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We show that 3-connected cubic bipartite planar graphs with fewer than 66 ver-
tices are Hamiltonian. © 1985 Academic Press, Inc.

1. INTRODUCTION

Unsolved problem 5 in [19] states what has become known as Barnet-
te’s conjecture. This is that every cubic 3-connected bipartite planar graph
(C3CBP) is Hamiltonian. The constraints of the problem seem to set it
somewhere between 4-connected planar graphs, 3-connected cubic planar
graphs, and 3-connected cubic bipartite graphs. A famous result of Tutte
[17] shows that the 4-connected planar graphs are Hamiltonian (see also
Thomassen [15] for a more recent proof which also settles a conjecture of
Plummer). Tutte [16] also showed that some 3-connected planar graphs
are non-Hamiltonian. That the same is true for bipartite cubic 3-connected
graphs is shown by a graph of Horton, see [2]. (A smaller example has
now been found by Ellingham and Horton [5].)

This paper, while unable to settle the Barnette conjecture, aims to give
evidence in its support. We are able to show that the conjecture is true for
graphs of order up to and including 64. Some related results can be found
in Goodey [7], Plummer and Pulleyblank [13], and Richmond and Wor-
mald [14].

Recent work has been expended on trying to determine the order of the
smallest non-Hamiltonian cubic 3-connected planar (C3CP) graph. Leder-
berg, Bosak, and Barnette (see [8]) have constructed non-Hamiltonian
C3CP of order 38. Okamura [12] has shown that the smallest non-
Hamiltonian C3CP has order at least 34. The reduction and cut techniques
we use here are similar to those used by Okamura ([11, 12]), Barnette and
Wegner [1], Butler ([3, 4]), and Goodey [6] in investigating C3CPs.
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One method we will use to find Hamiltonian cycles in C3CBPs is to
separate at an edge cut, find Hamiltonian cucles in the parts, and then
combine these cycles. A k-face is a face bounded by k edges. A k-cut is a set
of k edges whose removal separates G into two parts, each with more than
two vertices. A 4-cut is essential if neither part is a 4-face and it is major if
neither part is a 4-face or one of the graphs R, or R, of Fig. 2. Since it is 3-
connected, a C3CBP has no 2-cuts. A C3CB4 is a C3CBP with no 3-cuts
or essential 4-cuts, so that any 4-cut has one part which is a 4-face. A
C3CBP4* is a C3CBP with no 3-cuts or major 4-cuts, so that any 4-cut
has one part which is a 4-face (R,), R,, or R,. Figure 1 shows the three
graphs with fewer than 16 vertices which are C3CBPs. Here C, is a
C3CBP, C, is a C3CBP4*, and C, is a C3CBP4.

C3CBPs sometimes have many Hamiltonian cycles, allowing us to
impose conditions on them. We say a C3CBP is H if it has a Hamiltonian
cycle, H* (H™) if it has a Hamiltonian cycle through (avoiding) any
specified edge, and H* ~ if any two edges can be specified, one in and one
not in some Hamiltonian cycle. One further property, H*, is a slight
weakening of H*~. H* will be defined in Section 2.

With each of these properties we associate a number. Thus N is the
largest number for which every C3CBP on at most N vertices is H. At the
end of the paper we show that N is at least 64. We choose, however, to use
N, N*, N, N*~, and N* for the numbers associated with properties H,
H*, H-, H*~, and H* so that such results as N* > N* + 8 (Theorem 2)
will remain relevant even after the computer results which provide the basic
data are superseded.

2. REDUCTIONS

One of the basic tools used for finding Hamiltonian cycles in planar
cubic graphs has been reductions. We will use the twelve basic reductions
shown in Fig. 2, along with some variations of these. Each reduction R,
involves a subgraph of G (also called R;) with certain edges shown bold.

C1 C, c

FIGURE 1
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FIGURE 2

‘Deleting the non-bold edges of R, and suppressing vertices of degree 2
produces a new graph G’, a process called reduction by R,, and denoted
G(R;)G'. The subgraph Rgy(k) is a k-cycle with 4-faces on every second
edge, save one. The multiple edges shown in Rs, R;, Rg(k), Ry, and R,
indicate that the reduction extends to include any and all adjacent 4-faces.
Thus R, may contain just one 4-face or it might contain several, as shown
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FIGURE 3

in Fig. 3. Where an asterisk appears on an edge, use of that edge in a
Hamilonian cycle of G’ assures that there is an extension of that
Hamiltonian cycle to G. We will only prove that fact, and use it, for R,
R¢, and Rg(k), but it is easy to check in general. A Hamiltonian cycle in G’
which uses no edge marked with an asterisk may or may not extend to a
Hamiltonian cycle for G, except in the case of R,,. If G(R,,)G’ and G’ is
Hamiltonian, then G is Hamiltonian, but we will not use that fact, either.

We use one further variation on the reductions R;, 6 <i< 10, which each
involve some lone 4-faces adjacent to larger faces. In each case a larger sub-
graph can be made by replacing any of these 4-faces (but not the 4-faces in
pairs in Ry and R,,) by a triple of 4-faces, all adjacent to the large face.
Figure 4 shows examples. Such an expansion of an R, reduction will be
called and R; triple reduction, and denoted by T; or, generically, by T If the
triple of 4-faces is adjacent to a 6-face, the reduction expands to include
that 6-face and further 4-faces, as also shown in Fig. 4. The reductions
R;, T;, Ry, and T, shown are only examples, since the T’s can generally
have one or more triples, and there may or may not be 6-faces beside
triples and other 4-faces beside those 6-faces, and so on. Notice that triple
reductions have larger principal faces than the related non-triple reduc-
tions. For example R, involves a 6-face but the large face in T, is an 8-face.

>6

FIGURE 4
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We need one more H-property, H*, which we define after the next
lemma. As we will explain in Section 4, a computer search has verified that
all C3CBPs up to and including 40 vertices are H*~. The search also
verified that graphs on 42 and 44 vertices with no R, or R, subgraphs are
H™*~. Any graph G on 42 or 44 vertices with an R, subgraph can be
reduced by that R, to G', of size less than 40. Thus, as we will prove in
Lemma 3, G itself is H*~. Therefore the only graphs on up to 44 vertices
which may not be H* ~ are those containing an R, but no R, subgraph. In
fact reduction by R, preserves most of the H* ~ property, as we now show.
A central edge of an R, is an edge such as d or e in Fig. 5.

LEMMA 1. If G is a C3CBP containing R,, G(R,)G', and G' is HY ~,
then G is H* ~ except that it may not be possible to find a Hamiltonian cycle
in G on a specified central edge of R,, avoiding a specified edge containing
no vertex of R,.

Proof. The reduction replaces the subgraph R, by a 4-face, and Fig. 5
shows how Hamiltonian cycles of the 4-face extend to R,. We find a
Hamiltonian cycle through edge @ in G, by using one in G’ through edge 4,
and similarly for b, B and ¢, C. Unfortunately only cycles 1, 3, and 4 of
Fig. 5 extend to a central edge, such as 4, and no specified edge in G’ can
narrow the possibilities down to 1, 3, and 4. In order to avoid edges, to
miss a miss 4; b, B; ¢, C; d, A. Also if both the forced edge and the avoided
edge contain at least one vertex of R,, we can specify exactly which of the
paths from 1 to 6 the Hamiltonian cycle uses in G’, and so satisfy the con-
dition in G. The specifications to attain given paths are: 1, miss B use F (we
denote this by —B +F);2, —4 +E;3, —B +C;4, +B —C;5, —A +D;
6, +4 —D. |

This information leads us to the foilowing definition. A graph G is H* if
(i) it is H*~ or (ii) it contains a unique subgraph R, and any pair of
edges, one to use, one to avoid, can be specified for a Hamiltonian cycle in
G, unless the edge to be used is a central edge of R, and the edge to be mis-
sed contains no vertex of that R, subgraph. In particular, if G is H* then a
Hamiltonian cycle can be found using any two specified edges. By
Lemma 1, and the observations preceding it, we have the following result.

b ¢ R, B
a| di e — A
]
in G
in G'

FIGURE 5
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FIGURE 6
LEMMA 2. Suppose all C3CBP containing no subgraphs R, or Ry on up
to n vertices are H*~. Then N* =min(n, 44+ N* ™).

ﬁ(

We now prove a series of lemmas which show how the various reduc-
tions preserve the character and the Hamiltonicity of a C3CBP.

LemMA 3. If G is a C3CBP and G(R))G', i=3 or 4 then G' is a C3CBP.
If G(R3)G and G' is H™, then G is H*. If G(R,)G' and G' is H* (H*™),
then G is H* (H* ™).

Proof. The first claim is obvious. Say that G(R;)G’ and G’ is H*. The
six possible ways a Hamiltonian cycle can visit R, in G’, and the extensions
to G, are shown in Fig. 6. (Actually there are four variations of the last
way, since any two adjacent vertical edges can be used.) In each of the six
ways, an edge in G can be included in a Hamiltonian cycle if the
corresponding edge is included in the cycle in G'. For example, any cycle
for G' which includes the central edge can be extended to a cycle for G
which includes any desired central edge. It is equally simple to exclude
edges, or specify inclusion of one, exclusion of another.

Now say G(R4)G’ and G’ is H* ~ (the argument for H* is similar, and
therefore omitted). The six possible ways a Hamiltonian cycle can visit R,
in G are shown in Fig. 7. Notice that for each combination of entering and
leaving edges, there are three edges used in both routes through the cube
and six edges used in just one route or the other. Thus it is easy to use or
avoid any edge or pair of edges. For example, if we want a Hamiltonian
cycle for G which avoid the top right edge of the cube, and uses an edge
elsewhere in G, we can force a cycle in G’ which uses that other edge and
avoids the bottom left edge leading to the cube. The only combination of

SINIGISIGES

FIGURE 7
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edges leading to the cube which requires the top right edge is the bottom
two, which we have avoided. All other cases are equally simple. ||

In proving the next two lemmas, we let n(i, j) denote the number of
adjacencies of i-faces and j-faces in G, and let f, denote the numer of k-
faces.

LEMMA 4. Every C3CBP4 except C, contains at least one of the reduc-
tions R, R¢, or Ry(k), k= 8.

Proof. Suppose G contains no R, or Ry(k). We will prove it contains
an R;. Our assumptions imply that n(4, 4) =0, that each 8-face is adjacent
to at most two 4-faces, and that each k-face (k = 10) is adjacent to at most
(k/2 —1) 4-faces. Thus the obvious count on adjacencies of 4-faces,

4f,=2n(4,4)+ ) n(4,k), (1)
k=6
yields
4fa<n(4,6)+2fs+ Y filk/2—1). (2)
k=10

But for any plane graph
2 fil6—k)=12,

kz4

SO

4f,=24+4fs+ > [fi2(k—6). (3)
Combining (2) and (3),
n(4,6)=24+2fs+ Y fil3k—11). (4)

k=10

Suppose the average number of 6-faces adjacent to each 4-face is x, so that
n(4, 6) = xf,. Then (4) becomes

xf02244 2+ Y, fi3k—11). (5)
Multiplying (3) by x/4 yields
xfa=6x+ Y, xfi(k—6)/2. (6)

k=28
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Combining (5) and (6),

6(x—=4)22-x) fs+ Y fulk(3—x)2—(3x—11)). (7)

k=10
For x<2, the left side is negative, the right side non-negative, so x> 2.
Thus some 4-face is adjacent to three or four 6-faces, and G contains an

Rs. 1

LEMMA 5. If G is C3CBPA* then G contains a subgraph R,, R4(k), R,
Ry, Ry, or a related triple-reduction.

Proof. We assume not, and derive a contradiction. The absence of R,
implies n(4, 6) =0, the absence of Ry(k) (k> 6), Ry, Ry, or related triple
reductions or triple reduction related to R,, implies n(4, 8) < 3f,. Say that
there are ¢ triples of 4-faces, and (f, —3¢) 4-faces not in triples, so that
n(4,4)<2t+ (f,—3t)/2. Then

4f,=2n(4,4)+ Z n(4, k) (8)
k=6
yields
-3t
4f4<2<2t+f“2 >+3f8+ Y n(4,k) 9)
k=10
or
Afa<dt+ f,-3t43f3+ Y n(4,k), (10)
k=10
SO
3fa<t+3fz+ Y n(4,k) (11)
k=10

But Euler’s polyhedron formula implies

Yi=18+43fs+ 3 3k—6)fe. (12)

k=10

Using (11) and (12) we obtain
2236+ Y 3(k—6)f,—2n(4, k). (13)

k=10
But no triple of 4-faces can have its long side beside an 8-face, since we
have no triple R; reduction (see T, in Fig. 4). So every triple has its two
long sides beside faces of size 10 or more. A 10-face can be adjacent to only
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one triple (we have no triple T; or T(6)), a 12-face can be adjacent to only
two triples (no T4(6)), a 14-face to at most 3 (each uses four spaces) and,
in general, space dictates that for k> 16, a k-face can be adjacent to at
most [k/4] triples. Counting faces adjacent to the two long sides of the ¢
triples we find

2< fro+2firt Y [K/4] S (14)

k=14
Subtracting (14) from (13) we obtain
0=36+ (11f,0—2n(4,10)+ (1611, — 2n(4, 12))
+ 2 ((3(k—6)— [k/4]) fi. —2n(4, k)). (15)

k=14

But that implies that some 10-face is adjacent to at least six 4-faces (and we
have Ry, or a T, or T, triple reduction) or some 12-face is adjacent to at
least nine 4-faces (and we have a Ty(6) triple reduction) or a k-face
(k > 14) is adjacent to more than (Y& —9) 4-faces. For k = 14 that means
there are eleven 4-faces, which is impossible without four 4-faces in a row.
For larger k, (% k—9)> 3k, which is similarly impossible. Thus inequality
(15) cannot be satisfied, and the lemma is proved. ||

LemMa 6. If G is C3CBP4A* and G(R))G', i=5,17,8,9, 10, or 11, or a
related triple reduction, then G’ is C3CBP. If G’ is H* then G is H*.

Proof. The bold edges produced are all distinct from each other,
because all faces of G are of size >4, and some are restricted to size >6 (as
indicated). Furthermore, none of these reductions produce multiple edges.
The bold edges on 4-faces (e.g., those marked with an asterisk in R, R,
and R,,) are not double in G’ because the reduction extends to include as
many adjacent 4-faces as possible (see Fig. 3). The bold edges crossing the
center in Rs, R;, and Ry do not duplicate an edge already present in G
because that would, in each case, imply the presence in G of a cycle of
length six with two or more vertices both inside and outside. This would
imply G has a 3-cut. Finally, a bold central edge and a bold edge from a 4-
face cannot join the same pair of vertices in G'. If they did, then G would
contain a major 4-cut in every case. For the triple reductions a triple is
extended to include an adjacent 6-face and then 4-faces to avoid the
production of double edges. The argument about production of a cycle of
length six does not work with triples but it is not needed because a triple
cannot have a 4-face adjacent to either of its ends in a C3CBP4*. Thus no
multiple edges are produced by any of these reductions or triple reductions.
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The reduced graphs are clearly cubic, planar, and bipartite, so we need
only check that they are 3-connected. Suppose, for example, that G(R5)G’
and G’ is not 3-connected. Then any 2-cut in G’ must separate a com-
ponent containing one of the bold edges of R (or two adjacent bold edges)
from a component containing the others. In every case such a 2-cut of G’
can be combined with two non-bold edges of R to yield a major 4-cut in
G, which is impossible. The arguments for all the other reductions are
exactly the same.

Now we suppose that G’ is H*, and show that G is H*. Because we have
only H* rather then H*~, we may occasionally have an edge in G’ which
cannot be forced into a Hamiltonian cycle, but it turns out that H* is suf-
ficient to force a Hamiltonian cycle through any edge of G. Our names R,
are shorthand for many reductions, since there may be 4-faces added at
certain places. We display typical examples of R;, i=5, 7, 8, 9, 10, and 11,
with edges labelled, in Fig. 8. The G edges are labelled with letters, the G’
edges with numbers. The following list specifies the G’ edges which must be
forced or avoided in a Hamiltonian cycle for G’ in order to assure a
Hamiltonian cycle in G which includes the designated edge. Of course,
H* ~ allows us to force two edges, instead of forcing one and avoiding one:

Rs:ad (+1 +4), b (+1 =2), ¢f (+1 +2), e (—1 +4 0r +1 —4),
h(+1)

Ryta(+1 +2), cef (+1 +3), b (+1 =2),d(+1 —3 or —1 +3).

Rg:ab (=1 +2), cd (+1 —2), egh (+1 +2), f (+1).

FIGURE 8
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Ry:apg (+1 +5), bedmors (+5), ehkn (=2 +35), f (+4 +5),
gm(+2 +5),i (=2 +4o0r +2 —4),1 (+3 +5).

R,y: abecmnsrxy (+4), di (+3 +4), ehg (+1 +5), fiku (+4 +5),
lopgtow (+1 +4).

R, : acdghilmprsxy (+2 +3), bkogtv (—2 +4 ), wj (+5 —8),
ef (+6 —2),n (=5 +1),u (=7 +1).

In most cases we have two forced edges or a forced edge and an avoided
edge on the same cycle, so H* is sufficient. In some exceptional cases we
have a choice, as in R;, where we get e using —1 +4 or +1 —4. But hav-
ing that choice means that either the edge to be forced can be chosen away
from the center of a triple or the + and — edges both have a vertex in the
subgraph R,. The other exceptions are all in R,,, where no one of the for-
ced edges can be the center edge of an R,. Thus in every case H* will suf-
fice.

If we have a triple reduction based on one of these R;, H* still yields
H™. Figure 9 shows the three ways in which a Hamiltonian cycle can visit
a 4-face around one of the R/s in a graph G, and the corresponding
coverage in G with a triple replacing that 4-face. Because the vertical edges
of the 4-face must be covered by some Hamiltonian cycle, either Z, or Z,
must exist in G. But since both the top and the bottom edge of the 4-face
are covered by some cycle, either both Z, and Z, or one of them plus Z,
must exist in G. In either case, all edges of the triple are in some
Hamiltonian cycle. |

LemMMA 7. If G is C3CBP4 and G(R)G', i=S5, 6, or 8, then G’ is
C3CBP. Furthermore, if G’ is H* (H"), then G is H* (H).

Proof. We have already shown that G’ is C3CBP, and H* yields H* in
the cases i=5 and 8 in Lemma 6. We did not include R in that lemma
because there we were dealing with the class C3CBP4*, and if R is exten-
ded to include a string of two 4-faces at its bottom right (where the i is in

o
o e

FIGURE 9
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FIGURE 10

Fig. 10), then the resulting R, may not have the property that H* implies
H*. That is not a problem here, since G is C3CBP4 and therefore has no
adjacent 4-faces.

Note that G(R)G' implies G' is C3CBP. G’ is clearly cubic, planar, and
bipartite. The arguments given in proving Lemma 6 suffice to show that G’
has no multiple edges and is 3-connected. Now say G’ is H*. Figure 10
shows a labelling of Ry, and the following list tells how to find a
Hamiltonian cycle for G through a given edge, given a Hamiltonian cycle
for G’ using and avoiding certain edges:

Re:aceh (+2 +4), bd (=2 +4), f (=3 +4), g (+3 +4),i (+1 +2),
J(+2 —3).

All of these combinations of + and — are assured by H*. It remains to
show that G' is H* implies G is H, for R,, i=5, 6, or 8. But it is easy to
check that any Hamiltonian cycle for G’ which uses one of the edges
indicated with an asterisk in Fig. 2 extends to a Hamiltonian cycle for
G. 1

3. Cuts AND REDUCTIONS

We now begin our argument to show that every C3CBP with fewer than
(N* +22) vertices is H. Two types of argument are needed. A graph with a
3-cut or an essential 4-cut can be broken at that cut, and the Hamiltonian
cycles of the pieces combined. A C3CBP4 must be reduced so that a
Hamiltonian cycle of the smaller graph extends to a Hamiltonian cycle for
the original graph.

We begin with graphs which have 3-cuts or essential 4-cuts. Suppose that
in a cubic bipartite graph G the vertices of the two parts are white and
black, and a cut separates G into G, and G,. A simple edge-count implies
that the numbers of white and black vertices in G, incident with the cut are
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FIGURE 11

the same modulo 3. Thus in a 3-cut they must all be the same color and in
a 4-cut two must be white and two black (see Figs. 11, 12, and 15).

THEOREM 1. If G is the smallest non-Hamiltonian C3CBP then
(a) G has a 3-cut, and |G| 2 2N* + 2, or
(b) G has no 3-cut but has an essential 4-cut, and |G| = 2N* —4, or
(c) G is C3CBP4.

Proof. (a) Separate G along the 3-cut, adding two new vertices to form
G, and G,, as in Fig. 11. Say |G,| < |G,| and note that both Gy and G, are
H.If |G| < N*, then a Hamiltonian cycle can be found for G, which uses
the proper two edges to link up with a Hamiltonian cycle in G,. Since G is
not H, |G,|>N* and we have |G|=|G,|+ |G,y =22 (N*+2)+
(N*¥42)—2=2N*42.

(b) 4-cuts of a C3CBP can be of two types, depending on how the
vertices of the cut are arranged in the plane. These two types are shown in
Figs. 12 and 15.

Case (i). If G has an essential 4-cut as shown in Fig. 12 then we form
graphs G, and G, as shown. We may suppose |G| <|G,| < |G|, and note
that G, and G, are H. Say G, has a Hamiltonian cycle using edge x and
|G| <N* Then G, is H* and it will generally be possible to find a
Hamiltonian cycle for G, which combines with that of G, to form a
Hamiltonian cycle for G. To accommodate a cycle using edges 1 and 3, we
select a cycle for G, using edge a and excluding edge e; for 1 and 4, we
select a and exclude d; for 2 and 3, select b and exclude e. The only
problems arise if an edge we want to force in G | is a central edge of a sub-
graph R, and so, by the definition of H*, possibly unforceable. Figure 13
indicates the two cases which can arise.

FIGURE 12
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FiGure 13

In Fig. 13a we want to force a Hamiltonian cycle in G, on edge b,
avoiding edge d, or on edge e, avoiding edge a. But edges b and e cannot
both be central edges of a unique subgraph R,, so there is no problem.

Figure 13b shows the other possible case, requiring a Hamiltonian cycle
in G, on edges b and d, avoiding edges a and e. But if b or d is a central
edge of the R, subgraph, the other must be part of that subgraph, so there
is no problem finding an appropriate cycle. Thus in every case with
|G| <N*, we find G is H So we must have |G|=|G,|+|G,|—4>=
(N*4+2)+(N*+2)—4=2N*

Next we suppose that G, has no Hamiltonian cycle using edge x. Then
replace G, and G, by G| and G} as shown in Fig. 14. Now if G| is H*,
every Hamiltonian cycle in G can be extended to a Hamiltonian cycle in G
by choosing a Hamiltonian cycle in G| using edge a and avoiding edge 5.
Since the face F above a is not a 4-face, there is no trouble with H* here.
Since G is not H, we must have

|G| =G +1G3| =8> (N*+2)+ (N*+2)—-8=2N*—4.

Case (ii). The essential 4-cut of G might not be as in Fig. 12, but rather
as shown in Fig. 15. In that case, form graphs G, and G, as shown. We
may suppose that |G,| <|G,| <G, so that both G, and G, are H. A
Hamiltonian cycle in G, can traverse the added 4-face in two essentially
different ways, one using two of the connecting edges, the other using all

e
fagnittian

FiGure 14
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G G3 G

FIGURE 15

four. In either case, if G, is H* a Hamiltonian cycle can be found for G.
Again there is no trouble with H*, because the edges to be forced and
excluded are close together. Since G is not H we have |G| =
|G3l + |Gyl =8> (N*+2)+ (N*+2)—8=2N*—4. |

If G is C3CBP4, then we cannot use cuts but must rely on reductions. In
fact we want to reduce in two stages, and we begin with the following
theorem.

THEOREM 2. Any C3CBP on at most N* + 8 vertices is H*. That is,
N* =N*+38.

Proof. 1f the given C3CBP contains any subgraphs R, or R,, reduce by
them, repeating as long as possible. By Lemma 3 the resulting graph is
C3CBP and if it is H*, then the original is also. So we may as well suppose
that the graph G with which we begin contains no subgraphs R, or R,. If
G has a 3-cut, separate it into G, and G, as in Fig. 11. Since G contains no
R; or R, neither G, nor G, can be one of the graphs of Fig. 1, so G, and
G, each contain 16 or more vertices. Thus each contains at most
(N*+8)+2—16=N*—6 vertices. By Lemma 2, G, and G, are both
H*",soGis H*.

If G is C3ICBP4, then by Lemma 4 it contains a subgraph R;, i=35, 6, or
8. Reducing by that R; we obtain G’ with |G'| < (N* + 8)— 10 < N*. Thus
G’ is H* and, by Lemma 7, G is H*.

Finally, suppose G has no 3-cut but has an essential 4-cut. Say that 4-cut
is as in Fig. 12. If the smaller side contains at least 12 vertices, then the
larger side contains at most (N* + 8)+4 — 12 = N*. So both sides are H*,
and G is H*. The smaller side can contain fewer than 12 vertices only if it
is the graph C, of Fig. 1. We are forced to examine that case only if all
essential 4-cuts of G separate a pair of adjacent 4-faces from the rest of G.

Leaving that for a moment, consider the other possible type of 4-cut,
shown in Fig. 15. If G has a 4-cut like that and the smaller side has at least
16 vertices, then the larger side contains at most (N* +8)+8—16=N*
vertices. So both sides are H*, and G is H*. The smaller side will contain
fewer than 16 vertices only if it is one of the graphs C,, Cy, and C, of
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Fig. 1. But C, cannot arise from an essential cut of this type, and C, would
imply that G contains an R, subgraph, so the cut must begin with a triple
of 4-faces to build C,.

Thus with either kind of 4-cut we narrow the problem down from graphs
with an essential 4-cut to those in which the only essential 4-cuts are non-
major. But in that case Lemma 5 implies that we can reduce by R,, Rg(k),
Ry, Ry, Ry,, or a related triple reduction. Since R,, the smallest of those
reductions, removes 8 vertices, the reduced graph G’ has at most
(N*+8)—8=N* vertices, and is H* By Lemma 6, Gis H*. ||

THEOREM 3. If'G is the smallest non-Hamiltonian C3CBP and G is
C3CBP4, |G| = N* +22.

Proof. Say |G| <N*+20, and G is C3CBP4. We will prove G is H.
Lemma 4 implies G contains an R;, R, or Rg(k), k=8, each of which
reduces by at least 12 vertices. If G(R,)G’, i=5, 6, or 8, then |G'| <
(N*+20)~12=N*+8, and G’ is C3CBP by Lemma7. Hence, by
Theorem 2, G' is H* and, by Lemma 7, G is H. |

From Theorems 1 and 3 we have the following corollary.

CorOLLARY 1. NZ=min{N*+20, 2N*—6}.

4. COMPUTER GENERATION

In order to find a lower bound on N* we have generated all C3CBPs
with up to 40 vertices and those on 42 and 44 vertices without subgraphs
R, or R,. The method of generation was based on the following theorem.

THEOREM 4. Let G be a C3CBP of order greater than 8. Then, for some
C3CBP G' we have either G(Ry)G' or G(R,)G".

Proof. 1f G is cyclically 4-edge connected, then Lemma 1 of [9] shows
that at least one of the two possible applications of reduction R, to any 4-
face produces a C3CBP.

If G has a 3-cut, form G, and G, as in Fig. 11. If we choose the 3-cut so
that |G| is minimized, we ensure that G, is cyclically 4-edge connected. If
G, is the graph C, of Fig. 1 then G(R,)G’ and G’ is a C3CBP. If not, we
can apply at least one of the two possible applications of reduction R, to
any 4-face in G which is also in G,. Such a 4-face must exist, since G, has
at least six 4-faces. |

Theorem 4 tells us that we can generate all C3CBPs by starting with C,
of Fig. 1 and applying the reverses of reductions R, and R,. In Table 1,
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TABLE I
Counts of Nonisomorphic C3CBPs

n cy(n) ¢y(n) ¢3(n)
8 1 0 0
12 1 0 0
14 1 0 0
16 2 0 0
18 2 1 0
20 8 1 0
22 8 1 0
24 32 4 1
26 57 5 0
28 185 14 0
30 466 28 1
32 1543 86 3
34 4583 211 1
36 15374 648 5
38 50116 1878 4
40 171168 5941 11
42 ? 18326 20
44 ? 58746 46

¢,(n) is the number of non-isomorphic C3CBPs with n vertices, c,(n) is the
number of those without subgraphs R, or R,, and c,(n) is the number of
those without subgraphs R, or R,. We believe that these classes of graphs
have not been enumerated before, although Tutte [18] has enumerated
labelled C3CBPs.

For each of the graphs generated in producing Table 1, the following
properties were verified:

(i) If any two edges are chosen, there is a Hamiltonian cycle through
one, avoiding the other (property H*+ ).

(ii) If any three independent edges on the same face are chosen, there
is a Hamiltonian cycle through all of them. This is not true for four edges
(the smallest counterexample, Fig. 16a, is on 32 vertices) or if the edges are
not required to be on the same face (e.g, any 3-cut). There is also a
cyclically 4-edge connected counterexample on 16 vertices, Fig. 16b.

(ii1) If any two edges are chosen which are an even distance apart on
the same face, there is a Hamiltonian cycle which avoids both. This is not
true for an odd distance apart. For a counterexample on 12 vertices see
Fig. 16c.

(iv) If a maximum independent set of edges on any face is chosen, a
Hamiltonian cycle can be found using all of them. The same set of edges
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(a) (b)

FIGURE 16

cannot necessarily be all avoided. For a counterexample on 20 vertices see
Fig. 16d.

Production of all the cycles needed to verify (i)-(iv) proved to be a dif-
ficult computational problem, which was solved by finding a new algorithm

[10].

THEOREM 5. If G is a cubic 3-connected bipartite planar graph on n ver-
tices then

(a) n<64 implies G is Hamiltonian (ie., N> 64);

(b) n<52 implies every edge of G lies on some Hamiltonian cycle (i.e.,
N7T > 52)

(c) n<44 implies that for any two edges e and f of G, there is a
Hamiltonian cycle through e avoiding f, except possibly if e is a central edge

of a unique subgraph R, and f has no vertex in that subgraph R, (ie.,
N* > 44),

(d) n<40 implies that for any two edges e and f of G, there is a
Hamiltonian cycle through e avoiding f (ie, N*~ > 40).

Proof. The computational results in Table 1 show that N*~ >40 and,
by virtue of Lemma 2, N* >44. The other two bounds then follow from
Theorem 2 and Corollary 1 of Theorem 3. |
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