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Abstract 

A technique involving summation over roots of unity was used 
by Liskovec in 1971 to count labelled regular tournaments. The 
same method is used here to count regular tournaments to 21 
vertices, Eulerian digraphs to 16 vertices, Eulerian oriented 
graphs to 15 vertices, regular graphs to 21 vertices, regular 
bipartite graphs to 40 vertices, and Eulerian circuits in com- 
plete graphs with up to 17 vertices. The last calculation was 
performed jointly with R. W. Robinson. All the objects counted 
are vertex-labelled. 

1. Coefficient extraction for generating functions 

Consider a multivariate generating function f(x, ..., x )  = 

is a complex number. 

Lemma 1.1 Let m. > 0 and k. be integers for 1 < j 2 n. Define 
J 1 

u+ = e271i'mj (1 < j < n). Then 

where the sum on the r ight  i s  over a l l  cl, ..., c such that 
n 

m.Ic. - k. for 1 Â¥ j in. 
J J  J 
Proof. This is an immediate consequence of the fact that 

m 
(cj-kj)rj = pjy if -j 'cj-kTy 

r.=0 ̂  1.0, otherwise. 0 
J 

* 
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By j u d i c i o u s  cho ice  of t h e  m4 we can e x t r a c t  any d e s i r e d  c o e f f i c i e n t .  
J 

Lemma 1.2 For 1 < j <Â my l e t  m. 2 1 + maxi t .-k. k.-s.  } . Then 
1 3 3 l J  

1 n  
f  ( a i l ,  . . . . u i n )  

1 - 1  = ml ... m n  a ( k 1  k2.  ..., k ) .  
r = O  r = O  
1 u k ~ r l  . . . unn n  

1 n 
Lemma 1.2 r e q u i r e s  t h e  summation of m m 2...mn terms. For many 

a p p l i c a t i o n s  t h i s  number can be d r a s t i c a l l y  reduced. For example, 

i f  f  i s  a symmetric f u n c t i o n  and k  =k =.. .=k =k, Lemma 1 . 2  immediately 
1 2  n  

y i e l d s  t h e  fo l lowing  r e s u l t .  

Lemma 1 . 3  Suppose f i s  a symnetri-c function, and l e t  s = s = 
1 = 'n 

and t = t, = ... = t . Choose an integer m such that m 2 1 + max{t-k, k-s} 

2-lTi/m and define u  = e  . Then 

n  f  (z1, . . . , z_) 
= mna(k, k,  . . . , k) .  1 [uQ, u ,  ..., u  1 k(u  +2u2+ ... +(m-l)u J 

m-1 u 1 m- 

The swn i s  over non-negative integers uo, ..., u  such that 
.  m-1 1 

u  +u + . . . +uml=n. The arguments t o  f  are u  (u_ t imes) ,  u ( u  t i n e s ) ,  . . 
0  1 
m- 1 

u  t imes) .  

Proof .  For 0 < j  & m-1, i n t e r p r e t  u  a s  t h e  number of  r!s ( i n  Lemma 1.2)  
j 

which a r e  e q u a l  t o  j .  The mult inomial  c o e f f i c i e n t  coun t s  t h e  number of 

t imes t h i s  occurs .  0 

Lemmas 1.1-1.3 a r e  n o t  v e r y  u s e f u l  f o r  computation i n  t h e i r  s t a t e d  

forms because they  employcomplex a r i t h m e t i c .  Moreover, t h e  amount of 

c a n c e l l a t i o n  which o c c u r s  i s  s o  excess ive  t h a t  ve ry  h i g h  p r e c i s i o n  is  

requ i red .  For tuna te ly ,  t h e r e  is  a n  a l t e r n a t i v e  approach, which we s h a l l  

d e s c r i b e  f o r  Lemma 1.3. Le t  p  be a  prime number such t h a t  mlp-1 and 

p  > n. Then t h e r e  i s  a  number ueZP whose o r d e r  modulo p is  m. Lemma 1 . 3  

now ho lds  modulo p ,  w i t h  t h e  same proof .  Thus we can o b t a i n  a ( k , k ,  ..., k)  

mod p  us ing  on ly  smal l  i n t e g e r s .  I f  t h i s  is  repea ted  f o r  a  s u f f i c i e n t  

number of  d i f f e r e n t  primes, a ( k , k ,  ..., k )  i t s e l f  can be  found w i t h  t h e  

he lp  of  t h e  Chinese Remainder Theorem. Th i s  assumes t h a t  some p r i o r  

bound on a ( k , k ,  ..., k)  i s  a v a i l a b l e ~ n o  problem f o r  our  examples. 

With a  l i t t l e  c a r e ,  t h e  computation i n  Lemma 1.3  can o f t e n  be 

arranged s o  t h a t  on ly  a few machine o p e r a t i o n s  p e r  term a r e  requ i red  on 

t h e  average.  E s s e n t i a l l y ,  t h e  terms are computed i n s u c ' h a n  o r d e r  t h a t  

each can b e  q u i c k l y  computed from t h e  preceding term. Another sav ing  i s  



obtained through the use of a table of logarithms to base z for 

computing powers, where z is a primitive root mod p. 

2. Applications 

We will describe each application using a standard format. The 

object subsection defines the number we wish to evaluate. The method 

subsection describes the generating function used, and the means by 

which the correct coefficient was extracted. The bound subsection 

gives the a priori upper bound needed as described in Section 1. 

The checks subsection gives one or more divisibility conditions which 

were applied as a check to the results. Anything else appears in 

the comments subsection. The numbers themselves appear in the Appendix. 

(a) Regular Tournaments 

Object. RT(n) is the number of labelled regular tournaments with n 

vertices. Clearly, n must be odd. 

Method. Let q =  (n-l)/2. Then RT(n) is the coefficient of xq xq in 
1 ... n n(xi+ xj ). This is symnetric in its arguments, so we can use 

i<j 
Lemma 1.3 with m=l+q. A little saving is possible by using 

m = q  instead. This counts tournaments with degrees in the set 

{O, q, n-11. The numbers of regular tournaments are then 

easily extracted (see C6I). 

q 2i-1 2i 
Bound. RT(n)an ( ] [  To see this, note that the neighbours of 

i= 1 

vertex 1 can be chosen in exactly ['q) ways, then those of 

vertex 2 can oe chosen in exactly [':-I] ways, etc. 

Checks. ['q) 1 RT(~), as proved in the previous subsection. 
Comments. This case has been done before by Liskovec C61. In fact, 

that paper is the principal source of our inspiration. Liskovec 

obtained RT(n) for nag. 

(b) Eulerian Digraphs 

Object. ED(n) is the number of simple labelled Eulerian digraphs with 

n vertices. n n - 
ED(n) is the constant term in H" .I 1 (1 + so ED(n) can 1=1 1=1 
be found by using m = n in Lemma 1.3. I f  n is oddwe can do a 



l i t t l e  b e t t e r  with m=n+l,  s ince  many of the  terms a r e  then zero 

and t h e  computation can be arranged t o  r e j e c t  t he se  en masse. 

n-1 2 i  
Bound. ED(n)si$ ,]. Consider cons t ruc t ing  an Eulerian digraph by f i r s t  

choosing t he  v e r t i c e s  t o  be adjacent  t o  and from ve r t ex  1, then 

t o  and from ve r t ex  2, e t c .  When we reach ve r t ex  i we f i nd  i t  

a l ready  connected t o  o r  from some of the  e a r l i e r  v e r t i c e s  (say 

t o  d and d' of these  respec t ive ly) .  To choose i t s  o the r  inc ident  : 

n-1 n-1 
edges we have 1 [ ] [ ~ ~ ~ ~ ] ~ o s s i b i l i t i e s ,  where s  i s  t he  common 

sq, s-d 
va lue  of t h e  indegree and outdegree when we a r e  f in i shed .  The 

sum is  e a s i l y  seen  t o  be bounded above by [2:~fi] . 
Checks. Let g be t he  gcd of t he  numbers 

1 [nil) ,n-2i-l f o r  

r 5 i 5 L(n-l)/2J. Then ED(n) is  d i v i s i b l e  by go and 

ED(n) - 2 ~ ~ ( n - l )  is  d i v i s i b l e  by gl. To prove t h i s ,  def ine  

Â£(n  i )  t o  be t h e  number of l abe l l ed  simple digraphs with n 

v e r t i c e s ,  of which i have 5 = 1, i have 6 = -1, and n -  2 i  have 

6 = indegree - outdegree. Clearly,  )l (n, 0) = ED(n) . By considering 

t he  edges inc ident  with ver tex  1, we s ee  t h a t  

Ehl] [n;i-l] 2n-2j.-1 
~ ( n - 1 ,  i ) .  Both d i v i s i b i l i t y  condi t ions  now 

fol low ea s i l y .  

Comment. This case was a l s o  done by Liskovec [61,  but without any 

a c t u a l  c a l cu l a t i ons .  

( c )  Eulerian Oriented Graphs 

Object. EOG(n) is  t he  number of simple l abe l l ed  Eulerian or ien ted  graphs 

wi th  n ve r t i c e s .  

Method. EOG(n) is  t he  constant  term i n  IJ(~+x-'x +xixjl). 
i < j  i j 

Bound. EOG (n) s ED(n) , obviously. 

Checks. Let g be t he  gcd of the  numbers ) [ f o r  1 s  i < ~ ( n - l ) / 2 ~ .  

Then EOG(n) - EOG(n-1) i s  d i v i s i b l e  by g. 

(d) Regular Graphs 

Object. RG(n, k)  i s  t he  number of k-regular simple l abe l l ed  graphs of 

order  n. 

Method. RG(n, k) i s  t h e  coe f f i c i en t  of xk.. .xk i n  r ( l + x . x . ) ,  which can 
n i < j  1 J - 

be ex t rac ted  using m =  l +  max{k, n-k-l} i n  Lemma 1.3. I f  k Ã ˆ  



we can do b e t t e r  with t h e  generat ing func t ion  (J(1 + x  x t ) ,  
i<j  i . j  

where t i s  an  ex t r a  va r i ab l e .  Applying Lemma 1.3 with m = k +  l 

i 
we ob t a in  a generat ing func t ion  l c  t , where c i s  t h e  number k i 
of l abe l l ed  simple graphs with n v e r t i c e s ,  i edges, and a l l  

ve r t ex  degrees i n  the s e t  {k, 2 k + l ,  3 k + 2 ,  ... 1 .  By summing 

t over s u i t a b l e  r oo t s  of un i ty ,  we can s e l e c t  c I ,  which 

i s  RG(n, k ) .  

Bound. RG(n, k)  S (nk)!/ ((nk12) ! 2nk12(k! In) . See [I], f o r  example. 

Checks. By considering t he  pos s ib l e  neighbours of ver tex  1, we see  

t h a t  RG(n, k)  is  d i v i s i b l e  by fnil]. 
n/ 2 Comments. Obviously, RG(n, 0 )  = 1 and RG(n, 1 )  = n!/ [(n/2)  !2 ), A 

recurrence f o r  RG(n, 2) i s  found e a s i l y .  Recurrences f o r  

RG(n, 3) have appeared i n  [I31 and [161, f o r  example, and 

recurrences f o r  RG(n, 4) i n  C141 and [151. A l i n e a r  but  very 

long recurrence f o r  RG(n, 5) has been bound by Goulden, 

Jackson and Re i l l y  L51. General methods, which would probably 

y i e l d  l i n e a r  recurrences fo,r any f ixed  k, a r e  discussed i n  

[ 4 1  and [51. 

(e)  Semi-regular B i p a r t i t e  Graphs 

Object. SRBG(n, n ,  k ,  k2) is  t he  number of simple l abe l l ed  bicoloured 

graphs, where one colour c l a s s  has n v e r t i c e s  of degree k and 

t he  o the r  has n2 v e r t i c e s  of degree k .  Clearly,  n k = n  k 1 1  2 2 0 r  
no such graphs e x i s t .  Equivalent ly,  SRBG(nl, n2, k ,  k2) is  

the  number of n x n2 0-1 mat r ices  with a l l  rows summing t o  k 
1 1 

and a l l  columns summing t o  k 
2' k k k  k 

Method. SmG(nl, n2, k , k ) is  t h e  c o e f f i c i e n t  of x l . . . x n l y 1 2 . . . y  2 
1 2  1 1 n2 

i n  M(l+ x .y .  ). This is  a symmetric func t ion  independently 
i = l j = l  l J  

i n  t h e  x ' s  and t he  y ' s .  We can e x t r a c t  t he  c o e f f i c i e n t  by 

summing each x .  over  t he  m - t h  r oo t s  of un i t y  and each y over 
1 j 

t h e  m - t h  r oo t s  of un i ty ,  where m = l + m a x { k ,  n -k. } and 
2 1 1 1  

m = 1 +  max{k2, n -k }. Actually, i f  kl < n - k l ,  i t  s u f f i c e s  t o  
2 2 1 

use  m = 1 + k  and the  same va lue  of m .  By Lemma 1.1, t h e  
1 1 

graphs counted have n2 v e r t i c e s  of degree k2 and n v e r t i c e s  
1 

with degrees i n  t he  s e t  { k ,  2 k + l ,  3k1+2, ... }. Since t he  
1 



number of edges i s  n 2 k ,  a l l  these  n v e r t i c e s  must i n  f a c t  

have degree kl. An a d d i t i o n a l  major improvement comes on 

n o t i c i n g  t h a t  each of t h e  y 'soccurs  independently, i n  t h e  

any s e t  S. 
n n 

Bound. SKBG ( n ,  n ,  kl, k2) 2 (nlkl} ! / ( k ~  ' k  ! 2, . See C 101, f o r  

example. 

Checks. By considering t h e  neighbours of one ver tex ,  then those of 

a v e r t e x  ad jacen t  t o  t h e  f i r s t ,  we s e e  t h a t  SRBG(n, n2,  k ,  k )  

is  d i v i s i b l e  by [::I . 

Comments. We have only done computations f o r  t h e  c a s e  where n = n  and 

k l=k2 .  SRBG(n, n, 0, O), SRBG(n, n ,  1, 1 )  and SRBG(n, n, 2, 2) 

a r e  e a s i l y  found. A formula f o r  SRBG(n, n ,  3 ,  3 )  was found by 

Read 1121. 

I n  t h e  t a b l e s ,  RBG(n, k) means SRBG(n, n, k, k ) .  

( f )  Eu le r ian  C i r c u i t s  i n  Complete Graphs 

The d e t a i l s  of t h i s  case  w i l l  appear i n  a forthcoming paper 

( j o i n t l y  wi th  R. W. Robinson). Let E u l ( K )  be the  number of 

Eule r ian  c i r c u i t s  i n  K counted without  regard t o  s t a r t i n g  
n ' 

p o i n t .  The t a b l e s  g ive  EK(n) = E u l ( ~ )  / ((n-3) 12) ! .  A proof 

t h a t  EK(n) i s  an i n t e g e r ,  and va lues  up t o  n = l l ,  can be found i n  171. 

3 .  Wishful Thinking 

Asymptotic c a l c u l a t i o n s  have only been performed f o r  two of t h e  

s i x  c a t e g o r i e s  l i s t e d  i n  Sec t ion  2. S p e c i f i c a l l y ,  we have 

(nk) ! 
(a )  RGh, k )  - exp F], and 

(nk/Z) !2nk'2(k!)n 

( n k )  ! ( k - 1 )  ( k - 1 )  
(b) SRBG(n, n2, kl, k2)  - I . Formula 

n 
1 "2 

(kl!) 

a a s  proved f o r  f i x e d  k by Bender and Canf i e l d  111 , f o r  k = 0 ( ( l o g  n)') 



by ~ o l l o b &  [ 31, and f o r  k = ~ ( n ' ' ~ )  by McKay [ 91 . Formula (b) was 

proved f o r  m a x f k ,  k2} 5 ( l og  ( n + n ) ) ^  by O'Neil [I] ,  somewhat 

more a c c u ra t e ly  by Mineev and Pavlor [lo], and f o r  max{kl, k }  = 

1 /31  
o ( ( n  + n2)  by McKay [81. 

The following conjec tures  a r e  based on a c a r e f u l  ana ly s i s  of t he  

number given i n  t he  Appendix using a technique f o r  numerical extrapola-  

t i o n  121. We have not  spec i f i ed  how k i s  t o  vary with n,  but i n  each 

. case  we would expect the  r e s u l t  t o  hold c e r t a i n l y  f o r  f ixed  k, 
I-& 

probably f o r  k = 0(n  ) ,  and poss ib ly  f o r  k s c n  f o r  some s u i t a b l e  

cons tan t  c .  Conjecture 2 appeared previously i n  [81. 

Conjecture 1. 

(nk) ! 
RG(n, k) = exp 1- (k-1) (k+l) - (k-1) (k+2) (k2-k+l) 

(nk12) ! 2nk12 (k! )" 
4 12kn 

Conjecture 2. 
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