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We show that all 3-connected cubic planar graphs on 36 or fewer vertices are
hamiltonian, thus extending results of Lederberg, Butler, Goodey, Wegner,
Okamura, and Barnette. Furthermore, the only non-hamiltonian examples on 38
vertices which are not cyclically 4-connected are the six graphs which have been
found by Lederberg, Barnette, and Bosak. © 1988 Academic Press, Inc.

1. INTRODUCTION

Throughout this paper, a C3CP is a cubic 3-connected planar graph, and
G is any non-hamiltonian C3CP of least order. Define 5 — |VG|. Then,
successively, Lederberg [12] (n3>20), Butler [5] and Goodey [8]
(n>24), Barnette and Wegner [2] (n>28), and Okamura [15,16]
(n>=34) have established lower bounds on n. Various non-hamiltonian
C3CPs on 38 vertices have been constructed by Lederberg, Barnette, and
Bosak [4]. These are shown in Fig. 1.1.

In this paper we extend the method of Okamura to demonstrate that
n=38. Furthermore, the only non-hamiltonian C3CPs on 38 vertices
with non-trivial 3-cuts are those shown in Fig. 1.1. We also discuss
non-hamiltonian C3CPs satisfying stronger connectivity conditions, in
particular those which are 4- or S-cyclically connected.

Before proceeding we need some definitions. By a k-gon we mean a face
of a planar graph bounded by & edges. Note that a k-cycle is not
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Fig. 1.1. 1In each of the diagrams, replace the dark vertices by the 3-piece on the right.

necessarily a k-gon. By a k-cut we mean a set of k edges whose removal
leaves the graph disconected and of which no subset has that property. The
two components formed by removal of a k-cut are called k-pieces. A k-cut
is non-trivial if each of its k-pieces contains a cycle and essential if it is non-
trivial and each of its k-pieces contains more than k vertices. It is non-
essential if it is non-trivial and not essential. A cubic graph is cyclically
k-connected if it has no non-trivial t-cuts for 0<t<k—1, and exactly
cyclically k-connected if in addition it has at least one non-trivial k-cut.

We can now state our main results. The proofs can be found near the
end of Section 3.

THEOREM 1.1. Every C3CP with 36 or fewer vertices is hamiltonian.



CUBIC PLANAR GRAPHS 307

FIGURE 1.2

THEOREM 1.2. Let H be a non-hamiltonian C3CP with 38, 40, or 42
vertices. Then one of the following is true.

(a) H is one of the six C3CPs on 38 vertices with 3-cuts shown in
Fig. 1.1

(b) H has 40 or 42 vertices and has at least one 3-cut.

(c) H has 42 vertices, is cyclically 4-connected, and has an essential
4-cut. Furthermore, for one such 4-cut, one of the 4-pieces is the first one
shown in Fig. 1.2 and the other is obtainable Jrom a cyclically 4-connected
non-hamiltonian C3CP on 38 vertices by the inverse of one of the operations
shown in Fig. 1.3.

(d) H is exactly cyclically 4-connected and has no essential 4-cuts.

Our method of proof is similar to that used by Okamura [16]. Faulkner
and Younger [7] have established that G is not cyclically 5-connected. In
Section 2 we employ a variety of decomposition techniques, and some com-
putation, to show that G does not have 3-cuts or essential 4-cuts. In Sec-
tion 3 we prove that any remaining possibilities for G with 7 <36 could be
reduced to a smaller non-hamiltonian C3CP by applying one of Okamura’s
15 reductions.

FIGURE 1.3
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We will find the following lemmas very useful for the elimination of
many subcases.

LeEMMA 1.3. Let the faces of a connected cubic planar graph be of size
kl: st RS ] kr'

(a) It is not possible that exactly one of k, k,, ..., k, be not divisible
by 5.

(b) If exactly two of k,, k,, ..., k, are not divisible by 5 then those two
faces are not adjacent.

Proof. See page 272 of Griinbaum [9]. |

LemMA 14. Let H be a cyclically 4-connected C3CP with no essential
4-cut. Suppose that F is a k-gon of H, and let f,, f, ..., fi be the faces other
than F adjacent to each of the edges of F, in cyclic order. If no other face of
H is a 4-gon, then

k

\VH|> Y (2f;+ max(f;—5,0))— 6k.

i=1

Proof. Note that in the statement of the lemma we use f; to denote both
a face and the size of that face. We will adopt this convention throughout
the paper.

The faces f, f3, .., f are distinct since otherwise H is not 3-connected.
Since H is cyclically 4-connected, it has no 3-gons.

Define I=Y%_, f;—4k. Let g4, g,, ., g, be the faces adjacent to the out-
side boundary of f,, f5, ..., fi, in cyclic order. These faces are distinct, since
H has no essential 4-cuts.

Forf;>6,letg;, g, 1, - &+m> Where m,= f,— 5, be the faces adjacent
to f; and to no other f;.. By assumption, g;> 5 for j; < j< j;+ m, so, by the
connectivity of H, there is at least one vertex in g; which is no other g;..
Hence

k
|VH| >2k+21+ Y max(m;, 0)
i=1
k

(2f;+ max(f;—5,0))—6k. 1

2. COMPUTATIONAL RESULTS

In this section we describe the computations which form the initial foun-
dations of our investigation. Essentially, they enable us to restrict our
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TABLE I
Counts of Subclasses of TFC3CPs

n n, N4 ny ng n, n, ny Total
8 — — 1 — — — — 1
10 — — 1 — — — — 1
12 — 2 — — — — — 2
14 1 3 1 — — — — 5
16 2 8 2 — 1 — — 12
18 9 22 3 — 1 — — 34
20 43 77 9 1 4 — — 130
22 212 285 28 — 13 — — 525
24 1115 1259 97 1 58 1 6 2472
26 6156 5863 378 1 279 7 27 12400
28 34693 29322 1601 3 1406 26 167 65619
30 199076 151308 7116 4 7525 146 967 357504

Note. ns, with 3-cuts; n,,, with essential 4-cuts but no 3-cuts; n,, with no essential 4-cuts
or 3-cuts; ns, cyclically 5-connected; n,, with at least one a-edge; n,, with at least one b-edge;
n4, with at least one 4-edge.

attention to C3CPs without 3-cuts or essential 4-cuts and provide us with a
complete list of small C3CPs with certain exceptional edges. We also
take the opportunity to investigate non-hamiltonian C3CPs with essential
4-cuts, but no 3-cuts, for n<42.

A TFC3CP is a C3CP without 3-gons. Our major computation was the
generation of all TFC3CPs with up to 30 vertices and a certain subset of
those on 32 vertices. The method used was that of Mohar [14], in conjuc-
tion with the graph isomorphism system described by McKay [13]. The
numbers of TFC3CPs found, under isomorphism as abstract graphs, are
summarized in Table L

Following Bosak [3], an a-edge is an edge which is present in every
hamiltonian cycle, while a b-edge is absent from every hamiltonian cycle.
We further define an A-edge to be an a-edge x in C3CP H whose image x is
an a-edge in Flip(x, H). The latter is defined in Fig. 2.1.

" Flip(z, H)

FIGURE 2.1



310

HOLTON AND MC KAY

FiGURE 2.2
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FiGure 24

The unique TFC3CP on 16 vertices with a-edges is shown in Fig. 2.2.
The eight TFC3CPs on 24 or 26 vertices with b-edges are shown in F: ig. 2.3.
One of the six TFC3CPs on 24 vertices with an 4-edge is shown in Fig. 2.4.
In each case the edges with the required property are those drawn bold.

We now consider non-hamiltonian C3CPs with 3-cuts. It was shown by
Butler [6] that, if any minimal non-hamiltonian C3CP H has a 3-cut, then
it has 38 vertices. The principal technique used by Butler was to separate H
into two smaller C3CPs at the 3-cut, as shown in Fig. 2.5.

Our computations enable us to prove the following somewhat stronger
theorem.

THEOREM 2.1. Let H be a non-hamiltonian C3CP with a 3-cut and at
most 38 vertices. Separate H into two parts as in Fig. 2.5. Then either H, or

H, is non-hamiltonian, or H is one of the six non-hamiltonian C3CPs on 38
vertices shown in Fig. 1.1.

Proof. Suppose that H; and H, are hamiltonian. Then, as in [6], one
of the pairs {x’, x"}, {y’, "}, and {z,z"} consists of an g-edge and a

Hy: | : Hy

FIGURE 2.5
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FI1GURE 2.6

b-edge. It is clear that a minimal C3CP with an a-edge cannot contain a
3-gon, since otherwise the reduction shown in Fig. 2.6 would produce a
smaller C3CP with an ag-edge.

Similarly, a minimal C3CP with a b-edge cannot contain a 3-gon. It
follows from Table I that in each case the minimal C3CPs are unique and
are those shown in Figs.2.2 and 2.3. Joining them together in every
possible manner, we find the six non-isomorphic C3CPs of Fig. 1.1. We
note that these examples were first found by Lederberg, Barnette, and
Bosak, and that the representation shown in Fig. 1.1 is due to Bosak

[41. 1

We now turn to cyclically 4-connected C3CPs with essential 4-cuts.
Following Butler [6], we can separate such a graph at an essential 4-cut
into two 4-pieces and reassemble these into cubic graphs as in Fig. 2.7. The
following lemma is proved in [6].

LemMma 2.1. Suppose L, L', R, and R’ are hamiltonian but H is not
hamiltonian. Then

B

L’:E. %’

%’I : R

FIGURE 2.7



CUBIC PLANAR GRAPHS 313

(a) at least one of | and r', and one of I’ and r, is an a-edge, and

(b) at least one of L and L', and one of R and R', is cyclically
4-connected. ||

Lemma 2.1 enables -us to greatly simplify the search for a non-
hamiltonian cyclically 4-connected C3CP H with an essential 4-cut. Choose
the essential 4-cut to minimize |VL|. Then, if | VG| <44, there are three
possibilities:

(1) Either R or R’ is non-hamiltonian.

(2) One of [ and !’ is an g-edge and one of L and L’ is cyclically
4-connected. Similarly one of r and r’ is an a-edge and one of R and R’ is
cyclically 4-connected.

(3) r and r’' are 4-edges and one of R and R’ is cyclically 4-connec-
ted.

As stated earlier, we have generated all TFC3CPs with at most 30 ver-
tices. By removing appropriate edges from them, we have found all possible
4-pieces of the form required for possibility (2) to 28 vertices and all of the
possible right 4-pieces required for possibility (3) to 28 vertices. All of the
latter possible 4-pieces on 30 vertices were also found, by generating just
those 32-vertex TFC3CPs which were needed. By joining together 4-pieces
in the manner required for possibilities (2) and (3), we obtained the
following theorem.

THEOREM 2.2. Let H be a non-hamiltonian C3CP which is cyclically
4-connected but has an essential 4-cut. Separate H into two 4-pieces P, and
P, at an essential 4-cut so that |VP,| is minimized. If |VH| <42 then one of
the following is true.

(a) P, is one of the two 4-pieces of Fig. 1.2, and one of the C3CPs
formed from P, as shown in Fig. 1.3 is non-hamiltonian.

(b) H is one of the two non-hamiltonian C3CPs on 42 vertices shown
in Fig. 2.8.

FIGURE 2.8
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FIGURE 2.9

Proof. The only possibilities for P, which have 10 or fewer vertices are
those shown in Fig. 1.2. All other small 4-pieces are either not minimal or
have 3-cuts which necessarily are also 3-cuts in any C3CP formed from
them by joining with another 4-piece. Furthermore, if P, is one of these
two, and each of the two C3CPs formable from P, as in Fig. 1.3 have
hamiltonian cycles, then at least one of those cycles can be extended to a
hamiltonian cycle in H.

If |VP,| =212, then |VP,| <30. All the possibilities are then within the
limits of our computations. The only non-hamiltonian C3CPs found either
had 3-cuts or were isomorphic to one of those shown in Fig. 2.8. |

The first graph in Fig. 2.8 was found by Faulkner and Younger [7]. The
second is new. We should note here that [7] appears to describe a com-
puter search which should have found both the graphs in Fig. 2.8.
However, a more careful reading of [7] indicates that the search on 42
vertices was not intended to be complete.

The only other known non-hamiltonian cyclically 4-connected C3CP on
42 or fewer vertices was found by Griinbaum [9] and appears in Fig. 2.9.
It has 42 vertices and only non-essential 4-cuts.

The smallest known non-hamiltonian cyclically 5-connected C3CP has
44 vertices and appears in Fig. 2.10. It is due to Tutte [10]. The minimality
has been established by Faulkner and Younger [7], but the uniqueness
remains open.

FIGURE 2.10
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3. PROOFS OF THE MAIN RESULTS

We give a sequence of lemmas to facilitate the proofs of Theorems 1.1
and 1.2. Many details of the proofs have been omitted in the interests of
space. A reader interested in the whole story can find it in [11].

Throughout this section G is a minimal non-hamiltonian C3CP with 36
or fewer vertices. From Theorems 2.1 and 2.2, we know that G has no
3-cuts or essential 4-cuts, and from [7] we know that G is not cyclically
5-connected.

LEmMA 3.1. G cannot contain adjacent 4-gons.

?éf% ﬁ
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G
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B

FIGURE 3.1
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LEMMA 3.2. G cannot contain a k-piece as illustrated in Fig. 3.1.

Proof. The proof is essentially that of Okamura [16] except where the
asterisked edges correspond to h-edges of the reduced graph G', and G’ is
either one of the graphs of Fig. 2.3 or the graph B24.1 with one vertex
expanded to a 3-gon. This gives a few hundred exceptional cases which can
be examined separately. |

COROLLARY 3.3.  Each T-gon or 8-gon of G is adjacent to at most two
4-gons.

CorOLLARY 3.4. Each 4-gon of G is adjacent to at least two k-gons with
k=17

LEMMA 3.5. Let G be a minimal non-hamiltonian 3-connected cubic
planar graph. Let R be a cycle in G which contains at least five faces in its
interior. Then if there is a 4-gon in the interior of R there is at least one
k-gon, for k=6, in the interior of R.

Proof. Suppose the interior of R contains no k-gon for k6. By
Corollary 3.4 we have the three configurations of Fig.3.2. By
Lemma 3.2(k), a, b, ¢, and ¢’ must all be 4-gons. Then Fig. 3.2(iii)
contradicts Lemma 3.2(m).

If a=4, then the interior of R contains only four faces, in contradiction
to the hypothesis of the lemma. If = 4, then it must be adjacent to a 4-gon

or a 5-gon, but this contradicts Lemma 3.1 and Lemma 3.2(m). Hence the
lemma follows. [

LEMMA 3.6. Let G be a minimal non-hamiltonian 3-connected cubic
planar graph. Let R be a cycle in G which contains at least five faces in its
interior. If R contains at least one 4-gon and exactly one k-gon, fork=6,in
its interior, then G contains one of the configurations of Fig. 33,

Proof. This result follows via a similar argument. ||

(1) (ii) (iii)

FIGURE 3.2
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We now do some elementary counting. If p, is the number of k-gons of
G, then the Euler polyhedral formula yields

24+ ps=12+ ) (k—6)p,. (1)

k=7

Further,

19, for n=34,
L= {20, for n=36. 2)

k=4

Combining (1) and (2) gives

pa=ps+ 3, (k—5)p—

k=7

7, for n=34,
{8, for n=36. (3)
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By Lemma 3.1, every k-gon for k> 9 is adjacent to at most L%/2 | 4-gons.
Corollary 3.3 and 3.4 then give

2p4<2p7+2ps+ Y, LK/2p,s. (4)

k=9

Combining (3) and (4) gives

Ps+pi+ Y, 2pi <

k=8

7, for n=34,
{8, for n=36. )

LEMMA 3.7. G contains no 4-gon adjacent to a 6-gon.

Proof. The techniques are again those of the corresponding result in
[16]. There are many more cases to consider here and it is often useful to
employ Lemma 3.5 or 3.6. |

LeMMA 3.8. G contains a 4-gon adjacent to a 5-gon.

THEOREM 3.9.  All 3-connected cubic planar graphs of order 34 or 36 are
hamiltonian.

Proof. The proof here corresponds to that of Theorem 1 in [16] but
there are many more cases to be dealt with. Those cases which are not
straightforward are dealt with by Lemmas 1.3, 1.4, 35,0r36. |

Proof of Theorem 1.1. Suppose G is a minimal non-hamiltonian C3CP
with 36 or fewer vertices. By Okamura [16], |[V'G|>34. G is cyclically
4-connected by Theorem 2.1 and has no essential 4-cuts by Theorem 2.2, It
is not cyclically 5-connected by Faulkner and Younger [7]. The non-
existence of G now follows from Theorem 3.9. |

Proof of Theorem 1.2. This follows from Theorems 2.1, 2.2, and 1.1. In
part (c), the use of the C3CPs of Fig. 2.6 is excluded by the fact that they
each have two disjoint 3-cuts, one of which must remain in H. ]

Finally, we note some problems which this paper does not solve.

(a) What is the smallest size of a cyclically 4-connected non-
hamiltonian C3CP? Three examples are known on 42 vertices (Figs. 2.8
and 2.9) but the possibilities 38 and 40 remain open.

(b) Is the minimal (44 vertex) non-hamiltonian cyclically 5-connected
C3CP of Fig. 2.10 unique? This question can probably be answered by direct
computation.
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Erratum

Volume 45, Number 3 (1988), in the article “The Smallest Non-
Hamiltonian 3-Connected Cubic Planar Graphs Have 38 Vertices,” by
D. A. Holton and B. D. McKay, pages 305-319: On page 307, Theorem
1.2, which classifies the non-hamiltonian 3-connected cubic planar
graphs on 38, 40 or 42 vertices, is missing one case. In accordance with
Theorem 2.2(b), it is necessary to add the possibility

(e) H is one of the two graphs drawn in Fig. 2.8.

We also believe that we have answers to the two open problems stated
on page 318. These will be published in due course.
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