 , noting that the discrete partition of V is always

in 8('l'). 0

CHAPTER FIVE

EQUITABLE PARTITIONS

28.

5.1 In this chapter we examine the lattice of equitable partitions

of the points of a graph. This lattice, although it is rarely defined

as such, plays a central role in many existing algorithms for graph

isomorphism [14, 46, 51, 62, 69] and in our own. Results not

attributed to other authors are either new or trivial. Later in the

chapter we present a new algorithm for computing the coarsest equitable

partition finer than a given partition, an operation related to Unger's

"extending" process [76]. We show that it is at least one order of n

faster than the usual algorithm.

5.2 Until otherwise specified, G is a graph with points

V = {1, 2, n} and r = r(G) is its automorphism group. e(r) is

the orbits lattice of r defined in 4.15.

Let TIE TI(V) and C1, C2 E TI. Then C1 is said to be

equitably joined to C2 (in G) if d(v, C2) is constant for all v E C1.

If any pair of cells of TI (not necessarily distinct) are equitably

joined to each other then, following Schwenk [63], we say that n is

equitable. The set of all equitable partitions for G will be called

the equitable partitions lattice of G and denoted by 3(G).

Consider for example the graph drawn in Figure 5.1. The

lattice 3(G) consists of the eight partitions illustrated.

2

{1,712,813,614,5}

{1,2,4,5,7,813,6}
I

{1,2,7,813,614,5}
I

{1,217,8}

/~
{1,2} {7,8}
~~

{1}

Figure 5.1

8

{1,812,7!3,614,5}

A Graph and its Equitable Partitions Lattice

29.

The following result justifies, by 2.6 , our referring to

~(G) as a lattice.

5.3 Lemma: ~(G) 1.-s closed under v but not necessarily under A.

Proof: Let ~1. ~2 E ~(G) and let~= ~1 v ~2. C E ~.

Since ~1 ~ ~. C is a union of cells of ~1 (2.10). Hence if

since

30.

Similarly,

Now suppose that v1 ; v2 • Then as in the proof of 2.12 there

is a sequence of points

with the property that whenever 1 ~ i ~ r, either wi_1 ; 1 wi or

Hence d(w. 1 , C) = d(w., C) for 1 ~ i ~ r, and so
1- 1

d(vl, C)= d(v2, C).

Thus 'IT E ::(G).

To demonstrate the second part of the lemma, consider the

partitions 'Tfl = {1, 712, 813, 614, 5}, 'Tf2 = {1, 812, 713, 6!4, 5} of

Figure 5.1. Then 'Tfl A 'Tf2 = {3, 6!4, 5}, which is not equitable. 0

It would be interesting to characterise those graphs for

which ::(G) is closed under A, but nothing seems to be known about

this problem.

5.4 For any 'IT E IT(V) we define ~('IT) to be the coarsest equitable

partition (with respect to G) which is finer than 'IT. For example, if

G is the graph of Figure 5.1 and 'IT= {1, 2, 7, 813, 6, 4, 5} then

~('IT) = {1, 2, 7, 8!3, 6!4, 5L

Formally, ~('IT) = v{'Tf' E ::(G) !'IT' ~'IT}. The set here is not

null since the discrete partition is always equitable. The join

exists by 2.5 and is equitable by 5.3.

31.

5.5 The meet of two partitions ~1 and ~2 in the lattice ~(G)

can now be identified as ~(~1 A ~2).

The following results (5.6-5.10) are elementary and well

known.

5.6 Lemma: Let ~ E ~(G) and~' ~ ~. If G' is the subgraph of G

induced by the points in ~~, then ~~ E ~(G').

Proof: If C E ~·and v1 ~--;. v2, then dG 1 (vl, C)= dG(vl, C)=

dG(v2, C) = dG' (v2, C). 0

5.7 Corollary: The subgraph of G induced by the points in one cell

of~ E ~(G) is ~gular. 0

5. 8 Lemma: ~ (G) = ~ (G).

Proof: Let ~ E ~(G), C E ~ and v E V. Then

fCI - dG(v, C) if V E c
dG(V' c) =

!C I - dG(v, C) - l if V d c.

Hence if v1; v2 then dG(vl, C)= dG(v2, C). Therefore

~(G) c ~(G) and the opposite inequality follows similarly. 0

5.9 Theorem: e(r) c ~(G).

Proof: Let~ E 0(f). Then~= 8(~).

Let C be a cell of~ and let v 1 ; v2. Then there is an

element y of r such that vly = v2 .
~

32.

Now y maps C onto itself, and v1 is joined to v E C iff

y . . . d t y
Vz = VI lS JOlne 0 V

Hence d(vl, C)= d(vz, C) and so TIE ~(G). D

5.10 Corollary: For any TI E IT(V)3 8(TI) ~ s(TI). D

The conclusion of the last theorem suggests the following

definition. A graph G will be called simply-equitable (or s-e for

brevity) if equality holds in 5.9. That is to say, G is s-e if

e(r) =~(G). The characterization of s-e graphs appears to be very

difficult and only partial results have been obtained.

The smallest graphs which are not s-e are the disconnected

graph

D
and its complement. In these cases the unit partition is equitable

but not orbital.

In practice it is very difficult to tell whether a given

graph is s-e or not, due to the large size of IT(V) for moderate n.

However, if it is s-e, then the coarsest equitable partition is also

the coarsest orbital partition. That is,

5.11 er= v(~(G)).

This necessary (but not sufficient) condition is readily

tested empirically. A search of all the graphs with 8 points has shown

that 5.11 holds except for those shown in Figure 5.2, together with

33.

their complements. The graph marked (*) is self-complementary. The

coarsest equitable partition is indicated by the labelling; two

points are in the same cell if they have the same label (or no

label). It is not known whether there are any 8-point graphs satis-

fying 5.11 but not s-e.

A similar search of the 274668 graphs with 9 points has

revealed 168 for which 5.11 does not hold.

1

<N>
1

l

@
1

Figure 5.2

8-Point Graphs not Satisfying 5.11

It is not easy to find graphs which satisfy 5.11 but are not

s-e. In fact it seems to be usually the case that all equitable

partitions of G which are not orbital are coarser than er. The smallest

34.

counter-example known to the author is the 16-point graph shown in

Figure 5.3, which appeared in [66] in a different context. This graph

is transitive and so 5.11 is satisfied. However, if

TI = {112, 4, 5, 8, 13, 1413, 6, 7, 9, 10, 11, 12, 15, 16} then

TI is equitable, but 8(TI) = {112, 4, 5, 8, 13, 1413, 9, 1116, 7, 10,

12' 15' 16}.

11 12 9

Figure 5.3

Points with the

same label are

to be identified.

Corneil [ll] has proved that all trees satisfY 5.11. We can

generalize this result considerably as follows.

If G is tree define Q = K1 . If G is not a tree but is

connected, define Q to be the largest induced subgraph of G which has

no points of degree zero or one.

5.12 Lemma: If G is connected~ then Q is miquely defined and connected.

Proof: If G is a tree the lemma is trivial.

Suppose G is not a tree and G1 and G2 are different induced

subgraphs satisfying the definition of Q. Then let G3 be the subgraph

of G induced by the points of G1, the points of G2 and the points of

every path in G joining a point of G1 to a point of G2. Then G3 has

no points of degree zero or one and is larger than either G1 or G2.

If Q is disconnected, then by including the points of

35.

every path joining one component of g to another we derive a similar

contradiction.

If G is disconnected and has components G1, G2,

then we define G to be the disjoint union G1 u ~ u • • • u G •
=r

For example the graph G of Figure 5.4 has ~as shown.

G: I

0

Figure 5.4

5.13 Theorem: If g is s-e, then so is G.

D

G
r

Proof: Suppose the theorem is not true. Then there is a s-e graph H

and a graph G of smallest size (for H) that is not s-e but has g = H.

Let TIE ~(G). We now proceed to show that TI is orbital,

thus arriving at a contradiction.

Since G ~ H, G has at least one point of degree one. We

consider two cases:

2~~~-~: Suppose G is of the form

G' I I I
m copies

where m ~ 1 and G' is a (possibly disconne~ted) graph with no points

of degree one.

36.

Then H is clearly the graph

G' 0 0 0

m copies

Since G' has no point of degree one, TI can be written in the form

(0 s r and l s k)

where

(5. 6)

Consequently,

where D is a cell containing the illustrated m isolated points of H.

But His s-e by hypothesis, and son' E 8(H).

Take points VI and v2 such that VI ; v2. We have two

possibilities:

(a) C. (l s i s r).
l

Since n' E 8(H) there is an element y' of r 1 (H) such that
TI

-- {vy'
Defining y by vy

V

and v Y = v 1 2.

(b) v1, v2 E D. (l s i s k) .
l

if V E G'

otherwise
we find that y E r (G)

TI

Since the subgraph F of G induced by D. is regular (5.7)
l

it consists of copies of I or of isolated points.

(l) If F consists of copies of I then Di is an orbit of r (G).
TI

(2) If F consists of isolated points, denote by v1 and v2

37.

the points connected (in G) to v1 and v2 respectively. Suppose

vl E D .. Then v2 E D. since
J J

d(vl, D.)= d(v2, D.).
J J

Hence the permutation (v1v2)(v1v2) is an element of r (G) and takes
7f

Case B: If G is not of case A, then it must have a point v of

degree one connected to a point of degree greater than one.

Suppose v is in the cell C of TI. Then all points in C have

degree one.

DefineR= {v E VJd(v, C) ~ 0}.

Let C' be a cell of 7f s.t. C' n R ~ ~· Let v 1 E C' n R.

(1) Suppose there is a point v2 in C' \R. Then d(v1 , C) ~ 0

but d(v2, C) = 0 which contradicts 7f being equitable, since v1 ~ v2.
7f

(2) Suppose there is a point v2 in R\C'. Then choosing v1 and v2

in C connected to v1 and v2 respectively we find d(vl, C') = 1 but

d(v2, C') = 0 which again gives us a contradiction.

Consequently we must haveR = C' so that R is a cell of TI.

Suppose R is the set {rl, r2, r } (1 :,; m).
m

Now define S = {v E V!v has degree one (in G) and

d(v, R) ~ 0}.

Let C' be a cell of 7f s.t. C' n S ~ ~. Let v 1 E C' n S.

Suppose there is a point v2 in C'\S. Then d(vl, R) = 1 but d(v2, R) = 0

which contradicts 7f being equitable, since v 1 ~ v2 and RE TI. Hence
7f

38.

C' c S, and so S is a union of cells of TI.

Say S = C1 u Cz u ••• u C where each C. is a cell of TI.
r 1

For 1 ~ i ~ r, 1 ~ j ~ m define

C.j = {v E C. lv is adjacent tor.}.
l l J

Since R E TI and d(r. , C.) = I C. j I we find that I C. j I is independent
J l l l

of j.

Our constructions so far may be made clearer by considering

the following schematic diagram, where m= r = 2.

s = c1 u c2

c 11 = {1, 2}, c1 2 = {3, 4}

,_ ~~ -----..--------

Figure 5.5

Let G' be the subgraph of G induced by V\S and let

c }.
r

Then TI 1 E ~(G') by 5.6. Furthermore, g 1 = ~ = H since we have

only removed endpoints of G. Hence by our induction hypothesis,

TI 1 E 8(G').

Now suppose v1 vz.
TI

(1) I vz ·
TI

Hence there is an element y'

y'
of r ,(G') such that vl = vz. Construct Y as follows:

TI

(a) If v E V\S let vy y' = V

39.

(b)
. k

For l ~ i ~ r, l ~ j ~m let y map C.J onto C. where r.
l l J

maps onto r according to part (a). Any bijective mapping will do.
k

Then it is easy to see that yE r (G), and that y takes
7f

(2) If v1, v2 E C. for some l ~ i ~ r, suppose that VI E C.j
l l

and v2 E c.k. Then we can find y' Er ,(G') which takes r. onto rk
l 7f J

and extend it to y E r (G) in the same way as in (l) above. This
7f

gives US y which takes C.j onto C.k and we can choose y to take VI onto
l l

So in any case we have y E r (G) which takes v 1 onto v2 .
7f

Therefore 7f E G(G). D

5.14 Corollary 1: All trees and forests are s-e. D

5.15 Corollary 2: For a graph G define a(G) to be the complement of

Q with any isolated points {of g) removed. Then if ar(G) is nuU or

s-e for any r _, then G is s-e.

Proof: By applying 5.13 to G and G and using 5.8. D

Let 7f E IT(V) and Cl, C2 E 7f. Then we say that C1 is

trivially joined to c 2 (in G) if one of the following holds for all

(l) d(v, C2) = 0.

(2) cl~ c2 and d(v, C2) = IC21·

(3) cl= c2 and d(v, C2) = IC21 - l.

40.

Obviously, if TIE ~(G), then a trivial cell of TI is trivially

joined to every cell of n.

The following result is well known, for example to Levi [40].

5.16 Lemma: Let n E IT(V) and let C E n be trivially joined to every

cell of n\C. If G1 and G2 are respectively the subgraphs of G

Proof: Obviously fTI(G) ~ f(G 1) $ fn\C(G2). Suppose Y1 E f(Gl) and

y2 E rn\C(G2), and define y = y 1y 2. Suppose {vl, v2} is an edge of

G. If vr and v2 are both in C or both not in C, then obviously

is an edge of G because C is trivially joined to the cell of TI con-

Thus y E f (G). TI 0

5.17 Theorem: Let TI E ~(G)~ C E TI and suppose that

(1) The subgraph of G induced by C is transitive.

(2) For any C' E n\C~ then either (ICI, IC' I)= 1 or !Cl = IC' I = 2.

Then C is an orbit of r .
TI

Proof:

(1) Suppose !Cl > 2, Let C' E n\C.

Then counting the edges joining C to C', we have

IC ld(v, C') = !C' ld(v', C) for any v E C, v' E C'.

But !Cl and IC' I are coprime and so !Cl divides d(v', C)

and !C' I divides d(v, C'). However, 0 ~ d(v', C)~ !Cl and

41.

0 :::; d(v, C') :::; \C' \. Hence either d(v, C') = d(v', C) = 0 or

d(v, C') = \C' I and d(v', C)= \Cl. Consequently, C satisfies the

requirements of 5 .16 and so C is an orbit of r since < C) is
1T

transitive.

(2) Suppose the cells of size 2 of n are C1, C2, ck where

for 1:::; i:::; k, C. = {v.lv.2}.
l l l

Two cells of size 2 can be equitably joined in one of

these four ways:

0 0 ® X 0 0__.

Since <C.) is either K1 or :K2 for 1 :::; i :::; k we find that the
l

permutation

Hence each C. is an orbit of r .
l 1T

is in r .
1T

(3) If \C\ = 1 then the theorem is trivial. D

5.18 Corollary: If the conditions of the theorem are satisfied for

each cell C of n then n E G(G). D

5.19 Theorem: Let ·rr E ::!(G) have £ ceUs~ where n- £:::; 5. Let C

he a cell of n of the smallest non-trivial size. Then C is an orbit

of r . The bound is sharp.
1T

Proof: The possible sizes for the non-trivial cells of n are

42.

2,

22, 3,

222, 23, 4,

2222, 223, 33, 24, 5,

22222, 2223, 233, 224, 34, 25, 6,

Theorem 5.17 can be applied to all these cases except 24 and 224

since all the regular graphs on ~6 points are transitive. Hence we

need consider only the cases where n has a cell C1 consisting of 4 points

and one or two cells consisting of two points each.

For a start we notice that if n has a cell of size 2 joined

trivially to C1 then that cell is an orbit of r by the same argument
n

as used in 5.17. In this situation the case 24 is proven and the

case 224 reduces to the case 24.

Consider the subgraph <:cl). Since it is regular (5.7), it

must be K4, Z4 or the complement of one of these. Hence it can be

labelled so that its automorphism group contains the group D4 of the

square

:o:
Suppose c2 = {v1 , v2} is a cell of n which is not trivially

joined to Cl. Then since C2 is equitably joined to C1 we must have

can bisect Cr into two halves -- those points adjacent to v 1 and

those adjacent to v2. This can be done in one of three non-equivalent

ways:

43.
b c

A: aDd
b c

B: aDd
b c

C: aDd
D A = {(be) (ad) , (bd) (ac)}

DB= {(ab)(cd), (ac)(bd)}

DC= {(abed), (adcb), (ab)(cd), (ad)(bc)}.

Note that DA consists of those elements of D4 which swap the

two halves of C1 shown in A, and similarly for DB and DC.

(i) In the case 24, r contains (vlv2)Y where y is from the
1T

set DA, DB or DC depending on the way c2 is joined to C1.

(ii) Let C3 = {v3, v4} be another cell of TI, not joined trivially

to C1. Now suppose that for example C2 gives the bisection A of C1

and C3 gives the bisection B. Then we let y E DA n DB. This can

always be done since any pair of the sets DA' DB and DC have an

element in common.

Now c2 and c3 can only be joined in one of the ways shown in

5.17, and so the permutation Cv1v2)(v3v4)y is in r , which shows that
1T

both c2 and C3 are orbits of r .
1T

The graph marked (*) in Figure 5.2 is a counter-example

where n - .!/, = 6. D

44.

5.20 Theorem: Let 'IT E ::(G) where G is connected and let C E 'IT. Let

'ITC be the partition of the points of G into cells of equal distance

from C. Then 'IT ~ 'ITC.

Proof: For any j ~ 0, let D. = {v E Vla(v, C) = j}.
J

We prove by induction on j that each D. is a union of
J

cells of 'IT.

Firstly, Do = C E 'IT,

Now suppose that for some j ~ 0, Dj is a union of cells

of 'IT.

Then whenever vl ~ v2 we have d(vl, D.)= d(v2, D.).
'IT J J

Now Dj+i = {v E Vla(v, C) > j and d(v, D.) 7 O}.
J

Therefore, if v1 E Dj+i' we must have v2 E Dj+i and so

Dj+i is also a union of cells of 'IT.

Hence 'IT ~ 'ITC. 0

If G is transitive and 'ITC E ::(G) whenever ICI = l, then G is

called distance-regular. Distance regularity is also defined for

non-transitive graphs. If 'ITC E e(r) in the same circumstances, G

is called distance-transitive. See Biggs [6] for further details.

5.21 Let 'IT E IT(V) be the partition {C 1 IC2!••• IC£} and let the

elements of V be vl, v2 • V in some order. We define an £ x n
n

matrix T = T(TI) by

{:
if V. E c.

T .. = J l

lJ otherwise.

45.

Clearly TT' is the£ x £diagonal matrix diag(IC1!, •••, !C£1)

and so (TT')- 1 exists. Let A be the adjacency matrix of G with the

labelling v1, and define the £ x £ matrix

B = TAT I (TT I) - 1 .

5.22 Theorem: 'IT E :;:;:(G) iff TA= BT. Furthermore~ if 'IT E :;:;:(G)~ then

B .. = d(v, C.) for any v E c.~ where l ~ i ~ £3 1 ~ j ~ £.
lJ l J

Proof: Suppose TA = BT. Then for 1 ~ i ~ £, 1 ~ j ~ n we have

and

n
(TA) .. = I T.k~' lJ k=1 l J

= I Ak.
kEC. J

l

= d(V., c.)
J l

£
(BT) .. = I B.kTk. lJ k=1 l J

= BikTkj where V. E ck J

= Bik"

Hence for V. , V. E Ck (1 ~ k ~£),we have
J l J2

d(v. 'c.)= B.k = d(v. 'C.) (1 ~ i ~£)and so 'IT E :;:;:(G).
Jl l l J2 l

Conversely, if 'IT E :;:;:(G) define the £ x £ matrix B by

~

B. . = d (v, C.) where v E C . (1 ~ i ~ £, 1 ~ j ~ £) .
lJ l J

~

Then, in a similar fashion, TA= BT, and this implies that

B = TAT'(TT')-1 =B.

5.23 If TIE ~(G), then the matrix B is sometimes called the

46.

0

quotient matrix of A induced by TI, although some authors use this title

for the transpose B'. It plays an important part in many algorithms

for graph isomorphism, for example that of Corneil and Gotlieb

[11, 14].

The matrix B also plays a central role in many other regions

of graph theory, in particular spectral theory. For example, the

characteristic polynomial of B divides that of A, a result first

proved by Haynsworth [23]. We shall not be concerned with these

matters here. For further information see Sachs, Petersdorff and

Finck [19, 53, 60, 61], Schwenk [63] and Djokovic [15].

5.24 VIe turn now to the problem of computing !; (TI). This problem

is of central importance in many proposed algorithms for graph iso­

morphism for the following reason. Given any partition TI E TI(V) we

have (by 5.10)

8(TI) ~ !;(TI) ~ TI,

Consequently I;(TI) is in general a better estimate of 8(TI)

than is TI, and in many cases (s-e graphs for example) will equal 8(TI)

exactly. I;(TI) can often be used in place of 8(TI), which is much

harder to compute.

5.25 In order to store a partition in the computer we need to

assign an order to the cells. Similarly, we need to label the points

of a graph. These matters have been discussed in sections 3.8 to

3.10. They lead us to the following definitions.

G is a labelled graph with points V= {1, 2, n}.

IT(V) is the class of ordered partitions of V. In other

words, IT(V) is the class of sequences [C1IC2I··· ICk] where

If TIE IT(V), then n(i) denotes the i-th cell of TI.

47.

If n1 and n2 are in either IT(V) or IT(V) we write n1 ~ n2

to indicate that n1 and n2 have the same cells in some order.

Otherwise when relations and functions defined on IT(V) are

applied to elements of IT(V) we understand that the corresponding

unordered partitions are intended. For example, if n1, TI2 E IT(V),
~ ~ ~

then by TII ~ n2 we mean that n1 ~ n2 where n1, n2 E IT(V), TII ~ n1 and

5.26 We begin by presenting a very simple algorithm for computing

~(n). The ideas behind this algorithm date back to Duijvestijn [17],

Unger [76] and Morgan [46]. More recently, it has been proposed in a

similar form by Corneil [11], Parris [50], Steen [69] and Tinhofer

[72 J.

Suppose n = [Cl I·· • I Ck] E IT(V). Then we define the vector

.Q.(v, n) for each v E V by

where V E TI (do)

and d. = d(V, C.) (1 ~ i ~ k).
l l

Note that all degrees are taken in the graph G.

48.

5.27Algorithm: IR*. Compute 1f"" 1;(7r).

(l) Set 1f • - 1f.

(2) Compute £(v, ;) for each v E V.

(3) Set 1r1 to the ordered partition of V whose cells contain

points for which £(v, ;) is equal, and are ordered according to a

lexicographic ordering of these vectors.

(4) If 1fl ~ 1f stop.

(5) Set 1f := 1r1. Go to step (2).

Let dt*(1f) denote the value of 1f when the algorithm stops.

5.28 Example: Let G be the graph of Figure 5.6 and let

1f = [1, 2, 3, 4, 5, 6, 7, 8].

for v

1

4

Figure 5.6

(l) 1f = [1, 2, 3' 4' 5' 6. 7, 8].

(2) £(v, ;') = [1, 2], [1, 3], [1,

[l, 3], [l' 3]' [1,

= l, 2, 8 respectively.

(3) 1fl = [1, 712, 3, 4, 5, 6, 8].

(5) 1f = [1, 712, 3, 4, 5, 6, 8].

3],

2],

7

8

[1, 3].

[1, 3]'

49.

(2) ~(v, ;) = [1, o, 2], [2, 1, 2], [2, 0, 3]' [2, 1, 2 J'

[2, o, 3]' [2, 1, 2 J' [1, 0, 2], [2, 1, 2],

for v = 1, 2, 8 respectively.

(3) 'IT I = [1, 713, 512, 4, 6, 8].

(5) 'IT = [1, 713, 512, 4, 6, 8].

(2) ~(v, ;) = [1, o, o, 2], [3, 1, 1, 1], [2, o, 1, 2], [3' 1, 1, 1].

[2, 0, 1, 2], [3' 1, 1, 1], [1, o, 0, 2], [3. 1, 1, 1],

for v = 1, 2, 8 respectively.

(3) 'ITI = [1, 713, 512, 4, 6, 8].

(4) Stop.

Hence IR*('IT) = [1, 713, 512, 4, 6, 8].

5.29 Theorem: (R*('IT) "'~('IT) for any 'IT E TI(V).

Proof: Consider step (3). The first element of £(v, ;) for each v

~ ~ ~

ensures that 'ITI :s: 'IT. Also, the condition 'ITI "' 'IT is just that for 'IT to

be equitable.

Hence ~('IT) is equitable, and 6t*('IT) :s: 'IT. Therefore,

Let C be a cell of ~('IT) and let v 1 , v2 E C. Now ~('IT) :s: 'IT

~

and so when step (2) is executed for the first time each cell of 'IT is

a union of cells of ~('IT) (by 2.10). Therefore £(vl, ;) = ~Cv2, ;)

50.

and so VI and v2 will be in the same cell of ~ 1 after executing step

(3). Hence, at this stage ~(~) ~ ~1· Repeating this argument for

each time steps (2) and (3) are executed we see that~(~) ~ Gt*(~),

which completes the proof. 0

5.30 Despite its simplicity the algorithm 6t* has several

disadvantages:

(l) We are required to sort vectors of varying lengths. In King's

implementation [31] this problem is simplified by a process of

11 compacting" the vectors. For example, if d(v, :;;:') = [12, 01, 03, 07]

then we can write this as an integer 12010307. However, special

handling is still required as such integers can be much too large to

store as integers in the normal way.

(2) Much unnecessary computation is performed. For example,

suppose that after step (3) the partitions ~ and ~l have a common

cell C. Then for all VI, v2 in the same cell of ~1 we have

d(vl, C) = d(v2, C). Therefore there is no need to compute these

degrees next time step (2) is executed since they will make no

difference to the sorting.

5.31 A few improvements to ot* have been suggested in special

cases. If the initial partition ~ contains a trivial cell, say {v},

then Saucier [62] first divides V into cells of equal distance from v

(compare 5.20). Then we know that cells c1 and c2 are trivially

joined if 13 (v, C d - 3 (v, C2) I > 1. This would seem to save much

time if the graph has a large diameter. Another variation is used by

Levi [40] for the fundamentally different case where the cells of the

partitions contain both the points and the edges of the graph.

51.

We now present a new algorithm which, while not the final

answer to the problem, has been found to work very satisfactorily in

practice.

Let TIE IT(V) haver cells. Let K be a positive integer. The

value of K will be discussed later.

5.32

d(v,

Algorithm: O{K: Compute TI "'

(1) Set TI := TI' ,

k := K·
'

Q, .- r·
'

£' . - r .

(2) If k > Q, or Q, = n, stop.

(3) Set c .- ;(k);

i .- 1.

(4) If I; (i) I = l go to step

(5) Sort ;(i) into cells cl>

C) for v E :;; (i).

(6) If s = 1, go to step (8).

~(TI),

(8) •

c2, C according to
s

(7) For 2 ~ j ~ s set ;(£' + j - l) .-

Set £' := £' + s - l.

(8) Set i : = i + 1. If i ~ £, go to step (4) .

(9) Set £ := £ 1 ;

k := k + l. Go to step (2).

c ..
J

52.

Let ~(n) denote the value of; (with £ cells) when the

algorithm stops.

5.33 We consider the example of 5.28 and apply algorithm 5.32

with K = 1.

(l) TI = [1, 2, 3, 4, 5, 6, 1, 8], k = £ = £' = 1.

(3) c = {1, 2, 3, 4, 5' 6, 1. 8}, i = 1.

(5) d(v, C) = 2, 3, 3, 3, 3, 3, 2, 3 for v = 1, 2,

respectively. cl = {1, 7}, c2 = {2, 3, 4, 5, 6, 8}.

(7) TI = [1, 1 12' 3, 4, 5, 6, 8], £' = 2.

(9) £ = 2, k = 2.

(3) c = {2, 3, 4, 5. 6, 8}, i = 1.

(5) d(1, C) = 2, d(7, C) = 2 so s = 1.

(8) i = 2.

(5) d(v, C) = 2, 3, 2, 3, 2, 2 for v = 2, 3, 4, 5, 6, 8

respectively. cl = {2, 4, 6, 8}, c2 = {3, 5}.

(7) TI = [1, 712, 4, 6, 8!3, 5], £ 1 = 3.

(9) £=3,k=3.

(3) c = {3, 5}, i = 1.

(5) d(1, C) = d(7, C) = 0 so s = 1.

(8) i = 2.

8

53.

(3) d(2, C) = d(4' c) = d(6' c) = d(8, C) = 1 so s = 1.

(8) i = 3.

(5) d(3' c) = d(5' c) = 1 so s = 1.

(9) !(, = 3, k = 4.

(2) k > !(, so stop: fKdn) = [1, 712, 4, 6, 813, 5].

5.34 Theorem: For any 7f E rr(v)~ ~l(n) ~ ~(n).

Proof:

(1) For each value of k, steps (4) to (8) are executed less

than n times. Furthermore, k is incremented at step (9) and stops

execution when it passes £. Hence the algorithm terminates and so

lJt 1 (n) is defined.

(2) The partition TI is altered only at step (7) where it is

made finer. Let C be a cell of ~(n) and let v1, v2 E C. At step (1)
~

we set TI ton, which is coarser than ~(n).

Suppose that TI is coarser than ~(n) just before step (7) is

~

executed. By 2.10 each cell of TI is a union of cells of ~(n).

Therefore d(vl, C) = d(v2, C) and so v1 and v2 will be in the same
~

cell of TI after step (7) is executed.

(3) Suppose~l(n) is not an equitable partition.

Then 6<.1 (TI) contains cells C 1 and C2 and points v1, v2 E C 1

such that

54.

Since the partition TI is made successively finer during the

execution of the algorithm, v1 and v2 must always be in the same cell

~

of TI. We show that this leads to a contradiction.

(a) Suppose that before and after some execution of step (7),

c2 is contained in ;(p) and ;(q) respectively. Then clearly q ~ p,

and also q ~ n. However, k is set to 1 initially and is incremented

by 1 at each execution of step (9).

Therefore at some execution of step (3) we have C2 ~ ~(k).

(b) Since we are assuming VI and v2 are not separated, we must

have

But d(vl, C2) ~ d(v2, C2) and C2 ~ ;(k). Therefore, there is at least

one cell, say C3, of O(l(n) which is contained in ;(k)\C2 and such that

(c) Since C2 and C3 are distinct cells of ~1 (n) they must be

separated at some execution of step (7). At least one of them, say

C2, will then be a subset of some cell :;;:' (j) where j > k.

(d) As in (a), some cell containing C2 will again be encountered

as :;;:'(k) at step (3).

Clearly the argument from (a) to (d) can be repeated

indefinitely and so the algorithm will never terminate. This

contradicts (1).

Therefore, ~l(n) is equitable, and so ~l(n) ~ s(n) by

part (2). D

55.

5.35 One of the greatest advantages that algorithm 5.32 has over

algorithm 5.27 is that in many cases of practical concern the constant

K can be set to a value greater than one, without destroying the

validity of the algorithm. We now give a method for setting K which

will later be seen to have an important application.

Let ~1 E IT(V) be an equitable partition coarser than~.

Suppose ~1 has £1 cells. Let q be an integer (1 ~ q ~ £1) such that

for 1 ~ i ~ q, ~(j) ~ ~l(i) for at most one ~(j), (1 ~ j ~ q).

5.36 Theorem: {R,K(~) "'t;(~) if K = q + l.

Proof:

(1) By the same arguments as for 5.34 the algorithm terminates

and

(2) Suppose etK(~) is not equitable.

Then ~K(~) contains a cell C1 such that for some two points

vl, v2 in the same cell of ~K(~), we have d(vl, Cl) 7 d(v2, Cl).

Let ~ 1 be the equitable partition defined above. Since

a{K(~) ~ ~ 1 , there is a cell C of ~1 of the form cl u c 2 u ... u c
s

where each c. is a cell of 0\K(~).
l

But ~1 is equitable and so d(vl, C) = d(v2, C). Therefore

at least one of the cells C. (2 ~ i ~ s) also has d(vl, C.) 7 d(v2, C.).
l l l

Say i = 2.

Hence the defined relationship between ~ and ~1 ensures

that, if C1 and c 2 are contained in different cells of ~, one of them,

56.

say C2, is contained in a cell TI(j) where j ~ K. In this case we

can take up the proof of 5.34 at step (a) and derive the same

contradiction.

If however C1 and c2 are contained in the same cell of TI we

can take up the proof of 5.34 at step (c), where we read C1 for C3.

In either case we conclude that (}(K(TI) is equitable, and

0

5.37 We now study the efficiency of algorithms 5.27 and 5.32, for

the data structures described in sections 3.8-3.10. In both algorithms

the time taken for indexing etc., is quite trivial and so we may

accurately write

for tR,*

or

for (R,K

where t. is the total time, N. is the number of times we must compute
l l

d(v, C) for some point v and cell C, d. is the average time for such
l

a computation, and si is the time taken in sorting, for i = l, 2.

Suppose TI and ~(TI) have £o and £1 cells respectively.

5.38 Consider algorithm 5.27. Let p be the number of times

step (2) is executed. Since p ::; n and p = [n;1j when G = p we see
n

that p = O(n) in the worst cases.

(l) At the j -th execution of step (2), TI has a least £o + j - l

cells.

p
Therefore N1 ~ I n(£o + j- l) = ~np(2£ 0 + p- 1).

j=1

57.

(2) At the j-th execution of step (2) we are required to sort

n vectors of length at least £o + j. Even if a very efficient means

of packing the vectors is used the time for sorting will be at least

of order n log n, [20].

Therefore s1 = O(pn log n)

= O(n2 log n) (at least) in the worst cases.

5.39 Consider algorithm 5.32 for some value of K. Clearly step

(3) is executed £1 - K + 1 times.

(1) For each value of k we must compute d(v, ;;.'(k)) for at most

n points, depending on step (4).

Therefore N2 ~ n(£1 - K + 1).

(2) Sorting is performed at step (5) where we must order the

points of ;;.'(i) according to their degree relative to C. Now

0 ~ d(v, C) ~ n- 1 for any v E V, C ~V. This enables us to use the

address-calculation sort (see [20]). This sorting method is not only

the fastest but the simplest. The time it takes is of order l;(i) I

and so the time taken in sorting for each value of k is of order

£
L ITI(i) I = n.

i=1

Therefore s2 = O(n(£1- K + 1)).

5.40 In the author's implementation a computation of the form

d(v, C) takes a fixed time since the population count instruction can

be used (see 3.2). Therefore we can say that in the worst cases

we have

while t 2 = 0(n (£ 1 - K + 1))

= O(n2) for fixed K.

58.

The expression for t2 again emphasizes the advantage in

being able to set K > 1 in some cases.

5.41 The efficiency of algorithm 5.32 has been examined

extensively for "random" graphs of the type described in Section 3.11.

The results for the case where the initial partition is the unit

partition are illustrated in Figure 5.7. Each point represents the

average time for about 100 graphs. The cases where 0 = 0•75 or

0 = 0•50 are seen to be very nearly linear.

time
(milliseconds)

10

9

8

7

6

5

4

3

2

1

I

!J.

~

"/0 V (J =

0 0 =

!J. A (J =

10 20 30 40

number of points

Figure 5.7

0·75

0•50

0·25

50 60

59.

CHAPTER SIX

BACKTRACK PROGRAMMING - I

6.1 A large proportion of computing tasks in combinatorics can

only be handled by something which amounts to an exhaustive search

through a large set of possibilities. The most widely employed

method for performing such a search in a systematic fashion is known

as "backtrack programming" or "depth-first searching". Descriptions

of backtrack programming with various degrees of generality can be

found in Golomb and Baumert [22], Wells [(8], Tarjan [71] or Fillmore

and Williamson [18].

We begin this chapter by giving a formal description of

backtrack programming as applied to a problem of finding sequences

satisfYing a given property. This gives us a program with a natural

tree-like structure which we then explore.

Following these basic results, which are well known, we

introduce the invariance group T of the program and prove some of its

properties. It is seen that the automorphism group of the graph,

group or whatever object is under consideration is a subgroup of T

under certain very common conditions. The invariance group does not

appear to have been defined before, although some properties of

certain of its subgroups have been utilised. We show that knowledge

of a subgroup of T enables us to considerably reduce the amount of

work required by the backtrack method.

6.2 Let V be the set {1, 2, ···, n}. Then for 0 s k s n define

Q(k)(V) to be the set of sequences [vl, •••, vk] of distinct

elements of V. If k = 0 then the symbol [vl, •••, vk] indicates the

null sequence [].

60.

Define Q(V) = U Q(k)(V). Let P be a property defined on
k=O

Q(n)(V) and let U = {T E Q(n)(V) IT has property P}. We shall direct

our attention to the problem of finding U when P is given. For

example, if G is a graph with points V, then we might say that

T = [VI, vn' VI is a Hamiltonian

cycle of G.

One possible way to determine U is by testing each of the

(n) () n! elements of Q V to see which of them satisfy P. However, this

technique is obviously impractical except for very small values of n,

and so some more efficient means is required. The success of the

"backtrack" process lies in its capability for eliminating elements

of Q(n)(V) without examining them explicitly. To continue our

example, if VI, v2, v3 is a path in G, but v4 is not connected to v3,

then U contains no elements of the form [vl, v2, v3, v4, V J •
n

6.3 If v = [vl, •• •, vk] E Q(V), define Xv = {v E VIU contains an

element of the form [v1 , •••, vk, v, •••]}. Let W

be any function so that for v = [vl, •••, vk] E Q(V) we have

6.4

The backtrack algorithm we now present produces all

sequences [vl, •••, v] such that for 1 ~ i ~ n, vl. E W([vl, •••, v. 1 J).
n l-

The condition 6.4 shows that every element of U is of the form. In

practice a trade-off will usually be necessary between the size of

W(v) and the effort expended in computing it. If W(v) = X for all v,
\)

then only elements of U will be produced. At the other extreme, if

W([vl, •••, vk]) = V\{vl, •••, vk} for all [vl, ···, vk], then the whole

of Q(n)(V) will be produced.

6.5

61.

Algorithm: Find U given p

(1) Set k := 0.

(2) Set uk .- W([v 1 , vk]).

(3) If uk = ~. go to step (7) .

(4) Choose and delete any element vk+i from Uk. Set k .- k + 1.

(5) If k < n, go to step (2).

(6) Output [vl, v] if it satisfies P.
n

(7) Set k .- k- 1. If k ~ 0, go to step (3); otherwise stop.

6.6 We illustrate this algorithm by continuing our example of

finding Hamiltonian cycles in a graph G, namely the graph of Figure

6 .1.

(1)

:~5
3

Figure 6.1

Define Was follows:

W([]) =V (t)

vk]) = {vE V\{vl, •••, vk}lvis connectedto

vk in G} (k ~ 1).

(t) We have set W([J) = V because it makes our example more instructive
in later sections. In practice, we would set W([]) = {1} to avoid
each cycle appearing 5 times. For a more sophisticated algorithm
for finding cycles in a graph see Johnson [29].

62.

6. 7 We follow the progress of the algorithm until it finds the

first solution.

(1) k = 0

(2) Uo = {1, 2, 3, 4' 5}

(3) Do ~ ~

(4:) VI = 1, Do = {2, 3, 4, 5}, k = 1

(5) k < n so go to (2)

(2) u1 = {2, 4}

(3) u1 ~ ~

(4) v2 = 2, ul = {4}, k = 2

(5) k < n so go to (2)

(2) u2 = {3, 5}

(3) u2 ~ ~

(4) v3 = 3, u2 = {5}, k = 3

(5) k < n so go to (2)

(2) u3 = {4, 5}

(3) u3 ~ ~

(4) v4 = 4, u3 = {5}, k = 4

(5) k < n so go to (2)

(2) u4 = {5}

(3) u4 ~ ~

(4) v5 = 5, u4 = ~. k = 5

(5) k = n

(6) [1, 2, 3, 4, 5] is not a Hamiltonian cycle

(7) k = 4·
'

go to (3)

(3) u4 = <P so go to (7)

(7) k = 3; go to (3)

(4) v4 = 5, u 3 = </>, k = 4

(5) k < n so go to (2)

(2) u4 = {4}

(3) u4 ;Z <P

(4) v 5 = 4, u4 = </>, k = 5

(5) k = n

(6) [1, 2, 3, 5, 4] is a Hamiltonian cycle

etc.

63.

6.8 This process can be conveniently described in terms of a

program tree T as shown (for our example) in Figure 6.2. The points

of the tree are called nodes. The node at the top of the tree is

called its root and corresponds to the start of the algorithm. The

other nodes correspond to a choice of vk+i at step (4) of the algorithm.

Each node is considered to be labelled with the sequence [vl, vk]

which is current after step (4) has been completed. For clarity,

however, only the value of vk is shown in Figure 6.2. Thus the label

of the node marked A is [3, 2, 1, 4]. The algorithm 6.5 begins at the

root of the tree and works downwards where possible, taking the

left-most branches on the way down (hence the phrase "depth-first").

If it reaches a dead-end, it "backtracks" to find another path downwards,

and thus continues until it has traversed the entire tree.

4 1 YS Yl YS 92 Y4

4 YS Y3 Y4 Y2 YS Y2 Y3 3 YS 3 Ao4 Y4 Y2 92 91 Yl

5 •4 ~4 03 os •2 03 •2 5 <!113 1 <!111 5 °1 llllS 0 1 •4 (lll2

Figure 6.2

3 3 Y2

5 <!113 ill 1

3 92 94 91 9 3

4 Y4 91 Y 1 Y2 Y2

3 °1 lilll4 'lll2 <!113 01

0'­
_J::-

A node of the form [v1 , ···, vk, vk+i] (k <:: 0) is called a

successor of the node [v 1 , • • • , vk]. Edges of T join each node to its

successors (if any). Since the edges ofT are simply determined by

the labels of its nodes we will normally regard T as just the set of

its nodes, although we still refer to it as a tree.

Extending the successor relationship, a node v1 of the

form [vl, v ••• v] (r > k) is called a descendant of the node
k' ' r

vk]. Conversely v2 is called an ancestor of vl. If v

is a node ofT (we write this simply as vET), then the subset ofT

consisting of v and all its descendants is called the subtree of T

rooted at v and is denoted T(v).

If a node has no successors (and hence no descendants), it

is called an endnode ofT. If vis an endnode and lvl = n, then vis

a terminal node of T. Those terminal nodes in 6.2 which satisfy P

are drawn as solid circles.

6.9 Backtrack programs are notoriously sensitive to slight

changes in W, and theoretical timing studies are very difficult to

carry out. However, it is often possible in practice to estimate the

. efficiency of such a program by examining a random selection of

subtrees of T. See Knuth [34] for further details.

6.10 In our analysis of program trees we shall focus our

attention on the terminal nodes rather than on the solution nodes,

which depend on P. In this sense the program tree is defined by the

function W. In fact, we shall refer to W as a defining function for

T. However, T may have many defining functions since it is not

affected by the value of W(v) when v ~ T.

66.

6.11 From now on we will assume that T has at least two nodes.

The successor function for T is the map

defined by

F(v)
= f:

T
F Q(V) + 2

E Q(V) I~ is a successor of v} \) E T

v ~ T

It is generally more convenient to work with F rather than with W,

since F and T uniquely define each other.

Let\)= [vl, ···, vk] E Q(V), yE sn. Then we write

v Y for [v Y
1 '

6.12 Theorem: T is invariant under y iff F commutes UJith y in the

sense that for any v E Q(V)_, F(vY) = (F(v))Y.

Proof:

(a) Suppose F commutes with y. Let v E T.

If v is not an endnode of T, then F(v) ~ cp. Hence

If v is an endnode of T, then there exists ~ E T such that

(b) Suppose T is invariant under y.

If v ~ T, then vy ~ T and so F(v) = F(vy) =cp.

If v E T, then vY ET. Suppose ~ E F(v). Then ~yET and

so ~yE F(vY).

Similarly, if ~yE F(vY), then ~yET, which shows that

~ET and hence~ E F(v).

6.13 Theorem: Let E be the set of encmodes ofT.

T = T y i ff E = E y •

Let y E s .
n

Proof: By definition, E = {v E TIF(v) = ~}.

(a) Suppose T = TY. Let V E E.

Then vy E T and F(vY) = (F(v))Y by 6.12. Hence vy E E.

(b) Suppose E = EY. Let vET where v = [vl, vk].

Then T has an endnode of the form~= [vl,

where k ::; r ::; n.

Hence ~ Y = [v1 Y,

vy = [vlY, V y] T k E •

v Y] E T, and so
r

6.14 Theorem: If T = TY and X is the set of terwrinal nodes ofT_,

then X = xY.

Proof: lvl for any v E T, yE S .
n

6.15 Theorem: Let T(T) = {y E S IT = TY}. Then T(T) is a group.
n

D

Then

D

D

D

V J
r

6.16 The group T(T) will be called the invariance group ofT.

68.

For example, if T is the program tree of Figure 6.2, then T(T) is the

group {(1), (24), (35), (24)(35)}. In this case T(T) is precisely

the automorphism group of the graph G. This situation is very common

and will be considered in more depth later.

Recall that T(v) is the subtree ofT rooted at v. The

motivation for the study of T(T) can be found in the following

result.

6.1(Theorem: Let yE T(T) and v E T. Then T(vY) = (T(v))Y.

Proof: Suppose v = [vl, vk] . Then V y = [VI y , V YJ T k E •

If ~ is a descendant of v, then it has the form

~ = [vl, ···, vk, •••, vr] (k < r :s: n). Thus

~Y = [vlY, vky' ···, vry] E T(vY).

Similarly, if ~yE T(v'Y), then~ E T(v) since

y- 1 E T(T) by 6.15. 0

6.18 We consider the consequences of 6.1(. Given any subtree

T(v) and permutation yE T(T), we can construct the subtree T(vy) without

the need for producing it by using the backtrack Algorithm 6.5. In

particular, the terminal nodes of T(vy) can be determined from those

of T(v).

Taking this idea a step further, let ~be a subgroup of

T(T), and let v, ~ E X. Then we write v ~~if~= vY for some

y E ~.

By 6.14 the relation ~ (written as ~ if ~ is understood)

is an equivalence relation on X. Consequently X can be determined

from.the group '¥ and any subset R ~ X containing at least one node

from each equivalence class under ~ This can produce a considerable

saving if l'¥1 is large. A means of producing R using algorithm 6.5

will be given as soon as a few additional results are discussed.

If'¥~ T(T) and v = [v1 , vk] ET, then 'l'v denotes the

point-wise stabiliser of {vl, vk} in'¥.

6.19 Lemma: Let vET~ T = T(T). Then T ~ T(T(v)).
V

Proof: Let y E T and]J = [vb ' V ' V J (k ~ r ~ n) where
V k r

V = [V}' vk] and]J E T(v).

Then]Jy = [Vl y' y
vk+1

y V y]
vk ' ' r

= [vb vk' vk+1
y V y]

' r E T(v). D

Unfortunately, we do not always have equality in 6.19. For

example, if vis the node marked Bin Figure 6.2, T(T(v)) = {(1), (15)}

but T = { (l) }.
V

6.20 Lemma: Let v E T~ '¥ ~ T(T) and let W be a defining function

for T. Then W(v) is a union of orbits of'¥ .
V

Proof: Let yE '¥ . Then vy = v. Hence W(v) = W(vy) = (W(v))Y
V

by 6.12. D

6.21 Let '¥ ~ T(T) and suppose W is a defining function forT. We

define a quotient tree T/'l' as the program tree given by a defining

function W/'l' constructed as follows:

(1)

(2)

Let v = [vl,

If v 4 T set (W/~)(v) = ~.

If v E T then by 6.20 W(v) is a union of orbits of ~ .
\)

70.

Define (W/~)(v) to be any set consisting of exactly one element from

each of these orbits.

The tree T/~ depends on the method of choosing orbit

representatives of ~v and so is not uniquely defined.

6.22 For example, we take the tree T of Figure 6.2 and the group

~ = {(1), (24), (35), (24)(35)}. Then a quotient tree T/~ is shown in

Figure 6.3. The nodes are labelled in the same fashion as for

Figure 6.2.

As indicated earlier, the value of W(v) when v J T is

arbitrary and does not affect T. Since also T/~ ~ T by its

definition, we can construct W/~ from Wand~ and so Algorithm 6.5

can be used to find T/~. The example suggests that T/~ is considerably

smaller than T and this is indeed true in the sense of the following

result.

2 5

04

11 r 3 4

r: r 1: os 5 -1

Figure 6.3

71.

6.23 Theorem: Let X and R be the sets of termina~ nodes ofT and

T/~ respective~y. Consider the equiva~ence c~asses of X defined in

6.18. Then R contains exact~y one member of each equiva~ence c~ass.

Proof: R c X since T/~ c T.

(1) Let v = [v1 , •••, v] EX.
n

such that v ~ ~ as follows:

Then we can construct ~ E R

For 0 ~ k ~ n let vk = [vl, ···, vk]. Then vk ET. Suppose

we have found, for some k, ~k = [wl, •••, wk] ET/~ and yE~ such

that~= vky' Now vk+l E W(vk) and so by 6.12, vk+ly E W(~k).

Consequently there is wk+l E (W/~)(~k) and 8 E ~
~k

such

that wk+l So ~k+l E T/~ where ~k+l =

and since 8 E ~~ , ~k+l
k

y8 = vk+l where y8 E ~.

Continuing this process we find that ~n ~ v.

(2) Suppose there are distinct elements vl, v2 ER and yE~

ae•,v],
n

Then vl and v2 have a

common ancestor of greatest length~= [vl, •••, vk].

Hence, by the definition of W/~, we have vk+l = vk+ly

the maximality of ~.

6.24 Corollary: lXI = I~IIR J,

Then y E ~
~

contradicting

0

0

6.25 We have shown that knowledge of a subgroup ~ ~ T(T) can be

used to significantly reduce the amount of work required by the

backtrack algorithm. However, we have not indicated how such a

subgroup could be found. There seems to be no way of doing this in

72.

general, except by computing the entire tree T, and this is what we are

aiming to avoid. However, when the elements of the set V are the

objects of a set with "suitable structure" (for example, the points

of a graph, the elements of a group, or the vertices of a polyhedron)

then the "automorphisms" (structure-preserving permutations) can very

commonly be identified as elements of T(T). So that we can avoid the

difficulties in defining these ideas in a precise general fashion, we

shall describe the case where V is the set of points of a graph.

In order to represent a graph in a computer, it is necessary

to label the points of the graph in some manner. To take the most
I

common situation, we are given a set of labels, normally {1, •••, n}

and must assign each label to a point of the graph in some arbitrary

(one-to-one) fashion. The condition we require is that computation of

the defining function W does not depend on the way in which this

labelling is performed. Let us make this rigorous.

Suppose the computation of W is carried out by a procedure

iV: Q(V) x Q(v) -+ 2v

so that forGE Q(V), v E Q(V),the computed value of W(v) will be

UJ(G, v). The procedure t.Y can be said to be independent of the

labelling of G if for y E S , v E Q(V) we have
n

6.26

6.27 Theorem: If ~is independent of the labelling of G3 then

r(G) :::; T(T).

Proof: If yE f(G), then Gy =G. Hence for any v E Q(V), 6.26

13.

becomes

or equivalently,

Therefore, if F is the successor function forT, then F(vy) = (F(v))Y

and so y E T(T) by 6.12. D

In practice, it is usually quite easy to decide whether 0

is independent of the labelling of G. Roughly speaking, this will be

the case if~ treats the labels as objects without any ordering and

makes no arbitrary choices. However, there is another method of

showing f(G) ~ T(T) which is often easier to apply. This method

consists of identifying the endnodes of T and using Theorem 6 .13.

To illustrate this we take our former example and the function W

defined in 6.6. If y is an automorphism of G and [vl, •••, vk] is

an endnode ofT, then so is [v1Y, •••, vkY] since y preserves

adjacency. Effectively, we need only verify 6.26 for those v where

iJ(G, v) =cp.

6.28 Although our development so far has been quite straight-

forward, these ideas have received only scant attention. This is

perhaps partly explained by the following practical difficulties:

(1) Computation of r(G) is required. Although many known

algorithms are capable of computing r(G), they invariably generate

each element of r(G) individually. When If(G) I is large this may

take impossibly long. In any case, finding r(G) may take longer than

using the original version of the backtrack algorithm.

(2) Once r(G) has been computed we have the problem of storing

74.

it in the computer. The methods described in Chapter 4 may be used,

but these do not seem to be widely known.

(3) The evaluation of the defining function W/f requires the

orbits of the stabiliser r for a possibly large number of nodes v.
V

Unfortunately, in the notation of 4.4, there seems to be no easy way

(k)
of converting a set {y. } of coset representatives corresponding

l

to a sequence [vl, •••, v 1 J to a set corresponding to another r+

sequence [wl, wr+i]. The constant need to compute the orbits

of r may take more time than it saves, unless the computation of
V

W(v)takes a similar amount of time.

6.29 In order to avoid these problems we can use various

compromises. For example,

(1) We can use only a small subgroup of f(G). The result 6.24

indicates that even the subgroup ~ generated by a single element of

r(G) may considerably reduce the size of the program tree. In this

case the computation of ~ is trivial.
V

(2) We can restrict our attention to subgroups of f(G) of

special type. In Sections 6.30-6.33 we shall consider the subgroup

of r(G) generated by its transpositions. This method will of course

be useless if f(G) has no transpositions.

(3) We can use a more sophisticated means of reducing the size

of the program tree. Several such methods will be presented in

Chapter 7.

6.30 Lemma: Let G E Q(V) and v~ wE V. Then the transposition (vw)

is in r(G) iff v is adjacent to the same points in V\{v~ w} as is w.

75.

Proof: Trivial. D

This result shows that the transpositions in r(G) can be

easily found. The next three results show how the subgroup they

generate may be handled.

6.31 Lemma: [54] Let V1 be a subset of V. Then if Z c S(Vl) is a

set of transpositions_, z generates S(V1) iff ez = V1. D

6.32 Lemma: If~ ~ S(V)_, then ~is generated by transpositions iff

~ = S(V)TI where TI = e~.

Proof: Suppose TI = { C 1 I C2l• • • I Ck}. Then by applying 6. 31 to each

cell C. we see that
l

D

6.33 Lemma: If~ ~ S(V) is generated by transpositions 3 and n E IT(V) 3

then eA= e~ A TI where A= ~ . TI

Proof: Clearly eA ~ er (4.14) and ell. ~ TI (trivial).

Hence eA ~ er A TI.

But eA ~ er A TI by 6.32.

Lemmas 6.32 and 6.33 show that only the partition e~ is

required in order to evaluate W/~. If v E Q(V) the orbits

of ~ which lie in W(v) are simply the non­v

D

null sets of the form W(v) n Ci where e~ = {Cli···ICk}. Thus the

quotient tree T/~ can be generated very easily. In the context of

graph isomorphism this idea was first used by Morgan [46] who

considered the canonical labelling of chemical compounds. A more

general treatment was given later by Steen [69].

76.

n.

CHAPTER SEVEN

BACKTRACK PROGRAMMING - II

7.1 We are now in a position to present a number of techniques

by which we can reduce the size of a program tree T without prior

explicit knowledge of T(T). In order for these techniques to work we

require a means for "recognising" some subgroup '¥ of T(T), in the

sense that, given yE S , we can decide whether or not yE '¥. For
n

example, if we are working with a graph G and r(G) ~ T(T), then by

permuting the adjacency matrix of G we can tell whether or not

y E f(G). Clearly any subgroup of T(T) is "recognisable" in

principle, but our techniques will not be practically useful unless

the recognition can be performed with reasonable efficiency.

Throughout this chapter, we continue the notation of Chapter Six,

and assume that'¥~ T(T). Except as indicated in 7.28, all of

this chapter is original.

Let T be the program tree with defining function W and

having successor function F. Let X be the set of terminal nodes ofT;

for convenience we assume that X is not empty. The elements of X

will be assumed to be in the order in which they are produced; for

example, from left to right in Figure 6.2. Hence, for example, we

can talk of T1 E X being earlier than T2 E X. Similarly, if

v1, v2 ET we can say that T(vl) is earlier than T(v2) if every

terminal node of T(vl) is earlier than those of T(v2). Following

6.18 we denote Tl ~ T2 if for some y E '¥, T2 Such terminal

nodes will be called equivalent (under '¥). The earliest terminal nodes

in each equivalence class will be called identity nodes and denoted

{el, ···,er} in the order in which they are produced, where

!XI= r!'¥1.

78.

Let T 1 ' '2 E X where Tl 7 '2· Suppose Tl = [vl' ... V J ' n

and '2 = [wl' ... w J where v. = w. (0 ~ i ~ k) and vk+i 7 wk+1' ' n l l

Then we denote TI - '2 = [vl • ... ' vk' vk+1] and

'2 - 'I = [wl' wk' wk+1] = [vr, vk' wk+1] · For

example, if TI = [1, 2, 3, 5' 4J and '2 = [1, 2, 5, 3, 4 J'

Tl - '2 = [1, 2, 3] and '2 - TI = [1, 2, 5]. Since Tl and '2 are

descendants of '1 - '2 and '2 - '1 respectively, '1 - '2 and

'2 - T 1 are both in T.

for some y E '¥_, but v2 7 v1. Then if T(vr) is earlier than T(v2)_,

T(v2) contains no identity nodes.

Proof: By 6.17, T(v2) = (T(v 1))Y. Therefore, if T(v2) contains an
-1

identity node e, ey is earlier than e, which is a contra-

diction. D

Suppose that at some stage during the execution of

Algorithm 6.5 we have encountered the identity nodes {el,

and now find the terminal node T. There are two possibilities:

(1) T is a new identity node.

(2) T ~ e.
l

for some i (1 ~ i ~ s) . Suppose T = e.
y

where
l

y E '¥. Then, if e. - T = [vl' vk' vk+i] we have
l

T - e. = [vl' vk' vk+1 Y].
l

Hence T - e. = (e. - ,)Y
l l

and so T(T- e.)= (T(e.- T))Y.
l l

e }
s

Since also T(e. - T) is earlier than T(T- e.) we conclude
l l

from 7.2 that T(T- e.) contains no identity nodes. Thus we can
l

remove T(T -e.) from the tree without losing identity nodes.
l

These ideas lead us to the following simple algorithm,

which is modelled on 6.5.

7.3 Algorithm: Find the identity nodes ofT.

(l) Set k := 0; s := 0.

(2) Set Uk := W([vl>

(3) If Uk =~go to step (9).

79.

(4) Choose and delete any element vk+i from Uk. Set k .- k + l.

(5) If k < n go to step (2) .

(6) We have found a terminal node T = [VI' V J • n

If T ~e. for some j (l
J

:::; j :::; s) go to step (8) .

(7) Set s s + l; e ·- T • Go to step (9) . .- s

(8) Set k := IT - e .1.
J

(9) Set k .- k - l. If k 2:: 0 go to step (3) ; otherwise stop.

7.4 We now apply Algorithm 7.3 to the example of 6,6, taking

~ = r(G). For the first two terminal nodes ofT, Algorithm 7.3

behaves the same as Algorithm 6.5 and so we will not repeat this

part. Instead, we take up the workings where we left off in 6.7. At

this stage we have found two non-equivalent terminal nodes. The

various symbols have values as follows:

el = [1, 2, 3, 4, 5]

e2 = [1, 2, 3, 5' 4J

VI = 1, Uo = {2,

v2 = 2, ul = {4}

v3 = 3, u2 = {5}

V4 = 5, u3 = <I>

vs = 4, u4 = <I>

k = 5' s = 2.

(9) k = 4.

(3) u4 = <I> so go to (9).

(9) k = 3.

(3) u3 = <I> so go to (9) .

(9) k = 2.

(4) v3 = 5' u2 = </>, k =

(5) k < n so go to (2).

(2) u3 = {3, 4}.

(3) u3 7 <f>.

3,

3.

(4) v4 = 3, u3 = {4}, k = 4.

(5) k < n so go to (2).

(2) u4 = {4}.

(3) u4 7 <1>.

(4) vs = 4, u4 = </>, k = 5.

(5) k = n.

4, 5}

(6) T = [1, 2, 5, 3, 4J; T ~ e2; go to (8).

(8) k = IC1, 2, 5JI = 3.

(9) k = 2.

etc.

80.

81.

Continuing this process we obtain the program tree shown in

Figure 7.1. Comparing this with Figure 6.2 we see that the number of

terminal nodes has been reduced from 28 to 15. The terminal nodes

in Figure 7.1 are labelled according to their equivalence classes

and the automorphisms a= (24) and S = (35).

7.5 We have shown that Algorithm 7.3 produces the full set of

identity nodes {el, ···, e }. These can be thought of as the terminal
r

nodes of some quotient tree T/1¥. In many applications the set

{el, •••, e }, since it represents all terminal nodes not equivalent
r

under ~!',will be all that is required. However, if we need the entire

set of terminal nodes ofT, we first need to find I¥. It turns out

that I¥ can be constructed quite simply from those elements of I¥

which are encountered during the execution of the algorithm.

Let T and T1 be respectively the program trees produced by

Algorithms 6. 5 and 7. 3.

Suppose that during the execution of 7.3 we have found an

identity node e. and a terminal node T such that T 7 e. butT= e.Y
J J J

for some yE I¥. Then we say that T- e. is absorbed onto e. - T by y.
J J

In Figure 7.1 such absorptions are indicated by dashed arrows.

In our analysis of T1 we are assuming that the orders of

choosing the vk+i from Uk at step (4) of Algorithms 6.5 and 7.3 are

the same.

7.6 Lemma: Let e. = [vl, ···, v J be an identity node ofT.
l n

Then

any node v ofT of the form [v1 , ···, vk, w] (0 ~ k < n) will also

s

-- ~ _..,=-=

s

1 2

3 4 s 1 29~~""94 2 1

s 3 2 4 4 4 2 1 1 3 04

s 04 04 os us 03 Ul 0} os 01 os 04 02 os 63

S a s e4 6 a a a ess
el e2 e2 el e3 e3 e4 es e6 es e7 e7 e3 Q::J

[\)

Figure 7.1 a= (2 4), S = (3 5)

83.

Proof: If vis not in T1, then some ancestor ~2 of v must have been
-l

absorbed by an element y of~ onto a node ~l· But then e.Y is
l

earlier than ei' contradicting the assertion that ei is an identity

node.

7.7 Corollary: If T E X_, then T - e. E T1.
l

Proof: T - e. is of the form required by 7.6.
l

D

D

7.8 Lemma: Let e. = [vl' V J be an identity node ofT. Let
l n

vl = [VI' vk, vk+i] and

V2 = [Vl' vk' w] where v2 E T and v2 = vly

for some y E ~ .. but v2 ~ V l• Then v2 will be absorbed onto v1 (but

not necessarily by y).

Proof: Let T be the first terminal node of T(v2). Then v1 = e. - T
l

T - e ..
l

Since T(vl) is earlier than T(v2), T is not an

identity node, by 7.2. Hence there is an identity node e. and an
J

0
element o E ~ such that T = e.

J

NowT -e. and v2 are both ancestors ofT.
J

(1) Suppose T - ej is an ancestor of v2.

Then e. E T(T -e.) since e. E T(vl) and T -e. is an
l J l J

ancestor of v 1 .

0
ButT -e. = (e. - T) and T(e. - T) is earlier than

J J J

T(T- e.), which contradicts 7.2.
J

(2) Suppose v2 is an ancestor ofT- e ..
J

84.

Then e. E T(v2) since e. E T(e. - T) and v2 is an ancestor
J J J

of e. - T.
J

But v2 = v1Y and T(vl) is earlier than T(v2), which again

contradicts 1.2.

o-1
Hence we must have v2 = T - e. . Let v3 = v2

J
Then

Therefore v1 = e. - T and v2 = T
J

e., and so v2 will be absorbed onto
J

VI by o. D

Let e. = [vl ••• v] be an identity node ofT. For
J • • n

0 ~ k ~ n define v = [v1 ••• v] and ~(k) = ~
k ' ' k vk

1.9 Theorem: For 0 ~ k < n (following 4.4) we have the disjoint

union
s

~(k) = u~(k+l)y. (k)

i=l l

where y i (k) = (1) and {y 2 (k) , ys (k)} are the elements of~ by
k

which nodes of T are absorbed onto vk+l.

Proof: Let the orbit of ~(k) which contains vk+l be Z = {wl,

where w1 = vk+l'

By 6.20 Z ~ W(vk), and so by 1.6, ~i E T1 where

~i = [vl, •••, vk, wi] (1 ~ i ~ sk). Note that ~1 = vk+l and

consider ~i' where 2 ~ i ~ sk.

By 1.8, ~. will be absorbed onto ~l by an
l

(k)
element y. of~.

l

Since vk is a common ancestor

(k)
yi maps w1 onto wi.

(k)
of ~ 1 and ~2 , y. E ~

l vk

The theorem follows from 4.2.

= ~(k). Further-

more, D

7.10 Corollary: For any 0 ~ h < n~ ~(h) is generated by the set

Q = {y. (k) lh ~ k < n, 1 ~ i ~ sk}.
h l

In particuZar3 Q0 generates ~.

Proof: By 4.5. 0

Theorem 7.9 shows that in order to find~ we must only look

at those nodes which are absorbed onto ancestors of a single fixed

identity node-- for example, the first terminal node e1.

For the tree of Figure 7 .1, we find

~ = ~(0) = ~(1)
'

~(1) = ~(2) u~(2)(24),
~(2) = ~(3) u ~(3)(3 5),

~(3) = ~(4) '
~(4) = ~(5) :{(1)}.

Hence ~ = <(2 4)' (3 5)) as expected.

Theorem 7.9 also enables us to find a bound for the number

of terminal nodes of T1. Recall that the terminal nodes ofT are the

set X where lXI = rl~l.

7.11 Theorem: T1 has t terminal nodes~ where t ~ r((B) + 1).

Proof: Let e be an identity node ofT. By 7.9 the number of nodes

absorbed onto ancestors of e is

n-1
I (sk - 1).

k=O

But sk ~ n - k for 0 ~ k ~ n - 1, and so

n-1
L (sk - 1) ~

k=O

n-1
L (n - k - 1) =

k=O

86.

Therefore the number of non-identity terminal nodes associated

with each identity node in this way is bounded above by (2). The

theorem follows immediately. 0

The bound of 7.11 is realized only when~= S and is generally
n

too large. Since 1~1 can be as large as n! the work saved by using

7.3 instead of 6.5 can be enormous.

In Theorem 4.8 we showed that the set ~0 can be reduced to

a set Y' of at most n- p generators of~. where ~hasp orbits. Hence

we can find such a generating set by producing ~0 via Algorithm 7.3

and then applying Algorithm 4.9. However a closer look at the ideas

behind 7.3 reveals a way in which such a set can be produced directly.

7.12 Before proceeding further we shall establish the following

conventions. It has been assumed that V= {1, •••, n}, If

w1, w2 E V, then by w1 < w2 we simply mean that w1 is smaller than

w2 numerically. Furthermore, we shall assume that when required to

choose an arbitrary element from a subset of V (for example, the set

Uk at step (4) of Algorithm 6.5 or 7.3) we shall choose the numerically

smallest element. This convention has already been adhered to in our

examples. The following result is now obvious.

7.13 Lemma: Let v 1 ~ v2 ET where v1 = [vl, ···, vk, w1J,

v2 = [vl, ···, vk, w2J and w1 < w2. Then T(vl) is earlier than

(.14

0 s:; q < n.

Let e. = [v1,
J

v] be an identity node of T and suppose
n

For 0 s:; k s:; h define vk = [vl,

Let {y1 , •••, ym} be a set of elements of~ by which nodes

of T are absorbed onto nodes vk where k > q.

some y E

Then E ~(q) (1 yi s:; i s:; m). Therefore A s:; ~(q), where

y).
m

By 6.20, W(v) is a union of orbits of A.
q

Let 1T = 8~ = 8 V ... V
yl

Now if WI < w2 where wl'

~. w2 = y
WI •

8
ym

w2 E

by 4.14.

W(v)
q and w1 ~ w2 then for

1T

V , WI] and
q

v , w2J.
q

Therefore T(~2) = (T(~l))y by 6.11 and so T(~2) contains no

identity nodes, by (.2 and (.13.

(.15 To implement these ideas, additional data items are required.

Upon creating a node v = [vl, •••, vk] we compute W(v) and create a

partition 1T E IT(W(v)). Initially, 1T is set equal to the discrete
V V

partition of W(v). Thereafter, whenever we encounter an element

y E ~ by which a node is absorbed onto a descendant of v we set

1T := 1T v 8 , where v denotes the generalized join operation
V V y

introduced in 3.4. This operation can be performed by Algorithm 3.6.

At any stage during the execution of the following algorithm, we

require partitions only for the current node and its ancestors

88.

(excepting that we do not need a partition for a terminal node) and so

no more than n partitions need to be stored at one time.

For convenience we shall assume that the cells of a

partition n are stored so that if an element of a cell C1 is smaller
V

than every element of another cell C2, C1 is stored before C2. The

structure of Algorithm 3.6 ensures that if n is in this form, then
V

TI V e will be als~ irrespective of the order of the cells of e .
V y y

In the following algorithm a cell of n is regarded as having been
V

chosen if any element of the cell has been chosen. Our conventions

ensure that the chosen cells of n are always stored before those
V

which have not been chosen.

1.16 Algorithm: Find the identity nodes ofT.

(l) Set k 0; s := 0.

(2) Compute Z .- W([vl, vk]). If Z =~go to step (9).

(3) Set Tik := discrete partition of Z.

(4) Set c := first cell of nk not yet chosen;

vk+1 .- smallest point in C·
'

k .- k + l.

(5) If k < n go to step (2).

(6) We have found a terminal node T = [vl, V].
n

If T ~e. for some j (l ~ j ~ s) go to step (8).
J

(7) Set s := s + l; e := T.
s

Go to step (9).

(8) Compute y such that T = e.Y. Set k := IT- e. I.
J J

For 0 ~ i < k set TI. := TI. V e .
l l y

(9) If k = 0 stop.

Set k := k - 1.

(10) If all cells of Tik have been chosen go to step (9); otherwise

go to step (4) •

7.17 We again consider the example of 6.6. For brevity we only

include those steps of the algorithm where variables change value.

(1) k = 0, s = 0.

(2) z = {1, 2' 3, 4' 5}.

(3) n 0 = {112131415}.

(4) C = {1}, VI = 1, k

(2) z = {2, 4}.

(3) Til = {214}.

= 1.

(4) C = {2}, v2 = 2, k = 2.

(2) z = {3, 5L

(3) TI2 = {315L

(4) C = {3}, V3 = 3, k = 3.

(2) z = {4, 5L

(3) TI3 = {415L

(4) C = {4}, V4 = 4, k = 4.

(2) z = {5}.

(3) TI4 = {5}.

(4) c = {5}, vs= 5, k = 5.

(6) T = [1, 2, 3, 4, 5]- an identity node.

(7) s = 1, e1 = [1, 2, 3, 4, 5].

(9) k = 4.

(9) k = 3.

(4) C = {5}, V4 = 5, k = 4.

(2) z = {4}.

(3) 1T4 = {4}.

(4) c = {4}, vs = 4, k = 5.

(6) T = [1, 2, 3, 5, 4] -an identity node.

(7) s = 2, e2 = [1, 2, 3, 5, 4J.

(9) k = 4.

(9) k = 3.

(9) k = 2.

(4) c = {5}, V3

(2) z = {3, 4}.

(3) 1T3 = {314}.

= 5, k = 3.

(4) C = {3}, V4 = 3, k = 4.

(2) z = {4}.

(3) 1T4 = {4}.

(4) c = {4}, vs = 4, k = 5.

90.

91.

(6) T = [1, 2' 5 ' 3, 4] - equivalent to e 2 .

(8) y = (3 5) ' 8 = {11213, 514}. y

k = 3.

Tio = {11213, 514}.

7fl = {214}.

7f2 = {3, 5}.

(9) k = 2.

(9) k = 1.

(4) c = {4}.

Continuing this process we obtain the program tree shown in

Figure 7.2. The labelling is the same as in Figure 7.1.

As before, if at step (8) of Algorithm 7.16, we have

T = ejy for an identity node ej and a terminal node T we say that

T - ej is absorbed onto ej - T by y.

We denote by T, T1, T2 the program trees produced by

Algorithms 6.5, 7.3 and 7.16 respectively. We have shown that

both T1 and T2 contain the identity nodes ofT.

7.18 Suppose that at step (8) of Algorithm 7.16 we have T

where ej is an identity node, T a terminal node and y E ~.

Let T = [v1 , v], and 0 ~ i < IT- e. I.
n J

= e.Y
J

Then in step (8) we set TI. ·= TI v 8 . Suppose for some
l • i y

node v = [vl, ···,vi' w] of T2 this operation causes the cell of Tii

containing w to be increased in size. Then we say that y is active

at v.

3 s 1 2Yf...-'r'4

4 s 3 2 3 4 4 4 2 1 1

s -4 04 vs vs v3 vl vs VI vs v4 v2
S a s a a \0

el e2 e2 el e3 e3 e4 es e6 es e7 e7 [\)

a= (2 4), S = (3 5)
Figure 7.2

93.

7.19 Lemma: y is active at ej - T.

Proof: e. - T is in T2 because it is an ancestor of e .. Also e. - T
J J J

is clearly of the form [VI' ... vi' w] where i = IT - e .I - 1. Then
' J

the operation 'IT • . - 'IT. V 8 brings vi+1 into the same cell as w. 0
l l y

7.20 Theorem: Let e.= [vl, ··•, v] be an identity node ofT. Let
J n

Y be the set of e le men ts of IJI found by 7. 16 which are active at

ancestors ofe.. Then Y generates IJI and IY I :::; n - p where IJI has p
J

orbits.

Proof: We verify that Y satisfies the requirements of Theorem 4.7

for h = 0.

For 0 :::; k :::; n, define vk = [vl' vk]'

ljl(k) = '¥
\)k

Consider the partition 'Tfk when the subtree T2(vk) has been

completely generated by the algorithm (say at step (9)).

Let Z be the orbit of IJI(k) containing vk+i

by 6.20.

Also, Z is a union of cells of 'Tfk' since the cells of 'Tfk

are orbits of some group generated by elements of IJI(k).

Suppose C1 and C2 are distinct cells of 'Tfk contained in Z,

where vk+1 E cl. Let w be the smallest element of c2. Then w must

sometime have been chosen at step (4). But this would have resulted

in w being absorbed onto some element of C1 (the proof is like that

of 7.8) and C2 and C1 will have been merged (7.19).

94.

Hence Z is a cell of nk. But since vk+i E Z, Tik is an

orbit of the group generated by elements active at v for each q > k.
q

Therefore, the set Y satisfies the conditions of 4.7 for h = 0.

Hence < Y) = '¥.

Now let Y = {yl, ···, yt} in the order these elements are

found. For 0 :::: Q, :::: t define

(Q,)
n = e

yl
V • • • V 6

YQ,

Then since each y. is active at some ancestor of e.,
l J

TI(£+i) is always strictly finer than TI(£) (0:::: Q, < t). But TI(O) and

TI (t) have d ll t · l d t < n an p ce s respec lVe y, an so - n - p. D

7.21 Corollary: For 0 :::; k :::: n., lfl(k) = <Y n lfl(k)) .

Proof: Immediate from 4.7. D

7.22 Theorem: T2 has at most r(n - p + l) terminal nodes., whe~

lXI = r!l¥1 and'¥ hasp orbits.

Proof: Let T be a terminal node which is not an identity node. Then

for some identity node e. we have T ~e .. Hence by 7.19 every element
J J

of'¥ found by 7.16 is active at an ancestor of some identity node.

The result now follows from 7.20. D

7.23 Despite the power of Algorithm 7.16, its efficiency can be

increased still further. Upon creating a node v of T2 , Algorithm 7.16

initialises a partition Tiv as the discrete partition of W(v). In this

sense it assumes no prior knowledge of \flv, However, if we have a set

95.

{y 1 , •••, ym} of previously discovered elements of~. then some of them,

say {y 1 , •••, yq}' may be in ~v· Then clearly we can initialise

'ITk := (8
yl

8)I without losing identity nodes. In fact,
Yq W(v)

we could set 'ITk := 8AI W(v) where A= <Yp ... ' ym>v· but in practice

this seems to be rarely worth the additional computation required.

Several points are worth mentioning here.

(l) Only the partitions 1f

only the non-trivial cells of 1f

(i)

(i)

= 8 need to be stored.
yi

are required.

In fact,

(2) There is no need to store all the elements of ~ discovered.

Storing too many elements can actually slow down the algorithm since

the constant initialisation of partitions 1rk may become too laborious.

In practice, we can choose a small integer J and store only the first

J elements of ~ discovered.

These ideas give rise to the following algorithm, which is a

variation on 7.16.

7.24 Algorithm: Find the identity nodes ofT.

(l) Set k .- 0; s .- 0; t .- 0.

(2) Compute Z .- W([vl• vk]). If Z =~go to step (10).

(3) Set 1fk .- discrete partition of Z.

For l ~ i ~ t such that 1f
(i)

fixes [VI'

'ITk := 1fk
- (i)
V 1f •

(4) Set C .- first cell of 1rk not yet chosen;

vk+i smallest point in C;

k .- k + l.

(5) If k < n go to step (2).

(6) We have found a terminal node T = [vl, V].
n

If T ~ e. for some j
J

(l :s; j :s; s) go to step (8) •

(7) Set s .- s + 1· e := T. ,
s

Go to step (10).

(8) Compute y such that T = e.Y.
J

Set k .- IT- e. I.
J

For 0 :s; i < k set TI •• - TI. V e .
l l y

(9) If t = J go to step (10).

Otherwise set t := t + 1;
(t)

TI .- e .
y

(10) If k = 0 stop.

Set k := k - 1.

(11) If all cells of Tik have been chosen go to step (10);

otherwise go to step (4).

96.

If J = 0, then Algorithm 7.24 is identical to Algorithm

7.16. If J ~ 2, then applying Algorithm 7.24 to the example of 6.6

produces the program tree of Figure 7.3. In the process of the

algorithm, we have only needed to store the partitions for (3 5) and

(2 4) •

The activity of an element of~ discovered by 7.24 is

defined as for 7.16.

(.25 Theorem: Let Y be the set of elements of~ discovered by

Algorithm ?.24 (for any J) which are active at ancestors of the first

terminal node e 1 • Then Y generates ~and IYI :s; n- p 3 where ~hasp

orbits.

s

2

1

I I I I

s 04 04 os os t os 01 04

el e2 e2(3 ela e3 e4 es e6 e7 'C)

--.:J

a = (2 4), (3 = (3 5)
Figure 7.3

98.

Proof: When the ancestors of e1 are created during 7.24 we have

t = 0 since no elements of~ have been found. The proof of 7.20

can therefore be applied. 0

Let T3 denote the program tree produced by Algorithm 7.24.

If J is large enough, the number of terminal nodes of T3 seems to be

typically of order r + n. However, no bound better than that for T2

has been proven. For program trees with a lot of endnodes which are

not terminal nodes, T3 is often vastly smaller than T2, since the

size of subtrees without terminal nodes can be reduced.

7.26 We now turn to a variation on Algorithms 7.3, 7.16 and 7.24.

In all of these algorithms, it is necessary to store the full set of

identity nodes. If this set is required exactly, there seems to be

no alternative, since otherwise further identity nodes could not be

positively identified. However, in some applications a larger set

of terminal nodes, known to contain the identity nodes, will be

sufficient. In these cases we can store a subset of the identity

nodes. Terminal nodes which are equivalent to identity nodes that

are not stored will then be recognised as "possibly an identity node".

One method which appears to work very well is to choose an

integer L ~ 0 and to store the first identity node e1 and the latest L

terminal nodes which are "possibly identity nodes". The reason for

storing e1 is that then Theorems 7.9, 7.20 and 7.25 will still hold for

this identity node.

7.27 The simplest case here is when L = 0 so that only the first

identity node is stored. When Algorithm 7.24 with this change is

applied to the example of 6.6, the program tree T4 of Figure 7.4 is

s

2

1

~s 04 04 03 os os 01 os 01 04

el
B B a.

e2 e2 el el e3 e4 es e6 e7

a. = (2 4), B = (3 5) \0
\0

Figure 7.4

100.

produced. It is seen (in this example at least) that T4 is only

marginally larger than T3. An advantage of this case (L = 0) is that

the set Y of Theorem 7.25 contains all the elements of~ discovered

by 7.24. In fact, it is the set Y' which would be produced by

Algorithm 4.9 from the set ~0 of all elements of ~ discovered by

Algorithm 7.3 with L = 0.

7.28 After work on this chapter was completed, it was discovered

that a method akin to that of Algorithm 7.16 had previously been used

in a special case by Arlazarov et al. [2], who were concerned with

the problem of canonically labelling a graph. However, to the best

of our knowledge, Algorithm 7.24 and all our results on the generation

of ~ and on the size of T1 and T2 are original.

7.29 In practical problems it is very common for many nodes of

the program tree T to have only one successor. In other words, for

many nodes vET, we have IW(v)J = 1. For such nodes there is

clearly no need to have a set Uk (as in 6.5 or 7.3) or a partition Tiv

(as in 7 .16 or 7. 24) since these will always be trivial. Similarly,

on "backtracking" out of the subtree T(v) there is no need to examine v

since there cannot be further paths downwards from v. Therefore we

can consider such nodes (excepting the root) to be omitted from the

tree. For example, the tree T of Figure 7.5 can be reduced to the

tree T of Figure 7.6.
lll

Figure 7.5 Figure 7.6

101.

Since T is determined by its endnodes (all other nodes are

ancestors of endnodes), it is trivial to reconstruct T from T and so

both trees contain the same information. "Reduced" trees like T can

be analysed by generalising the ideas of defining and successor

functions. For example, the tree T of Figure [.6 is described by a

generalised successor function F such that

F(f.ld = { f-12}

F(f.l2) = {f-13, 'J.l4}

F('J.l3) = {v3, v4}

F(J14) = { \) 1 ' \!2}

F(v.) = <P (i = 1, 2, 3, 4),
l

7.30 There is no reason why we could not delete just some of the

nodes ofT with one successor. If this is done so that T is still

invariant under ~. all the results of Chapters Six and Seven can be simply

adapted to this case. Such reduced trees will occur in our

applications in later chapters.

102.

CHAPTER EIGHT

GRAPH ISOMORPHISM PROBLEMS

8.1 There are several related problems which fall under the

general title of "graph isomorphism problems". The main ones can be

stated approximately as follows.

Let G1, G2 and G be labelled graphs.

Pl. (a) Are G1 and G2 isomorphic?

(b) If G1 and G2 are isomorphic, find one (or all) isomorphisms

between them.

P2. Find a canonical labelling of G.

P3. Determine the group f(G).

P4. Find one (or all) subgraphs of G1 isomorphic to G2.

P5. Find the common subgraphs (or maximal common subgraphs) of

G1 and G2.

8.2 Apart from their obvious impact on graph-theoretic

research, solutions to these problems have many direct practical

applications. A much-quoted example concerns the storage and

recognition of chemical compound structures [42, 43, 52], where a

molecule can be represented as a graph with points and edges labelled

by atom type and bond type respectively. Another application is in

pattern recognition [74], where shapes can often be described in

terms of graphs and need to be recognised despite their orientation

and distortion.

8.3 Problems P4 and P5 will not be considered in this thesis,

103.

although future research may be directed towards an extension of our

procedures to these cases. Problem P4, usually called the "subgraph

isomorphism problem" has received attention from Sussenguth ['70],

Penny [52], Levi [39], Levi and Luccio [41 J, Berztiss [5] and

Ullmann [75]. The special case where G1 and G2 are trees has been

considered by Matula [45]. Problem P5 has been treated only rarely,

for example by Levi [39].

8.4 Proposed methods for solving problem Pl generally fall into

one of two broad classes. The first approach, which we shall call

approach A, treats G1 and G2 together. In the usual system, G1 is

relabelled in some way and then an attempt is made to relabel G2 in

such a way that G1 and G2 become identical.

The second approach, approach B, is to devise a map f from

Q(V) into some convenient set ~ such that f(Gl) = f(G2) if and only if

G1 and G2 are isomorphic. Unsuccessful or conjectural suggestions

for f(G) in the past have included the characteristic polynomial of

the adjacency matrix of G [10, 21, 59] and certain more general

matrix functions [44, '73]. More success has been had in devising

maps f as follows.

8.5 Let f : Q(V) ~ Q(V) be a map such that for each G E Q(V)

and y E s we have n

(1) f(G) is isomorphic to G, and

(2) f(GY) = f(G).

f(G) can be called the canonical Zahe Uing of G. Its

computation is the subject of problem P2.

104.

8.6 The practical choice between these two basic approaches will

depend on the application required. If graphs are to be compared in

pairs only, then, under the current state of the art, approach A will

undoubtedly be the more efficient. However, if larger collections of

graphs need to be compared this will not necessarily be so.

Suppose we have a collection of N graphs which we wish to

divide into isomorphic families. If the number of such families is

almost as large as N and each comparison of two (labelled or

N
unlabelled) graphs gives only a yes/no answer, approximately (2) such

comparisons are required. Define average execution times as follows.

t1 for comparing two unlabelled graphs

t2 for comparing two labelled graphs

t3 for canonically labelling a graph.

Approaches A and B will then take approximate times

t A and tB, where

N = t1C 2) and

N
= Nt3 + t2(2).

Hence, as N + oo, tB/tA + t 2/t 1 which, for existing algorithms,

is considerably less than one.

8.7 The great majority of existing algorithms for solving

problem Pl, whether by approach A or approach B, can be described in

terms of a canonical map. This is defined to be a map

g

such that for G E Q(V) and y E S we have
n

105.

(1) g(GY) = g(G) and

(2) G is isomorphic to every member of g(G).

8.8 In terms of a canonical map g, approach A to solving problem

Pl can be described as follows.

(1) Find one member G1' of g(Gl).

(2) Search g(G2) in some systematic fashion for a labelled

graph identical to G1 1 •

Commonly, steps (l) and (2) are carried out together, and

intermediate information is used to help the search in (2). However,

since we will not be particularly concerned with approach A, we will

not go into these details here.

8.9 A canonical map g can also be used to canonically label a

graph G. Firstly, we must devise a total order on Q(V). For example,

we can apply the usual ordering of the integers by writing an

adjacency matrix row-by-row as an n2-bit binary number. Another

simple method uses the incidence matrix [49, 55] in a similar way.

Relative to whatever order on Q(V) we have chosen, we can

define a canonical labelling of G E Q(V) by

f(G) = max g(G).

The first use of this method was probably by Nagle [48],

who defined g(G) to be the set of all labelled graphs isomorphic to

G. A better choice was made by Heap [24], who required each member

of g(G) to have its points in ascending order of degree. A similar

106.

system, counting triangles as well as edges, was used by Baker et al.

[3] when generating 9-point graphs.

8.10 Clearly the efficiency of any of these techniques will

depend heavily on the choice of the canonical map g. A great many

such maps have been used, explicitly or not, in published algorithms.

However, almost all of them fall in the class we now describe.

8.11 V
Let tJ: Q(V) x Q(V) -+ 2 be a map such that the following

hold for each G E G(V) and v E Q(V).

(1) t.J (G, V) ~ V\ V •

(2) ttYis independent of the labelling of G (as defined

in 6. 26).

(3) The program tree TG with defining function t.J"(G, •) has

at least one terminal node.

Since every terminal node of TG is in Q(n)(V), it corresponds

to an ordering of V and hence to a relabelling of G. If we define

g(G) to be the set of labelled graphs corresponding to the terminal

nodes of TG then g is canonical by 6.27.

Explicit uses of this method for finding a canonical map

have been given by Berztiss [5], Proskurowski [49, 55], Ullmann [75]

and Arlazarov et al. [2]. However, most of the so-called "parti tioning11

procedures also fall into this class, as we shall demonstrate shortly.

8.12 Obviously, any terminal nodes of TG which are equivalent

under r(G) correspond to the same labelled graph. Consequently at

10'7.

most one member of each equivalence class under f(G) is required for

the determination of g(G). Therefore, any of the methods described

in Chapter Seven for reducing the size of TG can be used. However,

except as mentioned in (.28, they have not been used in any published

algorithm that we know of. This is the main reason why we believe

our own algorithms (described in the next chapter) to be superior

to any previous algorithms.

8.13 We now proceed to give a formal account of "partitioning"

procedures and show how they lead to maps tU of the type described

in 8.11. We first require a few definitions.

8.14 Let TI =[Cl IC2l••• ICk] E IT(V) and yE Sn. Then TIY denotes

the ordered partition [C1Yic2YI··· lckY].

Let ~be a totally ordered set. A map

~ : Q(V) X IT(V) X V~ ~

will be called an indicator function if, for each G E Q(V), TIE IT(V),

v E V, y E S ,we have
n

Similarly a map

dP Q(V) X IT(V) ~ IT(V)

will be called a partition function if, for each G E Q(V), TIE ll(V),

y E S , we have n

108.

Let ~(V) and !l?Cv) denote, respectively, the families of all

indicator functions and partition functions for V.

8.15 The sets ~(V) and f:, (V) are closely related as follows.

Let :/ E ~ (V) . Then we can find a corresponding partition

function tP= tP(;/) where forGE Q(V) and 'TT E IT(V), {/)(G, TI) is the

ordered partition whose cells contain points with the same value of

~(G, TI, v) and are in the order induced from 6.

Similarly, let (? E £E (V). Then we can find a corresponding

indicator function ~ = 1 ((f) as follows. Let 6 be the natural

numbers. ForGE Q(V), 'TT E TI(V) and v E V let ;{ (G, 'TT, v) = i, where

v is in the i-th cell of (JJ (G, 'TT).

The following lemma is trivial.

8.16 Lemma: Let 1 E ~(V).. (fE fE(v). Then tf(tP) E ~(V) and

cP(1) E rf,Cv). Furthermore_,

(2) For any G E Q(V)_, 'TT E TI(V) and v 1_, v2 E V~

iff

D

8.17 We have already mentioned (8.9) the indicator function used

by Heap [24]. In this case we have

109.

Similar functions used by other authors include

(1) the number of points at a given distance from v [40,[6],

(2) the number of points adjacent to v (or at a given distance

from v) which lie in a given cell of n[40, 76], and

(3) the components corresponding to v in the eigenvectors of

the adjacency matrix of G [36].

The next few results show how partition functions can be

combined to give other partition functions.

8.18 Theorem: Let lf>b lP2 E ~(V). Then tf2 (0\) E tf:Cv) where

Cff 2 (d\))(G, n) = lP2(G, 11'dG, n))_, forGE Q(V) and TIE IT(V).

Proof: For y E S ,
n

0

For ordered partitions n1, n2 E IT(V) we define n1 A n2 to

be the meet of the unordered partitions corresponding to n1 and n2,

with the cells in the order induced from TII and n2. Precisely, if

and

110.

8 .19 Lemma: For any yE S and n1~ n2 E IT(V)~ n1Y A n2Y = (nl A n2)Y.
n

Proof: Trivial. 0

8.20 Theorem: Let (? 13 CP 2 E tf,(v). Then 6\ A (J2 E (f(v) where

for G E Q;(V)~ n E IT(V).

Proof: For any y E S ,
n

by 8.19.

8.21 Theorem: Let y E r where r = r(G)~ G E Q;(V)~ TI E rr(V)3 let
TI

Then [tP (G, n) J Y = rP (G, TI) •

Proof: If y E r ' then Gy = G and TIY = TI.
TI

The most common method of obtaining partition functions

0

0

is via indicator functions as shown in 8.15. From these partition

functions others can be constructed using 8.18 or 8.20. The following

few results indicate a related method which was first treated

systematically by Tinhofer [72] but used previously by Unger [(6] and

other authors.

Let &t*(G, n) and ~K(G, n) denote, respectively, the

111.

resulting partitions when Algorithms 5.27 and 5.32 are applied to

G E Q(V) and 'IT E TI(V).

8.22 Theorem: (Jt* E <f:(v) and (RK E t{!, (V) for any K > 0.

Proof: The vector d(v, 'IT) of 5.26 is clearly an indicator function

and so ot* E f(V) by 8.18 and 8.20. Similarly, the transformation
~

of 'IT from step (5) to step (7) of Algorithm 5.32 constitutes a

partition function. D

8.23 Let c Q(V) + Q(V) be a map such that for any G E Q(V),

y E S we have
n

For example v1, v2 E V might be adjacent in c(G) exactly

when Cl (v1, v2) = k in G (for some fixed k) . If y E r (G) , then

(c (G)) y = c (G y) = c (G) and so y E f (c (G)) . Hence r (G) :::;; r (c (G)) .

8.24 Theorem: Let c : Q(V) + Q(V) be a map satisfying 8.23. Let

(P E ~(V). Then ~ E fP(v) where for G E Q(V) and 'IT E IT(V),
c

if (G, TI") = (f> (c(G), TI"),
c

Proof: For any y E S ,
n

D

8.25 Theorem: [72 J Let G E Q(V) and let TI"o be the unit partition

of V. Then there is a sequence cl-' c2_, • • • _, ck of maps satisfying

8.23 such that the cells of TI"k are orbits of r(G)_, where

112.

n. = d{*(c.(G), n. 1) for 1 ~ i ~ k.
l l l-

D

We now demonstrate how partition functions can help us to

find functions "'U/ satisfying 8 .11.

An ordered partition n E IT(V) will be said to fix a

sequence v E Q(V) if each element of v is in a trivial cell of n.

8.26 Let (f3 : Q(V) x Q(V) + IT(V) be a map such that for G E Q(V),

v E Q(V), yES we have
n

(2) (B(G, v) fixes v.

Given ~ E ~(V), one such map can be found as follows. If

eee V.]
' k '

let Then we can take

{B(G, v) = n A (f(G, n). Other similar schemes are possible.

8.2'7 Let ,;
~ V
IT(V) x Q(V) + 2 be a map such that for v E Q(V),

y E S and n E IT(V) which fixes v we have the following.
n

(2) If I vI = n, then ' (n, v) = <P.

(3) If lvl < n, then &:(n, v) is a cell of n not containing an

element of v.

For example, we might take ' (n, v) to be the first cell of

n not containing an element of v, or the first such cell of smallest

size.

113.

8.28 Theorem: Let the maps lB and C satisfy 8.26 and 8.2? respectively.

Then the map

tJ: Q(V) x Q(V) + 2v

defined by

4J(G, v) = £(t8(G, v), v)

for G E Q(V) and v E Q(V) satisfies the conditions of 8.11.

Proof: Condition (1) follows from 8.27 (3). If y E S , G E G(V), n ~

and v E Q(V), we have

= (£: ((B (G, v) , v)) y

so that 1.J satisfies condition (2). Finally, the program tree TG

contains terminal nodes since ~(G, v) 7 ~if lvl < n. 0

8.29 Given the map f.J defined in 8,28 we can define a function f

satisfying 8.5 as we indicated in 8.9. However, in practice, the

following method may be more convenient. Suppose we have decided on

a total ordering of Q(V).

For G E Q(V) define TG as in 8.11 (3) and let X(G) be the

set of its terminal nodes. For any T E X(G) define GT to be the

labelled graph formed by labelling the vertices of G in the order they

appear in <B (G, T). Then define

f(G) = max{GT!T E X(G)}.

ll4.

8.30 Theorem: The function f Q(V) ~ Q(V) defined above satisfies

8.5.

Proof: For any G E Q(V), f(G) and G are obviously isomorphic. Now

let yES . Then if T E X(G), Ty E X(GY) by 6.27.
n

Therefore f(Gy) = f(G). 0

8.31
Ty

If G E Q(V), T E X(G) and yE r(G), then G = GT.

Consequently any of the methods described in Chapter Seven can be

used to eliminate terminal nodes equivalent under r(G) without changing

f(G). These methods have an additional advantage in that a small set

of generators for r(G) can be found, for example, as described in

7.25.

8.32 Very commonly in implementing these ideas we find that

tJ(G,v) consists of just one point for many nodes of the program

tree. Nodes of this type can be removed from the tree, as described

in 7.29. A very convenient arrangement for doing this is as follows.

The function t: of 8.27 can be defined so that' (n, v) will be a

non....;tri vial cell of 'IT if there are any. Furthermore, the map tB of

8.26 can be defined so that if VI is an ancestor of v2 in the tree

TG we have

and if ~(G, vl) is discrete,

115.

In this situation the partition ~ (G, T) for T E X(G) can be found

from the earliest v of its ancestors for which f8 (G, v) is discrete.

Later ancestors can be ignored.

n6.

CHAPTER NINE

A NEW CANONICAL LABELLING ALGORITHM

9.1 In this chapter we present several versions of a new

algorithm for canonically labelling a graph and for determining its

automorphism group. This algorithm was originally inspired by King's

implementation [31] of the method of Parris and Read [50, 51], and

retains a superficial similarity to this method. Hov.rever, many

improvements have been made. Most importantly, the methods of Chapter

Seven have been applied, making the algorithm useful for graphs with

large automorphism groups. Secondly, the use of Algorithm 5.32

instead of 5.27 has effected a great increase in efficiency. Finally,

several ad hoc features to be described later have been incorporated.

Once the algorithm has been presented and examples given, we treat

the problem of efficiency in some detail. Evidence is presented in

support of our claim that for large random graphs the algorithm is

close to the fastest possible. All of this chapter is original.

9.2 The basic structure of the algorithm is as described in

8.29 and 8.32. Therefore, our first step will be to define maps

C, a3 and 0satisfying 8.2(, 8.26 and 8.11 respectively.

9.3 Define a map ~ IT(V) x Q(V) + 2V as follows. Let

\! E Q(V)' 7T E IT(V).

(1) If TI does not fix v, or I v I = n, define ~ (7T. v) = ~.

(2) If TI fixes v and TI is not discrete, define
' (7T'

v) to be

the first of the non-trivial cells of TI of smallest size.

(3) If TI is discrete and lvl < n, define ~(TI, v) to be the

117.

first cell of TI not containing an element of v.

9. 4 Lemma: ~ satisfies the conditions of 8. 2?.

Proof: Trivial. 0

9.5 Define a map i) IT(V) x V-+ IT(V) as follows. Let

V E V, TIE IT(V).

(1) If vis in a trivial cell of n, define {j)(n, v) =TI,

(2) If TI = [C1I••• ICt] and vis in the non-trivial cell Cr'

define

9.6 Lemma: Let v E V3 n E IT(V) and y E S . Then
n

Proof: In case (1) the lemma is trivial. In case (2) we have

0

9.7 As before, let otK(G, n) denote the result of Algorithm 5.32

when applied to G E Q(V) and TIE IT(V). Define a map

<8 : Q(V) x Q(V) -+ IT(V) as follows. Let G E Q(V) and

V E Q(V).

(1) If lvl = 0, define IB(G, v) = l1<dG, no), where n0 is the

unit partition of V.

118.

(2) Suppose v = [vl, vk], where 0 < k :::; n. Then define

where

and SI,= !£8(G, Jl)l.

9.8 Lemma: lB satisfies the conditions of 8.26.

Proof: If lv I = O, the result follows trivially from 8.22. Otherwise

it follows, by simple induction on !vi, from 8.22 and 9.6. D

9.9 Theorem: For any G E Q(V) and v E Q(V) we have fR (G, v) ~ 'TT

where rr is the coarsest element of 3(G) which fixes v.

Proof: If !vi = 0 the result follows from 5.34.

Suppose the theorem is true for Jl = [vl, vk_1] (0 < k :::: n).

Let v = [vl,

Then, by definition, cB (G, v) = O<S/,+1 (G, 3?J ('TT 1, vk)) where

TI 1 = {B(G, Jl) has SI, cells. The induction hypothesis says that

cB (G,)1) ~ 1T2 where TI2 is the coarsest element of 2(G) fixing]1.

Suppose fB (G, v) ~ TI E IT (V). By 5. 36, rr is the coarsest

element of 3 (G) finer than 3J ('TT 1, vk) . But the coarsest element of

3(G) fixing v is finer than the coarsest fixing J1 (trivially) and so

is finer than !D ('TT I, vk) ·

Hence rr is the coarsest element of 3(G) fixing v. D

9.10 Following 8. 28, define a map {lj: Q(V) x Q(V) -+ 2 V by

119.

iJ(G, \!) = "C (fB (G, \!), \!) for any G E Q(V) and \! E Q(V). A canonical

labelling f(G) of G can then be defined as in 8.29. We have used a

total ordering of Q(V) derived from a lexigraphic ordering of the

adjacency matrices of its elements.

We shall find the following notation convenient. If

G E Q(V) and TI E IT(V) is discrete, we define G(n) to be the labelled

graph formed by labelling the points of G in the order that they

appear in n.

9.11 Clearly, any of the methods of Chapter Seven can be used to

find the set X(G) or a subset of X(G) containing the identity nodes

of TG with respect to r(G). The method which we will describe is

based on 7.24 but altered so that L = 0, as described in 7.27.

For convenience, we list a few of the variables used in the

description of the algorithm and note their usage. For 0 ~ k ~ n

E: = t8(G, e1) where e1 is the first terminal node.

p = d3 (G, T) where T is the terminal node for which

GT. t t f lS grea es so ar.

nk is the (ordered) partition of ~(G, vk) as in 7.24.

(i)
n is the orbits partition of the i-th element of

r(G) discovered. Only the non-trivial cells of

(i)
TI need be stored.

(i)
J ~ 0 is the maximum number of partitions n to be stored.

120.

h = {0 if no terminal nodes have been

le1- Tl if T is the next terminal node

found.

to be

found, and T ~ e1.

We use the conventions of 7.12 and 7.15 throughout.

9.12 Algorithm: Canonically label G E Q(V).

(1) Set k .- 0; t .- 0; h .- 0.

(2) Compute l;k := (8 (G, vk), where vk = [vl' vk].

If l;k is discrete go to step (6) •

(3) Set Z : = "t: (l;k, vk) , where vk = [vl' Cl • • V. J ' k .

(4) Set nk := discrete partition of Z with cells in numerical order.

(5)

For 1 ~ i ~ t such that TI(i) fixes [vl,

- (i)
Tik := Tik V TI

Set C .- first cell of nk not yet chosen;

vk+1 .- smallest element of C;

k .- k +1.

Go to step (2) .

(6) If h ~ 0 go to step (7).

Set p .- s := l;k;

h := k.

Go to step (10).

(7) If G(s) ;e G(t;k) go to step (9).

Compute y such that l;k = sY.

Set k := h.

For 0 ~ i < k set TI. . - TI. V e .
l l y

(8) If t = J go to step (10).

(9)

(10)

Set t : = t + 1; 1r (t) . - e
y

Go to step (10) .

If G(~k) :::; G(p) go to step

Set p .- sk·

If k = 0 stop.

(10).

Set h := min(h, k); k := k - 1.

(11) If all cells of nk hcwe been chosen go to step (10).

Otherwise go to step (5).

121.

9.13 As an example we label the graph G of Figure 9.1 with J ~ 2.

1 2

3

Figure 9.1

(1) k = t = h = 0.

(2) ~0 = [1, 2, 314. 5' 6 J.

(3) z = {1, 2, 3}.

(4) 1TQ = [11213].

(5) c = {1}; VI = 1; k = 1.

(2) ~1 = cR3(G,[2, 314, 5, 611]) = [2, 315, 61114].

(3) z = {2, 3}.

(4) 1Tl = [213].

(5) C = {2}; V2 = 2; k = 2.

(2) s2 =lR5(G,[315, 6111412]) = [31611141215].

(6) p = E = [31611141215]

h = 2.

(10) k = 1.

(5) C = {3}; V2 = 3; k = 2.

(2) s2 = <Rs(G,[215, 6111413]) = [21511141316].

(6} Go to ('7) .

(7) G(E) = G(/;2)

y=(23)(56)

k = 2

n0 = [112, 3J; n 1 = [2, 3].

(8) t = 1

(1)
TI = {2, 315, 6}.

(10) k = 1.

(11) Go to (10).

(10) h = 1; k = 0.

(11) Go to (5) .

(5) C = {2, 3}; VI = 2; k = 1.

(2) s1 = IR3(G,[1, 314, 5, 612J) = [1, 314. 61215J.

(3) z = {1, 3}.

(4) Til = [113].

(5) C = {1}; v2 = 1; k = 2.

(2) s2 = <Rs(G,[314, 6121511]) = [31612151114].

(6) Go to (7).

122.

(7) G(E) = G(~2)

y = (1 2)(4 5)

k = 1

7fQ = [1, 2, 3].

(8) t = 2

(2)
7f = {1, 214, 5}.

(10) k = 0.

(11) Go to (10).

(10) Stop: f (G) = G (p)

where p = [31611141215].

123.

9.14 The program tree of Algorithm 9.12 applied to the example

of 9.13 is shown in Figure 9.2. For convenience, the nodes of the

tree are labelled with the partitions ~k, with the cell ((~k, vk)

underlined.

~
/i:..:l.~ [LJ_j4,61215l

[31611141215] [21511141316] [31612151114]

E
(2 3)(5 6)

E
(12)(45)

Figure 9.2

A more complicated example is shown in Figure 9.3, where

J ~ 3.

9.15 Algorithm 9.12 provides a particularly convenient means

1~5 3 7 9 8

2 6 4

[5,611,2,3,417,819]

[611,2,3,41~1915] [511,2,3,41~1916] ,

I
[611,217f9151813,4J [513,41819161711,2]

[6131~19151711.214]
\ \

[61418151'151711,213] [612171915181~11] [514181916171~13]

[61418191517121311]
\ I I

[61418191517111312] [61318191517121411] [61217191518141113]
f--1

(1 2) (3 4) (1 3)(2 4)(7 8) (5 6) [\)
-!="""

r:: r:: r:: r:: r::

Figure 9.3

125.

of computing the automorphism group r(G). While many published

algorithms for graph isomorphism, for example by Levi [40] or Yang

[8oJ, can be used to find r(G), there seem to be no algorithms other

than our own for finding a small set of generators for r(G). All

other methods find each element of r(G) individually, and so are

practically useless if lr(G) I is very large.

9.16 In Algorithm 9.12, suppose the first terminal node is

For 0 ~ j ~ n, define v. = [vl, ···, v] and
J j

let v 9., be the shortest such node for which tB (G, v 9.,) is the discrete

partition E:.

Suppose 0 ~ j ~ 9.-.
(.)

Definer J = r where r = f(G).
V.

If
J

j = 0, consider the point of time when the algorithm terminates.

Otherwise consider the instant when h is set to j - 1 for the first

time at step (10). In other words, consider the algorithm immediately

it has finished with v. and its descendants. At this point of time,
J

define n = n. and let Y. be the set of all elements of r(G) so far
j J J

discovered. Then from 7.20, 7.21 and 7.25 we have the following

result.

9.17 Theorem: (a) Y. generates r(j).
J

(b) IY. I ~ n- p. where r(j) hasp. orbits.
J J J

(c) The ceZZs of n. a~ orbits of r(j) 3 (j < 9.-).
J

(d) lr(j) I = lr(j+i) 11:;'.(1)1_. (j < £).
J

D

We now consider a few simple means by which Algorithm 9.12

can be improved.

126.

9.18 Let 0 < j ~ t and again consider the point of time when 9.12

has finished with v. and its descendants. For 0 ~ i < j the cells of
J

the partition TI. at this stage are orbits of r(j). In the algorithm
l

these partitions have been produced by applying the operation

TI ·= TI. v 8 for each yE Y •• We introduce a new partition~ E IT(V) i . l y J

which is initially the discrete partition in numerical order. Each

time we find an element y E r(G) we set ~ .- ~ v e . y Then (at the

point of time to which we are referring) the cells of ~ are the orbits

of r(j) and so we can set TI. 1 to the partition of~(~. 1 , v. 1)
J- J- J-

induced from ~- This method has the added advantage that at the end

of the algorithm the cells of~ are the orbits of r.

9.19 Another source of inefficiency occurs at step (4) of 9.12.

The computing of Tik V (i) f 'bl .- Tik TI or possl y many t 't' (i) par l lons TI

will be unnecessary if no cell of Tik other than the first is ever

chosen. This will be the case, for example, if the terminal node

T 7 e1 descended from the current node is absorbed onto an ancestor

of e1. Hence we can defer these computations until they are actually

required.

9.20 Let v be a node of the program tree produced by Algorithm

9.12 and let TI = ~ (G, v). If n- \TI\ ~ 5, then by 5.19 and 9.9,

'(TI, v) is an orbit of r , where r = r(G). Consequently all the
TI

terminal nodes descended from v are equivalent. If e 1 is descended

from v, then we know that G(E) = G(~k) at step (7) of 9.12 without

computing G(~k), where ~k corresponds to a node descended from v. On

the other hand, if the terminal nodes descended from v are not

equivalent to e1, they can be identified as such by examination of

the first of them. In the following algorithm this change has been

127.

handled by the variable q in a way best seen by examining the algorithm.

It has led to more than a two-fold improvement in efficiency in many

cases.

9.21 Algorithm: Canonically label G E Q(V) and find generators for

r (G) •

(1) Set k .- 0; t := 0; h := 0; q := 0; m := 1;

~ .- discrete partition of V in numerical order.

(2) Compute ~k := IB (G, vk) where vk = [vl, vk].

(4)

(5)

(6)

If ~k is discrete go to step (5).

If n- l~kl > 5 set q := k + 1.

Tik .- discrete partition of Z in numerical order.

Set C .- first cell of Tik not yet chosen;

vk+1 := first element of C· ,

k .- k +1.

Go to step (2) .

If h > q go to step (8) •

Compute G(~k).

If h ~ 0 go to step (7) •

Set p .- E .- ~k;

h .- k· ,

k .- k - 1.

Go to step (11).

128.

(7) If G(E) ;;t G(~k) go to step (10) .

(8) Compute y such that ~ = E:y k .

Set ~ .- ~ V 8
y'

k .- h 1·
'

1Tk .- 1Tk V 8
y

(9) If t = J go to step (11).

Set t := t + 1· •
(t)

1T .- 8 •
y

Go to step (11).

(10) If G(~k) > G(p) set p .- ~k.

Set k := q - 1.

(11) If k < 0 stop: f(G) = G(p).

If k = h - 1 or vk is not in the first cell of 1Tk, go to step (13) .

- (i)
.- 1Tk V 1T

(13) If k < q set q := k + 1.

If not all the cells of 1Tk have been chosen go to step (4).

(14) Set k := k - 1.

If k ~ h- 1 go to step (11),

Set h := k + 1;

(15) If k < 0 stop: f(G) = G(p).

Set 1Tk :=partition of'(~, vk) induced from~.

If k < q set q := k + 1.

Gotostep(4).

129.

9.22 Algorithm 9.21 produces the same program tree as does

Algorithm 9.12 except for the occasional lopping of an unwanted

subtree, as described in 9.20. Theorem 9.17 will still hold. In

addition, at the termination of the algorithm we have m= lr(G) I and

the partition~ gives the orbits of r(G).

9.23 In many applications we may be interested in r(G) but not in

the canonical labelling f(G). Clearly, in this case any terminal

nodes of the program tree other than those equivalent to e 1 can be

ignored. A convenient way in which many such nodes can be

eliminated is by defining a function

i z(v) x Q(v) ~ ~

where~ is any convenient set, and such that forGE Q(V), v E Q(V)

and y E S we have
n

v] and for some v = [wl,
n

then none of the terminal nodes descended from v are equivalent to e1.

Hence the subtree T(v) can be ignored.

A possible choice of ~(G, v) is the quotient matrix of G

induced by a3(G, v), as defined in 5.23. This matrix has been used

for related purposes by Levi [40], and Corneil and Gotlieb [11, 14].

However, because of the large amount of time needed to compute this

matrix for each node of the tree, and because of the large amount of

storage space required to hold as many as n of these matrices, we have

adopted a simpler system.

Let G E Q(V), V E Q(V), 1T = (}j (G, V), and define

r1 = l1rl,

r2 = i, where .,: (1T, v) = 1T (i) ,

q = l1r (i) I , and

130.

r4 = a computer word whose one-bits indicate the

position of the trivial cells in 1T (see 3.10).

These four variables were chosen as being already available to the

program. If 1T is discrete we define ~(G, v) = 0. Otherwise

Jf(G, v) is a single machine word formed from [rl, r2, r3, r4J using

the shift and exclusive-or operations of the machine. Despite the

simplicity of this system, it seems to be only rarely less powerful

than the use of the quotient matrix.

9.24 Algorithm: Find generators for r(G).

(l) Set k .- 0; t := 0; h := 0; q := 0; m := l;

~ := discrete partition of V in numerical order.

(2) Compute ~k : = lB (G, vk) where vk = [vl , vk J .

If ~k is discrete go to step (6).

Set q 0 := q.

If n- l~kl > 5 set q := k + l.

If h = 0 go to step (3).

If L (G, vk) = Ak go to step (4).

Set q := q 0 •

Go to step (12).

131.

~k .- discrete partition of Z in numerical order.

(5) Set c first cell of ~k not yet chosen;

vk+1 first element of C·
'

k := k + L

Go to step (2) •

(6) If h = 0 go to step (7).

If \k 7 0 go to step (12).

(7) If h > q go to step (10).

Compute G(~k).

If h 7 0 go to step (9).

(8) Set E: .- ~k;

h .- k·
'

k .- k- L

Go to step (13) .

(9) If G(E:) 7! G(~k) go to step (12).

(10) Compute y such that ~k = E:Y.

Output y.

Set ~ := ~ V e y'

k .- h 1·
'

~k .- ~k V e y

(11) If t = J go to step (13).

Set t t + 1;
(t) e .- ~ := y

Go to step (13).

(12) Set k := q - 1.

132.

(13) If k < 0 stop.

If k = h- 1, or vk is not in the first cell of ~k' go

to step (15) .

(14) F 1 . h th t (i) f. [or ~ l ~ t sue a ~ lxes v1,

- (i)
.- ~k V ~

(15) If k < q set q := k + 1.

If not all the cells of ~k have been chosen go to step (5).

(16) Set k := k - 1.

If k ~ h- 1 go to step (13).

Set h := k + 1;

(17) If k < 0 stop.

Set ~k : = partition of -G' (l;;k, vk) induced from s.
If k < q set q := k + 1.

Go to step (5).

9.25 Since Algorithm 9.24 produces the same elements of f(G) as

does Algorithm 9.21, Theorem 9.17 will still hold. Given the set of

generators Y0 , we can construct the whole group r(G) if desired, as

described in 4.11. However, a certain amount of information about the

group can be deduced directly from Y0 • We have seen that the size and

the orbits of r(G) are given by the algorithm. For the next few

results we continue the notation of 9.16.

9.26 Theorem: Suppose Yo contains an element of the fonn y6 whe~

y3 6 E r(G) and any point of V not fixed by y is fixed by 6. Then

either y or 6 is trivial.

133.

Proof: Without loss of generality, suppose that for some r where

0 ~ r < £we have vry = vr = vr 0 but that v~+1 ~ vr+1 . Then

o (r+1)
V 1 = V 1 and SO 0 E f . r+ r+

yo
Therefore the terminal node e 1 is in the subtree

T(v~+1). Let T be the first terminal node of T(v~+1) such that for

some S E r(r+1) which fixes points of V not fixed by y we have

T = elYB.

Let X(y) be the set of points fixed by y. We prove by

induction that S is trivial.

Suppose that for some j, where 0 ~ j <£,we have

y
V. • This is true for example if j ~ r + 1.

J

= (UJ'(G , V •)) y by 8 . 2 8 .
J

V = v for convenience. j+1

(l) If v 4 x(y) then v8 = v by assumption, and so vYB =

since yS = Sy.

(2) If V E X(y) then

v = min{tV(G, v.)} = min{UJ(G, v.) n x(y)}
J J

since v E x (y) .

min { (.W (G, v .)) Y n x (y) }
J

= min{W(G, v.) n x(y)}
J

since wy = w if w E x(y)

= V

= VY, since V E x(y).

Let

induction.

yB
Hence in either case vo 1 =

J+
vy and so T

j+1'

134.

= e 1Y by

Since the node v~+1 will be absorbed onto the node vr+1 ,

no terminal node of T(vy 1) equivalent to e1 other than e1y will be
r+

encountered.

Hence 8 = B and so 8 is trivial. D

9.27 Corollary: Suppose that for some subset Y ~ Yo we have

(Y) = IJI(1) E9 '1'(2), where IJI(i) and IJI(2) are non-trivial subgroups of

Then we can write Y = Y (1) u Y (2) where < Y (1) > = IJI (1) and

= ljl(2).

Proof: Any element of Y is of the form oy where y E IJI(1) and

By the theorem one of y and 8 is trivial. D

9.28 Theorem: For some v E Q(V) suppose rv has exaatly one non~trivia.l

orbit_, where r = r (G) • Then there is a suhset Y* ~ Y 0 such that (Y*)

is conjugate to r in r.
\)

Proof: For any subgroup A ~ r let x(A) denote the set of points fixed

by A and let £(A) denote the maximum value of j for which

v.} ~ x(A).
J

Let 'l' be a subgroup of r(G) conjugate to r for which
\)

r = £(1J1) is the greatest. Let C be the non-trivial orbit of IJI.

By assumption, V 1 E c. Also, since ljl ~ r(r). c is
r+

contained in some orbit c1 of r(r).

135.

Suppose there

r (r) d Y
y E an vr+i = v ,

exists a point v in C1\C. Then if

y-l~y is in f(r) and fixes V i
r+

This contradicts the maximality of£(~), and so C = C1.

Now suppose c2 is another orbit of r(r) and w E c2. Since

the partition e~ is equitable (5,9) and fixes w, the cell {w} is

trivially joined to the cell C.

However, the equitable partition er(r) also has Cas a cell,

and so c2 is trivially joined to c.

6 (r) (r)l (r)l Hence by 5.1 , r = f C $ f V\C and so by 9.2!,

Y0 contains a subset generating r(r)lc = ~. 0

9.29 Corollary: If r(G) contains transpositions 3 then Y 0 contains at

least one member from each conjugacy class of transpositions.

Proof: The subgroup of r(G) generated by a single transposition

satisfies the conditions of the theorem. 0

It is not clear when Theorem 9.28 will hold without the

restriction that r have just one non-trivial orbit. We conjecture
\)

that a sufficient condition is that for any v E V not fixed by

r the stabliser (r) is trivial.
\! \! V

9.30 Theorem: If r(G) = ~[~] 3 where ~and ~ are non-trivial3 then

Y0 contains a subset generating one of the copies of~ in r(G).

Proof: For subgroups A E r(G) define £(A) as before and let ~* be

the copy of ~ for which r = £(~*) is greatest. Then r(r) is a direct

136.

sum with one factor I:*. The result follows from 9. 27. D

9.31 We now give a sequence of examples of the performance of

Algorithms 9.21 and 9.24. The following abbreviations are used:

n number of points of G.

first ancestor of e1 for which fB(G, v!l,) is discrete.

number of terminal nodes equivalent to e1.

Mz number of terminal nodes not equivalent to e 1 .

orbits partition of r = f(G).

unit partition of V.

t execution time in milliseconds, excluding time

for output.

If both 9.21 and 9.24 behave the same way and take about the

same time, only the figures for 9.21 are given.

9.32

9.33

012

6 3

5 4

n = 6.

v!l, = [1, 2]; M1 = 3, M2 = 0.

Jrl = 12; ; = TI 0 .

Y0 = {(2 6)(3 5), (1 2)(3 6)(4 5)}.

t = 5·8.

9.35

n = 8.

v£ = [1, 2, 3]; M1 = 4, M2 = 0.

1r1 = 48; ~=no.

Y0 = {(3 5)(4 6), (2 3)(6 7), (1 2)(3 4)(5 6)(7 8)}.

t = 10·3.

n = 10.

V£= [1, 2, 3, 4, 5, 6, 7, 8, 9]; M1 = 10, M2 = 0.

lrl = 3,628,800; ~ = n 0 .

137.

y 0 = { (9 10)' (8 9), (7 8) ' (6 7) • (5 6) ' (4 5) ' (3 4) ' (2 3) ' (1 2)}.

t = 36·4.

10

n = 13.

V£= [4, 8, 1, 2, 9, 10, 5, 6]; M1 = 9, M2 = 0.

1r1 = 1296; ~ = {1, 2, 3, 5, 6, 7, 9, 10, 1114, 8, 12113}.

y 0 = { (6 7) ' (5 6) ' (2 3) ' (1 2) ' (10 11) ' (9 10) '

(5 9)(6 10)(7 11)(8 12), (1 5)(2 6)(3 7)(4 8)}.

t = 38·6.

9.37

138.

1 2 3 4 0-:r
7 8 5

9 10 11 12.

13 14 15 16

n = 16.

V£ = [1, 12]; M1 = 3, M2 = 0.

1r1 = 8; t; = {1, 4, 13, 1612, 3, 5, 8, 9, 12, 14, 1516, 7, 10, 11}.

Y0 = {(2 5)(3 9)(4 13)(7 10)(8 14)(12 15),

(1 4)(2 3)(5 8)(6 7)(9 12)(10 11)(13 16)(14 15)}.

t = 21•5.

n = 25.

V£ = [1, 13, 5]; M1 = 4, M2 = 0.

lrl = 2oo; t; = ~o-

y 0 = { (2 6) (3 11) (4 16) (5 21) (8 12) (9 17) (10 22) (14 18) (15 23) (20 21+) '

(2 5) (3 4) (7 10) (8 9) (12 15) (1314) (17 20) (18 19) (22 25) (23 24) '

(1 2 3 4 5) (6 7 8 9 10) (1112 13 14 15) (16 17 18 19 20) (21 22 23 24 25)}.

t = 60·9.

9.38 G = C5[C5J, where C5 is labelled in a circular fashion. The

group r(G) is~[~], where~= r(C5), [58].

9.39

where for

139.

n = 25.

V£ = [1, 3, 11, 13, 21, 23, 16, 18, 6, 8]; M1 = 13, M2 = 0.

lrl = 1,ooo,ooo; ~ = TI 0.

Y0 = { (7 10) (8 9) , (6 7 8 9 10) , (17 20) (18 19) ,

(16 17 18 19 20)' (22 25) (23 24). (21 22 23 24 25)'

(12 15)(13 14), (11 12 13 14 15),

(6 21) (7 22) (8 23) (9 24) (10 25) (1116) (12 17) (1318) (14 19) (15 20)'

(2 5)(3 4), (1 2 3 4 5),

(1 6 11 16 21) (2 7 12 17 22) (3 8 13 18 23) (4 9 14 19 24) (5 10 15 20 25) } .

t = 160.

G is the graph with points {1, 2, 13' 1 1 > 2 I ' 13'}

1 ::; i ::; 13, 1 ::; j ::; 13,

i and j are adjacent iff i - j = 2, 5' 6, 7, 8 or 11,

i 1 and j 1 " " 11 " = 1, 3, 4, 9, 10 or 12,

i and j 1 11 11 " 11 = 0, 1, 3 or 9,

all differences being taken modulo 13, [1].

n = 26.

v£ = [1, 3]; M1 = 3; M2 = 5 (for 9.24), 7 (for 9.21).

I r I = 39 ; ~ = { 1 , 2 , 1311 1 , 2 I , 0 0 0 , 13 1 }.

Y o = {a a 1 , SS 1 }

where a= (2 10 4)(3 6 7)(5 11 13)(8 12 9),

s = (1 2 3 4 56 7 8 9 10 11 12 13),

and a', S' denote the corresponding permutations acting

on the second half of G.

t = 99 (for 9.24), 116 (for 9.21).

140.

9.40 G is the strongly regular graph with degree 10, 26 points

and trivial automorphism group, as given in [65].

n = 26.

v£ = [1, 17, 7]; M1 = 1, M2 = 7 (for 9.24), 267 (for 9.21).

Jrl = 1; Y0 =cp.

t = 1•15 seconds (for 9.24), 2·60 seconds (for 9.21).

The algorithm of Arlazarov et al. [2] produced 756 terminal

nodes for this graph, and 40 for the graph of 9.39. They do not state

their execution times.

9.41 We now consider the efficiency of Algorithm 9.21. Although

Algorithm 9.24 is always at least as fast as 9.21, we have not been

able to find any simple estimates for its execution time which are better

than those for 9.21. Furthermore, we have not been able to estimate

the effect of the improvement described in 9.20 although, as we have

said, it is often considerable. Consequently, we will assume that at

step (2) we always haven- l~kl > 5.

Define M= M1 + M2, where M1 and M2 are as defined in 9. 31.

Let t be the total time taken by Algorithm 9.21 when applied to G E Q(V).

9.42 We first consider the time t1 taken for the computation of

tB (G, v) for each node v. Let T = [vl,

For 0 ~ j ~ n define v. = [vl, ••• v]
J ' j '

1Tj = <8(G, vj),

£. = ITI.J.
J J

v] be a terminal node.
n

Let k be the smallest value of j for which£. = n.
J

By definition (9.7),

141.

1TJ.+1 = (](£ +1(G, :£) (1T., v.+1)),
j J J

for 0 :::;; j < k.

The computation of ~(1Tj' vj+1) requires time of order 1, and

so the computation of 1Tj+1 takes time of order n(£j+1 - £j), by 5.40.

Similarly the computation of 1TQ requires time of order n£o.

Hence the time taken to compute 1Tj for vk and its ancestors is

of order
k-1

n£o + I n(£.+1 £.) = n£o + n(£k- £o)
j=O J J

= n£k

= n2.

Summing over all terminal nodes we have

9.43

form

order

(i)
1T .

Next we consider the time t2 required for calculations of the

- (i)
1Tk := 1Tk v 1T at step (12). One such computation takes time of

!1r !w(1T(i)) where w(1T(i)) is the number of non-trivial cells of
k

Define

I w (1T (i)), where m = M 1 - L

i=1

Then t2 is of order ~L!1Tk!' where the sum is taken over all ancestors

of terminal nodes not equivalent to e1. We conjecture that for any n,

Q :::;; ~n{log 2 n}, where {log 2 n} is the smallest integer not smaller than

log 2 n. This bound has been proven for graphs whose automorphism

groups r have the property that, for any V E V not fixed by r, the

stabiliser r is trivial, and for a few other similar cases. However,
V

the best bound we have been able to prove for an arbitrary graph is

~:::;;% (3n- 2). Hence the best we can say for certain is that t2 is

of order n4M2, although no class of graphs has been found for which an

order worse than n 2M2 holds.

142.

9.44 Other contributions to the execution time of 9.21 are easily

bounded. We list them below.

(i) For the computation of ~(~k' vk) at step (3): O(n2M).

(ii) For computing the adjacency matrix of G(~k) at step (5):

O(n2M).

(iii) For comparison of G(~k) with G(E:) and G(p): O(nM).

(iv) For computing y, ey, ~ v ey and ~k v ey at step (8): O(n2M1).

(v) For setting ~kat step (15): O(n2).

(vi) For indexing and other minor computations: O(n2M).

Most of these bounds follow from the fact that TG has M

terminal nodes and not more than nM + 1 nodes. Bound (iv) follows from

the observation that y is only computed for terminal nodes equivalent

to e1.

9.45 Putting these estimates together, we find that the total time

t is at worst of order n2M1 + n4M2, although, as stated in 9.43, we

know of no class of graphs for which t > O(n2Ml + n2M2) = O(n2M).

By Theorem 9.17, M1 ~nand sot = O(n 3 + n4M2). No realistic

estimate for M2 has been found, since it depends on two factors, both

of them difficult to determine.

(i) The number of identity nodes depends on the relationship

between 8(Gr) and ~-(G).

(ii) The efficiency of the technique of 7.23 in reducing the

number of terminal nodes equivalent to identity nodes other than e1

143.

is difficult to estimate. In fact, it depends on the labelling of G.

9.46 Fortunately, the proportion of graphs for which M2 > 0 is

quite small. For graphs with 7, 8 or 9 points the proportions are

respectively 2/1044, 15/12346 and 70/274668 and in no graph with ~9

points have we observed M2 > 5.

9.47 Theorem: The following condition is sufficient to ensure that

M2 = 0 for G.

For any v E Q(V)~ let n be the coarszst element of ~(G)

which fixes v. Then the non-trivial cells of n of smallest size are

orbits of r, where r = r(G).
V

Proof: From 9.9 we have ~(G, v) ~ n. The result follows from

9.3 (2) and the definition of~. 0

9.48 Corollary: If G is s-e, M2 = 0.

Proof: If G is s-e, then all equitable partitions are orbital. 0

Unfortunately, the conditions of 9.47 and 9.48 are both very

difficult to verify, both theoretically and experimentally. Incidentally

we do not know of any transitive graph for which M2 ~ 0.

Let M2(n) be the maximum value of M2 for any graph with n

points. The following result shows that M2(n) is not bounded above by

any polynomial in n.

9.49 Theorem: Let G be a connected regular graph with m points~ whose

automorphism group r(G) has p orbits. Then for any k > 03

M2(km) ~ pk - 1.

144.

Proof: Let kG denote the graph consisting of k disjoint copies of G,

{Gl, •••, Gk} with point sets {Vl, ···, Vk} respectively, and define

(a) Suppose k = 1.

Since G1 is regular, tU(Gl, []) = V1, and so contains p

orbits of r(Gl). Hence TG has at least p identity nodes.
1

(b) Suppose TrG has at least pr identity nodes, for some r > 0.

Let H = (r + l)G. Since H is regular, ~(H, []) =V and so contains p

orbits of r(H). Hence TH hasp equivalence classes (under r(H)) of

nodes of length one.

Suppose vl = [v] E TH is the first node in one of these

classes. Without loss of generality we can assume that v E V1. By

9.9, d3(H, vr) contains one cell C = V2 u •• • u V . All its other r+1

cells are proper subsets of V1, and hence smaller than C. If any of

these cells is non-trivial, we have Ul(H, vl) ~ V1, by the definition

of C.

Continuing in this manner down the subtree TH(vl), we

eventually find a node v. for which tB (H, v.) contains exactly one
J J

non-trivial cell, namely v2 u ••• u Vr+l' Since the trivial cells of

cB (H, v.) will have no further effect on the computation of tJ(H, •)
J

for nodes of TH(vj), we can apply the induction hypothesis and say that

TH(vj), and hence TH(vr),has at least pr identity nodes. Considering

the other equivalence classes of unit-length nodes, we see that TH has

r+1
at least p identity nodes. 0

145.

9.50 We now give some experimental data on the performance of

Algorithms 9.21 and 9.24 for a few common families of graphs. The

execution times are shown in Figure 9.4, where both scales are

logarithmic. The approximate gradient of the curve for large n is

given below as the constant K. As before, only data for 9.21 is

given, unless 9.24 behaves appreciably different.

(a)

(b)

(c)

(d)

The path on n points, P , labelled from one end to the other.
n

For all n, M1 = 2 and M2 = 0. K ~ 1•8.

The cycle on n points, Z , labelled in a circular fashion.
n

For all n, M1 = 3 and M2 = 0. K ~ 1·9.

The complete graph on n points, K .
n

For each n, M1 =nand M2 = 0. K ~ 2•7.

The generalised cube on 2m points, Q , defined by Ql = P2,
m

Qm = Q x P2 (m > 1) .
m-1

For each m, M1 =m+ 1 and M2 = 0. K ~ 2·0.

(e) Random graphs, as defined in 3.11.

The two curves marked RG in Figure 9.4 show average

execution times for 0 = 0•50 and 0 = 0•75. In both cases, no graphs

with non-trivial automorphism groups were encountered for n > 25, and

no graphs for which M2 7 0 were encountered for n ~ 10. Hence the

measured times for 9.21 and 9.24 were almost identical.

To illustrate how fast these algorithms are on random graphs

we have plotted (as a dashed line in Figure 9.4) the time required for

a single permutation of an n x n adjacency matrix. For n = 30 and

n = 60 this time represents about 58% and 73%, respectively, of the

time taken by 9.21 on random graphs. Since at least one such matrix

Time
in

Milli­
Seconds

5

-; I -!--+--~---+-

1 1 I i

'::j:j'

-1-

10 .20
Number of polnts

Figure 9.4

146.

'j

30 40 50 60

permutation is an essential step for any canonical labelling algorithm

which employs an adjacency matrix representation of a graph, we believe

that it is not possible to devise such an algorithm which is very much

faster than our own on large random graphs.

9.51 Only a few other authors have given execution times for their

algorithm's performance on random graphs. In Table 9.1 we list the

execution times (in seconds) of Algorithm 9.21, Corneil and Gotlieb's

algorithm [11, 14] and Ullmann's algorithm [75], for random graphs

with cr = 0•5. Both these other algorithms test for isomorphism

between two graphs. It is clear that Algorithm 9.21 is by far the

fastest, even after allowing for machine-speed differences (perhaps a

factor of 4 in both cases). Times marked with a dagger (t) in Table

9.1 were estimated from related figures given by the relevant authors.

n 9•21

20 0•0065

40 0•020

60 0•039

Corneil and Gotlieb

0•27

0•95(t)

1•98

Table 9.1

Ullmann

0•90

6·l(t)

19 (t)

9.52 Let Hk denote the graph with 2k components, k isomorphic to

Z3 and k isomorphic to Z4. We define ~(1) and ~(2) to be particular

labelled graphs isomorphic to Hk. In Hk(1) all the copies of z4 are

labelled before the copies of z3 , and in Hk(2) copies of z4 and Z3 are

labelled alternately. For example,

H2 (1) = D' 2 tJ A
4 3 8 7 ~10

12 E, and

14 13

148.

r=r L 11 10 14 13

(2k) For any k, the program tree T~ has k identity nodes, and

so we can expect Algorithms 9.21 and 9.24 to be comparatively

inefficient on these graphs. However, for both labellings, Algorithm

9.24 finds no identity nodes not equivalent to e1, showing that the

technique described in 9.23 has been very successful. The behaviour

of Algorithm 9.21 can be seen from Table 9.2. M1 was the same for

both labellings.

k n lr(Hk)l (2k)
k Ml M2 for H (1)

k
M2 for H (2)

k

1 7 48 2 5 1 1

2 14 9216 6 11 5 10

3 21 3981312 20 17 19 57

4 28 3·06 X 109 70 23 69 276

5 35 3•67 X 1012 252 29 251 1257

6 42 6· 34 X 1015 924 35 923 5555

7 49 1•49 X 1019 3432 41 3431 24000(t)

8 56 4•58 X 1022 12870 47 12869 104000(t)

[(t)estimated]

Table 2.2

(2) (1)
The reason why M2 is larger for Hk than for Hk seems

to be that terminal nodes not equivalent to e1 are encountered before

very many elements of f(Hk) have been found, so that the process in

step (12) of 9.21 is not so effective. However, for k = 8 we still

have only about 8 terminal nodes per identity node, which is very small

compared with lf(Hk) I. Execution times for both algorithms, and both

labellings, are shown in Figure 9.5.

Time
in

50

10

5

1

• 5

·1

• 05

•01

7 14
Number of points

21

Figure 9.5

28 35 42 49 56

150.

9.53 A minor extension of Algorithms 9.21 and 9.24 enables them

to solve hro somewhat more general problems. Suppose G E G(V) and

SE IT(V). One problem is the determination of r , where r = r(G). s
The other is to find a map

f Q(V) X IT(V) ~ Q(V)

so that the following hold for each G E Q(V), r;; E IT(V) and yE S .
n

(1) f(G, r;;) is isomorphic to G.

(3) f(G, r;;Y) = f(G, r;;) iff r;;Y = 7; 0 for some o E r(G).

Clearly,this definition generalises that of a canonical labelling as

given in 8.5. We can think of it as the problem of canonically

labelling a graph with coloured points, each colour corresponding to

a cell of r;;.

Although we shall not prove it here, the only change

required to 9.21 and 9.24 is to alter 9.7(1) to read

"If lvl = 0, define a3(G, v) = lRl(G, r;;)."

9.54 A particular application of this technique can be described

as follows, Suppose G, HE Q(V) and that G and Hare known to be

transitive, If G and Hare isomorphic and v E V, there is an isomorphism

from G to H which takes v E V(G) onto v E V(H), Therefore we can

compare G and H by using Algorithm 9.21 with r;; = [viV\{v}], This will

generally save a considerable amount of time. The elements of r(G)

found by 9.21 (or 9.24) will generate the stabiliser r(G) .
V

151.

In one of the first practical applications of Algorithm 9.21,

this method was used to generate all the circulant graphs with fewer

than 38 points. A graph G with n points is circulant if r(G)

contains a cycle of length n; hence G is transitive. In one run, for

example, the isomorphic copies amongst 23423 circulant graphs with 36

points were found in less than 30 minutes. For these graphs, M2 was

always zero, and M1 averaged about 2·4.

9.55 Algorithms 9.21 and 9.24 can also be easily extended so that

they apply to more general graph-like objects, for example digraphs,

loop-graphs or multigraphs. We have used 9.21 and 9.24 with con­

siderable success on both digraphs and loop-graphs. The only necessary

change was to suspend the technique described in 9.20, since Theorem

5.19 no longer holds.

Finally, we mention a few simple methods by which our

algorithms might be improved. Basic directions we might try to take

are towards reducing the number of identity nodes, and towards

reducing the number of non-identity nodes.

Considering the first possibility, suppose G E G(V) and that

tJ1 and tJ2 are maps satisfying 8.11. If r1 and r2 are the number of

identity nodes of the program trees defined by ~l(G, •) and tJ2(G, ·)

respectively, we say that ~1 is stronger than tJ2 if r 1 ~ r 2 . If

r1 = 1, then tJl is optimal (for G). The well-known Corneil-Gotlieb

algorithm [14] uses a defining function stronger than ours, but

requiring much more time for its evaluation. In fact, these authors

conjecture their choice of ~to be always optimal, but unfortunately

counter-examples have since been found [13]. On the other hand,

Arlazarov et al. [2] use a defining function which can be very rapidly

152.

evaluated, but which is weaker than ours. The maps used by Overton

and Proskurowski [49] probably also fall into this category. We

believe that for most graphs our own choice of tJ is a reasonable

compromise, since it is fast to compute (5.41) and usually optimal

(9.46). However, to help those cases (like the graphs in 9.52) where

iJ is far from optimal, it should be possible to devise a system

whereby a stronger version of iJ is automatically "turned on" by the

appearance of too many identity nodes. Even if the algorithm must be

restarted in these cases (which is not certain), this system should

substantially improve the "worst-case" behaviour without damaging the

average efficiency. For this purpose, we are currently examining

several possible choices for a map c (or a sequence of maps) satisfying

8.23. The idea is to apply Algorithm 5.32 first on c(G) and then on G

during the computation of ~ •

9.57 The other,possibility for improvement could be to reduce the

number of non-identity terminal nodes. Since the number equivalent

to e1 is already very small (9.17), these nodes would no longer be a

problem if the number of identity nodes was sufficiently reduced.

Nevertheless there may be some merit in having L > 0, as described in

7.27.

153.

BIBLIOGRAPHY

Papers not referred to in the text are indicated by an

asterisk.

[1] G. ADEL'SON-VEL'SKII, B. VEISFEILER, A. LEMAN and I. FARADZEV:

Example of a graph without a transitive automorphism group.

Dokl. Akad. Nauk SSSR 185, 5 (1969). Translation: Soviet

Math. Dokl. 10, 2 (1969) 440-441.

[2] V. ARLAZAROV, I. ZUEV, A. USKOV and I. FARADZEV: An algorithm

for the reduction of finite non-oriented graphs to canonical

form. Zh. vychisl. Mat. mat. Fiz. 14, 3 (1974) 737-743.

[3] H. BAKER, A. DEWDNEY and A. SZILARD: Generating the nine-point

graphs. Math. Comp. 28, 127 (1974) 833-838.

[4] M. BEHZAD and G. CHARTRAND: "Introduction to the Theory of

Graphs". Allyn and Bacon, Boston (1971).

[5] A. BERZTISS: A backtrack procedure for isomorphism of directed

graphs. JACM 20, 3 (1973) 365-377.

[6] N. BIGGS: "Algebraic Graph Theory". Cambridge Tracts in

Mathematics No. 67 (1974).

[7] G. BIRKHOFF: "Lattice Theory". 3rd edition. Providence,

Rhode Island, AMS (1973).

154.

*[8] C. BOHM and A. SANTOLINI: A quasi-decision algorithm for the

P-equivalence of two matrices. ICC Bull. 3 (1964) 57-69.

*[9] H. BROWN and L. MASINTER: An algorithm for the construction of

the graphs of organic molecules. Discrete Maths. 8 (1974)

227-244.

[10] L. COLLATZ and U. SINOGOWITZ: Specktren endlicher Grafen. Abh.

Math. Sem. Univ. Hamburg 21 (1957) 63-77.

[11] D.G. CORNEIL: "Graph Isomorphism". Ph.D. Thesis, Univ. of Toronto

(1968).

*[12] D.G. CORNEIL: An algorithm for determining the automorphism

partitioning of an undirected graph. BIT 12 (1972)

161-171.

[13] D.G. CORNEIL: The analysis of graph theoretic algorithms. Univ.

of Toronto 3 Dept. of Computer Sci.~ Technical Report No. 65

(1974).

[14] D.G. CORNEIL and C.C. GOTLIEB: An efficient algorithm for graph

isomorphism. JACM 17, 1 (1970) 51-64.

[15] D.Z. DJOKOVIC: Automorphisms of graphs and coverings. J. Comb.

Th. (B) 16 (1974) 234-247.

*[16] J.P. DOLCH: Names and aliases of graphs. Proc. 3rd S-E Conf. on

Combinatorics 3 Graph Theory and Computing (1972) 175-194.

155.

[17] A. DUIJVESTIJN: Electronic computation of squared rectangles.

Philips Res. Rep. 17 (1962) 537.

[18] J. FILLMORE and S. WILLIAMSON: On backtracking: a combinatorial

description of the algorithm. SIAM J. Comput. 3, 1 (1974)

41-55.

[19] H. FINCK and H. SACHS: Uber Beziehungen zwischen Struktur und

Spektrum regularer Graphen. Wis. Z. Th. Ilmenau 19 (1973)

83-99.

[20] I. FLORES: ncomputer Sorting". Prentice-Hall, N .J. (1969).

[21] C. GODSIL and B. McKAY: Some computational results on the

spectra of graphs. Proc. 4th Australian Conf. on Combinatorial

Mathematics~ Adelaide (1975). To appear.

[22] S.W. GOLOMB and L.D. BAUMERT: Backtrack programming. JACM 12,

4 (1965) 516-524.

[23] E.V. HAYNSHORTH: Applications of a theorem on partitioned

matrices. J. Res. Nat. Bur. Stand. (B) 63 (1959) 73-78.

[24] R.B. HEAP: The production of graphs by computer, in "Graph

Theory and Computing", R.C. Read (ed.). Academic Press,

N.Y. & Land. (1972) 47-62.

*[25] J. HOPCROFT and R. KARP: An n 512 algorithm for maximum matching

in bipartite graphs. SIAM J. Comput. 2, 4 (1973) 225-231.

156.

*[26] J. HOPCROFT and R. TARJAN: A v2 algorithm for determining

isomorphism of planar graphs. Info. Process. Lttrs. 1, 1

(1971) 32-34.

*[27] J. HOPCROFT and R. TARJAN: Isomorphism of planar graphs, in

"Complexity of Computer Computations", R .E Miller and

J.W. Thatcher (ed.). Plenum (1972) 131-152.

*[28] J. HOPCROFT and J.K. WONG: Linear time algorithm for isomorphism

of planar graphs. (Extended abstract). Sixth annual ACM

symposium on Theoy.y of Computing. Seattle (1974).

[29] D.B. JOHNSON: Finding all the elementary circuits of a directed

graph. SIAM J. Comput. 4, 1 (1975) 77-84.

*[30] V. KARELIN and B. MIRONOV: An algorithm for determining an

isomorphism of a homogeneous non-oriented graph. Engng.

Cybernetics 13, 2 (1975) 117-121.

[31] C.A. KING: "A Graph-Theoretic Programming Language". Ph.D.

Thesis, Univ. of West Indies (1970).

[32] D.G. KIRKPATRICK: Topics in the complexity of combinatorial

algorithms. Univ. of Toronto~ Dept. of Computer Sci.~

Technical Report No. 74 (1974).

*[33] W. KNODEL: Ein Verfahren zur Festellung der Isomorphie van

endlichen, zusammenhangenden Graphen. Computing 8 (1974)

329~334.

157.

[34] D.E. KNUTH: Estimating the efficiency of backtrack programs.

Stanford Univ.~ Dept. of Computer Sci. STAN-CS-442 (1974).

[35] L. KRIDER: A flow analysis algorithm. JACM 11, 4 (1964) 429-436.

[36] W.W. KUHN: "An Algorithm for Graph Isomorphism Using Adjacency

Matrices". Ph.D. Thesis, Univ. of Pennsylvania (1971).

[37] W.W. KUHN: A random graph generator. Proc. 3rd S-E Conf. on

Combinatorics~ Graph Theory and Computing (1972) 311-313.

[38] P. LANCASTER: "Theory of Matrices". Academic Press, N.Y. & Lond.

(1969).

[39] G. LEVI: A note on the derivation of maximal common subgraphs

of two directed or undirected graphs. CALCOLO 9 (1972)

341-352.

[40] G. LEVI: Graph isomorphism: a heuristic edge-partitioning­

oriented algorithm. Computing 12 (1974) 291-313.

[41] G. LEVI and F. LUCCIO: A technique for graph embedding with

contraints on node and arc correspondences. Information

Sciences 5 (1973) 1-23.

[42] M.F. LYNCH: Storage and retrieval of information on chemical

structures by computer. Endeavour 27, 101 (1968) 68-73.

158.

[43] M.F. LYNCH, J.M. HARRISON, W.G. TOWN and J.E. ASH: "Computer

Handling of Chemical Structure Information". Macdonald/

American Elsevier Computer Monographs No. 13 (1971).

[44] M. MASUYAMA: On a test for isomorphism of linear graphs associated

with experimental designs. Sankhya A 36, 1 (1974) 53-62.

[45] D.W. MATULA: An algorithm for subtree identification. SIAM 196?

National Meeting. (Abstract in SIAM Review 10, 2 (1968)

273-274).

[46] H.L. MORGAN: The generation of a unique machine description for

chemical structures. J. Chem. Docum. 5 (1965) 107-113.

*[47] R.MORPURGO: Un metodo euristico per la verifica dell'isomorfismo

di due grafi semplici non orientati. CALCOLO 8 (1971)

1-31.

[48] J. NAGLE: On ordering and identifying undirected linear graphs.

J. Math. Phys. 7 (1966) 1588-1592.

[49] M. OVERTON and A. PROSKUROWSKI: Finding the maximal incidence

matrix of a large graph. Stanford univ.~ Dept. of Computer

Sci. STAN-CS-509 (1975).

[50] R. PARRIS: "The Coding Problem for Graphs". M.Sc. Thesis,

Univ. of West Indies (1968).

159.

[51] R. PARRIS and R.C. READ: A coding procedure for graphs. Scientific

Report. UWI/CC 10. Univ. of West Indies Computer Centre

(1969).

[52] R.H. PENNY: A connectivity code for use in describing chemical

structures. J. Chem. Docum. 5 (1965) 113.

[53] M. PETERSDORFF and H. SACHS: Uber Spektrum, Automorphismengruppe

und Teiler eines Graphen. Wiss. Z. Techn. HoscZ. Ilmenau

15 (1969) 123-128.

[54] G. POLYA: Kombinatorische anzahlbestimmungen fur Gruppen,

Graphen und chemische verbindungen. Acta Math. 68 (1937)

145-254.

[55] A. PROSKUROWSKI: Search for a unique incidence matrix of a graph.

BIT 14 (1974) 209-226.

*[56] M. RANDIC: On the recognition of identical graphs representing

molecular topology. J. Chem. Phys. 60 (1974) 3920-3928.

*[57] R.C. READ: The coding of various kinds of unlabelled trees, in

"Graph Theory and Computing", R.C. Read (ed.). Academic

Press, N.Y. & Land. (1972) 153-183.

[58] G. SABIDUSSI: The composition of graphs. Duke Math. J. 26

(1959) 693-696.

160.

[59] H. SACHS: Beziehungen zwischen den in einem Graphen enthaltenen

Kreisen und seinem charakteristischen Polynom. PUbZ. Math.

Debrecen 11 (1964) 119-134.

[60] H. SACHS: Uber Teiler, Faktoren und characterische Polynome van

Graphen I. Wiss. Z. Techn. Hosch. Ilmenau 12 (1966) 7-12.

[61] H. SACHS: Uber Teiler, Faktoren und characterische Polynome

van Graphen II. Wiss. Z. Techn. Hosch. Ilmenau 13 (1967)

405-412.

[62] G. SAUCIER: Un algorithme efficace recherchant l'isomorphisme

de 2 graphes. RIRO R-3, 5 (1971) 39-51.

[63] A.O. SCHWENK: Computing the characteristic polynomial of a

graph, in "Graphs and Combinatorics" , Proc. Capital Conf.

on graph theory and combinatorics. Lecture Notes in

Mathematics, Springer-Verlag (1974) 153-162.

[64] W.R. SCOTT: "Group Theory", Prentice-Hall, N.J. (1964).

[65] J.J. SEIDEL: Graphs and two-graphs, in Proc. 5th S-E Conf. on

Combinatorics~ Graph Theory and Computing (1974) 125-143.

[66] S.S. SHRIKHANDE: The uniqueness of the L2 association scheme.

Ann. Math. Stat. 30 (1959) 781-798.

*[67] F. SIROVICH: Isomorfismo fra grafi: un algoritmo efficiente per

trovare tutti gli isomorfismi. CALCOLO 8 (1971) 301-337.

161.

*[68] N. SRIDHARAN: Computer generation of vertex graphs. Info.

Process. Lttrs. 3 (1974/5) 57-63 and ibid. p.l64.

[69] J.P. STEEN: Principle d'un algorithme de recherche d'un

isomorphisme entre deux graphes. RIRO R-3, 3 (1969) 51-69.

[70] E.H. SUSSENGUTH: A graph-theoretic algorithm for matching

chemical structures. J. Chem. Docum. 5, 1 (1965) 36-43.

[71] R.E. TARJAN: Depth-first search and linear graph algorithms.

SIAM J. Comput. 1, 2 (1972) 146-160.

[72] G. TINHOFFER: Zur Bestimmung der Automorphismen eines endlichen

Graphen. Computing 15 (1975) 147-156.

[73] J. TURNER: Generalised matrix functions and the graph isomorphism

problem. SIAM J. Appl. Math. 16 (1968) 520-526.

[74] J.R. ULLMANN: "Pattern Recognition Techniques". Butterworths,

London and Crane Russak, N.Y. (1973).

[75] J.R. ULLMANN: An algorithm for subgraph isomorphism. JACM 23, 1

(1976) 31-42.

[76] S.H. UNGER: GIT -A heuristic program for testing pairs of

directed line graphs for isomorphism. CACM 7, 1 (1964) 26-34.

162.

*[17] L. WEINBERG: A simple and efficient algorithm for determining

isomorphisms of planar triply connected graphs. IEEE Trans.

Circuit Theory 13 (1966) 142-148.

[18] M.B. WELLS: "Elements of combinatorial computing". Pergamon,

Oxford (1911).

[79] H. WIELANDT: "Finite Permutation Groups". Academic Press,

N.Y. & Lond. (1964).

[80] C. C. YANG: Structural preserving morphisms of finite automata

and an application to graph isomorphism. IEEE Trans.

Computers C-24, 11 (1915) 1133-1139.

	M1
	M2
	M3
	M4
	M5
	M6

