SOME COMPUTATIONAL RESULTS ON THE SPECTRA OF GRAPHS

C. GODSIL AND B. MCKAY

The polynomial of a graph is the characteristic polynomial of its 0-1 adjacency
matrix. Two graphs are cospectral If their polynomials are the same.

In this paper some of the results from a numerical study of the polynomials of
graphs are presented. The study has encompassed § point graphs, 9 point bipartite
graphs, 14 point trees and 13 point forests. Also given are several theoretical
results which were prompted by the numerical data. These include two characterizations
of those cospectral graphs which have cospectral complements, and a proof that, in the
sense of Schwenk [20] "almost no" trees are characterized by their polynomiale together
with the polynomials of their complements. In addition, mention is made of those co-
spectral graphs which have cospectral linegraphs, and those which are cospectral to
their own complements.

1. INTRODUCTION

Graphs referred to in this paper have a finite, non-zero number of vertices and
no loops or multiple edges. For such a graph G, G refers to the complement of G, and
L(G) to the linegraph of G. For brevity, a graph on n vertices will be called an n-
graph.

Suppose G is an n-graph. The adjacency matrix of G, also denoted G, is the
n xn matrix whose (i,j)th entry is the number of edges from vertex i to vertex j. The
polynomial of G, denoted G(A), is the characteristic polynomial of the adjacency matrix
of G. An eigenvalue of G is a root of G(A). The eigenvalues of G, together with their
multiplicities, constitute the spectrum of G. Two graphs which have the same polynomial,
and hence the same spectrum are called cospectral. N

Other graph theoretic concepts not defined here can be found in Harary [9] or in
Behzad and Chartrand [2]. For any square matrix A, the trace of A is denoted tr A. J
will always refer to a square matrix with each element one and I to an identity matrix.

The main purpose of this paper is to give the preliminary results of a computa-
tional study of the spectra of graphs. Previous studies of this kind have been made
by Collatz and Singowitz [4] (5 point graphs and 8 point trees), King [13] (7 point
graphs) and Mowshowitz [16] (10 point trees). In this study, the polynomials of 9
point graphs, 9 point bipartite graphs, 1% point trees and 13 point forests have been
computed. Theoretical results which have been motivated by the numerical data include

several characterisations of those cospectral graphs which have cospectral complements,
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and a proof that the proportion of trees of a given size which are characéterized by
their spectra plus the spectra of their complements goes to zero as the size increases -
strengthening a result of Schwenk [20]. Alsoc considered are cospectral graphs’ which

have cospectral linegraphs, and graphs which are cospectral to their own complements.

2. COSPECTRAL GRAPHS

It has been known for some time [4] that the polynomial of a graph does not
always determine the gfaph uniquely. The smallest example of non-isomorphic cospectral
graphs is the pair of 5-graphs shown in Figure 1. The smallest such connected pair is

shown in Figure 2.

FIGURE 1 FIGURE 2

Despite some success in constructing large families of cospectral graphs [8],
the problem of finding them all seems almost hopelessly difficult. Accordingly several
computer searches for cospectral graphs have been made. The polynomials of the 7-
graphs were first computed by King and Read [11], [13], [17]. 1In this work the graphs
with 8 or 9 vertices have been included. The source for these graphs was the tape
distributed by Baker, Dewdney and Szilard-[1]. The polynomials of the 274,668 nine-
graphs were computed in about 50 minutes, using Danilevsky's method [3] programmed in
assembly-language on a CDC Cyber 73.

In Table 1 (Appendix), the following data are given:

e : number of edges,
e nunber of graphs with e edges,
¢i : number of families of exactly i cospectral graphs

with e edges, 1 = 2,3,...,
c_: total number of graphs with e edges not determined
by their spectra.

Values of e where e, = 0 have been omitted. Missing values of g, can be found
in [9] or [10].

It is seen that about 18.6% of all the 9-graphs are not determined by their
spectra and that this percentage appears to be increasing with the number of vertices.
Unfortunately, the number of cospectral families is too large for them to be aiz\
listed here. However those with»7 or fewer vertices are given in Table 2. Grapﬁs in
the same row of the Table are cospectral. /

Y



75

In Table 3 the extraordinary set of ten cospectral 9-graphs with 16 edges is
listed. The equally large set with 20 edges is the set of complements of these graphs.

3. COSPECTRAL GRAPHS WITH COSPECTRAL COMPLEMENTS

In this section we consider the question of those cospectral graphs whose com-
plements are also cospectral. The smallest of these are on 7 vertices, and are
indicated by asterisks in Table 2. In Table 6 the statistical distribution of such
families is presented in the same format as in Table 1. Note that complementarity is
a symmetric relationship, and so the lower half of each table has been omitted. It
is perhaps surprising that about 86% of those 9-graphs not determined by their poly-
nomials are still not determined when the polynomials of their complements are also
considered. The following loose relationship probably provides only a partial explana-

tion for this phenomenon.

Theorem 3.1 [5]. If the spectrum of a graph G contains an eigenvalue \ with
multiplicity p (p > 1) then the spectrum of G contains an eigenvalue -i-1 with multi-

plicity p satisfying p-1<p sptl.

We now proceed to characterize those cospectral graphs whose complements are
also cospectral.
Consider each edge- of a graph G as two oppositely oriented directed edges. A

walk of length k (k21) on G is a sequence of directed edges e ,e of G such

cvese
2’ ’k
that consecutive edges in the sequence are adjacent. If ¢, Is the number of such
walks, for each k, then the formal power series

2 3
XTtegxT L.

X+tc

1

WG(x) =c 5

is-called the walk generating function for G. Note that we do not recognize walks of

zero length. N

Let A and B be arbitrary nxn matrices, and let G be an n-graph. The following

lemmas are stated without proof:

Lemma 3.2. A and B are cospeciral iff
tr A7 = tr BT r = 1,2,...,0-1.

Note that by the Cayley-Hamilton theorem [14], the upper bound on r can be

removed.,

Lemma 3.3. tr AB = tr BA.

Lemma 3.4. (a) J° = nk_lJ k= 1,2,...
where J is the nxn matrix with every element one.

(b) tr JAJB = tr JA tr JB.
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- 2
Lemma 3.5. WG(x) e xte, x4+ ...

where

n
¢, = ¥ (.. =t g6~ = 276z, k=1,2,...
ko1

where z 18 an n-vector of all ones, and (Gk)ij is the (i,3)th entry of Gk.

Theorem 3.6. Let G and H be cospectral n-graphs. Then G and B are cospectral
LFF Wa() = W, (%),
Proof. Clearly G(A) = (J-G)(A+1l), so that by 3.2, G and H are cospectral iff

tr (J—G)k = tr (J—H)k, k =1,2,...,n-1. Expanding (J-G)k and using Lemmas 3.3 and

3.4 we have
3.7 tr (J-6)X = (—l)k[tr ok tr JGk‘l]+¢k(G)

k-2
where ¢k(G) is a polynomial in {tr JGP} , with a corresponding expression for
k r=l
tr (J-H)".

. k - .
Since tr G = tr Hk, the condition tr JG' = tr JHr, r=1,2,...,k-1 gives us
tr(J—G)k = tr (J~H)k, so that G and H are cospectral.

Conversely, the equation 3.7 can be solved uniquely for tr JGk_l, and by easy
induction on k we find that the condition tr (J-G)¥ = tr (J-H)¥ r = 1,2,... gives us
tr 361 = e GHNY k= 2,8,

Corollary 8.8 [6]. If G and H are regular cospectral graphs, then G and H are

cospectral.

Proof. If G and H are regular of degree k, then from [5] we have

_ nkx
(x) = 1 /4

WG(X) = WH

Let G; and G, be two graphs. The join G, : G, of G; and G, is formed ing
the disjoint union of G; and G, and joining each vertex of Gj to each vertex of G,.

Theorem 3.9. Let G and H be cospectral n-graphs. Let L be any graph. Then
C and H are cospectral iff G:L and H: 1 are cospectral.

Proof. Our original proof of this theorem was made obsolete by the following

result of Cvetkovié [5], from which the result is immediate.

(G : LA = (~DXIT(A-1) + (=1)"L()T(-A-1) = (1) HB(-A-1)T(-r-1)

and similarly for H: L, where £ is the number of vertices of L./
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4. GRAPHS COSPECTRAL TO THEIR OWN COMPLEMENTS

A graph is called self-complementary if it is isomorphic to its own complement.
Such graphs are obviously cospectral to their own complements but it has been dis-
covered, probably for the first time, that there are non-self-complementary graphs
cospectral to their own complements. The smallest such graphs are shown in Figure 3.

Of course, the complements of these graphs have the samé property.

FIGURE 3

A list of all those graphs on 8 or 9 vertices which are cospectral to their
own complements is given in Table 5. Those that are actually self-complementary are
indicated by an asterisk. Otherwise, the complement of the graph must be added to
the Table.

As indicated in the table by brackets, some cospectral families occur amongst

graphs in this class. A particularly interesting family is that drawn in Figure 4.

o dh @ s

(a) (b) (c) (d)

FIGURE 4

Graphs (a)l and (b) are complements of each other, whereas graphs (c¢) and (d)
are both self-co /lementary. All of these graphs have the polynomial 23-1827-1426
+67A5+60 %3-4612+12)+8. Graphs (a) and (b) have the additional property that

their linegraphs are cospectral and have cospectral complements.

5. COSPECTRAL GRAPHS WITH COSPECTRAL LINEGRAPHS

In a similar fashion, one can ask for those cospectral graphs which have co-

spectral linegraphs. Such graphs are surprisingly uncommon, at least on a small
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number of vertices. The only such families on 9 or fewer vertices are the four pairs
of 9-graphs listed in Table 4. Note that the fourth pair is that drawn in Figure u(a)
and (b). Except for the third pair, these pairs also have cospectral complements.

However, their complements do not have cospectral linegraphs except for the fourth pair.

No simple characterization of such graphs seems to be known. However small

amounts of information may be deduced, as for example in the following theorem.

Theorem 5.1. Let G and H be cospectral n-graphs with cospectral linegraphs.
Then if the degrees of the vertices of G and H are {gi}? and {hi}? respectively,

n n
) g% = ‘Z hk, k = 1,2 and 3.

Proof. Let B be the incidence matrix of G, [9],[2]. Then BTB = L(G)+2I,
. . . . . . T
BBT = GtI'; where I is the identity matrix and Tg = dlag(gl,gz,...,gn). Since BB and
BBT have the same non-zerc eigenvalues [14], the polynomial of L(G) is determined by

the polynomial of G+Ig. Similarly for H.

From 3.2 the conditions of the theorem now become
k k
tr Gk = tp Hk; tr (G+1"G) = tp (H+1"H) k =1,2,...
The results now follow by expanding the second equation for the cases k = 1,2
and 3.//

Unfortunately, these conditions do not ensure that G and H have the same

degree sequences, the third pair of graphs in Table 4 providing a counter-example.

6. COSPECTRAL BIPARTITE GRAPHS

\x\lé/grééh G is said to be bipartite (also bicolorable) if the vertices of G can
be divided into two classes in such a way that no edge of G joins two members of the
same class. Such graphs are characterized by their spectrum, as shown in the follow-

ing theorem ([7], quoted incorrectly in [211]).

Theorem 6.1. Let G be a graph. IThen
(a) G is bipartite i1ff to every eigenvalue A of G there corresponds an
etgenvalue -A of the same multiplicity. (Thus the polynomial of G has all odd or all

even powers of \.)

(b) If G is connected and v is the largest positive eigenvalue of G, then
G 18 bipartite 1ff -r is an eigenvalue of G.//

The distribution of cospectral families amongst the bipartite graphs is given
in Table 10, where be is the number of bipartite graphs with e edges. Since the actual

values of be seem to have only been published as far as 6 vertices [12], all values of



79
e where be # 0 are included.

7. COSPECTRAL TREES

In the case of trees, the work of the preceding sections has been extended
through 1% vertices. For this purpose, the trees themselves were machine generated,

using a method similar to that described by Read [18].

The spectrum of a tree bears the following simple relationship to the structure

of the tree. A k-matching of a tree T is a set of k mutually non-incident edges of T.

Theorem 7.1. Let T be a tree on n vertices. Then T has the polynomial
T(X) = g mkkn_Qk, where m_ (k>0)
k=0

ig the number of k-matehings of T, my=1, and p is the integral part of % .
Proof. First given by Sachs [19], and later independently by Mowshowitz [161./

The smallest pair of cospectral trees, and the smallest foursome are shown in

Figure 5.

Canss Ean

S 3= HE

FIGURE 5

~The distribution of cospectral families of trees from 8 through 14 vertices is
given in Table 7, where tj is the number of trees on n vertices, and the other symbols
are as in Table 1. It is seen that the proportion of trees identified by their spec-

trum appears to be dropping rapidly, and may even fall below 50% between 20 and 25

vertices.

The asymptotic value of this proportion has been discovered by Schwenk [20]:
Theorem 7.2. Let p_ be the proportion of trees on n vertices which are

identified (within the class of trees) by their spectrum.
Then pn—>0 as n>w.//
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8. TREES WITH A 1-FACTOR

A I-factor of a graph G is a regular spanning subgraph of G of degree one.
Clearly a l-factor of a tree on 2n vertices corresponds to an n-matching. From 7.1

those trees with a 1l-factor are just those which have no zero eigenvalues.

The smallest examples of cospectral trees in this class are the two pairs shown

in Figure 6.
E d//{/;——o——i——i——o——o__o——o——o——a
FIGURE 6
The frequency of occurrence of such families is given in Table 8. As no
enumeration of trees with a l-factor is known to the authors, all sizes from 2 through

14 vertices are included.

S. COSPECTRAL TREES WITH COSPECTRAL COMPLEMENTS

Let G and H be n vertex and m vertex rooted graphs, respectively. Define G,
and H; to be the (unrooted) induced subgraphs of G and H, respectively, formed by
removing the root. The merge G+H of G and H is defined as the n+m-1 vertex graph

formed from the disjoint union of G and H by identifying the two roots.

Lemma S.1.
(G-H)(X) = G(AH, (X)) + G (MH(X) - AGI(A)HI(A),

where G(N) and H(A) are the polynomials of G and H considered as unrooted.

Proof. The determinant |AI-G+H| can be written as

| .
A aT : bT

e -
a 1AI-G, 0 where a and b are vectors.
——f————— o -
b 1 0 I AI-H

Since the determinant of a matrix is a linear function of its first row we have
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A oal o, o A, 0 1 bt A" o0 ' o
_________ qmmmmmm e S ——e L
|A1-G-H| = | a IAI-G, 0 +|la Aal-6;y O -la a6 v o
—mmqmmm s et I P s S el I B s S et
b, 0 | AI-H, by 0 | AI-H, bt 0 | AI-H,

GOOH(A) + G, (ML) = A6, (H () /.

This lemma has been previously given by Schwenk [20] for trees, in which case

it is easily proved from Theorem 7.1.

Lemma 9.2. Define generating functions (see §3) as follows:

W o all walks on G,
Wt all walks on G starting at the root,
W' all walks on G starting and finishing at the root,

and similarly for H and G+H. The coefficient of unity in all these functions is zero.

Then

= 121 1t ' ' ny 12 v ny ML
Houy = Wt W+ (WG 2014 20 Tt W1 2) on (W)

127 1 1
(WG WH +2WG WH

_ ny "
1 WG WH

' "y 12
WG 2D

= W Wt

Proof. For walks on G*H of the form €158 5038 where e, and e, are edges of

1 k
G we have the function

w 'w 1" 1 1 "w ”w " '+ e
W + WG W WG T ¥ W TH TG T ,

and similarly when e, and e, are edges of H.

If e, is an edge of G and ey is an edge of H, or vice-versa, we find (in each case)

the function

1 t w' " 1" * ] " " "W "wl e
WGWH + GwHwGwH +WGWHWGWH ¢ Wy +

Adding the four functions thus obtained gives the required result//.
A rooted tree L is called a limb of a tree T if for some rooted tree R we have

T = R-L.

Theorem 8.3. Let G be an arbitrary rooted graph. Let S and T be the rooted

trees shown in Figure 7.
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FIGURE 7

Then G-S and G-T are not isomorphic (if G does not have an isolated root) but are co-
spectral and have cospectral complements.

Proof. (a) Since G+S has P5 rooted at an end-vertex once more as a limb

than has G*T, it is not isomorphic to G-T.

(b) T and S are isomorphic as unrooted trees, and T, and S, are

isomorphic. So G+S and G+T are cospectral by Lemma 9.1.

(e) Direct computation from the adjacency matrices of T and S shows

that
1 - 1 " — "
WT (x) = WS (x) and WT (x) = WS (x).

Hence W wG-T by Lemma 9.2.

Ges
Hence G+S and G+T have cospectral complements, by 3.6//.

The following result was first proved by Schwenk [20], who enumerated trees
not containing a given limb. This enumeration has since been carried out more directly

by McAvaney [15].

Lemma 9.4. Let Ly and L, be rooted trees on the same number of vertices. Let
p1(n) and p,(n) be respectively the number of (unrooted) trees on n vertices not con-
taining Ly or Ly as a limb. Then pi(n) = py(n) for all n.

Furthermore, if t, i8 the number of trees on n vertices,

pi1{n)

+0 a3 n -+ [/
tn

Theorem 9.5. Let t, be the number of trees on n vertices. Let s, be the
number of trees on n vertices which are identified by their spectra together with the

spectra of their complements.

Sn
Then —*0 as n=eo.
n

Proof. By 9.3, any tree which can be written as R*S for some rooted tree R is

cospectral with cospectral complements to the (different) tree R+T, where S and T are
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as in 9.3. By 9.4, the proportion of all trees which cannot be written in this form

goes to zero as the size increases./

Note 9.6. Theorem 9.3 can be generalized to show that for any rooted graphs
G and H the two graphs shown schematically in Figure 8 are cospectral and have cospectral
complements. In fact every pair of trees on 14 or fewer vertices which have this

property fall into the class of graphs illustrated.

9. .. >_§z_[§zH

FIGURE 8

10. COSPECTRAL TREES WITH COSPECTRAL LINEGRAPHS

A search of the cospectral trees on up to 14 vertices has produced a small
number of pairs which also have cospectral linegraphs. Specifically, there is 1 pair
on 11, 1 pair on 12, 1 pair on 13 and 5 pairs on 14 vertices. Those on 11 vertices

are shown in Figure 9.

FIGURE 9

11. COSPECTRAL FORESTS

The smallest pair of cospectral forests are those shown in Figure 10.

O— OO O=—O O 00

FIGURE 10

The distribution of such families for forests on up to 13 vertices is given in
Table 9. It is seen that the proportion of forests determined by their spectra drops
more rapidly with increasing size than it does for trees. Extrapolation by hand

suggests that the figure may drop below 50% by 16 vertices.



APPENDIX

In order to reduce space requirements, a compact notation for graphs will be
used. This is best illustrated by an example, Take the eight-vertex graph shown in

Figure 11, together with its adjacency matrix.

[0 1 11 1 0 0 0]

] . 100 00 0 0 O

8 100 0 0 0 0 0

7 100 0 0 1 0 1

e 3 100 0 0 1 1 0

00 01 10 10

FIGURE 11 S 00 00 110 0
' L0 0 01 0 0 0 0|

The lower triangle of the adjacency matrix, excluding the diagonal, is written

down row by row as a binary integer:

110 100 100 000 011 000 011 000 100 O

Zeros are added to the right-hand end if necessary to make the number of digits up to
a multiple of three, and then the whole is written as an octal integer:

6 4 403030H40. This notation is essentially the same as that employed by Baker,
Dewdney and Szilard [1].

The following tables have been computer generated and checked carefully. Where
overlap occurs with other existing tables [11]1, [131, [16], no discrepancies have been

found.



5 VERTICES:

4 6
TOTALS:
3y
7 VERTICES:
e g,
4 10
5 21
6 41
7 65
8 97
9 131
10 148
11 48
12 131
13 97
14 65
15 b1
16 21
TOTALS:
o4y

1

al
N

FHFRRODODOOODOWOE-JON

52

ce/g

.333

.059

14
18
12
16

12

=

RN R

2 110

ce/ge
400
143
. 341
.123
.186
.082
.108
.088
.092
.04yl
.031
.049
.095

.105

TABLE 1.

85

6 VERTICES:
e gq
4 9
5 15
6 21
7 24

TOTALS:

156

8 VERTICES:
e 8.
4 11
5 24
6 56
7 115
8 221
9 402
10 663
11 980
12 1312
13 1557
14 1646
15 1557
16 1312
17 3980
18 663
19 402
20 221
21 115
22 56
TOTALS:

12346

COSPECTRAL GRAPHS

©
N

N

771

0
LVELVEL GRS

NHFEFON W FOFw

V]

52

c /g

Ly
.133
.095
.083

.0BY

o

n
5
21
26
63
68
164
148
219
223
219
210
151
91
64
30
10

1722

. 364
.208
.375
.226
.285
.169
.247
.151
.167
.143
.133
.135
.115
.093
.087
.075
.0ub
.035
.036

.139



9 VERTICES:
e ge
4 11
5 25
6 63
7 148
8 345
9 771
10 1637
11 3252
12 5985
13 10120
14 15615
15 21933
16 273887
17 32403
18 34040
19 32403
20 27987
21 21933
22 15615
23 10120
24 5995
25 3252
26 1637
27 771
28 345
29 148
30 63
TOTALS:
274668

169
305
usy
840
1273
1833
2173
2742
2615
2626
1979
1600
983
652
296

21025

118

2015

- 551

jun

jun

[
FHRP OWOONH®ONO DN

N

95

TABLE 1.

WHEEFEFRNDORND RN O w

jun

37

86

y

136

204

512

740

1419

2065

1 3282
4331
5513
6338
BLOY
5990
4931
3695
2458
1500
789
395
162
63
18

1 2 0 2 51039

COSPECTRAL GRAPHS (cont.)

. 364
.200
.381
. 345
. 394
. 265
.313
.228
.237
. 204
.210
.197
L1897
.196
.188
.185
.176
.168
.157
.148
.132
.121
.039
.082
.052
.054
.0382

.186
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6440 3600 7654001 7741100
7651400 7741010 *
64400 36000 7652001 7651004
24410 34200 7445210 7641003
64210 36001 7610302 7640403 *
74440 76001 7445011 3651202 *®
74460 76102 7760402 7762001
7742140 7760101
6440000 3600000 7663040 6771400
2441000 3420000 7656020 7662440
6421000 2442020 3600100 7655001 766204l
3660000 6442040 7660405 7650301 *
6442020 3642000 7445602 7651005 *
3640100 6441020 6362444 6651430 *®
6441010 3640001 7762500 7772040
3441020 3600102 7762140 7762402
6420404 3420300 * 7655440 7762021
7444000 7600100 7655401 * 7656041 7760405 *
3660001 3642040 7650341 6655430 ®
7446000 7610200 6636430 7640742 %
7424400 7441020 7762444 7762430 *
7420300 742040y * 7772021 7762504
7642040 7616000 7672604 7763042
7642020 7641100 7652243 7760603
7614001 7446040 7465614 7662407 *
7541020 7642002 3673214 7652223 *
6651400 7640404 * 7762544 7762530 *
7446020 7612002 7762407 7655603 *
3651200 6660410 7762546 7672634 *
7445020 7640101 7655770 7762547 *
7440203 4651410 * 7777603 7777470
TABLE 2. COSPECTRAL GRAPHS (5,6,7 VERTICES)
* Indicates complements also cospectral
761644106510 714624020500 7773240200% 677546161040 765546144015
746262406450 724622010600 7773060010 771746442110% 376252650121%
363646144011 7763014140%  767642550120% 770315226070%
756222120451 765466121011 7762424140%  776252650120% 367645025122%
743704411430 765466023006 3773240204% | 776315244044 765164660015
743234426042 7651350240% |775613160120 [765131344540
761614130430 744725236006 7651344300% 767642544 140% | 37625264414 1%
365166244011 770315226070 7651407440 776252644140% 367644430524%
365233124012 366311u1uy® 775714120502 765062362026
761613006604 753222342524 6351246310% 777320340502% 75321254451y%
753212545112 3652426250%  377326340101% 377320340503%
TABLE 3. 10 3652231260%  766263344110% 353726241103%*
COSP. 9-GRAPHS 756711544140 |753212545112
TABLE 4. COSP. 777746440100%| 766263342120% [ 754152643122%
GRAPHS WITH COSP. 777326340100% 765163443210 [753222344514%
LINEGRAPHS 777346460001 577325211201 765130350522%
777706014060% 765234631140 353726240505%
777705024060% 376252750120 754542343122%
776657041100 766263242121 7651303445u2%
757562560200 367706114061% 227645025526%
773364242030 770316216070% 354542343123%
777135140201 637642445142% 376212211427%*
377746440101% 766263412031% 365223126017%

TABLE 5.
*Indicates self-complementary

GRAPHS COSPECTRAL TO THEIR OWN COMPLEMENTS
[ Indicates cospectrality



2

12

58
36
113
99
203
133
224

£ N

+ o

[
HFOOUONNNHFNKH

(23]
w
[

274668 18477 1550 423 67

7 VERTICES:
& ge ¢2 Ce Ce/ge
6 41 1 2 . 049
7 65 1 2 .031
8 97 2 L 041
9 131 3 6 .046
10 148 3 6 .041
TOTALS:
1044 20 40 .038
9 VERTICES:
© ge ¢2
6 63 1
7 148 3
8 345 6
9 771 29
10 1637 61
11 3252 180
12 5995 284
13 10120 646
14 15615 935
15 21933 1550
16 27987 1861
17 32403 2482
18 34040 2401
TOTALS:
TABLE 6.
nooot, 4, by b,
8 23 1
9 47 5
10 106 4
11 235 27 2
12 551 49 7
13 1301 162 29 1
14 3159 349 36 5
TABLE 7.

COSPECTRAL TREES

[s3
n

2
10

60
119
415
826

cn/tn
.087
.213
.075
.255
.216
.319
.261

88

FNFH®

24

COSPECTRAL GRAPHS WITH

8 VERTICES:

e g, 8, ¢, 9,
6 56 1

7 115 2

8 221 2 2

9 402 15
10 663 26
11 980 40 1

12 1312 59
13 1557 85
14 16u46 86

TOTALS:
12346 546 22 2

NS -

18
61

158

383

764

1469

2342

3557

0 1 0 1 ue24
5619

5805

0 2 0 2 43811

n tn ¢2 c,
2 1 0 0
4 1 0 0
6 2 0 0
8 5 0 0
10 15 0 0
12 49 2 4
14 180 12 24

2

n
10
30
55
87
133
173
178

1166

.160

COSPECTRAL COMPLEMENTS

.082
.133

TABLE 8. TREES WITH 1-FACTORS

.036
.035
.0u5
.075
.083
.089
.101
.111
.108

.094



n fn ¢2
5 10 0
B 20 1
7 37 2
8 76 7
9 153 16
10 329 35
11 709 9y
12 1598 209
13 3650 505
TABLE 9.

5 VERTICES:

e b ¢ ¢ ce/be

Ny
[}

(o203, I =g % B B ol
FREWNER O
QOO OOO
OONOOO

[9)]

o

S

TOTALS:
12 21 2 .167

7 VERTICES:
e be ¢2 ¢3 e
1 1 0 0
2 2 0 0
3 4 0 0
4 8 2 4
5 13 0 1 3
6 19 6 12
7 1 2
8 13 0 0
9 7 0 0
10 4 0 0
11 1 0 0
12 1 0 0
TOTALS:

87 9 1 22

.241

89

3 n n
0 .o
2 .100
L .108
14 .184
2 38 .248
5 1 89 .271
10 4 234 . 330
41 7 2 579 .362
107 23 5 3 1466 .402
COSPECTRAL FORESTS
6 VERTICES:
e be ¢2 e, ce/b
1 1 0 0 L
2 2 0 0 .
3 4 0 0 L
4 7 2 4 .571
5 8 1 2 .250
6 B 0 0 .
7 3 0 0 ..
8 2 0 0 ..
9 1 0 0 ..
TOTALS:
34 3 6 .176
8 VERTICES:
e be ¢2 ¢3 ¢H e
1 1 0 0
2 2 0 0
3 4 0 0
L 9 2 L
5 16 1 1 5
6 32 6 1 1 19
7 45 7 1
8 52 5 2 16
9 48 1 1 5
10 40 5 10
11 24 0 0
12 16 1 2
13 7 0 0
4 3 0 0
15 2 0 0
16 1 0 0
TOTALS:

302 28 5 1 75

TABLE 10 - COSPECTRAL BIPARTITE GRAPHS



9 VERTICES:
e be ¢2 ¢3 ¢u ¢5 ¢6 e ce/be
1 1 0 0 .o
2 2 0 0 ..
3 4 0 0 ..
4 9 2 4 hny
5 17 11 5 .294
6 38 7 1 0 1 22 .579
7 70 12 3 1 37 .529
8 120 23 4 3 1 75 .625
9 150 23 2 2 1 65 .433
10 179 22 6 3 0 1 80 ity
11 164 23 2 52 .317
12 M3 17 o4 46 .322
13 a4 7 14 . 149
14 63 3 1 9 . 143
15 32 1 2 063
16 19 0 0 ..
17 7 0 0 ..
18 4 0 0 ..
19 1 0 0 ..
20 1 0 0 ..
TOTALS:
1118 141 24 9 3 1 411 . 368

TABLE 10. COSPECTRAL BIPARTITE GRAPHS (cont.)
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Added in proof:

Recent computational work has extended the results of Table 7 to include trees

on up to 18 vertices. The extended version of the table is presented below.

n tn ¢2 ¢3 9y ¢5 % 97 ¢8 n cn/tn
8 23 1 2 .087
g u7 10 .213
10 106 4 8 .075
11 235 27 2 60 .255
12 551 49 7 119 .216
13 1301 162 29 1 415 . 318
14 3159 3438 36 826 .261
15 7741 360 145 20 7 2470 .319
16 138320 2028 326 L ] 1 5246 .272
17 48629 5343 985 221 58 18 3 14944 .307
18 123867 12163 1935 405 88 16 [ b 32347 .261

EXTENDED TABLE 7.

COSPECTRAL TREES

It is interesting to note that the proportion cn/tn tends to be larger for
odd n than for even n, and that the last few values appear to be dropping, despite
the fact that cn/tn tends to 1 for large n (by 7.2). We have no explanation for

these phenomena.
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