NOTE

HADAMARD EQUIVALENCE VIA GRAPH ISOMORPHISM

Brendan D. McKAY

University of Melbourne, Parkville, Victoria, Australia

Received 15 June 1978 Revised 6 March 1979

Two $m \times n$ matrices with ± 1 entries are Hadamard equivalent if one may be obtained from the other by a sequence of operations involving independent row and column permutations and multiplications of rows or columns by -1. We solve the computational problem of recognising Hadamard equivalence by reducing it to the problem of determining an isomorphism between two graphs with 2(m+n) vertices. Existing graph isomorphism algorithms permit the practical determination of Hadamard equivalence when m and n are of the order of several hundred.

Let H_1 and H_2 be two $m \times n$ matrices with ± 1 entries. We say that H_1 and H_2 are *Hadamard equivalent* if H_2 can be obtained from H_1 by applying an element of the group G generated by the following operations, where S_k is the symmetric group on k letters.

 p_{α} : permute the rows by permutation α $(\alpha \in S_m)$,

 q_{β} : permute the columns by permutation β $(\beta \in S_n)$,

 r_i : multiply row i by -1 $(1 \le i \le m)$,

 c_i : multiply column j by -1 $(1 \le j \le n)$.

Suppose that $H = (h_{ij})$ is any $m \times n$ matrix with ± 1 entries. Define X = X(H) to be the graph with vertices $v_1, v_2, \ldots, v_m, v'_1, v'_2, \ldots, v'_m, w_1, w_2, \ldots, w_n$, w'_1, w'_2, \ldots, w'_n and edges

$$\begin{cases} (v_i, w_j), (v'_i, w'_j) & \text{if } h_{ij} = 1, \\ (v_i, w'_j), (v'_i, w_j) & \text{if } h_{ij} = -1. \end{cases}$$

In addition, X(H) has loops on the vertices $v_1, v_2, \ldots, v_m, v'_1, v'_2, \ldots, v'_m$.

Theorem. Let $X_1 = X(H_1)$ and $X_2 = X(H_2)$. Then H_1 and H_2 are Hadamard equivalent if and only if X_1 and X_2 are isomorphic.

Proof. Let G^* be the group of relabelling operations generated by the following permutations. Vertices are not mentioned in each case are fixed.

 P_{α} : For each i, map v_i onto $v_{i\alpha}$ and v'_i onto $v'_{i\alpha}$ $(\alpha \in S_m)$,

 Q_{β} : For each j, map w_i onto $w_{i\beta}$ and w'_i onto $w'_{i\beta}$ $(\beta \in S_n)$,

 R_i : transpose v_i and v'_i $(1 \le i \le m)$,

 C_i : transpose w_i and w'_i $(1 \le j \le n)$.

Define ϕ to be the homomorphism from G onto G^* which takes p_{α} onto P_{α} , q_{β} onto Q_{β} , r_i onto R_i and c_j onto C_j , for each $\alpha \in S_m$, $\beta \in S_n$, $1 \le i \le m$, $1 \le j \le n$. It is easily verified that ϕ is a group isomorphism, and that $X(H_1g) = X(H_1)(g\phi)$ for each $g \in G$. Therefore, the Hadamard equivalence of H_1 and H_2 implies the isomorphism of X_1 and X_2 .

Suppose conversely that there is an isomorphism θ from X_1 to X_2 . Let e_1 be any edge of X_1 and let $e_2 = e_1\theta$ be its image in X_2 . For $k \in \{1, 2\}$, define Y_k to be the subgraph of X_k induced by those vertices adjacent to either end of e_k . The structure of X_k ensures that Y_k has three important properties.

- (i) Exactly one of v_i and v'_i is in Y_k $(1 \le i \le m)$.
- (ii) Exactly one of w_i and w'_i is in Y_k $(1 \le j \le n)$.
- (iii) Y_k completely determines X_k .

To explain (iii), suppose, for example, that (v_i, w_i) is an edge of Y_k . Then (v'_i, w'_i) is an edge of X_k but (v_i, w'_i) and (v'_i, w_i) are not edges of X_k .

Since θ is an isomorphism, it maps Y_1 onto Y_2 . By properties (i) and (ii), we can find $g^* \in G^*$ whose restriction to Y_1 is the same as that of θ . But then g^* is an isomorphism from X_1 to X_2 , by property (iii). Therefore $H_2 = H_1(g^*\phi^{-1})$. \square

The graph isomorphism algorithm described in [1] can successfully handle most graphs in the order of 800–1000 vertices. Consequently we can expect Hadamard equivalence testing to be practically feasible whenever $n+m \le 400$, approximately.

If m and n are not equal, the loops on X(H) may be omitted without affecting the validity of the theorem. If the loops are omitted when m = n, X_1 and X_2 are isomorphic if and only if H_1 is Hadamard equivalent to either H_2 or its transpose.

Reference

 B.D. McKay, Computing automorphisms and canonical labellings of graphs. Combinatorial Mathematics, Lecture Notes in Mathematics Vol. 686, (Springer-Verlag, Berlin, 1978) 223–232.