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Abstract

Let G = G(n) be a randomly chosen k-edge-coloured k-regular graph with
2n vertices, where k = k(n). Equivalently, G is the union of a random set of k

disjoint perfect matchings. Let h = h(n) be a graph with m = m(n) edges such
that m2 + mk = o(n). Using a switching argument, we find an asymptotic esti-
mate of the expected number of subgraphs of G isomorphic to h. Isomorphisms
may or may not respect the edge colouring, and other generalisations are also
presented. Special attention is paid to matchings and cycles.

The results in this paper are essential to a forthcoming paper of McLeod in
which an asymptotic estimate for the number of k-edge-coloured k-regular graphs
for k = o(n5/6) is found.

1 Introduction

Let G be a graph with vertex set V (G) and edge set E(G). If A ⊆ E(G), then G[A]

is the subgraph of G induced by A. In a partial k-colouring of G, each edge of G is

either left uncoloured or assigned one colour from a fixed sequence of k colours, such

that two adjacent edges cannot be assigned the same colour (although we do allow the

possibility that both are uncoloured). Let Eq(G) denote the set of edges in G coloured

with the q-th colour, for 1 ≤ q ≤ k, and let E0(G) denote the set of uncoloured edges

in G. If g is a partially k-coloured graph on V (G), then we say that g occurs in G

if Ei(g) ⊆ Ei(G) for 0 ≤ i ≤ k. If a partial k-colouring assigns a colour to every edge

of G, it is simply called a k-colouring. Throughout this paper the terms k-colouring and

k-edge-colouring are used synonymously, as no other types of colouring are considered.

The results presented in this paper arose out of a need to know the expected number

of particular small subgraphs in random k-coloured k-regular graphs (see [11]). The fol-

lowing two theorems, proved in Section 2, provide asymptotic results for this problem.

Here, and throughout the paper, our asymptotics are with respect to n → ∞, with

other variables being functions of n. Also, whenever random objects are mentioned it

will be assumed that the underlying distribution is the discrete uniform distribution.

Before presenting these theorems, we need to define two types of graph isomorphism.

Let G1 and G2 be partially k-coloured graphs. The first type of isomorphism, which we

shall call a colour-preserving isomorphism, is a bijection f : V (G1)→V (G2) such that

f(Ei(G1)) = Ei(G2) for 0 ≤ i ≤ k. If there is such an isomorphism from G1 to G2,

we write G1
∼= G2. The colour-preserving automorphism group of G1 is denoted by

Aut(G1). The second type of isomorphism does not require edge colour to be preserved

but does maintain the distinction between coloured and uncoloured edges. We call

this a colour-blind isomorphism. We define it as a bijection f∗ : V (G1)→V (G2) such

that f∗(E0(G1)) = E0(G2) and f∗
(
⋃ k

i=1Ei(G1)
)

=
⋃ k

i=1Ei(G2). If there is such an

isomorphism from G1 to G2, we write G1
∼=∗ G2. The colour-blind automorphism

group of G1 is denoted by Aut∗(G1).
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Let (x)y = x(x−1) · · · (x−y+1) denote the falling factorial.

Theorem 1.1. Let G be a randomly chosen k-coloured k-regular graph with 2n vertices.

Let h = h(n) be a k-coloured graph with m edges, v vertices (none of them isolated)

and at most ℓ edges of each colour, where m(ℓ+ k) = o(n). Then the expected number

of subgraphs in G isomorphic to h by a colour-preserving isomorphism is

(2n)v

(2n)m|Aut(h)|

(

1 +O

(

m(ℓ+ k)

n

))

.

Theorem 1.2. Let G be a randomly chosen k-coloured k-regular graph with 2n vertices.

Let h = h(n) be a k-coloured graph with m edges and v vertices (none of them isolated).

Suppose that in each of the ψh(k) possible colourings of h there are at most L edges

of any one colour. If m(L+ k) = o(n) then the expected number of subgraphs in G

isomorphic to h by a colour-blind isomorphism is

(2n)v ψh(k)

(2n)m|Aut∗(h)|

(

1 +O

(

m(L+ k)

n

))

.

The main results of Section 2 are Theorems 2.8 and 2.9, which generalise Theo-

rems 1.1 and 1.2 by allowing h to have uncoloured edges as well.

The results of Section 2 are then applied to particular types of subgraphs; perfect

matchings in Section 3 and cycles in Section 4. In these sections we obtain a series

of asymptotic results, including the distribution of the number of cycles in a random

k-coloured k-regular graph. In Section 4 we also produce a more accurate version of

the results in Section 2 for the case where the subgraph is a 3-cycle.

All of our subgraph counts are obtained using switching arguments. Previous exam-

ples of this technique can be found in [5, 7, 8], though we use an innovative arrangement

of the calculations, as we will explain later.

Before proceeding, we require a few more definitions. A matching in a graph G

is a set of edges that are pairwise vertex-disjoint. A matching is said to be perfect

if every vertex of G is an endpoint of exactly one edge in the matching. Given any

two matchings of G, we say that they are disjoint if they are edge-disjoint. In this

paper we restrict our attention to the set of perfect matchings M(n) in the complete

graph K2n with vertex set V (K2n) = {1, . . . , 2n}, for n ≥ 1. Simple counting reveals

that |M(n)| = (2n)!/(2nn!).

2 Switchings and subgraphs

In this section we estimate the expected number of subgraphs of a random partially

k-coloured complete graph G which are isomorphic to a specified graph. We begin by

determining the probability that a subgraph with a specified edge colouring appears in

a specified location in G.
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Let (m1, . . . ,mk) be a sequence of k disjoint perfect matchings in K2n. Each such

sequence corresponds to a partially k-coloured complete graphG = G(m1, . . . ,mk) with

V (G) = V (K2n), Ei(G) = mi for 1 ≤ i ≤ k, and E0(G) = E(K2n) − (m1 ∪ · · · ∪mk).

Define G(k) to be the set of all such partially k-coloured complete graphs, and note

that for all G ∈ G(k), |Ei(G)| = n for 1 ≤ i ≤ k.

Let g be a partially k-coloured graph on V (K2n). Let k0(g) be the maximum number

of uncoloured edges in g which share a common endpoint, and let ℓi(g) = |Ei(g)| for

1 ≤ i ≤ k. Define G(k, g) to be the set of all graphs in G(k) in which g occurs, that is

G(k, g) = {G ∈ G(k) | Ei(g) ⊆ Ei(G) for 0 ≤ i ≤ k}.

Suppose x and y are vertices of g such that xy /∈ E(g). (The notation xy refers to

the unordered pair {x, y}, and similarly elsewhere.) Let H be the set of all partially

coloured graphs which are identical to g except that they contain the edge xy. Let g
0

be the graph in H in which xy is an uncoloured edge. Define α, 0 ≤ α ≤ k, to be the

number of different colours of those edges in g incident with vertices x or y. Without loss

of generality, assume that this set of α colours comprises the (k−α+1)-th to k-th colours

of the k colours used to partially k-colour g. Let gi be the graph in H in which edge

xy is coloured with the i-th colour, for 1 ≤ i ≤ k−α. Hence G(k, g) =
⋃k−α

i=0 G(k, gi).

Lemma 2.1. Let h be a partially k-coloured graph on V (K2n) in which no colour is

used on more than ℓ edges. For k0 = k0(h), if ℓ+ k + k0 < n then G(k, h) 6= ∅.

Proof. By Corollary 5.3 of Plummer [12], in any graph on V (K2n) in which every vertex

has degree at least n+ℓ, any matching with at most ℓ edges can be extended to a perfect

matching. For i = 1, 2, . . . , k in turn, we can use Plummer’s corollary to extend the

matching Ei(h) to a perfect matching mi on V (K2n). The graph to which Plummer’s

corollary is applied at the i-th stage has all the edges of K2n except for the edges

of h (other than Ei(h)) and the edges of the previously constructed perfect matchings

m1, . . . ,mi−1. This graph has no vertex with more than k+k0 < n−ℓ edges that were

either in h initially or were subsequently assigned to one of the perfect matchings. This

means that incident with each vertex there are at least 2n−1−(n−ℓ−1) = n+ ℓ edges

that we are free to use, so the hypotheses of Plummer’s corollary are satisfied. The

resulting perfect matchings m1, . . . ,mk are such that G(m1, . . . ,mk) ∈ G(k, h).

In the remainder of the paper we will be considering asymptotic results under

hypotheses that imply ℓ+ k + k0 = o(n). Under this condition, Lemma 2.1 implies that

sets we encounter such as G(k, g) and G(k, gi) are non-empty for sufficiently large n.

We will often make use of this fact implicitly.

We now apply a switching argument which will enable us to determine the ratio

G(k, gi)/G(k, g
0
), for 1 ≤ i ≤ k−α. Once we have this, it is straightforward to calculate

the ratio G(k, g)/G(k), the probability that g occurs in a random G ∈ G(k).
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Given the graph gq (where 1 ≤ q ≤ k−α), with its distinguished edge xy coloured

using the q-th colour, and any G ∈ G(k, gq), we define Sw(G, gq) to be the set of all

4-tuples (u, v, w, z) such that u, v, w, x, y, z are distinct vertices of G and the following

conditions are met:

A1 : xy ∈ Eq(G); A7 : xy ∈ Eq(gq);

A2 : uv ∈ Eq(G); A8 : uv /∈ E(gq);

A3 : wz ∈ Eq(G); A9 : wz /∈ E(gq);

A4 : ux ∈ E0(G); A10 : ux /∈ E(gq);

A5 : vw ∈ E0(G); A11 : vw /∈ E(gq);

A6 : yz ∈ E0(G); A12 : yz /∈ E(gq).

If σ = (u, v, w, z) ∈ Sw(G, gq), then the operation switching down sw(σ) creates

graph G′ from G by changing the edge set Eq(G) to Eq(G
′) and the edge set E0(G) to

E0(G
′), where Eq(G

′) = Eq(G) ∪ {ux, vw, yz} − {xy, uv, wz} and E0(G
′) = E0(G) ∪

{xy, uv, wz}−{ux, vw, yz}. Note that since the edges in Eq(G
′) are a perfect matching

and the switching operation does not involve any edge in gq other than xy, graph g
0

occurs in graph G′ and G′ ∈ G(k, g
0
). A pictorial representation of sw(σ) appears in

Figure 1.

sw(σ)

sw′(σ′)

z

x y

u

v w

x y

u z

wv

Figure 1: Switching down sw(σ) and switching up sw′(σ′).

Given graph g
0

(with a distinguished uncoloured edge xy) and any G′ ∈ G(k, g
0
),

define Sw′(G′, g
0
, q) to be the set of all 4-tuples (u, v, w, z) such that u, v, w, x, y, z are

distinct vertices of G′ and the following conditions are met:

B1 : ux ∈ Eq(G
′); B7 : ux /∈ E(g

0
);

B2 : yz ∈ Eq(G
′); B8 : yz /∈ E(g

0
);

B3 : vw ∈ Eq(G
′); B9 : vw /∈ E(g

0
);

B4 : xy ∈ E0(G
′); B10 : xy ∈ E0(g0

);

B5 : uv ∈ E0(G
′); B11 : uv /∈ E(g

0
);

B6 : wz ∈ E0(G
′); B12 : wz /∈ E(g

0
).

If σ′ = (u, v, w, z) ∈ Sw′(G′, g
0
, q), then the operation switching up sw′(σ′) creates

graph G from G′ by changing the edge set Eq(G
′) to Eq(G) and the edge set E0(G

′)
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to E0(G) where Eq(G) = Eq(G
′) ∪ {xy, uv, wz} − {ux, vw, yz} and E0(G) = E0(G

′) ∪
{ux, vw, yz}−{xy, uv, wz}. Note that since the edges in Eq(G) are a perfect matching

and the switching operation does not involve any edge in g
0

other than xy, graph gq
occurs in graph G and G ∈ G(k, gq). Figure 1 also depicts the operation sw′(σ′).

Conditions A1–A12 are inverse to B1–B12 in the sense that, for any G ∈ G(k, gq),

G′ ∈ G(k, g
0
) and σ = (u, v, w, v), we have that σ ∈ Sw(G, gq) and sw(σ) produces G′

from G if and only if σ ∈ Sw′(G′, g
0
, q) and sw′(σ) produces G from G′. This implies

that
∑

G∈G(k,gq)

|Sw(G, gq)| =
∑

G′∈G(k,g
0
)

|Sw′(G′, g
0
, q)|. (1)

Lemma 2.2. Let G ∈ G(k, gq), ℓ = ℓq(gq) and k0 = k0(gq). If ℓ+ k + k0 < n then

4(n−ℓ−k−k0)(n−ℓ−1
2
k−1

2
k0) ≤ |Sw(G, gq)| ≤ 4(n− ℓ)2. (2)

Proof. We need to bound the number of 4-tuples (u, v, w, z) such that conditions

A1–A12 are satisfied. The definition of gq ensures that A1 and A7 hold already. We

can choose vertices u and v in at least 2n−2ℓ−(k−1)−k0 ways, since of the 2n choices

of u and v which satisfy condition A2, at most 2ℓ violate condition A8, at most k−1

violate condition A4, and at most k0 violate condition A10. We can then choose the

vertices w and z in at least 2(n−1)−2ℓ−2(k−1)−2k0 ways, applying a similar ar-

gument for conditions A3, A5, A6, A9, A11 and A12. This gives us a lower bound of

2(n−ℓ−k−k0)(2n−2ℓ−k−k0) on the number of 4-tuples, yielding the left inequality

of (2). Note that conditions A1, A2, A3, A7, A8, A9 force {x, y} ∩ {u, v, w, z} = ∅, and

by using n−1 in place of n when choosing w, z we take into account the constraint

{u, v} ∩ {w, z} = ∅.
For the upper bound, note that vertices u and v can be chosen in at most 2(n− ℓ)

ways, and similarly for w and z.

Lemma 2.3. Let G′ ∈ G(k, g
0
), ℓ = ℓq(g0

) and k0 = k0(g0
). If ℓ+ k + k0 + 1 < n then

2(n−ℓ−k−k0−1) ≤ |Sw′(G′, g
0
, q)| ≤ 2(n− ℓ− 2). (3)

Proof. The proof is similar to that of Lemma 2.2.

We need to bound the number of 4-tuples (u, v, w, z) such that conditions B1–B12

are satisfied. The definition of g
0

ensures that B4 and B10 hold already. We can

choose the vertices u and z in exactly 1 way such that conditions B1, B2, B7 and B8

are satisfied (since uncoloured edge xy is given and no edge of Eq(g0
) is incident with x

or y). Vertices v and w can be chosen in at least 2(n−2)−2ℓ−2(k−1)−2k0 ways, since

of the 2(n−2) choices of v and w which satisfy condition B3 and {v, w}∩{u, x, y, z} = ∅,
at most 2ℓ violate condition B9, at most k−1 violate condition B5 (likewise for B6),

and at most k0 violate condition B11 (likewise for B12). This gives us a lower bound of

2(n−ℓ−k−k0−1) on the number of 4-tuples, satisfying the left inequality of (3).

For the upper bound, note that there are at most 2(n− ℓ− 2) ways of choosing the

vertices v and w.
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Now that we have calculated bounds on the number of ways of performing the

switching down and switching up operations on graphs G ∈ G(k, gq) and G′ ∈ G(k, g
0
)

respectively, we can determine the relative sizes of the sets G(k, gq) and G(k, g
0
).

Lemma 2.4. Let k0 = k0(g0
). If ℓq(g0

) ≤ βn for some constant β < 1, and k + k0 =

o(n), then
|G(k, gq)|
|G(k, g

0
)| =

1

2(n− ℓq(g0
))

(

1 +O

(

k + k0

n

))

,

uniformly over q.

Proof. From Lemmas 2.2 and 2.3 we have

|G(k, g
0
)|

|G(k, gq)|
n−ℓq(g0

)−k−k0(g0
)−1

2(n− ℓq(gq))2
≤
∑

G′∈G(k,g
0
)|Sw′(G′, g

0
, q)|

∑

G∈G(k,gq)|Sw(G, gq)|

≤ |G(k, g
0
)|

|G(k, gq)|
n− ℓq(g0) − 2

(n−ℓq(gq)−k−k0(gq))(2n−2ℓq(gq)−k−k0(gq))
,

since G(k, gq) and G(k, g
0
) are non-empty sets. It follows from (1) that

n−ℓq(g0
)−k−k0(g0

)−1

2(n− ℓq(gq))2
≤ |G(k, gq)|

|G(k, g
0
)| ≤

n− ℓq(g0) − 2

(n−ℓq(gq)−k−k0(gq))(2n−2ℓq(gq)−k−k0(gq))
.

This simplifies to yield the required result since ℓq(g0
) + 1 = ℓq(gq) ≤ βn, k0(gq) ≤ k0

and k + k0 = o(n).

The next two lemmas follow directly from Lemma 2.4 recalling that
∑k−α

i=0 |G(k, gi)| = |G(k, g)|.

Lemma 2.5. Let k0 = k0(g0
). If ℓi(g0

) ≤ βn for some constant β < 1 and all i, and

k + k0 = o(n), then

|G(k, gq)|
|G(k, g)| =

1

2(n− ℓq(g0
))

(

1 +O

(

k + k0

n

))

uniformly over q.

Proof. We begin by noting that

|G(k, g)|
|G(k, gq)|

=
|G(k, g

0
)|

|G(k, gq)|
+

k−α
∑

i=1

|G(k, gi)|
|G(k, gq)|

=
|G(k, g

0
)|

|G(k, gq)|
+

|G(k, g
0
)|

|G(k, gq)|

k−α
∑

i=1

|G(k, gi)|
|G(k, g

0
)| .
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Applying Lemma 2.4 we obtain

|G(k, g)|
|G(k, gq)|

= 2(n− ℓq(g0
))

(

1 +O

(

k + k0

n

))

+ (k−α)

(

1 +O

(

k + k0

n

))

= 2(n− ℓq(g0
))

(

1 +O

(

k + k0

n

))

.

Lemma 2.6. Let k0 = k0(g0
). If ℓi(g0

) ≤ βn for some constant β < 1 and all i, and

k + k0 = o(n), then

|G(k, g
0
)|

|G(k, g)| = 1 − 1
2

k−α
∑

i=1

1

n− ℓi(g0
)

+O

(

k(k + k0)

n2

)

.

Proof. We can express the ratio as

|G(k, g)|
|G(k, g

0
)| = 1 +

k−α
∑

i=1

|G(k, gi)|
|G(k, g

0
)| .

Since k + k0 = o(n) and ℓi(g0
) ≤ βn for all i, we can apply Lemma 2.4 and obtain

|G(k, g)|
|G(k, g

0
)| = 1 + 1

2

k−α
∑

i=1

1

n− ℓi(g0
)

(

1 +O

(

k + k0

n

))

,

from which the lemma follows.

We are now in a position to determine the probability that graph g occurs in a

random graph in G(k).

Note that the graph classes whose sizes are compared in Lemmas 2.5 and 2.6 are

not connected by a switching or even a sequence of switchings. This marks a break

from the traditional method of analysis, which would employ chains of switchings to

compare the parts of a partition of G(k) defined by all the possible colourings (and non-

colourings) of the edges of g. Computing the size of any particular part would then

require a sum over all parts, which can be a non-trivial task [5]. The new arrangement

of the analysis avoids this sum and has the added advantage that we can choose to

apply Lemmas 2.5 and 2.6 to the edges of g in any convenient order. For example, in

the following, we treat the uncoloured edges of g first because the error terms behave

better that way.

Theorem 2.7. Let g = g(n) be a partially k-coloured graph on V (K2n) such that

|E(g)| = r +m and |E0(g)| = r. Define k0 = k0(g). If m(k + k0) = o(n) and rk(k +

k0) = o(n2), then the probability that g occurs in a random G ∈ G(k) is

1

2m
∏k

i=1(n)ℓi(g)

(

1 − k

2n

)r(

1 +O

(

m(k + k0)

n
+
rk(k + k0)

n2

))

.
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Proof. Let E(g) = {e1, . . . , er+m} where E0(g) = {e1, . . . , er}, and, for 0 ≤ j ≤ r +m,

define g(j) to be the subgraph g[{e1, . . . , ej}] with edge colours (or lack of colours)

induced from g. It follows that G(k, g(0)) = G(k) and g(r+m) = g.

The probability that g occurs in G is given by

|G(k, g)|
|G(k)| =

r+m−1
∏

j=0

|G(k, g(j+1))|
|G(k, g(j))| . (4)

Clearly k0(g
(j)) ≤ k0(g) and ℓi(g

(j)) ≤ ℓi(g) for all i, j, and the condition m(k + k0) =

o(n) implies that ℓi(g) = o(n) for all i. Since the conditions for Lemmas 2.5 and 2.6

are satisfied, we can use these lemmas to estimate the ratios on the right side of (4).

Note that α = 0 and ℓi(g
(j+1)) = 0 for 1 ≤ i ≤ k in each application of Lemma 2.6.

Let h be a partially k-coloured graph with no isolated vertices, where |V (h)| ≤ 2n.

We now determine the expected number of subgraphs in a randomly chosen graph

G ∈ G(k) isomorphic to h under each of the two types of isomorphism defined in

Section 1. Let the set of subgraphs of G for which there exists a colour-preserving

isomorphism to h be given by I(h,G) = {E ⊆ E(G) |G[E] ∼= h}. Similarly, define

the set of subgraphs of G for which there exists a colour-blind isomorphism to h by

I∗(h,G) = {E ⊆ E(G) |G[E] ∼=∗ h}.
Theorem 2.8. Suppose that the partially k-coloured graph h = h(n) has m coloured

edges, r uncoloured edges and v vertices (none of them isolated). Define k0 = k0(h).

If m(k + k0) = o(n) and rk(k + k0) = o(n2), then the expected value of |I(h,G)| for

random G ∈ G(k) is

(2n)v

2m|Aut(h)|∏k
i=1(n)ℓi(h)

(

1 − k

2n

)r(

1 +O

(

m(k + k0)

n
+
rk(k + k0)

n2

))

.

Proof. The number of equivalence classes of injections from V (h) into V (G) is

(2n)v/|Aut(h)|, where injections are considered equivalent if they induce the same

colouring on the edges in the image. The probability that the image of one of these

injections is a subgraph of a random graph in G(k) is given by Theorem 2.7, since

the condition m(k + k0) = o(n) implies that ℓi(h) = o(n) for all i. The result follows

immediately.

To estimate the colour-blind count |I∗(h,G)|, we just need to sum Theorem 2.8

over all possible colourings of the coloured edges of h. For a variable x, define

ψh(k, x) =
∑

C∈Ck(h)

(

(x)ℓ1(C)(x)ℓ2(C) · · · (x)ℓk(C)

)−1
,

where Ck(h) is the set of all k-colourings of the coloured edges of h, and ℓi(C) is the

number of times the i-th colour is used by colouring C. Also define ψh(k) = |Ck(h)|,
which is of course just the edge-chromatic polynomial of the coloured part of h.
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Theorem 2.9. Suppose that the partially k-coloured graph h has m coloured edges,

r uncoloured edges and v vertices (none of them isolated). Define k0 = k0(h). If

m(k + k0) = o(n) and rk(k + k0) = o(n2), then the expected value of |I∗(h,G)| for ran-

dom G ∈ G(k) is

(2n)v ψh(k, n)

2m|Aut(h)|

(

1 − k

2n

)r(

1 +O

(

m(k + k0)

n
+
rk(k + k0)

n2

))

.

Theorems 1.1 and 1.2, stated in Section 1, are special cases of Theorems 2.8 and 2.9

respectively. We prove them both now.

Proofs of Theorems 1.1 and 1.2. A k-coloured k-regular graph can be uniquely ex-

tended to G ∈ G(k) by joining each non-adjacent pair of vertices by an uncoloured edge.

To obtain Theorem 1.1 from Theorem 2.8, note that
∏k

i=1(n)ℓi(g) = nm
(

1 +O(mℓ/n)
)

if mℓ = o(n). To obtain Theorem 1.2 from Theorem 2.9, apply the similar fact that

ψh(k, n) = ψh(k)n
−m
(

1 +O(mL/n)
)

if mL = o(n).

3 Perfect Matchings

In this section we present a series of results about perfect matchings which follow from

the theorems in Section 2. Note that the first three theorems provide actual counts

rather than expectations.

Let G denote the complement of graph G.

Theorem 3.1. Let G be a graph on 2n vertices m edges and maximum degree ∆. If

∆m = o(n2), then the number of perfect matchings in G is

(2n)!

2n n!

(

1 − 1

2n

)m(

1 +O

(

∆m

n2

))

.

Proof. Let g be a copy of G with all edges uncoloured. The quantity we require is

the number of elements of G(1) which contain g. This is equal to |G(1)| times the

probability that a randomly chosen member of G(1) contains g. The first quantity is

|M(n)| = (2n)!/(2nn!) and the second is given by Theorem 2.7.

In [4] Godsil proved that the number of perfect matchings in the complement of a

graph G is
1√
2π

∫ ∞

−∞

e−x2/2α(G, x)dx,

where α(G, x) is the matchings polynomial of G. Hence Theorem 3.1 provides an

asymptotic estimate of this integral in the case where G is moderately sparse. A much

more accurate estimate for regular graphs will be given in [11].
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Theorem 3.2. Suppose 0 ≤ t < k and k2(t+1) = o(n). Then the number of k-regular

graphs on 2n vertices with a distinguished set of t disjoint perfect matchings is

(2nk−2nt)! (2n)! t

t! (nk−nt)! 2nk
(

k−t)! 2n n! t
exp

(

−k
2−t−1

4
− k3

24n
+O

(

k2(t+1)

n

))

.

Proof. Given the bounds on k and t, we have from [9] that the number of (k−t)-regular

graphs is equal to

(2nk−2nt)!

(nk−nt)! 2nk−nt(k−t)! 2n
exp

(

−(k−t)2−1

4
− (k−t)3

24n
+O

(

(k−t)2

n

))

. (5)

Let G be a (k−t)-regular graph. Then Theorem 3.1 gives us the number of perfect

matchings in G. Since this quantity, within the variability allowed by the error term,

is independent of the structure of G, the number of sets of t disjoint perfect matchings

in G is given by

1

t!

k−1
∏

i=k−t

(

(2n)!

2n n!

(

1 − 1

2n

)ni(

1 +O

(

k2

n

))

)

=
1

t!

(

(2n)!

2n n!

)t(

1 − 1

2n

)nt(2k−t−1)/2(

1 +O

(

k2t

n

))

.

The formula in the theorem statement is obtained by multiplying by (5), taking an

asymptotic expansion of (1−1/(2n))nt(2k−t−1)/2, and applying the condition k2(t+1) =

o(n).

Note that Theorem 3.2 is not applicable when k = t. To deal with this case, we

have the following theorem.

Theorem 3.3. For k = o(n1/3), the number of sets of k disjoint perfect matchings in

K2n is
1

k!

(

(2n)!

2n n!

)k

exp

(

−k(k−1)

4
+O

(

k3

n

))

. (6)

Proof. The proof is identical to that of Theorem 3.2 except that the starting point is

the number of 0-regular graphs, namely 1.

This result is an improvement over Theorem 5.4 in [2], in which Bollobás obtained

the same formula for fixed k. It may be possible to increase the range of k in (6)

by using a modified switching argument similar to that used in Section 4. However

in [11] an estimate for k = o(n5/6) will be presented. While this stronger result is

obtained using different methods to those employed here, it relies on the results given

in Section 2 of this paper.
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Bollobás and McKay [3] found the expectation of the number of perfect matchings

in a random k-regular graph for k = o(n1/3). The following theorem generalises this

to sets of disjoint perfect matchings. Note that the expectation refers to the uniform

distribution on k-regular graphs, not that on k-regular k-coloured graphs.

Theorem 3.4. Suppose 0 ≤ t < k and k2(t+1) = o(n). Then the expected number of

sets of t disjoint perfect matchings in a random k-regular graph on 2n vertices is

(2nk−2nt)! (nk)! (2n)!t k!2n

t! (nk−nt)! (2nk)! (k−t)!2n n!t
exp

(

t

4
+O

(

k2(t+1)

n

))

.

Proof. The theorem follows directly from Theorem 3.2 and the case t = 0 of (5).

4 Cycles

In this section, we compare some results about cycles in random k-coloured k-regular

graphs to those of random k-regular graphs. We first consider the expected number of

cycles of length z in a randomly chosen graph. Recall that the chromatic polynomial

of a z-cycle, k being the number of colours, is λ(z, k) = (k−1)z + (−1)z(k−1).

Theorem 2.9 provides the expectation for zk = o(n), but since the factor ψ(k, n) is

somewhat opaque, we will give the slightly weaker result implied by Theorem 1.2.

Theorem 4.1. Let G be a random k-coloured k-regular graph on 2n vertices, k ≥ 1.

Then, if z ≥ 3 and z(z + k) = o(n), the expected number of z-cycles in G is

λ(z, k)

2z

(

1 +O

(

z(z + k)

n

))

.

Proof. In applying Theorem 1.2 to a z-cycle h, we have m = z, L ≤ z/2, |Aut∗(h)| = 2z

and ψh(k) = λ(z, k).

It is interesting to compare Theorem 4.1 to the corresponding result for random

k-regular graphs. This problem has been studied several times; see [13] for a survey.

As yet only the case k = o(n1/3) has been solved. In the following we give the result

for z = o(n1/2) for comparison with Theorem 4.1, even though the theory can handle

arbitrary z.

Theorem 4.2. Let Hk be a random k-regular graph for 1 ≤ k = o(n1/3). Then, if

3 ≤ z = o(n1/2), the expected number of z-cycles in Hk is

(k−1)z

2z

(

1 +O

(

z2 + k3

n

))

.
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Proof. Theorem 4.6 in [6] says that the number of k-regular graphs on 2n vertices

containing a specific z-cycle is

(2nk−2z)!

2nk−z(nk−z)! k! 2n−z(k−2)! z
exp

(

−k
2−1

4
+O

(

z + k3

n

))

.

Dividing by the total number of graphs, we find that the probability that Hk contains

a specific z-cycle is

2zkz(k−1)z(2nk−2z)!(nk)!

(nk−z)! (2nk)! exp

(

O

(

z + k3

n

))

.

Multiplying by the number of positions in Hk in which a z-cycle may occur, namely

(2n)z/(2z), and applying Stirling’s formula, gives the desired result.

A natural next step is to determine the distribution of the z-cycles in a ran-

domly chosen graph. In [10] it is shown that for k = k(n) ≥ 3, z = z(n) ≥ 3 and

(k−1)2z−1 = o(n) the distribution of z-cycles in a random k-regular graph approaches

a Poisson distribution with mean (k−1)z/(2z) as n approaches infinity. For random k-

coloured k-regular graphs, a similar result might be possible using the same technique,

but we will leave that question for a later paper. For the present, we will be content

with showing that the distribution of z-cycles in a random k-coloured k-regular graph

is asymptotically Poisson in the case that both the degree and the cycle length are

bounded. It will be clear that very slowly growing k or z could be handled by the same

method.

Theorem 4.3. Let k ≥ 1, z ≥ 3, c ≥ 0 be integer constants. Then the probability that

a random k-coloured k-regular graph of order 2n has exactly c cycles of length z is

1

c!

(

λ(z, k)

2z

)c

exp

(

−λ(z, k)

2z
+ o(1)

)

.

Proof. Let X = X(n) be the number of z-cycles in a randomly chosen k-coloured

k-regular graph with 2n vertices.

Consider any fixed i ≥ 0. The ith factorial moment Ei(X) of X is the expected

number of sequences of i distinct z-cycles in G. Write the number of such sequences

as Y0 + Y1, where Y0 counts sequences of i vertex-disjoint z-cycles, and Y1 counts the

remaining cases.

First we estimate E(Y0). In the language of Theorem 1.2, we have m = v = iz,

L ≤ iz, |Aut∗(h)| = (2z)ii! and ψh(k) = λ(z, k)i. Including a factor of i! since we are

counting ordered sequences, this gives us

E(Y0) =

(

λ(z, k)

2z

)i
(

1 +O(n−1)
)

. (7)
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Next we bound E(Y1). The number of isomorphism types of subgraphs h induced

by a sequence of z-cycles, not all disjoint, is bounded, but all of them have m ≤ iz,

v ≤ m−1, L ≤ iz and |Aut∗(h)| ≥ 1. Therefore, Theorem 1.2 gives that E(Y1) =

O(n−1).

Combining these two estimates, we have that

Ei(X) →
(

λ(z, k)

2z

)i

as n→ ∞ for any fixed i. This implies that X converges in distribution to the Poisson

distribution with mean λ(z, k)/(2z) (see for example [1, Thm 1.22]), which is equivalent

to the theorem statement.

We briefly mention another simple application. A rainbow cycle in an edge-coloured

graph is a cycle such that every edge has a different colour.

Theorem 4.4. Suppose k ≥ z ≥ 3 and zk = o(n). Then the expected number of

rainbow cycles of length z in a random k-coloured k-regular graph of order 2n is

(k)z

2z

(

1 +O

(

zk

n

))

.

Proof. There are (k)z/(2z) isomorphism types of rainbow z-cycle if k colours are avail-

able. The expected number of each type is 1 +O(zk/n), by Theorem 1.1.

Theorem 1.2, or Theorem 4.4, tell us that the expected number of 3-cycles, or

triangles, in a k-regular k-coloured graph is given by 1
6
k(k−1)(k−2)(1+O(k/n)) for

k = o(n). However, a more precise estimate is required for the calculations in [11], so

we now focus in more detail on the case where g is a 3-cycle. We obtain these results

by using a simplified version of the switching argument (taken from [7]) which requires

only four graph edges (two coloured and two uncoloured) rather than six. Theorem

2.7 is applied to assist in calculating the number of ways of performing the switching.

We can assume that k ≥ 3, since otherwise triangles are impossible.

Let t be a graph with vertex set V (t) = {x, y, z} ⊆ V (K2n) and exactly two edges

xz and yz coloured with the (k−1)-th and k-th colour, respectively. As before, G(k, t)

is the set of all graphs in G(k) in which t occurs. Let T be the set of all partially

coloured graphs which are identical to t except that they contain the edge xy. Define

t0 as the graph in T in which xy is an uncoloured edge, and define tq as the graph

in T in which edge xy is coloured with the q-th colour, for 1 ≤ q ≤ k−2. Hence

G(k, t) =
⋃k−2

q=0 G(k, tq).

Given graph tq, with 1 ≤ q ≤ k−2, and any G ∈ G(k, tq), define Sw∆(G, tq) to be

the set of all ordered pairs (u, v) such that u, v, x, y are distinct vertices of G and the

14



following conditions are met:

C1 : xy ∈ Eq(G); C5 : xy ∈ Eq(tq);

C2 : uv ∈ Eq(G); C6 : uv /∈ E(tq);

C3 : ux ∈ E0(G); C7 : ux /∈ E(tq);

C4 : vy ∈ E0(G); C8 : vy /∈ E(tq).

If σ = (u, v) ∈ Sw∆(G, tq), then the operation sw(σ) creates fromG the graphG′ ∈ G(k, t0)

from G by changing the edge set Eq(G) to Eq(G
′) and the edge set E0(G) to E0(G

′)

where Eq(G
′) = Eq(G)∪{ux, vy}−{xy, uv} and E0(G

′) = E0(G)∪{xy, uv}−{ux, vy}.
A pictorial representation of sw(σ) appears in Figure 2.

sw(σ)

sw′(σ′)

z

x u

vy

x u

z

vy

Figure 2: Switching operations sw(σ) and sw′(σ′).

Given graph t0 and any G′ ∈ G(k, t0), define Sw′
∆(G′, t0, q) to be the set of all ordered

pairs (u, v) such that u, v, x, y are distinct vertices of G′ and the following conditions

are met:
D1 : ux ∈ Eq(G

′); D5 : ux /∈ E(t0);

D2 : vy ∈ Eq(G
′); D6 : vy /∈ E(t0);

D3 : xy ∈ E0(G
′); D7 : xy ∈ E0(t0);

D4 : uv ∈ E0(G
′); D8 : uv /∈ E(t0).

If σ′ = (u, v) ∈ Sw′
∆(G′, t0, q), then the operation sw′(σ′) creates from G′ the graph

G ∈ G(k, tq) from G′ by changing the edge set Eq(G
′) to Eq(G) and the edge set E0(G

′)

to E0(G) where Eq(G) = Eq(G
′)∪{xy, uv}−{ux, vy} and E0(G) = E0(G

′)∪{ux, vy}−
{xy, uv}. Figure 2 also depicts the operation sw′(σ′).

Conditions C1–C8 are inverse to D1–D8 in the same sense as A1–A12 were seen to

be inverse to B1–B12 in Section 2. This implies that
∑

G∈G(k,tq)

|Sw∆(G, tq)| =
∑

G′∈G(k,t0)

|Sw′
∆(G′, t0, q)|. (8)

Lemma 4.5. If G ∈ G(k, tq), then

E
(

|Sw∆(G, tq)|
)

= (2n−2k)

(

1 +O

(

k2

n2

))

, (9)

for 3 ≤ k = o(n), uniformly over q.
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Proof. Consider finding all pairs (u, v) such that conditions C1–C8 are satisfied. The

definition of tq ensures that C1 and C5 hold already. We can choose the vertices u

and v in exactly 2n−4 ways such that conditions C2 and C6–C8 are satisfied. The

probability that condition C3 is also satisfied (conditional on the choice of u and v) is

(1−(k−2)/2n)(1+O(k2/n2)) by Lemma 2.6, where we take g to be the graph consisting

of tq and the edge uv, and g
0
to be graph g with the addition of the uncoloured edge ux.

By a similar argument we find that the probability that condition C4 is also satisfied

(conditional on the choice of u and v, and ux being uncoloured) is (1−(k−2)/2n)

(1 +O(k2/n2)). The result follows immediately.

Lemma 4.6. If G′ ∈ G(k, t0), then

E
(

|Sw′
∆(G′, t0, q)|

)

=

(

1 − k−1

2n

)(

1 +O

(

k2

n2

))

, (10)

for 3 ≤ k = o(n).

Proof. This is similar to the proof of Lemma 4.5. We consider finding all pairs (u, v)

such that conditions D1–D8 are satisfied. Since uncoloured edge xy is given, we can

choose the vertices u and v in exactly one way such that all conditions are satisfied

except possibly for D4. The probability that condition D4 is also satisfied (conditional

on ux and vy being coloured with the q-th colour) is (1−(k−1)/2n)(1 +O(k2/n2)) by

Lemma 2.6, where we take g to be the graph consisting of t0 and the edges ux and vy,

and g
0

to be graph g with the addition of the uncoloured edge uv. The result follows

immediately.

We can now determine the relative sizes of the sets G(k, tq) and G(k, t0).

Lemma 4.7. If 3 ≤ k = o(n), then

|G(k, tq)|
|G(k, t0)|

=
1

2n

(

1 +
k + 1

2n
+O

(

k2

n2

))

,

uniformly over q.

Proof. From Lemmas 4.5 and 4.6 we have
∑

G∈G(k,tq)

|Sw∆(G, tq)| = |G(k, tq)|E
(

|Sw∆(G, tq)|
)

= |G(k, tq)| (2n−2k)

(

1 +O

(

k2

n2

))

and
∑

G′∈G(k,t0)

|Sw′
∆(G′, t0, q)| = |G(k, t0)|E

(

|Sw′
∆(G′, t0, q)|

)

= |G(k, t0)|
(

1 − k−1

2n

)(

1 +O

(

k2

n2

))

.

The result is obtained by substituting these equations into (8) and simplifying.

16



The next two lemmas follow directly from Lemma 4.7, recalling that
∑k−2

i=0 |G(k, ti)| = |G(k, t)|.
Lemma 4.8. If 3 ≤ k = o(n), then

|G(k, tq)|
|G(k, t)| =

1

2n−3

(

1 +O

(

k2

n2

))

uniformly over q.

Proof. We begin by noting that

|G(k, t)|
|G(k, tq)|

=
|G(k, t0)|
|G(k, tq)|

+
k−2
∑

i=1

|G(k, ti)|
|G(k, tq)|

=
|G(k, t0)|
|G(k, tq)|

+
|G(k, t0)|
|G(k, tq)|

k−2
∑

i=1

|G(k, ti)|
|G(k, t0)|

.

Applying Lemma 4.7 we obtain

|G(k, t)|
|G(k, tq)|

= (2n−k−1)

(

1 +O

(

k2

n2

))

+ (k−2)

(

1 +O

(

k2

n2

))

= (2n−3)

(

1 +O

(

k2

n2

))

.

For completeness we include the following lemma.

Lemma 4.9. If 3 ≤ k = o(n), then

|G(k, t0)|
|G(k, t)| =

(

1 − k−2

2n
− 3(k−2)

4n2

)(

1 +O

(

k3

n3

))

.

Proof. We can express the ratio in the lemma statement as

|G(k, t0)|
|G(k, t)| =

|G(k, t0)|
∑k−2

i=0 |G(k, ti)|
=

1

1 +
∑k−2

i=1
|G(k,ti)|
|G(k,t0)|

.

Since k = o(n) we can apply Lemma 4.7 and obtain

|G(k, t0)|
|G(k, t)| =

1

1 + k−2
2n

(

1 + (k+1)
2n

+O
(

k2

n2

)

) ,

uniformly. Taking the Taylor series of the right side yields the required result.

Theorem 4.10. For 3 ≤ k = o(n), the probability that tq occurs in a random G ∈ G(k)

is
1

(2n−1)(2n−2)(2n−3)

(

1 +O

(

k2

n2

))

,

uniformly over q.
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Proof. The probability that tq occurs in G is

|G(k, tq)|
|G(k)| =

|G(k, t)|
|G(k)|

|G(k, tq)|
|G(k, t)| =

1

2n−3

(

1 +O

(

k2

n2

)) |G(k, t)|
|G(k)| ,

by Lemma 4.8.

To determine the probability that t occurs in graphG we start by noting that over all

graphs in G(k) there are exactly k!
(

2n−1
k

)

possible k-colourings of the edges incident to z.

By symmetry, each k-colouring occurs in the same number of graphs. If we now consider

only those graphs in G(k) in which the edges xz and yz are coloured with the (k−1)-

th and k-th colour respectively, (as they are in t), then there are only (k−2)!
(

2n−3
k−2

)

possible k-colourings of the edges incident with z. Hence, the proportion of graphs in

G(k) in which t occurs is 1/((2n−1)(2n−2)). The result follows immediately.

For our next two lemmas we will again require the two types of graph isomorphism

defined in Section 1, as well as the sets I(h,G) and I∗(h,G) defined in Section 2.

Theorem 4.11. For random G ∈ G(k), where 3 ≤ k = o(n), the expected value of

|I(tq, G)| is

1 +
3

2n
+O

(

k2

n2

)

.

Proof. The number of injections from V (tq) into V (G) is 2n(2n−1)(2n−2). The prob-

ability that there exists a colour-preserving isomorphism from the image of one of these

mappings to tq is given by Theorem 4.10. The result follows immediately.

Theorem 4.12. For random G ∈ G(k), where 3 ≤ k = o(n), the expected number of

triangles, regardless of edge colours, is

k(k−1)(k−2)

(

1

6
+

1

4n
+O

(

k2

n2

))

.

Proof. The number of injections from V (tq) into V (G) is 2n(2n−1)(2n−2). The proba-

bility that there exists a colour-blind isomorphism from the image of one of these map-

pings to tq is obtained by multiplying the formula in Theorem 4.10 by k(k−1)(k−2),

the number of ways of (properly) colouring tq with k colours. However, there is a

six-fold overcount because any subgraph which has a colour-blind isomorphism to tq
has six such isomorphisms. The result follows immediately.

It is possible that the switching technique used in this section can also be used to

improve upon the results in Section 2 for other small subgraphs.
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