APPLICATIONS OF A TECHNIQUE FOR LABELLED ENUMERATION*
by

Brendan D. McKay

Computer Science Department
Vanderbilt University
Nashville, Tennessee 37235

Abstract

A technique involving summation over roots of unity was used by Liskovec in 1971 to count labelled regular tournaments. The same method is used here to count regular tournaments to 21 vertices, Eulerian digraphs to 16 vertices, Eulerian oriented graphs to 15 vertices, regular graphs to 21 vertices, regular bipartite graphs to 40 vertices, and Eulerian circuits in complete graphs with up to 17 vertices. The last calculation was performed jointly with R. W. Robinson. A11 the objects counted are vertex-labelled.

1. Coefficient extraction for generating functions

Consider a multivariate generating function $f\left(x_{1}, \ldots, x_{n}\right)=$ $\sum_{c_{1}=s_{1}}^{t_{1}} \ldots \sum_{n}^{c_{n}}{ }_{s_{n}} \alpha\left(c_{1}, \ldots, c_{n}\right) x_{1}^{c_{1}} \ldots x_{n}^{c_{n}}$, where each $\alpha\left(c_{1}, \ldots, c_{n}\right)$
is a complex number.
Lemma $\frac{1.1}{2 \pi \mathrm{i}}$ Let $\mathrm{m}_{\mathrm{j}}>0$ and k_{j} be integers for $1 \leq \mathrm{j} \leq \mathrm{n}$. Define $\omega_{j}=e^{2 \pi i} / m_{j}(1 \leq j \leq n)$. Then
$\sum_{r_{1}=0}^{m_{1}^{-1}} \cdots \sum_{r_{n}}^{m_{n}-1} \frac{f\left(\omega_{1}^{r} 1, \ldots, \omega_{n}^{r} n\right)}{\omega_{1}^{k_{1} r_{1}} \underset{\omega_{n}^{k} r_{n}}{\omega_{n}}}=m_{1} \ldots m_{n}\left[\alpha\left(c_{1}, \ldots, c_{n}\right)\right.$,
where the sum on the right is over all c_{1}, \ldots, c_{n} such that
$m_{j} \mid c_{j}-k_{j}$ for $1 \leq j \leq n$.
Proof. This is an immediate consequence of the fact that
$\sum_{r_{j}}^{m_{j}} \omega_{j}\left(c_{j}-k_{j}\right) r_{j}=\left\{\begin{array}{l}m_{j}, \text { if } m_{j} \mid c_{j}-k_{j}, \\ 0, \text { otherwise. }\end{array}\right.$

[^0]By judicious choice of the m_{j} we can extract any desired coefficient. Lemma 1.2 For $1 \leq j \leq m$, Let $m_{j} \geq 1+\max \left\{t_{j}-k_{j}, k_{j}-s_{j}\right\}$. Then
$\sum_{r_{1}}^{m_{1}-1} \cdots \sum_{n}^{m_{n}-1}$

$$
\frac{f\left(\omega_{1}^{r} 1, \ldots, \omega_{n}^{r} n\right)}{\omega_{1}^{k} r_{1} r_{1} \ldots \omega_{n}^{k_{n} r_{n}}}=m_{1} \ldots m_{n} \alpha\left(k_{1}, k_{2}, \ldots, k_{n}\right)
$$

Lemma 1.2 requires the summation of $m_{1} m_{2} \ldots m_{n}$ terms. For many applications this number can be drastically reduced. For example, if f is a symmetric function and $k_{1}=k_{2}=\ldots=k_{n}=k$, Lemma 1.2 immediately yields the following result.
Lemma 1.3 Suppose f is a symmetric function, and let $s=s_{1}=\ldots=s_{n}$ and $\mathrm{t}=\mathrm{t}_{\mathrm{j}}=\ldots=\mathrm{t}_{\mathrm{n}}$. Choose an integer m such that $\mathrm{m} \geq 1+\max \{\mathrm{t}-\mathrm{k}, \mathrm{k}-\mathrm{s}\}$ and define $\omega=e^{2 \pi i / m}$. Then
$\left.\sum\left(u_{0}, u_{1}, \ldots, u_{m-1}\right) \frac{f\left(z_{1}, \ldots, z_{n}\right)}{k\left(u_{1}+2 u_{2}+\ldots+(m-1) u_{m-1}\right.}\right)=m^{n} \alpha(k, k, \ldots, k)$.
The swm is over non-negative integers u_{0}, \ldots, u_{m-1} such that $\mathrm{u}_{0}+\mathrm{u}_{1}+\ldots+\mathrm{u}_{\mathrm{m}-1}=\mathrm{n}$. The arguments to f are $\omega^{0}\left(\mathrm{u}_{0}^{(\mathrm{m}-1}\right.$ times), $\omega^{1}\left(\mathrm{u}_{1}\right.$ times $), \ldots$, $\omega^{\mathrm{m}-1}\left(\mathrm{u}_{\mathrm{m}-1}\right.$ times) .

Proof. For $0 \leq j \leq m-1$, interpret u_{j} as the number of $r_{i}^{\prime} s$ (in Lemma 1.2) which are equal to j. The multinomial coefficient counts the number of times this occurs.

Lemmas 1.1-1.3 are not very useful for computation in their stated forms because they employ complex arithmetic. Moreover, the amount of cancellation which occurs is so excessive that very high precision is required. Fortunately, there is an alternative approach, which we shall describe for Lemma 1.3. Let p be a prime number such that $m \mid p-1$ and $\mathrm{p}>\mathrm{n}$. Then there is a number $\omega \in \mathrm{Z}_{\mathrm{p}}$ whose order modulo p is m . Lemma 1.3 now holds modula p, with the same proof. Thus we can obtain $\alpha(k, k, \ldots, k)$ mod p using only small integers. If this is repeated for a sufficient number of different primes, $\alpha(k, k, \ldots, k)$ itself can be found with the help of the Chinese Remainder Theorem. This assumes that some prior bound on $\alpha(k, k, \ldots, k)$ is available--no problem for our examples.

With a little care, the computation in Lemma 1.3 can often be arranged so that only a few machine operations per term are required on the average. Essentially, the terms are computed in such an order that each can be quickly computed from the preceding term. Another saving is
obtained through the use of a table of logarithms to base z for computing powers, where z is a primitive root mod p.

2. Applications

We will describe each application using a standard format. The object subsection defines the number we wish to evaluate. The method subsection describes the generating function used, and the means by which the correct coefficient was extracted. The bound subsection gives the a priori upper bound needed as described in Section. 1. The checks subsection gives one or more divisibility conditions which were applied as a check to the results. Anything else appears in the comments subsection. The numbers themselves appear in the Appendix. (a) Regular Tournaments

Object. RT(n) is the number of labelled regular tournaments with n vertices. Clearly, n must be odd.
Method. Let $q=(n-1) / 2$. Then $R T(n)$ is the coefficient of $x_{1}^{q} \ldots x_{n}^{q}$ in $\prod_{i<j}\left(x_{i}+x_{j}\right)$. This is symmetric in its arguments, so we can use i<j
Lemma 1.3 with $m=1+q$. A little saving is possible by using $\mathrm{m}=\mathrm{q}$ instead. This counts tournaments with degrees in the set $\{0, \mathrm{q}, \mathrm{n}-1\}$. The numbers of regular tournaments are then easily extracted (see [6]).

Bound. $\operatorname{RT}(\mathrm{n}) \leq \prod_{\mathrm{i}=1}^{\mathrm{q}}\binom{2 \mathbf{i}-1}{\mathbf{i}}\binom{2 \mathbf{i}}{\mathbf{i}}$. To see this, note that the neighbours of vertex 1 can be chosen in exactly $\left[\begin{array}{c}2 q \\ q\end{array}\right]$ ways, then those of vertex 2 can de chosen in exactly $\binom{2 q-1}{q}$ ways, etc. Checks. $\left.\binom{2 q}{q}\binom{2 q-1}{q} \right\rvert\, \operatorname{RT}(\mathrm{n})$, as proved in the previous subsection. Comments. This case has been done before by Liskovec [6]. In fact, that paper is the principal source of our inspiration. Liskovec obtained RT(n) for $n \leq 9$.
(b) Eulerian Digraphs

Object. $\operatorname{ED}(\mathrm{n})$ is the number of simple labelled Eulerian digraphs with n vertices.
$\operatorname{ED}(\mathrm{n})$ is the constant term in $\prod_{i=1}^{n} \prod_{j=1}^{n}\left(1+x_{i}{ }^{-1} \mathrm{x}_{\mathrm{j}}\right)$ so $\operatorname{ED}(\mathrm{n})$ can be found by using $m=n$ in Lemma 1.3. If n is odd we can do a
little better with $\mathrm{m}=\mathrm{n}+1$, since many of the terms are then zero and the computation can be arranged to reject these en masse.

Bound. $\operatorname{ED}(\mathrm{n}) \leq \prod_{i=0}^{\mathrm{n}-1}\binom{2 \mathrm{i}}{\mathrm{i}}$. Consider constructing an Eulerian digraph by first choosing the vertices to be adjacent to and from vertex 1 , then to and from vertex 2, etc. When we reach vertex i we find it already connected to or from some of the earlier vertices (say to d and d^{\prime} of these respectively). To choose its other incident edges we have $\sum_{s=0}^{n-l}\left\{\begin{array}{l}n-i \\ s-d\end{array}\right)\left(\begin{array}{l}n-i \\ s-d\end{array}\right]$ possibilities, where s is the common value of the indegree and outdegree when we are finished. The sum is easily seen to be bounded above by $\binom{2 n-2 i}{n-i}$.
Checks. Let g_{r} be the gcd of the numbers $\binom{n-1}{i}\binom{n-1}{i} 2^{n-2 i-1}$ for $r \leq i \leq\lfloor(n-1) / 2\rfloor$. Then $E D(n)$ is divisible by g_{0} and $E D(n)-2^{\mathrm{n}-1_{E D}(\mathrm{n}-1)}$ is divisible by g_{1}. To prove this, define $\ell(n, i)$ to be the number of labelled simple digraphs with n vertices, of which i have $\delta=1$, i have $\delta=-1$, and $n-2 i$ have $\delta=$ indegree - outdegree. Clearly, $\ell(n, 0)=E D(n) . \quad B y$ considering the edges incident with vertex 1 , we see that
$\left[\begin{array}{c}n-1 \\ i\end{array}\right)\left[\begin{array}{c}n-i-1 \\ i\end{array}\right) 2^{n-2 j-1} \ell(n-1, i)$. Both divisibility conditions now follow easily.
Corment. This case was also done by Liskovec [6], but without any actual calculations.
(c) Eulerian Oriented Graphs

Object. EOG(n) is the number of simple labelled Eulerian oriented graphs with n vertices.
Method. $\operatorname{EOG}(n)$ is the constant term in $\prod_{i<j}\left(1+x_{i}^{-1} x_{j}+x_{i} x_{j}^{-1}\right)$.
Bound. EOG(n) $\operatorname{ED}(\mathrm{n})$, obviously.
Checks. Let g be the gcd of the numbers $\binom{n-1}{i}\binom{n-i-1}{i}$ for $1 \leq i \leq\lfloor(n-1) / 2\rfloor$. Then EOG(n) - EOG(n-1) is divisible by g.
(d) Regular Graphs

Object. RG(n, k) is the number of k-regular simple labelled graphs of order n.
Method. $\operatorname{RG}(n, k)$ is the coefficient of $x_{1}^{k} \ldots x_{n}^{k}$ in $\prod_{i<j}\left(1+x_{i} x_{j}\right)$, which can be extracted using $m=1+\max \{k, n-k-1\}$ in Lemma 1.3 . If $k \gg n$
we can do better with the generating function $\prod_{i<j}\left(1+x_{i} x_{j} t\right)$, where t is an extra variable. Applying Lemma 1.3 with $m=k+1$ we obtain a generating function $\sum c_{k} t^{i}$, where c_{i} is the number of labelled simple graphs with n vertices, i edges, and all vertex degrees in the set $\{k, 2 k+1,3 k+2, \ldots\}$. By summing t over suitable roots of unity, we can select $c_{k n / 2}$, which is $\operatorname{RG}(\mathrm{n}, \mathrm{k})$.
Bound. $\mathrm{RG}(\mathrm{n}, \mathrm{k}) \leq(\mathrm{nk})!/\left((\mathrm{nk} / 2)!2^{\mathrm{nk} / 2}(\mathrm{k}!)^{\mathrm{n}}\right)$. See [1], for example.
Checks. By considering the possible neighbours of vertex 1 , we see that $\operatorname{RG}(\mathrm{n}, \mathrm{k})$ is divisible by $\binom{n-1}{k}$.
Comments. Obviously, $\operatorname{RG}(n, 0)=1$ and $\operatorname{RG}(n, 1)=n!/\left((n / 2)!2^{n / 2}\right)$. A recurrence for $\operatorname{RG}(\mathrm{n}, 2)$ is found easily. Recurrences for $R G(n, 3)$ have appeared in [13] and [16], for example, and recurrences for $R G(n, 4)$ in [14] and [15]. A linear but very long recurrence for $\operatorname{RG}(\mathrm{n}, 5)$ has been bound by Goulden, Jackson and Reilly [5]. General methods, which would probably yield linear recurrences for any fixed k, are discussed in [4] and [5].
(e) Semi-regular Bipartite Graphs

Object. $\operatorname{SRBG}\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{k}_{1}, \mathrm{k}_{2}\right)$ is the number of simple labelled bicoloured graphs, where one colour class has n_{1} vertices of degree k_{1} and the other has n_{2} vertices of degree k_{2}. Clearly, $n_{1} k_{1}=n_{2} k_{2}$ or no such graphs exist. Equivalently, $\operatorname{SRBG}\left(n_{1}, n_{2}, k_{1}, k_{2}\right)$ is the number of $n_{1} \times n_{2}$ 0-1 matrices with all rows summing to k_{1} and all columns sumning to k_{2}.
Method. $\operatorname{SRBG}\left(n_{1}, n_{2}, k_{1}, k_{2}\right)$ is the coefficient of $x_{1} k_{1} \ldots x_{n_{1}}^{k_{1}} y_{1} k_{2} \ldots y_{n_{2}}^{k_{2}}$ in $\prod_{i=1}^{n_{1}} \prod_{j=1}^{n_{2}}\left(1+x_{i} y_{j}\right)$. This is a symmetric function independently in the x 's and the y 's. We can extract the coefficient by summing each x_{i} over the m_{1} th roots of unity and each y_{j} over the m_{2}-th roots of unity, where $m_{1}=1+\max \left\{k_{1}, n_{1}-k_{1}\right\}$ and $m_{2}=1+\max \left\{k_{2}, n_{2}-k_{1}\right\}$. Actually, if $k_{1} \leq n_{1}-k_{1}$, it suffices to use $m_{1}=1+k_{1}$ and the same value of m_{2}. By Lemma 1.1, the graphs counted have n_{2} vertices of degree k_{2} and n_{1} vertices with degrees in the set $\left\{\mathbf{k}_{1}, 2 \mathbf{k}_{1}+1,3 \mathbf{k}_{1}+2, \ldots\right\}$. Since the
number of edges is $n_{2} k_{2}$, all these n_{1} vertices must in fact have degree k_{1}. An additional major improvement comes on noticing that each of the y's'occurs independently, in the
sense that $\sum_{y_{1} \in S} \cdots \sum_{n_{2}} \in \prod_{i} \prod_{j}\left(1+x_{i} y_{j}\right)=\left(\sum_{y \in S} \prod_{i}\left(1+x_{1} y\right)\right)^{n_{2}}$
any set S.
Bound. $\quad \operatorname{SRBG}\left(n_{1}, n_{2}, k_{1}, k_{2}\right) \leq\left(n_{1} k_{1}\right)!/\left(k_{1}!{ }^{n_{1}} k_{2}!{ }^{n}\right)$. See [10], for example.
Checks. By considering the neighbours of one vertex, then those of a vertex adjacent to the first, we see that $\operatorname{SRBG}\left(n_{1}, n_{2}, k_{1}, k_{2}\right)$ is divisible by $\binom{n_{2}}{k_{1}}\binom{n_{1}-1}{k_{2}}$.

Comments. We have only done computations for the case where $n_{1}=n_{2}$ and $k_{1}=k_{2} . \operatorname{SRBG}(n, n, 0,0), \operatorname{SRBG}(n, n, 1,1)$ and $\operatorname{SRBG}(n, n, 2,2)$ are easily found. A formula for $\operatorname{SRBG}(\mathrm{n}, \mathrm{n}, 3,3)$ was found by Read [12].

In the tables, $\operatorname{RBG}(\mathrm{n}, \mathrm{k})$ means $\operatorname{SRBG}(\mathrm{n}, \mathrm{n}, \mathrm{k}, \mathrm{k})$.
(f) Eulerian Circuits in Complete Graphs

The details of this case will appear in a forthcoming paper (jointly with R. W. Robinson). Let $\operatorname{Eul}\left(\mathrm{k}_{\mathrm{n}}\right)$ be the number of Eulerian circuits in K_{n}, counted without regard to starting
point. The tables give $\operatorname{EK}(n)=\operatorname{Eul}\left(K_{n}\right) /((n-3) / 2)!^{n}$. A proof that $E K(n)$ is an integer, and values $u p$ to $n=11$, can be found in [7]. 3. Wishful Thinking

Asymptotic calculations have only been performed for two of the six categories listed in Section 2. Specifically, we have
(a) $\operatorname{RG}(n, k) \sim \frac{(n k)!}{(n k / 2)!2^{n k / 2}(k!)^{n}} \exp \left(\frac{1-k^{2}}{4}\right)$, and
(b) $\operatorname{SRBG}\left(n_{1}, n_{2}, k_{1}, k_{2}\right) \sim \frac{\left(n_{1} k_{1}\right)!}{\left(k_{1}!\right)^{n_{1}}\left(k_{2}!\right)^{n_{2}}} \exp \left(-\frac{\left(k_{1}-1\right)\left(k_{2}-1\right)}{2}\right)$. Formula
(a) was proved for fixed k by Bender and Canfield [1], for $k=0$ ($\left.(\log n)^{\frac{1}{2}}\right)$
by Bollobás [3], and for $k=o\left(n^{1 / 3}\right)$ by McKay [9]. Formula (b) was proved for $\max \left\{\mathrm{k}_{1}, \mathrm{k}_{2}\right\} \leq\left(\log \left(\mathrm{n}_{1}+\mathrm{n}_{2}\right)\right)^{\frac{1}{4}-\varepsilon}$ by 0^{\prime} Neil [1], somewhat more accurately by Mineev and Pavlor [10], and for $\max \left\{\mathrm{k}_{1}, \mathrm{k}_{2}\right\}=$ $o\left(\left(n_{1}+n_{2}\right)^{1 / 3}\right)$ by McKay [8].

The following conjectures are based on a careful analysis of the number given in the Appendix using a technique for numerical extrapolation [2]. We have not specified how k is to vary with n, but in each case we would expect the result to hold certainly for fixed k, probably for $k=O\left(n^{1-\varepsilon}\right)$, and possibly for $k \leq c n$ for some suitable constant.c. Conjecture 2 appeared previously in [8].

Conjecture 1.
$R G(n, k)=\frac{(n k)!}{(n k / 2)!2^{n k / 2}(k!)^{n}} \exp \left\{-\frac{(k-1)(k+1)}{4}-\frac{(k-1)(k+2)\left(k^{2}-k+1\right)}{12 k n}\right.$
$\left.-\frac{(k-1)^{4}\left(k^{2}+4 k+6\right)}{24 k^{2} n^{2}}+0\left(\frac{k^{5}}{n^{3}}\right)\right)$.
Conjecture 2.
$\operatorname{RBG}(n, k)=\frac{(n k)!}{(k!)^{n}} \exp \left(-\frac{(k-1)^{2}}{2}-\frac{(k-1)^{2}\left(k^{2}-k+1\right)}{6 k n}-\frac{(k-1)^{5}(k+1)}{12 k^{2} n^{2}}+0\left(\frac{k^{5}}{n^{3}}\right)\right)$.

Acknowledgement
Many useful ideas were contributed by R.W. Robinson.

References

[1] E. A. Bender and E. R. Canfield, The asymptotic number of labelled graphs with given degree sequences, d. Combinatorial Theory A 24 (1978) 296-307.
[2] P. Bjorstad, G. Dah1quist and E. Grosse, Extrapolation of asymptotic expansions by a modified Aitken δ^{2}-formula, BIT 21 (1981) 56-65.
[3] B. Bollobás, A probabilistic proof of an asymptotic formula for the number of labelled regular graphs, European J. Combinatorics 1 (1980) 311-316.
[4] I. P. Goulden and D. M, Jackson, Combinatorial Enumeration (John Wiley \& Sons, New York, NY, 1983).
[5] I. P. Goulden, D. M. Jackson and J. W. Reilly, The Hammond series of a symmetric function and its applications to precursiveness, SIAM J. Discrete and Algebraic Methods (1983), to appear.
[6] V. A. Liskovec, The number of Eulerian digraphs and regular tournaments, Vesci Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk 1971, no. 1, 22-27.
[7] B. D. McKay, Eulerian ciucuits in K_{n}, Combinatorics (newsletter of the Combinatorial Math. Soc. of Australasia) 4 (1982) 5-6.
[8] B. D. McKay, Asymptotics for 0-1 matrices with prescribed line sums, Silver Jubilee Conference on Combinatorics (Waterloo, 1982), to appear in proceedings.
[9] B. D. McKay, Personal communication.
[10] M. P. Mineev and A. I. Pavlov, On the number of (0-1)-matrices with prescribed sums of rows and columns, Dokl. Akad. Navrik SSSR 230 (1976) 1286-1290.
[11] P. E. O'Neil, Asymptotics and random matrices with row-sum and column-sum restrictions, BuZL. Amer. Math. Soc. 75 (1969) 1276-1282.
[12] R. C. Read, The enumeration of locally restricted graphs, II, $J . ~ L o n d o n ~ M a t h . ~ S o c . ~ 35 ~(1960) ~ 344-351 . ~$
[13] R. C. Read, Some unusual enumeration problems, Ann. NY Acad. Sci. 175 (1970) 314-326.
[14] R. C. Read and M. C. Wormald, Number of labeled 4-regular graphs, J. Graph Theory 4 (1980) 203-212.
[15] R. W. Robinson, Personal communication.
[16] N. C. Wormald, Enumeration of labelled graphs II: Cubic graphs with a given connectivity, J. London Math. Soc. 20 (1979) 1-7.

Appendix - the numbers

(a) labelled regular tournaments
$\mathrm{RT}(1)=1$
$\mathrm{RT}(3)=2$
$\mathrm{RT}(5)=24$
$\mathrm{RT}(7)=2640$
$\mathrm{RT}(9)=3230080$
$\mathrm{RT}(11)=48251508480$
$\mathrm{RT}(13)=9307700611292160$
$\mathrm{RT}(15)=24061983498249428379648$
$\mathrm{RT}(17)=855847205541481495117975879680$
$\mathrm{RT}(19)=427102683126284520201657800159366676480$
$\mathrm{RT}(21)=3035991776725501434069090002640396043332019814400$
(b) labelled eulerian digraphs
$\mathrm{ED}(1)=1$
$\mathrm{ED}(2)=2$
$\mathrm{ED}(3)=10$
$\mathrm{ED}(4)=152$
$E D(5)=7736$
$\mathrm{ED}(6)=1375952$
$\mathrm{ED}(7)=877901648$
$E D(8)=2046320373120$
$\operatorname{ED}(9)=17658221702361472$
$\operatorname{ED}(10)=569773210836965265152$
$\mathrm{ED}(11)=69280070663388783890248448$
$\operatorname{ED}(12)=31941407692847758201303724506112$
$\operatorname{ED}(13)=56121720938871110502272391300032261120$
$\operatorname{ED}(14)=377362438996731353329256282026362716827887616$
$E D(15)=9744754031799754169218003376206941877943086188308480$
$E D(16)=969342741943194323476512925742876053501022995325734477987840$
(c) labelled eulerian oriented graphs

```
\(\operatorname{EOG}(1)=1\)
\(\operatorname{EOG}(2)=1\)
\(\operatorname{EOG}(3)=3\)
\(\operatorname{EOG}(4)=15\)
\(\operatorname{EOG}(5)=219\)
\(\operatorname{EOG}(6)=7839\)
\(\mathrm{EOG}(7)=777069\)
EOG(8) \(=208836207\)
\(\operatorname{EOG}(9)=156458382975\)
\(\operatorname{EOG}(10)=328208016021561\)
\(\operatorname{EOG}(11)=1946879656265710431\)
\(\mathrm{EOG}(12)=32834193098697741359313\)
EOG(13) \(=1582809785794578499063205301\)
EOG(14) \(=218989607557709869788340418432175\)
\(\operatorname{EOG(15)}=87269441106898007902526099850864517077\)
```

(d) labelled regular graphs
$\mathrm{RG}(4,1)=3$
$\operatorname{RG}(5,2)=12$
$\mathrm{RG}(6,1)=15$
$\mathrm{RG}(6,2)=70$
$R G(7,2)=465$
$\mathrm{RG}(8,1)=105$
$\mathrm{RG}(8,2)=3507$
$\mathrm{RG}(8,3)=19355$
$\mathrm{RG}(9,2)=30016$
$R G(9,4)=1024380$
$\operatorname{RG}(10,1)=945$
$R G(10,2)=286884$
$\operatorname{RG}(10,3)=11180820$
$\operatorname{RG}(10,4)=66462606$
$R G(11,2)=3026655$
$\mathrm{RG}(11,4)=5188453830$
$\mathrm{RG}(12,1)=10395$
$\mathrm{RG}(12,2)=34944085$
$\mathrm{RG}(12,3)=11555272575$
$\operatorname{RG}(12,4)=480413921130$
$\mathrm{RG}(12,5)=2977635137862$
$\mathrm{RG}(13,2)=438263364$
$\mathrm{RG}(13,4)=52113376310885$
$\mathrm{RG}(13,6)=2099132870973600$
$\operatorname{RG}(14,1)=135135$
$\mathrm{RG}(14,2)=5933502822$
$\operatorname{RG}(14,3)=19506631814670$
$\operatorname{RG}(14,4)=6551246596501035$
$\mathrm{RG}(14,5)=283097260184159421$
$R G(14,6)=1803595358964773088$
$\mathrm{RG}(15,2)=86248951243$
$\operatorname{RG}(15,4)=945313907253606891$
$\operatorname{RG}(15,6)=1872726690127181663775$
$\operatorname{RG}(16,1)=2027025$
$R G(16,2)=1339751921865$
$\operatorname{RG}(16,3)=50262958713792825$
$\operatorname{RG}(16,4)=155243722248524067795$
$R G(16,5)=52469332407700365320163$
$\operatorname{RG}(16,6)=2329676580698022197516875$
$\operatorname{RG}(16,7)=15138592322753242235338875$
$\operatorname{RG}(17,2)=22148051088480$
$R G(17,4)=28797220460586826422720$
$R G(17,6)=3443086402825299720403673760$
$\operatorname{RG}(17,8)=149390880973211821194044293500$
$\operatorname{RG}(18,1)=34459425$
$\operatorname{RG}(18,2)=388246725873208$
$\operatorname{RG}(18,3)=187747837889699887800$
$\mathrm{RG}(18,4)=5993002310427150494060340$
$\mathrm{RG}(18,5)=17647883828569858659072268092$
$\operatorname{RG}(18,6)=5997229760947050271535917422040$
$\mathrm{RG}(18,7)=271849772205948458085090804526392$
$R G(18,8)=1793196665025885172290508971592750$
$R G(19,2)=7193423109763089$
$\operatorname{RG}(19,4)=1390759561507559001823665540$
$\operatorname{RG}(19,6)=12218901113752712984458458475480428$
$\operatorname{RG}(19,8)=26051341898387300707368587445031827810$
$R G(20,1)=654729075$
$\operatorname{RG}(20,2)=140462355821628771$
$R G(20,3)=976273961160363172131825$
$\operatorname{RG}(20,4)=357920518512934324278467820756$
$\operatorname{RG}(20,5)=10148613081040117624319536901932188$
$\operatorname{RG}(20,6)=28916028252717782814901370042123535900$
$\operatorname{RG}(20,7)=9883018800803233316233360724489799227748$
$\mathrm{RG}(20,8)=455473295761288603097446621939956078133650$
$\operatorname{RG}(20,9)=3040059281615704147007085764679679740691838$
$R G(21,2)=2883013904348484940$
$\mathrm{RG}(21,4)=101644510154876155550250293031135$
$\mathrm{RG}(21,6)=78964245348871129554207357675851322040800$
$\mathrm{RG}(21,8)=9526590903662623496186073183718443028656311550$
$\operatorname{RG}(21,10)=431992393880124746084778680654972035961966998592$
$\mathrm{RG}(22,10)=74597015246986083384362428357508730776083716190667288$
(e) labelled regular bipartite graphs
$\operatorname{RBG}(2,1)=2$
$\operatorname{RBG}(3,1)=6$
$\operatorname{RBG}(4,1)=24$
$\operatorname{RBG}(4,2)=90$
$\operatorname{RBG}(5,1)=120$
$\operatorname{RBG}(5,2)=2040$
$\operatorname{RBG}(6,1)=720$
$\operatorname{RBG}(6,2)=67950$
$\operatorname{RBG}(6,3)=297200$
$\operatorname{RBG}(7,1)=5040$
$\operatorname{RBG}(7,2)=3110940$
$\operatorname{RBG}(7,3)=68938800$
$\operatorname{RBG}(8,1)=40320$
$\operatorname{RBG}(8,2)=187530840$
$\operatorname{RBG}(8,3)=24046189440$
$\operatorname{RBG}(8,4)=116963796250$
$\operatorname{RBG}(\theta, 1)=362880$
$\operatorname{RBG}(9,2)=14398171200$
$\operatorname{RBG}(\theta, 3)=12025780892160$
$\operatorname{RBG}(9,4)=315031400802720$
$\operatorname{RBG}(10,1)=3628800$
$\operatorname{RBG}(10,2)=1371785398200$
$\operatorname{RBG}(10,3)=8302816499443200$
$\operatorname{RBG}(10,4)=1289144584143523800$
$\operatorname{RBG}(10,5)=6736218287430460752$
$\operatorname{RBG}(11,1)=39916800$
$\operatorname{RBG}(11,2)=158815387962000$
$\operatorname{RBG}(11,3)=7673688777463632000$
$\operatorname{RBG}(11,4)=7722015017013984456000$
$\operatorname{RBG}(11,5)=226885231700215713535680$
$\operatorname{RBG}(12,1)=479001600$
$\operatorname{RBG}(12,2)=21959547410077200$
$\operatorname{RBG}(12,3)=9254768770160124288000$
$\operatorname{RBG}(12,4)=65599839591251908982712750$
$\operatorname{RBG}(12,5)=11649337108041078980732943360$
$\operatorname{RBG}(12,6)=64051375889927380035549804336$
$\operatorname{RBG}(13,1)=6227020800$
$\operatorname{RBG}(13,2)=3574340599104475200$
$\operatorname{RBG}(13,3)=14255616537578735986867200$
RBG(13,4) $=768237071909157579108571190000$
$\operatorname{RBG}(13,5)=885282776210120715086715619724160$
$\operatorname{RBG}(13,6)=28278447454165011203551734584421120$
$\operatorname{RBG}(14,1)=87178291200$
$\operatorname{RBG}(14,2)=676508133623135814000$
RBG(14,3) $=27537152449960680597739468800$
$\operatorname{RBG}(14,4)=12163525741347497524178307740904300$
RBG(14,5) $=96986285294151066094112970262797953280$
$\operatorname{RBG}(14,6)=19040419266278799766631032461849139013040$
$\operatorname{RBG}(14,7)=108738182111446498614705217754614976371200$
$\operatorname{RBG}(15,1)=1307674368000$
$\operatorname{RBG}(15,2)=147320988741542099484000$
$\operatorname{RBG}(15,3)=65662040698002721810659005184000$
$\operatorname{RBG}(15,4)=254143667822686635850590661555095468000$
$\operatorname{RBG}(15,5)=14962628816774970940772777740084998521738256$
$\operatorname{RBG}(15,6)=19092174983817380047229162651397270697765056000$
$\operatorname{RBG}(15,7)=649920606971625785993833472182540933121831448000$
$\operatorname{RBG}(16,1)=20922789888000$
$\operatorname{RBG}(16,2)=36574751938491748341360000$
$\operatorname{RBG}(16,3)=190637228506535883540302038364160000$
$\operatorname{RBG}(16,4)=6892692735539278753058456514221737762215000$
$\operatorname{RBG}(16,5)=3183529624645847695375078143769686741065620316160$
$\operatorname{RBG}(16,6)=27887419382781280674144423556238283796794917502153600$
$\operatorname{RBG}(16,7)=5919505849163568149350844926095386786290527420272640000$
RBG $(16,8)=34812290428176298285394893936773707951192224124239796250$
$\operatorname{RBG}(17,1)=355687428096000$
$\operatorname{RBG}(17,2)=10268902998771351157327104000$
$\operatorname{RBG}(17,3)=665825560532772251175492202972938240000$
$\operatorname{RBG}(17,4)=238871596129285108315684789088803525762942560000$
$\operatorname{RBG}(17,5)=916886244095799134021184732100164208874600567901112320$
$\operatorname{RBG}(17,6)=58148363987656800617835059113770297781073474796976424079360$
$\operatorname{RBG}(17,7)=805712657304850755435027526803738498317410003930571337498$ 62400
$\operatorname{RBG}(17,8)=28835974510435130135348315975148557064470507352546447482832$ 00000
$\operatorname{RBG}(18,1)=6402373705728000$
RBG(18,2) $=3237415247416050491577971184000$
$\operatorname{RBG}(18,3)=2767806480542211571651550187279222472704000$
$\operatorname{RBG}(18,4)=10431401634793817906193873163767479249710797568200000$
$\operatorname{RBG}(18,5)=351534284278878218916661802093880879140355655309982444395520$
$\operatorname{RBG}(18,6)=16990296408437482552122113931987538312068347141124251843$ 1062698496
$\operatorname{RBG}(18,7)=160856116952745412177050756300362002919100708865516413437889$ 4113177600
$\operatorname{RBG}(18,8)=363504905535871976828533373957798637444106305739541470067$ 075862575050400
$\operatorname{RBG}(18,9)=2188263032066768922535710968724036448759525154977348944382$ 853301460850000
$\operatorname{RBG}(19,1)=121645100408832000$
$\operatorname{RBG}(19,2)=1138803698046507486981918971040000$
$\operatorname{RBG}(19,3)=13564406360915457771720399143711430952267776000$
$\operatorname{RBG}(19,4)=566895242033460637461017821037429791182821015953495488000$
$\operatorname{RBG}(19,5)=17673829490599621354752959240315923211049907090428949362$ 9790402560
$\operatorname{RBG}(19,6)=683999413471989501416142783540581200845617292944534288003$ 770700053647360
$\operatorname{RBG}(19,7)=462833074905165921475395804925677754915117648427804772565$ 64810462077989273600

RBG(19,8) = 686126765167803581773905583926296736123864947792120343141661 26668955904717440000
$\operatorname{RBG}(19,9)=255695074974135109537756379301891133491302771639525381023$ 1821458496116462997305600
$\operatorname{RBG}(20,1)=2432902008176640000$
RBG(20,2) $=444432474300844787327725684969440000$
RBG(20,3) $=77705104689340239554388061645133412621507133440000$
RBG(20,4) $=379115896134259527333937182640691476788778776261690220245$ 15000
$\operatorname{RBG}(20,5)=114947069528377495590566828132098709283275367438046580548$ 620812492673024
RBG(20,6) $=37358801843970435637829038407627335187354506305129791208448$ 13042477030379200000
$\operatorname{RBG}(20,7)=188804364894220467379451829831853507516535678190416626114575$ 1775016381899362344960000
$\operatorname{RBG}(20,8)=19084775125745213149345920586812398814051323245951559980401$ 966025431822577354728512535000
$\operatorname{RBG}(20,9)=45402331876509878617437844669776459885762046890127865489$ 65759920959126069068177920360960000
$\operatorname{RBG}(20,10)=278567266191488254947840785805619026980295610724773139219$ 03857594739813713335069572835719440
$\operatorname{RBG}(21,3)=516344916592465985916193132955634668149853314252800000$
$\operatorname{RBG}(21,4)=308849693867800266258622352500470965584171507675505299965$ 8886600000
$\operatorname{RBG}(21,5)=955233376645532647814600896227997872090794248113086119762$ 31773740952022238720
$\operatorname{RBG}(21,6)=27294386329939873958240923080558461170115401823207361888$ 633491264080340764476635136000
RBG(22,3) $=3952235963968636235373920011837764082275323312165683200000$

RBG(22,4) $=303690552732350971707102530203860843720388559383169781279$ 410045221650000
$\operatorname{RBG}(22,5)=10029578068852102886543481690819339163329022639024984504722$ 5033171927627321424445440
$\operatorname{RBG}(22,6)=2633098484807140381461604127794229519884701145807750327493$ 19435770466419862807532598071785600
$\operatorname{RBG}(23,3)=346258657510566017860409390912320679250540657620349920870$ 40000
$\operatorname{RBG}(23,4)=357421097188854268380546529171777511719323004220685935977$ 99569492565122000000
$\operatorname{RBG}(23,5)=131690071384232479126977902614822875260598137859326990381173$ 784176875080907315204284375040

RBG $(24,3)=34521677003532768760558513861589746661018468208060269335$ 4127360000
$\operatorname{RBG}(24,4)=499641367549255490484275577040722567562912751024779271005$ 2706984849712274603690000
(f) eulerian circuits in the complete graph
$E K(3)=2$
$E K(5)=264$
$\mathrm{EK}(7)=1015440$
$\mathrm{EK}(9)=90449251200$
EK $(11)=169107043478365440$
$\mathrm{EK}(13)=6267416821165079203599360$
$E K(15)=4435711276305905572695127676467200$
$\mathrm{EK}(17)=58393052751308545653929138771580386824519680$

Appendix - the numbers

(a) labelled regular tournaments
$R T(1)=1$
$\mathrm{RT}(3)=2$
$\mathrm{RT}(5)=24$
$\mathrm{RT}(7)=2640$
$\mathrm{RT}(9)=3230080$
$\mathrm{RT}(11)=48251508480$
$\mathrm{RT}(13)=9307700611292160$
$\mathrm{RT}(15)=24061983498249428379648$
$R T(17)=855847205541481495117975879680$
$\mathrm{RT}(19)=427102683126284520201657800159366676480$
$\mathrm{RT}(21)=3035991776725501434069099002640396043332019814400$
(b) labelled eulerian digraphs
$E D(1)=1$
$E D(2)=2$
$E D(3)=10$
$\operatorname{ED}(4)=152$
$\operatorname{ED}(5)=7736$
$E D(6)=1375952$
$E D(7)=877901648$
$E D(8)=2046320373120$
$\operatorname{ED}(9)=17658221702361472$
$\operatorname{ED}(10)=569773219836965265152$
$E D(11)=69280070663388783890248448$
$\operatorname{ED}(12)=31941407692847758201303724506112$
$\mathrm{ED}(13)=56121720938871110502272391300032281120$
$\operatorname{ED}(14)=377362438996731353329256282026362716827887616$
$E D(15)=9744754031799754169218003376208941877943086188308480$
$\operatorname{ED}(16)=969342741943194323476512925742876053501022995325734477987840$
(c) labelled eulerian oriented graphs
$\operatorname{EOG}(1)=1$
$\operatorname{EOG}(2)=1$
$\operatorname{EOG}(3)=3$
$\operatorname{EOG}(4)=15$
$\operatorname{EOG}(5)=219$
$\operatorname{EOG}(6)=7839$
$\operatorname{EOG}(7)=777069$
$\operatorname{EOG}(8)=208836207$
$\operatorname{EOG}(9)=156458382975$
$\operatorname{EOG}(10)=328208016021561$
$\operatorname{EOG}(11)=1946879656265710431$
$\operatorname{EOG}(12)=32834193098697741358313$
EOG(13) $=1582809785794578499063205301$
$\operatorname{EOG}(14)=218989607557709869788340418432175$
$\operatorname{EOG}(15)=87269441106898007902526090850864517077$
(d) labelled regular graphs
$\mathrm{RG}(4,1)=3$
$\mathrm{RG}(5,2)=12$
$\mathrm{RG}(6,1)=15$
$\mathrm{RG}(6,2)=70$
$\mathrm{RG}(7,2)=465$
$R G(8,1)=105$
$\mathrm{RG}(8,2)=3507$
$\mathrm{RG}(8,3)=19355$
$\mathrm{RG}(\theta, 2)=30016$
$\operatorname{RG}(9,4)=1024380$
$\mathrm{RG}(10,1)=945$
$\mathrm{RG}(10,2)=286884$
$\mathrm{RG}(10,3)=11180820$
$\mathrm{RG}(10,4)=66462606$
$R G(11,2)=3026655$
$R G(11,4)=5188453830$
$R G(12,1)=10395$
$\mathrm{RG}(12,2)=34944085$
$\mathrm{RG}(12,3)=11555272575$
$\operatorname{RG}(12,4)=480413921130$
$\mathrm{RG}(12,5)=2977635137862$
$\mathrm{RG}(13,2)=438263364$
$\operatorname{RG}(13,4)=52113376310885$
$\mathrm{RG}(13,6)=2099132870973600$
$\operatorname{RG}(14,1)=135135$
$\mathrm{RG}(14,2)=5933502822$
$\operatorname{RG}(14,3)=19506631814670$
$\mathrm{RG}(14,4)=6551246596501035$
$\operatorname{RG}(14,5)=283097260184159421$
$\mathrm{RG}(14,6)=1803595358964773088$
$\operatorname{RG}(15,2)=86248951243$
$\mathrm{RG}(15,4)=945313907253606891$
$\operatorname{RG}(15,6)=1872726690127181663775$
$\operatorname{RG}(16,1)=2027025$
$\operatorname{RG}(16,2)=1339751921865$
$\mathrm{RG}(16,3)=50262958713782825$
$\operatorname{RG}(16,4)=155243722248524067795$
$\operatorname{RG}(16,5)=52469332407700365320163$
$\operatorname{RG}(16,6)=2329676580698022197516875$
$\operatorname{RG}(16,7)=15138592322753242235338875$
$\mathrm{RG}(17,2)=22148051088480$
$\mathrm{RG}(17,4)=28797220460586826422720$
$R G(17,6)=3443086402825290720403673760$
$R G(17,8)=149390880973211821194044293500$
$\mathrm{RG}(18,1)=34459425$
$\operatorname{RG}(18,2)=388246725873208$
$\operatorname{RG}(18,3)=187747837889609887800$
$\mathrm{RG}(18,4)=5993002310427150494060340$
$\operatorname{RG}(18,5)=17647883828569858659972268092$
$\mathrm{RG}(18,6)=5997229769947050271535917422040$
$\mathrm{RG}(18,7)=271849772205948458085090804526392$
$\operatorname{RG}(18,8)=1793196665025885172290508971592750$
$\operatorname{RG}(19,2)=7193423109763089$
$\mathrm{RG}(19,4)=1390759561507559001823665540$
$\mathrm{RG}(19,6)=12218901113752712984458458475480428$
RG(19,8) $=26051341898387300707368587445031827810$
$R G(20,1)=654729075$
$\operatorname{RG}(20,2)=140462355821628771$
$\operatorname{RG}(20,3)=976273961160363172131825$
RG(20, 4) $=357920518512934324278467820756$
$\mathrm{RG}(20,5)=10148613081040117624319536901932188$
$\mathrm{RG}(20,6)=28916028252717782814901370042123535900$
RG(20,7) $=9883018800803233316233360724489799227748$
$\operatorname{RG}(20,8)=455473295761288603097446621939956078133650$
$\operatorname{RG}(20,9)=304005 \theta 281615704147007085764679679740691838$
$R G(21,2)=2883013904348484940$
$\mathrm{RG}(21,4)=101644510154876155550250293031135$
$\operatorname{RG}(21,6)=78964245348871129554207357675851322040800$
$\mathrm{RG}(21,8)=9526590903662623486186073183718443028656311550$
$\operatorname{RG}(21,10)=431992393880124746084779680654972035961966998592$
$\mathrm{RG}(22,10)=74597015246986083384362428357508730776063716190667288$
(e) labelled regular bipartite graphs
$\operatorname{RBG}(2,1)=2$
$\operatorname{RBG}(3,1)=6$
$\operatorname{RBG}(4,1)=24$
$\operatorname{RBG}(4,2)=90$
$\operatorname{RBG}(5,1)=\mathbf{1 2 0}$
$\operatorname{RBG}(5,2)=2040$
$\operatorname{RBG}(6,1)=720$
$\operatorname{RBG}(6,2)=67950$
$\operatorname{RBG}(6,3)=297200$
$\operatorname{RBG}(7,1)=5040$
$\operatorname{RBG}(7,2)=3110940$
$\operatorname{RBG}(7,3)=68938800$
$\operatorname{RBG}(8,1)=40320$
$\operatorname{RBG}(8,2)=187530840$
$\operatorname{RBG}(8,3)=24046189440$
$\operatorname{RBG}(8,4)=116963796250$
$\operatorname{RBG}(9,1)=362880$
$\operatorname{RBG}(9,2)=14398171200$
$\operatorname{RBG}(9,3)=12025780892160$
$\operatorname{RBG}(9,4)=315031400802720$
$\operatorname{RBG}(10,1)=3628800$
$\operatorname{RBG}(10,2)=1371785398200$
$\operatorname{RBG}(10,3)=8302816499443200$
$\operatorname{RBG}(10,4)=1289144584143523800$
RBG $(10,5)=6736218287430460752$
$\operatorname{RBG}(11,1)=39916800$
$\operatorname{RBG}(11,2)=158815387962000$
RBG $(11,3)=7673688777463632000$
$\operatorname{RBG}(11,4)=7722015017013984456000$
$\operatorname{RBG}(11,5)=226885231700215713535680$
$\operatorname{RBG}(12,1)=479001600$
$\operatorname{RBG}(12,2)=21959547410077200$
$\operatorname{RBG}(12,3)=9254768770160124288000$
$\operatorname{RBG}(12,4)=65599839591251908982712750$
$\operatorname{RBG}(12,5)=11649337108041078980732943360$
$\operatorname{RBG}(12,6)=64051375889927380035549804336$
$\operatorname{RBG}(13,1)=6227020800$
$\operatorname{RBG}(13,2)=3574340599104475200$
$\operatorname{RBG}(13,3)=14255616537578735986867200$
$\operatorname{RBG}(13,4)=769237071909157579108571190000$
$\operatorname{RBG}(13,5)=885282776210120715086715619724160$
$\operatorname{RBG}(13,6)=28278447454165011203551734584421120$
$\operatorname{RBG}(14,1)=87178291200$
$\operatorname{RBG}(14,2)=676508133623135814000$
$\operatorname{RBG}(14,3)=27537152449960680597739468800$
RBG $(14,4)=12163525741347497524178307740904300$
RBG(14,5) $=96986285294151066094112970262797953280$
$\operatorname{RBG}(14,6)=19040419266278799766631032461849138013040$
$\operatorname{RBG}(14,7)=108738182111446498614705217754614976371200$
$\operatorname{RBG}(15,1)=1307674368000$
$\operatorname{RBG}(15,2)=147320988741542099484000$
$\operatorname{RBG}(15,3)=65662040698002721810659005184000$
RBG $(15,4)=254143667822686635850590661555095468000$
RBG(15,5) $=14962628816774970940772777740084998521738256$
RBG $(15,6)=19092174983817380047229162651397270697765056000$
RBG(15,7) = 649 920606971625785983833472182540933121831448000
$\operatorname{RBG}(16,1)=20922789888000$
RBG(16,2) $=36574751938491748341360000$
RBG(16,3) $=190637228506535883540302038364160000$
RBG(16,4) $=6892692735539278753058456514221737762215000$
RBG $(16,5)=3183529624645847685375078143769686741065620316160$
$\operatorname{RBG}(16,6)=27887419382781280674144423556238283796794917502153600$
RBG(16,7) $=5919505849163568149350844926095386786290527420272640000$
RBG $(16,8)=34812290428176298285394893936773707951192224124239796250$
$\operatorname{RBG}(17,1)=355687428096000$
$\operatorname{RBG}(17,2)=10268902998771351157327104000$
RBG $(17,3)=665825560532772251175492202972938240000$
RBG $(17,4)=238871596129285108315684789088803525762942560000$
$\operatorname{RBG}(17,5)=916886244095799134021184732100164208874600567901112320$
$\operatorname{RBG}(17,6)=58148363987656800617835059113770297781073474796976424079360$
RBG(17,7) $=805712657304850755435027526803738498317410003930571337498$ 62400
$\operatorname{RBG}(17,8)=28835974510435130135348315975148557064470507352546447482832$ 00000
$\operatorname{RBG}(18,1)=6402373705728000$
RBG(18,2) $=3237415247416050491577971184000$
$\operatorname{RBG}(18,3)=2767806480542211571651550187279222472704000$
$\operatorname{RBG}(18,4)=10431401634793817906193873163767479249710797568200000$
$\operatorname{RBG}(18,5)=351534284278878218916661802093880879140355655309992444395520$
$\operatorname{RBG}(18,6)=16990296408437492552122113931987538312068347141124251843$ 1062698496
$\operatorname{RBG}(18,7)=160856116952745412177050756300362002919100798865516413437889$ 4113177600
$\operatorname{RBG}(18,8)=363504905535871976828533373957798637444106305739541470067$ 075862575050400
RBG(18, 8$)=2188263032066768922535710968724036448759525154977348944382$ 853301460850000
$\operatorname{RBG}(19,1)=121645100408832000$
$\operatorname{RBG}(19,2)=1138803698046507486981918971040000$
RBG $(19,3)=13564406360915457771720399143711430952267776000$
$\operatorname{RBG}(19,4)=566895242033460637461017821037429791182821015953495488000$
$\operatorname{RBG}(19,5)=17673829490590621354752959240315023211049907090428949362$ 9790402560
$\operatorname{RBG}(19,6)=683999413471989501416142783540581200845617292944534288003$ 770700053647360
$\operatorname{RBG}(19,7)=462833074805165921475395804925677754915117648427804772565$ 64810462077989273600
RBG(19,8) = 686126765167803581773805583926296736123864947792120343141661 26668955904717440000
$\operatorname{RBG}(19,9)=255695074974135109537756379301891133491302771639525381023$ 1821458496116462997305600
$\operatorname{RBG}(20,1)=2432902008176640000$
$\operatorname{RBG}(20,2)=444432474300844787327725684969440000$
$\operatorname{RBG}(20,3)=77705104689340230554388061645133412621507133440000$
RBG(20,4) = 379115896134259527333937182640691476788778776261690220245 15000
$\operatorname{RBG}(20,5)=114947069528377495590566828132098709283275367438046580548$ 620812492673024
$\operatorname{RBG}(20,6)=37358801843970435637829038407627335187354506305129791208448$ 13042477030379200000
$\operatorname{RBG}(20,7)=188804364894220467379451829831853507516535678190416626114575$ 1775016381898362344960000
$\operatorname{RBG}(20,8)=19084775125745213149345920586812398814051323245951550980401$ 966025431822577354728512535000
$\operatorname{RBG}(20,9)=45402331876509878617437844669776458885762046890127865489$ 65759929959126069068177920360960000
$\operatorname{RBG}(20,10)=278567266191488254947840785805619026980295610724773139219$ 03857594739813713335069572835719440
$\operatorname{RBG}(21,3)=516344916592465085916193132955634668149853314252800000$
$\operatorname{RBG}(21,4)=308849693867800266258622352500470965584171507675505209965$ 8886600000
$\operatorname{RBG}(21,5)=955233376645532647814600896227997872090794248113086119762$ 31773740952022238720
$\operatorname{RBG}(21,6)=27294386329939873958240923080558461170115401823207361888$ 633491264080340764476635136000
RBG $(22,3)=3952235963968636235373920011837764082275323312165683200000$
$\operatorname{RBG}(22,4)=303690552732350971707102530203860843720388559383169781279$ 410045221650000
$\operatorname{RBG}(22,5)=10029578068852102886543481690819339163329022639024984504722$ 5033171927627321424445440
$\operatorname{RBG}(22,6)=2633098484807140381461604127794229519884701145807759327493$ 19435770466419862807532598071785600
$\operatorname{RBG}(23,3)=346258657510566017860409390912320679250540657620349920870$ 40000
$\operatorname{RBG}(23,4)=357421097188854268380546529171777511719323004220685935977$ 99569492565122000000
$\operatorname{RBG}(23,5)=131690071384232479126977902614822875260598137859326990381173$ 784176875080907315204284375040
$\operatorname{RBG}(24,3)=34521677003532768760558513861589746661018468208060269335$ 4127360000
$\operatorname{RBG}(24,4)=499641367549255499484275577040722567562912751024779271005$ 2706984849712274603690000
(f) eulerian circuits in the complete graph
$\mathrm{EK}(3)=2$
$E K(5)=264$
$\operatorname{EK}(7)=1015440$
$\mathrm{EK}(9)=90449251200$
$E K(11)=169107043478365440$
$E K(13)=6267416821165079203599360$
$\mathrm{EK}(15)=4435711276305905572695127676467200$
$\mathrm{EK}(17)=58393052751308545653929138771580386824519680$

[^0]: This paper contains original research and will not be published elsewhere.

