PRODUCTS OF GRAPHS AND THEIR SPECTRA

C. GODSIL AND B. MCKAY

In this paper some new methods of constructing infinite families of cospectral
graphs are presented. As an example of their application it is shown that given any
graph G on n vertices one can construct at least (22:2) non-isomorphic pairs of con-
nected cospectral graphs on 3n vertices such that each member of each of the pairs

contains three disjoint subgraphs isomorphic to G.

The same procedure can be uged to comstruct pairs of non-igomorphic and non-
cospectral graphs with the same spectral radius containing any two given graphs as
disjoint induced subgraphs.

1. INTRODUCTION

Throughout this paper all graphs considered have a finite number of vertices
and no loops or multiple edges. All undefined graph theoretic terms will have the
meanings given in Harary [2]. Similarly, undefined matrix theoretic terms will be
found in Lancaster [5]. All matrices will be assumed to have non-negative integral
entries though, with the exception of the statements concerning the spectral radii of
graphs, the results are valid without this restriction. .When writing down partitioned

matrices we use 0 to denote a block with all entries zero.

We take the definition of a multigraph to permit both loops and multiple
directed edges. The adjacency matrix A = (aij) of a labelled multigraph on n vertices
. equal to the number of directed edges going from vertex i

]
to vertex j. This definition is consistent with the definition of the adjacency

is the nxn matrix with a;

matrix of a graph. Note that we have a 1-1 correspondence between labelled multi-

graphs and matrices with non-negative integral entries.

Two graphs (multigraphs) will be called éospectral if the characteristic poly-
nomials of their adjacency matrices are the same. We also apply this term to the
matrices themselves. The spectral radius of a graph (or matrix) is just the largest
eigenvalue of its characteristic polynomial. We will refer to two matrices as iso-
morphic if the labelled graphs (multigraphs) they represent are isomorphic (i.e.,
relabellings of each other). In other words two matrices A and B are isomorphic if
there exists a permutation matrix P such that P_IAP = B. We write G(A) and A(}) to
denote the characteristic polynomial of the graph (or multigraph) G and the matrix A,
respectively.

The rest of this paper falls into two parts; the first of which (Section 2)
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consists of the statements of the main results, and a discussion of some of their
consequences. The second part (Section 3) contains the main proofs. These have been

presented separately, as they are entirely matrix theoretical and somewhat technical.

2. THE PARTITIONED TENSOR PRODUCT

By Newton's relations (see [6]), the roots of a polynomial are determined, up
to ordering, by the sequences of sums of the rth powers of its roots for r=0,1,2,...

th power of A) is just the sum of the

Now for any matrix A, tr AT (the trace of the r
rtD powers of the characteristic roots of A. Taking A%z I (where I is the identity

matrix of the same size as A) we have the following result:

Lemma 2.1. If A and B are any two matrices, then they are cospectral iff
tr A" = tr BT for r=0,1,2,...

Definitions 2.2. We define the tensor product of the matrices A and B, where

A= (aij) is mXn, to be the matrix consisting of m rows of n blocks where the jth

block in the ith

the tensor product may be found in [5] (where it is called the direct product).

row is the matrix aijB' We denote it AxB. The main properties of

Clearly we can define the tensor product of two graphs (or multigraphs) as the graph
represented by the tensor product of their adjacency matrices. The properties of the
tensor product of graphs are outlined in [3] (where it is called the "conjunction')
and in [7] (where it is called the "Kronecker product"). We note here that the graphs
represented by the matrices A xB and B xA can be shown to be isomorphic, and that the
graph represented by A xB depends only on the graphs represented by the matrices A and
B and not on their labelling.

Let

u v [4 B
"o W x_l’ Hz‘_c D

We assume here, as we shall for the rest of this paper, that the diagonal blocks
(U, X, A and D) are all square. We define the partitioned tensor product of L and H

to be the matrix

UxA VxB

and denote it by LxH. Note that the value of this product depends on the partitioning
of L and H. Where ambiguity as to the partitioning arises, we will indicate the

intended partitioning by dotted lines.
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Examples 2.3. We illustrate the above definition of the partitioned tensor
product. Let

i
R A B s BT
L=)1'"1 o], H= ,  H* =
[ B & B A
110 1
where
0 1 1 1
A= N B =

1 0 0 0

and BT is just the transpose of B. Then H and H* are the adjacency matrices of the
labelled graphs G(H) and G(H*) shown in Figure 1. LxH and L xH® are the adjacency
matrices of the graphs G(L xH) and G(L xH*) respectively and these are shown in Figure

1 also.

G(H) G(H*)
G(L xH) G(L x H#)
FIGURE 1

We now turn to the statement and proofs of our main results. Let

where the matrices A and D are square while I (Iy) is the mxm (nxn) identity matrix.

We have the following result.

Theorem 2.4. (a) If m=n, LxH and L xH* are cospectral

(b) If m#n, LxH and L x H* are cospectral Iff A and D are.
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Proof. By 3.8 we have tr [(LxH)T - (LxH*)T] = (m-n)(tr AT - tr D¥) for
r=1,2,3,... . Applying Lemma 2.1 the result is immediate.

Examples 2.5. By way of illustration of 2.4 we point out that the adjacency
matrices of the last two graphs in Figure 1 have the form LxH and L xH® with L having
the form required by 2.4. Hence these two graphs are cospectral. In fact they are the
smallest connected cospectral graphs (see [1]). As another example let L be the same
matrix as in 2.3, with the same partitioning. Let H be the adjacency matrix of the
labelled graph G(H) in Figure 2. Then the graphs represented by the matrices L xH

and L xH* are shown in Figure 2, as G(L xH) and G(L x H*) respectively.

IR

3o 6 o

G(H) G(L x H) G(L x H¥*)

FIGURE 2

Since the characteristic polynomial of a graph is just the product of the
characteristic pelynomial of its components (see [8]) the graphs G; and G, obtained
from G(L x H) and G(L x H*) respectively by '"cancelling" isomorphic components are co-

spectral. In fact they are the smallest cospectral forests [1].

Now let

A O : B 0 D O0OtC ©
K= |0 D 0 O u_]O_alo o
C 0+D 0] B 07T A O
0O 010 A o o0'o0o D

Then if L is any matrix of the form required by 2.4, LXK and L xK* are cospectral.

But it is easy to show that L xK is isomorphic to the matrix



65

where
HJ = and Hy, =

In other words, considered as a multigraph, L xK has two components whose,
adjacency matrices can be represented as LxH, and LxH;. Now L1<_H2 in turn can be
shown to have two components with adjacency matrices I xD and I, xA. (We are stretch-
ing the definition of components here and above since they are not necessarily con-
nected). Thus the characteristic polynomial of LxX is (L xHy)(M)A(M)PD(A)™,

Similarly we can show the characteristic polynomial of L x K% is (L x H"'lf)()\)A()\)mD()\)n.

But LxK and L xK* are cospectral so we have shown that
(LxEHIAM™ ™ = LxH)ODW™ .. ().

Suppose that the matrices Lstl and L x H;‘ represent connected graphs. Then
the matrices A and D represent induced subgraphs of both, and so by a well-known result
(see e.g. [8]) the spectral radii of A and D are strictly less than the spectral radii
of L xH, and L §H1‘ So by (1) LxH, and L §Hi have the same spectral radii. We

summarize our conclusions as follows:
Theorem 2.6. Let L, H, m and n be as in the statement of 2.4. Then

m-n

(L x HE) (DAW)™ ™ = (L xH )™

and 1f LxH and L x H* represent comnected graphs, they have the same spectral radius.

Thus Theorem 2.6 enables one to construct pairs of non-cospectral (and so non-

isomorphic) graphs with the same spectral radius.

Let

Then we have the following:
Theorem 2.7. Let L, and L, be cospectral. Then

{a) <if my=n;, LyxH and L, xH are cospectral

(b) if my#ny, Ly XH and L, XH are cospectral iff A and D are.

Proof. By 3.9, tr [(Llﬁ_H)r— (L2_>_<H)PJ = (m;-my)(tr A¥—tr DY) for r=1,2,...
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and is zero for r=0. Applying 2.1 the result follows at once.
The argument used to prove 2.6 can be extended to yield:

Theorem 2.8. With notation and assumptions as in 2.7 we have
(L xH)A™MT™2 = (1, xH)(A)p(A) 17T

and if Ly %xH and L, xH represent connected graphs, they have the same spectral radius.

Applications 2.9. The results given in 2.4 and 2.6 could, of course, be

trivial in that the graphs represented by the matrices LxH and L X H* may be isomorphic,

and not just cospectral.

For completeness then, we outline a method for obtaining a number of distinct

pairs of cospectral non-isomorphic graphs from any given graph G, based on 2.4.

Let d;i be the degree of the ith vertex of G. Label G so that dj 2dj;, for
i=1,2,...,n-1. Let a denote the n-tuple of non-negative integers (al,az,. ..sap)
where a,=n, a,=0 and a; a4 for i=1,2,...,n-1. Let A denote the set of all such

n-tuples and for g in A let s(a) denote the sum of the entries of g. Take two copies
of G, G, and G, say, labelled as described above. Let (i,j) denote an edge joining
vertex i in G, to vertex j{(mod n) where j # O0(mod n) and to vertex n otherwise. Put
in s(a) edges as follows: (l,l),(l,2)...(l,al),(2,a1+l),...,(2,a1+a2),(3,a1+a2+l),
(m,s(g)) where m is the greatest integer such that a #0. Call this graph G(a) and
let L be the same matrix as in 2.3. Then LxG(a) and L xG*(g) (where the labelling
and partitioning of the adjacency matrix of G(a) is such that the diagonal blocks are
the adjacency matrices of G; and G,) are cospectral by 2.4. But L xG(g) and L xG*(g)
are non-isomorphic as the maximum degree of a vertex in L xG(a) is d1+2n, while for
LxG*(a) it is less than or equal to the maximum of the set {d1+n,d1+2(n—l)}, which is
strictly less than d1+2n. If b is another element of A then it can be shown by com-
paring degrees that LxG(a) and L x G(b) are non-isomorphic unless a=b. The same
holds, naturally, for L xG*(g) and LxG*(p). Finally the maximum degrees of L xG(a)
and L xG*(h) are always different.

Thus we have at least as many pairs of non-isomorphic cospectral graphs as
there are elements of A. This number can be shown to be (22:5) which is asymptotically

WL,

Let

Then one can easily show that, considered as a multigraph, MxN has two components
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with adjacency matrices MxN and MXxN%. Let

Then M' 2N = MXN, and M' xN%¥ = MXN¥%. So by 2.6 MXN and MxN¥* have their character-

istic polynomials differing only by a power of A and therefore are cospectral if they
have the same size.

Thus in general we can regard Mx N and M x N* as "cospectral but for zeros'.
= = B and all the matrices are (0-1) matrices the

In the specilal case where KT = J, ¢l =
graphs represented by them are all bipartite. Thus we can show that the two components

of the tensor product of two connected bipartite graphs are always '"cospectral but for

zeros" and are cospectral when they have the same number of vertices. (Of course these

components may be isomorphic.)
Finally we point out that we have found examples of graphs, not capable of

non-trivial representations as partitioned tensor products, cospectral to graphs which

do admit such representations.

3. PROOFS

Our aim in this section 1s to prove Lemmas 3.8 and 3.9 which we used to derive

2.4 and 2.6 -2.8. Throughout this section we let

and assume, as usual, that A and D are square.

We introduce some new notation. Let

I(A,D) = s P(B,C) =

Thus we may write H = I(A,D) +P(B,C).
We list the following properties of I and P.
Lemma 3.1. For r=1,2,3,... we have
(a) 1I(A,D)Y = I(AY,DV)

(b) P(B,C)°T = 1((BC)T,(CB)Y)
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(e) P(3,0)M = p((B0)B,(cB)TC)
(d) I(A,D)P(B,C) = P(AB,DC)
(e) P(B,C)I(A,D) = P(BD,CA).

Proofs. (a), (d) and (e) are direct consequences of the definitions while
(b) and (c) follow from (a), (d) and (e) and the observation that P(B,C)2 = I(BC,CB).
Qur assumption that H is partitioned so that A and D are square ensures that all the

matrix products are defined.

We now note that for arbitrary mxm matrices X and Y (X+Y)" can be written as
a sum of monomials in X and Y. Relative to some ordering we denote these monomials

by fgr)(X,Y), 121,2,...,2% e.g., (X+¥)2 = X24XY+YX+Y2 so we can define'fgz)(x,Y) = %2,

2 2 2 . . .
fg )(X,Y) = XY, fg ) . YX and f& ) . Y2. We can regard each monomial as a function in
two variables X and Y and will denote it in this case simply as fir). We will also
use fgr) to denote X©.

. . . (r
For convenience we assume that f denotes some fixed monomial fi ) from now to

the end of Lemma 3.7. We now derive some properties of f.
Lemma 3.2.

g,,(4,8,C,D) g,,(A;B,C,D)
£(1(a,D),P(B,C)} =
gZI(AsBsCsD) gZZ(AsBsCaD)

where the 853 (i=1,2; §=1,2) are monomials in A, B, C and D.
Proof. The result follows trivially from 3.1.

In the following we find it convenient to abbreviate f(I(A,D),P(B,C)) and

gij(A,B,C,D) as f(H) and gij(H) respectively, since no ambiguity can arise.

Lemma 3.3. Let

where U and X are square. Then we have
£(1(uxa,xxD), P(VxB,WxC)) = £(I(U,X), P(V,W)} x £(1(a,D),P(B,0)).

(Making the obvious adjustments in notation we write this as £f(MxH) = £f(M) x £(H).)

Proof. For arbitrary matrices Q, R,S and T we have (QxR)(SxT) = QS xRT, if
the products exist (see [5] p. 257). Since by 3.2 the g3 are monomials this fact
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implies the assertion of the lemma.

Lemma 3.4. Let

=
[y
n
-
[
1}
—
“
N

W. X,
i i

and let notation be as in 3.2 and 3.3 otherwise, Then
tr [FO1 xH) - £ xH)] = tr g (M) (tr g) (M) ~tr g, (M) +
tr gzz(H)[tr g,,(M)) - tr gzz(Mz)).

Proof. By 3.3 we have f(M; xH) = £(M;) xf(H) and so

tr £(M; xE) = o (£01) x £(H))

tp [gll(Mi) xg“(H)-fgzz(Mi) xg,,(H)]i=1,2.

But tr (XXY) = tr X+ tr Y for arbitrary matrices X and Y (see [5] p. 258). Using

this we obtain the statement of the lemma.

Let H* be the matrix

Assume D is a k xk matrix and that A is & xX&. Let I) and Iy be the kxk and
% x % identity matrices respectively. Let Q be the permutation matrix P(Ik,Iz). Then

if K, say, is any matrix of the same size and with same partition as H, Q" 1lkqQ = K*.

.’

Lemma 3.5. With notation as itn 3.2 we have gll(H)= gzz(H“) and glz(H): gZI(H*).

Proof. Since f is a monomial,Q_lf(H)Q = f(Q—lHQ) = f(H¥*). But by the defini-

tion of Q

gzz(H) gzl(H)—
Q le(n)q =
g,,(H) gy,(H)

Comparing this matrix with the one given for £(H%) by 3.2, the lemma follows immedia-

tely.
Lemma 3.6. With notation as in 3.3 and 3.5 we have

tr [F(MxE) - £(MxH*)] = [tr gy(M) - tr g22<M)J [tr gll(H) - tr gZZ(H)).
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Proof. This follows from the application of the identities in 3.5 to Lemma

Now let

where Ip, (Ini) is just the m; ¥m; (n; xn;) identity matrix. We define the degree of
X in the monomial f to be the sum of the exponents of the powers of X in the expansion
of £(X,Y) (e.g., the degree of X in £(X,Y) = X3YXY2 is four). Similarly we have of
course the degree of Y in f. We call the sum of the degree of X and the degree of Y
the total degree of f. The following properties of L, (and L,) are essential to our

main results.

Lemma 3.7. Let the notation be as in 3.2 and 3.5. Let s be the degree of Y
in £, let t be the total degree of f£. Then

(a) if s#0,tr g1 (L)) = tr gy,(Ly),
(b) if s=0,tr g, (L)) = my, tr g,,(L;) =ng,

(e) if s#0,tr g1 (L)) = tr g,,(L,) for all monomials £ iff Ly and L, are

cospectral.

Proof. Note that £(L;) = £(I(I, ,Inl),P(Jl,Kl)). Now the arguments of f
commute, so f(L;) is just P(Jl,Kl)S when s# 0. Applying the identities in 3.1 we see
tr g11(Ly) = tr g,,(Ly) = 0 if s is odd. So assume s = 2r, r # 0. Again by 3.1 we
have g11(Ly) = (3,7 and gy, (L) = (K907,

Now for any matrices X and Y we have tr (XY) = tr (YX) whenever the products

are defined (see e.g., [4]). We have, then
tr " = e (0™ NY) = e ((OPTMYLX) = e (YOR.

Hence tr (JlKl)r = tr (K;J7)7 and so (a) holds for all s # 0, odd or even.

If s = 0, f(Ly) = I(Iml,Inl) and so tr gll(Ll) =m, tr g22(L1) = n,; and (b)

is proved.

By 2.1, L, and L, are cospectral iff mj+n; = m,+n, and tr (LE) = tr (L;) for
t=1,2,3,... . It is easily shown that this is equivalent to the requirement that
tr (PULKDT) = tr (P(3,,%)%) for t = 1,2,3,..., i.e., that tr £(L)) = tr £(L,) for
all monomials f. As tr £(L;) = tr g;;(L)) +tr gy,(L;), by (a) and (b) this implies
tr gll(Ll) = tr g;;(L,) and so (¢) holds.

Lemma 3.8. Let H and H® be as in 3.5. Let L=1L; be as tn 3.7 (with m= m,
n=n;/. Thm'u~HL1Hf—(L1HMt]=(mm)ﬁrAt—trDt)hmdiszawjbrt=0%
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Proof. tr (L 1<H)t can be expressed as a sum of terms tr f(L xH) by our
definition of the monomials f, and these monomials will all have total degree t. By

3.6 we have
to [£(LxH) - £(LxB)T= (tr g, (L) - tr gy (L) fr g17(H) - tr g,, (1)) ... (D).

By 3.7 (a) the L.S. is zero if s, the degree of Y in f(X,Y), is non-zero. If s=0,
t . .
£(X,Y) = Xt and gll(H) = A", gzz(H) = pt, gll(L) = Ins gzz(L) = .I,. Substituting these

values in (1) we arrive at the statement of the lemma.

Lemma 3.9. [lLet L, L, be as in 3.7 with L, and L, cospectral. Let H be as
in 3.5. Then tr [(Ly xH)®- (L, xH)¥] = (m;-m,)(tr A*-tr DY) t=1,2,3,... (and is

zero for t=0).
Proof. From 3.4 we have

tr [£(Ly xH) - £(Ly x 1] = tr g1, () [tr g1,(L) - tr g,1(Ly))

+ 10 gy, (H) [tr gy, (L)) - tr g,,(L,)) .. (2)

t

By 3.7 (c) we may assume without loss that £(X,Y) = X . Then we have g,;,(H) = AT,

g,,(H) = nr, g11(L;) = Imi, gzz(Li) =1 i (i=1,2). As L; and L, are cospectral

n
mytn, = my+n,, hence m;-m, = n,-n,. Substituting these values in (2), we obtain the

lemma.

Although, as stated in the introduction, we have only considered matrices with
non-negative integral entries, Lemmas 3.8 and 3.9 will hold for matrices over more
general rings, e.g., the complex numbers. We also mention that it is possible to
generalize these results to matrices with a 3 x 3 partition, but the proofs, while

conceptually the same, required more complicated notation.
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