INDEPENDENT SETS IN REGULAR GRAPHS OF HIGH GIRTH

B. D. McKay
Department of Computer Science, Ausiralian National University

Abstract.

The independence ratio of a graph G is the value of iA|/|V(G)], where A is an independent
set of G of the largest possible size. For r > 0, g > 3, define i(r,g) Lo be the infimum of the
independence ratio over regular graphs with degree r and girth at least g. Bollobas was the
first Lo show that i(r,g) is uniformly bounded below 1/2 for any fixed r > 3. In this paper,
we sharpen his bounds.
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0. Introduction.

A set 4 of vertices of a graph G is independent if no two vertices of A4 are joined by an
cdge. The set A is a mazimum independent set of G if there is no larger independent set. The
independence ratio of G is [Aj/|V(G)! for a maximum independent set A.

A number of authors have explored the relationship between the girth, degree and inde-
pendence ratio of regular graphs. (Almost) following Bollobis {5, let ¢(r,g) be the infimum
of the independence ratio of regular graphs of degree r and girth at least g.

By considering unions of complete graphs, we see easily that #(r,3) = 1/(r+ 1) for r > 1.
The only other exact values known for r > 3 are 1(3,4) = i(3,5) = 5/14 (Staton [11]) and
i(4,4) = 4/13 (Jones [8]).

The lower bound i(r,4) > 2/(r + 3) was proved by Fajtlowicz |6] and improved (for
r > 5) toi(r,4) > (rlogr — r +1)/(r - 1)? by Shearer [10]. Hopkins and Staton [7] show
that i(r,6) > (2r — 1)/(r? + 2r — 1), which is better than Shearer’s result only for r < 6.
Hopkins and Staton also analyse cubic graphs in more detail and find that ¢(3,6) > 19/52,
i(3,8) > 20/53 and i(3,4k + 2) > (7k - 1)/18k for k > 1. The case of very high degree (with
respect to |V {G)] is considered in [1].

In this paper we consider i(r.c0) = lim, .~ i(r,g). Bollobas 5] used probabilistic meth-
ods 10 show that i(r,00) < 1/2 for r > 3. In fact he obtained the upper bounds on i(r, co0) that
are here reproduced in Corollary 2.1. In this paper we will use similar methods to sharpen
these bounds.

1. Preliminary Lemmas.

The probabilistic model we use was introduced by Bender and Canfield [2]. Consider a
collection of disjoint sets vy, vy, ..., vn, each of which has cardinality r. A pairing of order n
and degree r consists of a collection of ¢dges {z,z'} such that

(i) For each edge {z,z'}, z, z' € Uj_, vi and {z # z'}, and
(ii) each element of |J]_, vi is in exactly one edge.

Given a pairing P, we can obtain a multigraph G(P). The vertices of P are v1,v3,...,Vn,
and two vertices v; and v; are joined by a number of edges equal to the number of edges {z,z'}
of P such that z € v; and z' € v,.

The properties of pairings relevant to us are summarised in our first theorem.

Theorem 1.1.

(a) Forr >0, n > 1, each labelled r-regular simple graph of order n ts derivable from ezactly
the same number of pairings.

(b) For fized r > 1, g > 3, the proportion of pairings of order n and degree r which yield
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simple graphs of girth at least g ts asymplotically

g-1 r— 1)
exp(- Z ng])*)

as n— oC.

Proof. Part (a) is elementary. Part (b) was proved for ¢ = 3 and fixed r by Bender and
Canfield [2]. For arbitrary fixed r and g, part (b) was proved by Wormald [12] and Bollobas |4].
]

Part (b) of the theorem was established for g = 3 and r = o(n'/*) by McKay [9]. The
case where both g and r can be increasing functions of n will be the subject of a forthcoming
paper of McKay and Wormald.

An immediate consequence of Theorem 1.1 is the following.

Corollary 1.1. Fiz r 2 1, g > 3. Then any property which 1s truc of almost all pairings of

degree v (as n - co) is also true of almost all labelled simple regular graphs of degree r and
girth at least g. 1

Corollary 1.1 allows us to conduct our probabilistic analyses within the class of pairings,
rather than in the more difficult class of regular graphs. When discussing a pairing P we will
feel free to use terminology derived from G(P). For example, an independent set of P is a
subset of {v;,vg,...,v,} which corresponds to an independent set of G(P).

For any formal power series f(z;,23,...,2,) and vector k;, ks, ..., k,, the coefficient of
zf' :z'2°= -++xk in f will be denoted by I:f‘:'{-‘ -o.zke|f(zy,23,...,2,). The following elemen-
tary lemma will be very useful for bounding the size of these coefficients.

Lemma 1.1. Let f(z;,x3,...,,) be a formal power series with nonnegative coefficients and
let ky ky. ... k, be integers. Then for any nonnegative real numbers ay,ay, ..., an, we have

‘I';":r;"' ---xf.“]f(z,,xz, cey @) < a,’k‘a;k“ cean ke flag, an, . an).

Proof. The expression on the right is exactly

Y ajhagheal kel ) (2 e, 2a).

L FLE-FIREN AT

The claim thus follows from the nonnegativity conditions. B

The bound of Lemma 1.1 can often be made quite sharp by careful choice of ay, a3,. . ., ap.
If f is analytic then the nonnegative solution to

a k; ;
A[(al’aﬂl"'nan)zw"f(aha?w"lan): (1:1)27"‘)"‘)’
Jda; Oy

if any, gives the optimum choice. For many examples of practical importance the bound
obtained is high by only O(k:“k;“ . -k.{”). See [3] for some theorems of this nature.
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r ay(r) Ba(r) az(r) ay(r)
3 0.45906 0.26413 0.45870 0.45537
4 0.42061 0.22364 0.41989 0.41635
5 0.38868 0.19593 0.38777 0.38443
6 0.36203 0.17546 0.36102 0.35799
7 0.33944 0.159567 0.33840 0.33567
8 0.32001 0.14678 0.31898 0.31652
9 0.30309 0.13623 0.30208 0.29987
10 0.28820 0.12734 0.28722 0.28521
20 0.19886 0.08032 0.19822 0.19732
50 0.11126 0.04198 0.11102 0.11079
100 0.06803 0.02506 0.06793 0.06787

Table 2.1.
2. The Main Results.

Theorem 2.1. [5] Let r > 3.0« o - 1:2 be fized. Then the cxpected number of independent
sels of size an in a random pairing of order noand degree v is O(n” V) fi(r, @)™ as n — oo,

where
1 a)! allr 1)
Si(r,a) RLES )""'_i—"z" .
(1 - 2a)r 2a)/2 g

Proof. For each set A il size an, count the number of pairings which have A as an independent
set. Sum that over A then divide by the total number of pairings. 1

For each r > 3 there is a unique a;(r) in (0,1/2) for which f(r,a1(r)) = 1. Furthermore.
fi(r,a) < 1 for a € (ai(r), 1/2). In conjunction with Theorem 1.1 we thus have the following

bound.

Corollary 2.1. [5] For each r > 3, i(r,00) < ay(r).

Proof. For any a > a;(r), almost no pairing has any independent set of size an or more. By
Corollary 1.1 this is also true of almost every r-regular graph of any fixed girth. &

Values of a,(r) can be found in Table 2.1. Asr - oc. we can show that

a(r) (logr  loglogr - log2 1 - o(1)).

2
o

The question now arises as to the precision of Corollary 2.1, and it turns out that the
bound is not sharp. The reason for this seems to be that regular graphs with independent
sets of size an for any a € (0,1/2) tend to have exponentially many such sets. A simple count
of the average number thus obscures the size beyond which most graphs have none. We can
partly avoid this problem by restricting the count to independent sets satisfying additional
properties, which properties must be possessed by any independent sets of greatest size.

As a first attempt we count mazimal independent sets, which are those which cannot be
increased in size by appending an extra vertex.

Theorem 2.2. Let r > 3, 1/(r+1) < o < 1/2 be fired. Then the average number of marimal
independent sets of size an in @ random pairing of erder n and degree r 1s O(1) fo(r, )" as

n — oo, where
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((] + r;)r _ l)l—uarx(rflj(l _ 2a)r[lf:‘.u)/?
nra(l - a)lva

fg(?’,&) =

b
where n is the unique positive solution lo

n(14n)”!  a

(1=n) -1 1-a
Proof. We repeat the calculation outlined in the proof of Theorem 2.1. Let B be the comple-
ment of A in the pairing. The effect of the maximality condition is to require that each vertex
of B has at least one neighbour in A. Thus the number of choices of the edges between 4 and
B is exactly (anr)!iz™"1((1 « 2)" - 1)U~ The value of this coeflicient can be bounded by
using Lemma 1.1, where = 1, is chosen as described after the proof of that lemma. N
For any value of r » 3 there are numbers 3,(r), ay(r) such that 1/(r + 1) < By(r) <

ay(r) < 172 and

J <1, il 1/{r 4 1) < a< fy(r),

fale) § 21, if 32(r) < a < ay(r),

l <1, ifag(r) < a<12
The same reasoning as given for Corollary 2.1 leads us to the following result.
Corollary 2.2. For cach r > 3, {(r,00) < az(r). B

Typical values of f3(r) and a,(r) are given in Table 2.1. The difference between a,(r)
and ay(r) is disappointingly small; with much computation it can be shown that

4logr

ap(r) — az(r) ~ oz 0 ST 00

We can improve the bound still further by examining the structure of a maximum in-
dependent set more closely. Let V be the vertex set of a regular graph G and let A be a
maximum independent set. Define By to be the subset of B consisting of those vertices ad-
Jjacent to exactly one vertex of A and let A; be the subset of A consisting of those vertices

adjacent to at least one vertex of By. Further define 4, = A\ 4, and C =V \ (AU B).

Lemma 2.1. Suppose (i contains no triangles or pentegons. Then
fa) each verter of Ay is adjacent to exaclly one verler of By, and
(b cach verter of C ts adjacent to al least two vertices of A, including at least one of Ay,

Proof.

(a) Suppose that some vertex z ¢ A, is adjacent Lo two vertices y,z € B. Then y and z
are not adjacent (since G has no triangles) and so A U {y, z} \ {z} is an independent set
larger than A.

{b) Any vertex of C not adjacent to A at all could be used to immediately augment A.
Suppose instead that some vertex z of C is adjacent only Lo A;, say to the subset X C A,.
Let the set Y C B be the neighbours of X in B. By (a), |[Y| = |X| and, since G contains
no pentagons, Y U{z} is independent. Thus AUY U {z}\ X is an independent set larger
than A. 1

Let us call any independent set satisfying conditions (a) and (b) of Lemma 2.1 a strongly-
marimal independent set.
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Theorem 2.3. Let r > 3, (2r = 1)/(r* + 2r = 1) < a < 1/2 be fired. Define ny, 5y > 0 by
d r(r- 1)
= I A A d
m 6”117('11,@) Toac —p(m, 1), an
d rla— 7}
'fzgr;!’(’h:ﬁz) T1-a-r
plz,y) =(1+z+y) - (1+2) - ry.
Define fa(r,a) to be the mazrimum over 72 (0,a) of

pipy - (1 2a)tm2 )% (a - IR G V ML Ces Bar {UTOL ) M
(1) = st e e e T e ) :

(1-a-7)a "y 75

p(m, nm2), where

Then the average number of strongly-maztmal independent sels of size an in a random pairing
of order n and degree r is O(n)fs(r.a)" asn -+ oo,

Proof. Consider a strongly-maximal independent set 4 and deline Ay, Ay. B and C as before.
Let |4,| = |B| = 7n, the equal size of those sets following from Lemma 2.1(a).

For such a collection of sets Ay, Ay, B and C. we count the number of pairings for which
these sets are valid. The number of choices of the edges between A, and B is (rn)!r?™ and so
on. The only difficult count is that of the edges between A and C': these must satisfy Lemma
2.1(b). Assigning the variable r to those edges incident with 4, and y to those incident
with Ay, we see that the possible neighbours of A for a single veriex in C (recall that we
are considering pairings, not graphs) is enumerated by p(x.y). The required coefficient of
p(z, 9}l can be bounded using Lemma 1.1. To handle the unknown 7 we simply maximize
over it and multiply by O(n). &

Rather than applying Theorem 2.3 immediately to bounding i(r, o0}, we consider a simple
improvement. Suppose that X C B is an independent set. Let ¥ C A, be its neighbours in
A. Then AU X \Y is an independent set of the same size as A. Since we can do the same
for any other independent set in B, obtaining a different independent set of the size of A, we
can find quite a lot of such large independent sets.

This leads us 1o a subproblem of independent. interest. For any graph H. let I(H) be the
total number of independent sets, including the empty set.

Lemma 2.2. Lel H be a graph of order m and maximum degree al most r — 1. Then

I(H) z (1 r)lmr
Proof. Let 0 < ¢ < {m/r], and consider the number of independent sets of size g. We can
choose one vertex in m ways, a second in at least m - r wavs, a third in at least m — 2r ways,
and so on. Allowing q! for the number of ways cach independent set can be obtained, and
summing over ¢, we find that the total number of independent sets is at least

MII-:J m/r ‘m—/\” |mr
B (e 3 (i
q

| q
g=0 g=0

The bound of Lemma 2.2 is actually achieved for unions of equal complete graphs but can
undoubtedly be improved if additional conditions are imposed. The conditions that interest
us most are girth conditions.

For any integers r > 0, ¢ > 3 define

I(r,9) = inf I(H)"/™,

where the infimum is over all graphs H of maximum degree at most r and girth at least g,
and m is the order of H. This function does not appear to have been studied at all. From
Lemma 2.2 we have I{r,g) > (r + 2)1/("*1) for any g > 3. For r = 2 we have the following.
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Lemma 2.3, Define the Fibonacct numbers Fy, Fy,.. by Iy = Fo = 1, and F; = F;_ 3+ Fi
Jor i > 3. Then forany ¢ > 3, I(2,9) = (Fo 1+ Fuoi 1)}V where s = 2{g/2]4-1. In particular,

lim 1(2,¢) = (1 +V5)/2.

g—oc

Proof. Any graph of maximum degree at most two consists only of paths and cycles. It
is readily proved by induction that I(P,) = F,,, and I{C,) = F. 1+ Fnyr. The rest is
easy. I

Problem. What is lim,_. I(r,g) for r > 37

Theorem 2.4. Let r > 3 be fizred. Define au(r) to be the greatest solution for a € (0,1/2)
of fa(r,a) = 1, where fy4(r, ) is the mazimum over 7 € (0,a) of F(7)/Mr)", where F(r) s
defined in Theorem 2.9 and

Ar) - Jl

(V5 +1)/2, #fr =3, and
(1+ 07 ifr >4,

Then i(r.o0) - aa(r).

Proof. Fix a < (as(r),1/2). For each pairing /> which contains al least one maximum inde-
pendent set of size an, let 7(P) be the greatest value of | 3|/n over all maximum independent
sets of P. By Lemmas 2.2 and 2.3, and the switching operation described above, there are
positive constants €s, €4, . .. — 0 such that P has at least (A(r) - ¢,)7"")* maximum indepen-
dent sets. Since there are at most n possible values for | B|, there is some 7'(P) < 7(P) such
that P has at least (A(r) — ¢,)"")"/n maximum independent sets with |B| = 7/(P)n, and
hence at least (A(r) —cg)"(P)"/n such sets. Applying Theorem 2.3, we see that the probability
of a random pairing of girth g having at least one maximum independent set of size an is at
most On) L (F(r')/(A(r) — €)™ )™ = O(n?) max,(F (')} (Mr) - €5)7')". The theorem now
follows on letting ¢ — co.

Values of as(r) can be found in Table 2.1. We have not been able to determine its
asymptotic behaviour.

It is clear that Theorem 2.4 can be improved by analysing the structure of an independent
set in more detail. For example, the decompositions used by Hopkins and Staton [6] to prove
lower bounds could be used. although the analysis would be difficult.

It 1s interesting to consider -the limits to analysis of this nature. A natural barrier is
perhaps the typical size of a maximum independent set in a random pairing. This is a very
difficult value to determine but we can establish lower bounds on it by analysing the behaviour
of heunistic algorithms. In the case of random cubic pairings we can show that the indepen-
dence ratio is almost surely at least /2 - 1 - o(1) and have experimental evidence that it is
almost surely at least 0.439. Details will appear elsewhere.
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