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The polynomial of a graph i s  the characteristic polynomial of i t s  0-1 acLjacency 

matrix. Two graphs are cospec t ra l  i f  the ir  polynomials are the same. 

In t h i s  paper some of the results  from a numerical study of the polynomials of 

graphs are presented. The study has encompassed 9 point graphs, 9 point biparti te 

graphs, 14 point trees and 13 point forests. Also given are several theoretical 

resul ts  which were prompted by the numerical data. These include two characterizations 

of those cospectral graphs which have cospectral complements, and a proof that,  i n  the 

sense of Schwenk [201 "almost no" trees are characterized by their  polynomials together 

with the polynomials of the i r  complements. In addition, mention i s  made of those co- 

spectral graphs uhich have cospectral Zinegraphs, and those which are cospectral to 

their  am. complements. 

1. INTRODUCTION 

Graphs r e f e r r e d  t o  i n  t h i s  paper have a f i n i t e ,  non-zero number of v e r t i c e s  and 
- 

no loops o r  multiple edges. For such a graph G ,  G r e f e r s  t o  t h e  complement of  G ,  and 

L(G) t o  t h e  linegraph of  G.  For b r e v i t y ,  a graph on n ver t i ces  w i l l  be c a l l e d  an n- 

graph. 

Suppose G i s  an n-graph. The adjacency matrix of G ,  a l s o  denoted G ,  i s  t h e  

n x n  matr ix whose ( i , j ) t h  en t ry  is the  number of edges from ver tex  i t o  ver tex  j. The 

polynomial of G ,  denoted G(.\),  is the  c h a r a c t e r i s t i c  polynomial of t h e  adjacency matrix 

of G. An eigenvalue of G i s  a roo t  of  G(\). The eigenvalues of G ,  t oge ther  with t h e i r  

m u l t i p l i c i t i e s ,  c o n s t i t u t e  t h e  spectrum of G.  Two graphs which have the  same polynomial, 

and hence the same spectrum a r e  c a l l e d  cospectral. 
\ 

Other graph t h e o r e t i c  concepts not  defined here can be found i n  Harary [9] o r  i n  

Behzad and Chartrand [21. For any square matrix A ,  t h e  t r a c e  of A is denoted tr A .  J 

w i l l  always r e f e r  t o  a square matrix with each element one and I t o  an i d e n t i t y  matrix. 1' 
The main purpose of t h i s  paper is  t o  give the  preliminary r e s u l t s  of a computa- 

t i o n a l  study of  t h e  spec t ra  of  graphs. Previous s tud ies  of t h i s  kind have been made 

by Col la tz  and Singowitz [4] (5 poin t  graphs and 8 point  t r e e s ) ,  King [13] (7 poin t  

graphs) and Mowshowitz [161 (10 poin t  t r e e s ) .  In  t h i s  study, t h e  polynomials of 9 

point  graphs, 9 poin t  b i p a r t i t e  graphs, 14 point  t r e e s  and 1 3  po in t  f o r e s t s  have been 

computed. Theoret ical  r e s u l t s  which have been motivated by the  numerical da ta  include 

severa l  charac te r i sa t ions  of  those cospec t ra l  graphs which have cospec t ra l  complements, 



and a proof t h a t  the  proport ion of  t r e e s  of  a given s i z e  which a r e  character ized by 

t h e i r  spec t ra  p lus  the  s p e c t r a  of  t h e i r  complements goes t o  zero a s  the  s i z e  increases - 
strengthening a r e s u l t  of  Schwenk [20]. Also considered a r e  cospec t ra l  graphs'which 

have cospec t ra l  l inegraphs,  and graphs which a r e  cospec t ra l  t o  t h e i r  own complements. 

2 .  COSPECTRAL GRAPHS 

I t  has been known f o r  some time [4] t h a t  t h e  polynomial of  a graph does not 

always determine the  graph uniquely. The smallest  example of non-isomorphic cospec t ra l  

graphs i s  t h e  p a i r  o f  

shown i n  Figure 2. 

5-graphs shown i n  Figure 1. The smallest  such connected p a i r  is  

FIGURE 1 FIGURE 2 

Despite some success i n  cons t ruc t ing  l a r g e  fami l ies  of  cospec t ra l  graphs [ E l ,  
t h e  problem o f  f ind ing  them a l l  seems almost hopelessly d i f f i c u l t .  Accordingly s e v e r a l  

computer searches f o r  cospec t ra l  graphs have been made. The polynomials of t h e  7- 

graphs were f i r s t  computed by King and Read [ll], C131, [171. In t h i s  work t h e  graphs 

with 8 o r  9 v e r t i c e s  have been included. The source f o r  these  graphs was t h e  tape 

d i s t r i b u t e d  by Baker, Dewdney and S z i l a r d  [l]. The polynomials of  the  274,668 nine- 

graphs were computed i n  about 50 minutes, using Danilevsky's method [31 programmed i n  

assembly-language on a CDC Cyber 73. 

In Table 1 (Appendix), t h e  following d a t a  a r e  given: 

e : number o f  edges, 

g : number o f  graphs with e edges, 

4. : 
number of  fami l ies  of  exac t ly  i cospec t ra l  graphs 

with e edges, i = 2,3, ..., 
c : t o t a l  number of  graphs with e edges not determined 

by t h e i r  spec t ra .  

Values of  e where c = 0 have been omitted. Missing values of g can be found 

i n  C91 o r  C101. 

I t  is  seen t h a t  about 18.6% of  a l l  t h e  9-graphs a r e  not  determined by t h e i r  

s p e c t r a  and t h a t  t h i s  percentage appears t o  be increasing with the  number of v r t i c e s .  

Unfortunately, t h e  number of cospec t ra l  fami l ies  is too l a r g e  f o r  them t o  be a l l  e. 
l i s t e d  here.  However those with 7 o r  fewer v e r t i c e s  a r e  given i n  Table 2.  Graphs i n  

the  same row o f  the  Table a re  cospectral .  1 



In Table 3 t h e  extraordinary s e t  of ten cospec t ra l  9-graphs with 16 edges i s  

l i s t e d .  The equal ly l a rge  s e t  with 20 edges i s  the  s e t  of complements -of these graphs. 

3. COSPECTRAL GRAPHS WITH COSPECTRAL COMPLEMENTS 

In  t h i s  s e c t i o n  we consider  t h e  question of those cospec t ra l  graphs whose com- 

plements a r e  a l s o  cospec t ra l .  The smallest  of  these a r e  on 7 v e r t i c e s ,  and a r e  

ind ica ted  by a s t e r i s k s  i n  Table 2.  In  Table 6 t h e  s t a t i s t i c a l  d i s t r i b u t i o n  of such 

fami l ies  i s  presented i n  t h e  same format a s  i n  Table 1. Note t h a t  complementarity i s  

a symmetric r e l a t i o n s h i p ,  and so  

i s  perhaps s u r p r i s i n g  t h a t  about 

nomials a r e  s t i l l  not determined 

considered. The following loose 

t i o n  f o r  t h i s  phenomenon. 

the  lower ha l f  of each t a b l e  has been omitted. I t  

86% of  those 9-graphs not  determined by t h e i r  poly- 

when the  polynomials of  t h e i r  complements a r e  a l s o  

re la t ionsh ip  probably provides only a p a r t i a l  explana- 

Theorem 3.1 [ 5  I. I f  the spectrum of a graph G contains an e i g e n v a h  A with 

mu2ti.p l i c i t y  p (p > 1 )  then the spectrum of 5 contains an eigenvaZue - A - 1  with multi- 

@ci ty  satisfying p - 1 s  p$ pt1. 

We now proceed t o  charac te r ize  those cospec t ra l  graphs whose complements a r e  

a l s o  cospec t ra l .  

Consider each edge-of  a graph G a s  two opposi tely o r ien ted  d i rec ted  edges. A 

walk of length k ( k > , 1 )  on G i s  a sequence of  d i rec ted  edges el ,e , ,  ..., ek of G such 

t h a t  consecutive edges i n  t h e  sequence a r e  ad jacen t .  I f  ck i s  the  number of  such 

walks, f o r  each k ,  then the formal power s e r i e s  

i s  c a l l e d  the  walk generating function f o r  G .  Note t h a t  we do not  recognize walks of  

zero length.  \ 

Let A and B be a r b i t r a r y  n x n  and l e t  G be an n-graph. The following 

lemmas a r e  s t a t e d  without proof: 

Lemma 3.2.  A and B are cospetftral i f f  

Note t h a t  by t h e  Cayley-Hamilton theorem [14], t h e  upper bound on r can be 

removed. 

Lemma 3.3. tr AB = tr BA. 

k k-1 
Lemma 3.4. (a )  J = n J k = 1 , 2 , .  . . 

where J i s  the n x n matrix with every element one. 

(b )  tr J A J B  = tr J A  tr J B .  



Lemma 3.5 .  W (x )  = c x t  c 2 x 2 t  ... 
G 

where 

k k 
where z i s  an n-vector o f  a l l  ones, and (G ) i s  the ( i ,j ) t h  entry of G . 

Theorem 3.6. Let G and H be cospectpal n-graphs. Then and are cospeetral 

i f f  W ( x )  = W ( x ) .  

Proof. Clearly G( X) = (J-G)( Xtl) , so  t h a t  by 3 . 2 ,  E and H a r e  cospec t ra l  iff - 
k tr ( J - G ) ~  = tr ( J - H ) ~ ,  k = l , 2 , .  . . ,n-1. Expanding (J-G) and using Lemmas 3 . 3  and 

3.4 we have 

3.7 
k k 

tr (J-G)^ = (-1) [tr G - k tr J G ~ - ~ ] +  @ ( G )  

where $I (G) i s  a polynomial i n  {tr JGr}k-2 with a corresponding expression f o r  
k r=l  ' 

tr ( J - H ) ~ .  

Since tr G = tr H ,  t h e  condit ion tr J G r  = tr J H r ,  r = l , 2 , .  . . ,k-l gives us 

t r ( ~ - ~ ) ~  = tr (J-Hlk, s o  t h a t  and a r e  cospec t ra l .  

k- 1 Conversely, t h e  equation 3.7 can be solved uniquely f o r  tr JG , and by easy 

induct ion on k we f i n d  t h a t  t h e  condition tr ( J - G )  = tr (J-HIr r = 1 ,2 , .  . . gives us 

tr J G ~ ~  = tr J H k - l  k = 2,3,. . . .// 

Corollary 3 . 8  [61. If G and H are r e p t a r  cospectral graphs, then E and H are 

cospeetra'l. 

Proof. If G and H a r e  regu la r  of degree k ,  then from [5] we have - 
nkx 

W (x)  = wH(x) = Ã‘Ã .// G 

Let G l  and G2 be two graphs. The join G l  : G2 of  G l  and G2 is fomedJ^Ã‘sakin 

the  d i s j o i n t  union o f  G I  and G2 and jo in ing  each ver tex  of G l  t o  each ver tex  of G 2 .  

Theorem 3.9. Let G and H be cospectval n-graphs. Let L be any graph. Then 
- 
G and i? are cospec t~a l  i f f  G : L and H : L are cospectral. 

Proof. Our o r i g i n a l  proof of t h i s  theorem was made obsolete  by the  following - 
r e s u l t  of Cvetkovic [5],  from which t h e  r e s u l t  i s  immediate. 

and s i m i l a r l y  f o r  H : L ,  where S, i s  t h e  number of  v e r t i c e s  of L.// 



4. GRAPHS COSPECTRAL TO THEIR OWN COMPLEMENTS 

A graph i s  c a l l e d  self-co&ementary i f  it i s  isomorphic t o  i t s  own complement. 

Such graphs a r e  obviously cospec t ra l  t o  t h e i r  own complements but  it has been dis-  

covered, probably f o r  t h e  f i r s t  t ime,  t h a t  there  a r e  non-self-complementary graphs 

cospec t ra l  t o  t h e i r  own complements. The smal les t  such graphs a r e  shown i n  Figure 3. 

Of course, t h e  complements of these  graphs have t h e  same property.  

FIGURE 3 

A list of a l l  those graphs on 8 o r  9 v e r t i c e s  which a r e  cospec t ra l  t o  t h e i r  

own complements is  given i n  Table 5 .  Those t h a t  a r e  a c t u a l l y  self-complementary a r e  

ind ica ted  by an a s t e r i s k .  Otherwise, the  complement of t h e  graph must be added t o  

t h e  Table. 

A s  ind ica ted  i n  t h e  t a b l e  by bracke ts ,  some cospec t ra l  fami l ies  occur amongst 

graphs i n  t h i s  c l a s s .  A p a r t i c u l a r l y  i n t e r e s t i n g  family is t h a t  drawn i n  Figure 4. 

FIGURE 4 

Graphs (ajl  and (b)  a r e  complements of  each o t h e r ,  whereas graphs (c) and (d)  

lementary. A l l  of  these graphs have the  polynomial ~ ~ - 1 8 ~ ' - 1 4 X ~  

Graphs ( a )  and (b)  have t h e  add i t iona l  property t h a t  

t h e i r  l inegraphs a r e  cospec t ra l  and have cospec t ra l  complements. 

COSPECTRAL GRAPHS WITH COSPECTRAL LINEGRAPHS 

In  a s i m i l a r  fashion,  one can ask f o r  those cospec t ra l  graphs which have co- 

s p e c t r a l  l inegraphs.  Such graphs a r e  s u r p r i s i n g l y  uncommon, a t  l e a s t  on a small  



number of v e r t i c e s .  The only such famil ies  on 9 o r  fewer v e r t i c e s  a r e  t h e  f o u r  p a i r s  

of 9-graphs l i s t e d  i n  Table 4. Note t h a t  the  four th  p a i r  is  t h a t  drawn i n  Figure 4(a)  

and (b) .  Except f o r  t h e  t h i r d  p a i r ,  these p a i r s  a l s o  have cospec t ra l  complements. 

However, t h e i r  complements do not have cospec t ra l  linegraphs except f o r  the  fourth p a i r .  

No simple charac te r iza t ion  of  such graphs seems t o  be known. However small  

amounts of  information may be deduced, as  f o r  example i n  t h e  following theorem. 

Theorem 5.1. Let G and H be cospectral n-graphs with cospectral linegraphs. 

Then i f  the degrees of the vert ices o f  G and H are fgi}, and { h i }  respectively,  

Proof. Let B be the  incidence matrix of G ,  [91,[21. Then B B  = L(G)+ZI, 
T T BB = G t I G  where I i s  the  i d e n t i t y  matrix and IG = diag(g, ,gn,  . . . , g  n ) .  Since B B and 

B B  have t h e  same non-zero eigenvalues [14], the  polynomial of L(G) is determined by 

t h e  polynomial of G+IG. Similar ly f o r  H. 

From 3.2 the  condit ions of  t h e  theorem now become 

The r e s u l t s  now follow by expanding the  second equation f o r  t h e  cases k = 1 ,2  

and 3. / /  

Unfortunately, these conditions do not ensure t h a t  G and H have the same 

degree sequences, the  t h i r d  p a i r  of graphs i n  Table 4 providing a counter-example. 

6. COSPECTRAL BIPARTITE GRAPHS 

d p h  G i s  s a i d  t o  be bipar t i te  ( a l s o  bicolorable) i f  the  v e r t i c e s  of G can 

be divided i n t o  two c lasses  i n  such a way t h a t  no edge of  G joins  two members of t h e  

same c l a s s .  Such graphs a r e  charac te r ized  by t h e i r  spectrum, a s  shown i n  t h e  follow- 

ing  theorem ( [71,  quoted incor rec t ly  i n  [Zl]). 

Theorem 6.1.  Let G be a graph. Then 

(a )  G i s  b ipar t i te  i f f  t o  every eigenvalue A of G there corresponds an i 
e i g e n v a k  -\. of the sane mul t ip l ic i ty .  (Thus the polynomial of G has a l l  odd or a l l  

even powers of A.) 

( b )  I f  G i s  connected and r i s  the largest posit ive eigenvalue of G, then 

G i s  b ipar t i te  i f f  -r i s  an eigenvalue of G./ 

The d i s t r i b u t i o n  of  cospec t ra l  fami l ies  amongst the  b i p a r t i t e  graphs is given 

i n  Table 10 ,  where b is t h e  number of  b i p a r t i t e  graphs with e edges. Since the  a c t u a l  

values of  be seem t o  have only been published a s  f a r  a s  6 v e r t i c e s  [12], a l l  values of 



e where b # 0 a r e  inc luded .  

7. COSPECTRAL TREES 

I n  t h e  case  o f  t r e e s ,  t h e  work o f  t h e  preceding s e c  t i o n s  has  be e n  e x t  ended  

through 1 4  v e r t i c e s .  For t h i s  purpose ,  t h e  t r e e s  themselves were machine gene ra t ed ,  

u s ing  a method s i m i l a r  t o  t h a t  desc r ibed  by Read L181. 

The spectrum of a t r e e  b e a r s  t h e  fo l lowing  s imple  r e l a t i o n s h i p  t o  t h e  s t r u c t u r e  

o f  t h e  t r e e .  A k-matching o f  a t r e e  T i s  a s e t  o f  k mutual ly  non- incident  e'dges o f  T. 

Theorem 7.1. Let T be a tree on n vertices.  Then T has the polynodal 

ie the number of k-matahings of T, m, = 1, and p ie the integral part of 2- 
P roof .  F i r s t  g iven by Sachs [ l9 ] ,  and l a t e r  independent ly  by Mowshowitz [161.// 

The s m a l l e s t  p a i r  of  c o s p e c t r a l  t r e e s ,  and t h e  s m a l l e s t  foursome a r e  shown i n  

Figure  5 .  

FIGURE 5 

The d i s t r i b u t i o n  of c o s p e c t r a l  f a m i l i e s  o f  t r e e s  from 8 through 1 4  v e r t i c e s  is  

given i n  Table 7 ,  where tn i s  t h e  number of t r e e s  on n v e r t i c e s ,  and t h e  o t h e r  symbols 

a r e  a s  i n  Table 1. I t  is  seen t h a t  t h e  p r o p o r t i o n  o f  t r e e s  i d e n t i f i e d  by t h e i r  spec- 

trum appears  t o  be  dropping r a p i d l y ,  and may even f a l l  below 50% between 20 and 25 

v e r t i c e s .  

The asymptot ic  va lue  o f  t h i s  p r o p o r t i o n  has  been discovered by  Schwenk [201: 

Theorem 7.2. Let p be the proportion of trees on n vertices which are 

ident i f ied  (within the class of t rees)  by their  spectrum. 

Then p -+ 0 as n -+ m. // 



8. TREES WITH A 1-FACTOR 

A 1- fac tor  o f  a graph G is  a r e g u l a r  spanning subgraph of  G of  degree  one. 

C lea r ly  a 1 - f a c t o r  o f  a t r e e  on 2n v e r t i c e s  corresponds  t o  an  n-matching. From 7.1  

t h o s e  t r e e s  w i t h  a 1 - f a c t o r  a r e  j u s t  t h o s e  which have no zero  e igenvalues .  

The s m a l l e s t  examples o f  c o s p e c t r a l  t r e e s  i n  t h i s  c l a s s  a r e  t h e  two p a i r s  shown 

i n  Figure  6 .  

FIGURE 6 

The f requency o f  occurrence  o f  such f a m i l i e s  i s  g iven i n  Table 8 .  As no 

enumeration o f  t r e e s  w i t h  a 1 - f a c t o r  i s  known t o  t h e  a u t h o r s ,  a l l  s i z e s  from 2 through 

14  v e r t i c e s  a r e  inc luded .  

9.  COSPECTRAL TREES WITH COSPECTRAL COMPLEMENTS 

Let  G and H be n v e r t e x  and m v e r t e x  r o o t e d  graphs ,  r e s p e c t i v e l y .  Define G l  

and H i  t o  be  t h e  (un roo ted )  induced subgraphs o f  G and H ,  r e s p e c t i v e l y ,  formed by 

removing t h e  r o o t .  The merge G - H  o f  G and H i s  de f ined  a s  t h e  ntm-1 v e r t e x  graph 

formed from t h e  d i s j o i n t  union of G and H by i d e n t i f y i n g  t h e  two r o o t s .  

Lemma 9 .1 .  

where G(X> and H( A) are the  polynomials of G and H considered as unrooted. 

Proof .  The determinant  I A I - G ' H l  can b e  w r i t t e n  a s  - 

Since t h e  determinant  o f  a m a t r i x  i s  a l i n e a r  f u n c t i o n  o f  i t s  f i r s t  row we have 



This lemma has been previously given by Schwenk [20 ]  f o r  t r e e s ,  i n  which case 

it i s  e a s i l y  proved from Theorem 7.1. 

Lemma 9.2. Define generating functions (see 53) as fo l lms:  

WG : 
all walks on G, 

w ' :  a l l  walks on G starting a t  the root, 

WG": a l l  walks on G starting and finishing a t  the root, 

and similarly for H and G - H .  The coeff icient of unity i n  a l l  these functions i s  zero. 

Then 

Proof. For walks on G ' H  o f  t h e  form e , , e 2 ,  ..., ek where e ,  and ek a r e  edges of 

G we have the  funct ion 

and s i m i l a r l y  when e l  and ek a r e  edges of H .  

If e l  i s  an edge o f  G and ek i s  an edge o f  H, o r  vice-versa, we f i n d  ( i n  each case)  

t h e  funct ion 

Adding t h e  four  funct ions thus  obtained gives t h e  required resu l t / /  

A rooted t r e e  L is  c a l l e d  a  limb of  a  t r e e  T i f  f o r  some rooted t r e e  R w e  have 

T = R - L .  

Theorem 9.3. Let G be an arbitrary rooted graph. Let S and T be the rooted 

trees shorn i n  Figure 7 .  



FIGURE 7 

Then G-S and G-T are not isomorphic ( i f  G does not have an isolated root)  but are co- 

spectra l and 'have cospectral complements. 

Proof. ( a )  Since G-S has P rooted a t  an end-vertex once more a s  a limb 

than has G - T ,  it i s  not  isomorphic t o  G - T .  

( b )  T and S a r e  isomorphic as  unrooted t r e e s ,  and T, and S, a r e  

isomorphic. So G-S and G-T a r e  cospec t ra l  by Lemma 9.1. 

(c )  Direct computation from t h e  adjacency matr ices  of T and S shows 

t h a t  

W ' ( x )  = W ' ( x )  and W "(x) = W1'(x) .  T S T 

Hence W = WG.T by Lemma 9 . 2 .  
G-S 

Hence G-S and G - T  have cospec t ra l  complements, by 3.6// 

The fol lowing r e s u l t  was f i r s t  proved by Schwenk [20], who enumerated t r e e s  

not  containing a given limb. This enumeration has s ince  been c a r r i e d  out more d i r e c t l y  

by McAvaney [151. 

Lemma 9 .4 .  Let L i  and L2 be rooted trees on the same number of vert-ices. Let 

pl (n)  and p2(n)  be respectively the number of (unrooted) trees on n vertices not con- 

tawing L~ or L2 as a limb. Then p i ( n )  = p2(n) for a l l  n. 

Furthermore, i f  t i s  the number of trees on n vertices,  

Theorem 9.5. Let t be the number of trees on n vertices.  Let sn  be the 

number of trees on n vertices which are ident i f ied  by their spectra together with the 

spectra of their  complements. 

Then -"Â¥ o as n + m. 

'n 

Proof. By 9.3, any t r e e  which can be wr i t t en  a s  R-S f o r  some rooted t r e e  R is 

cospec t ra l  with cospec t ra l  complements t o  t h e  ( d i f f e r e n t )  t r e e  R-T, where S and T a r e  



a s  i n  9.3. 9.4, t h e  proportion of a l l  t r e e s  which cannot be wr i t t en  i n  t h i s  form 

goes t o  zero a s  t h e  s i z e  increases.//  

Note 9.6. Theorem 9.3 can be generalized t o  show t h a t  f o r  any rooted graphs 

G and Hthe two graphs shown schematically i n  Figure 8 a r e  cospec t ra l  and have cospectral  

complements. In  f a c t  every p a i r  o f  t r e e s  on 14 o r  fewer v e r t i c e s  which have t h i s  

property f a l l  i n t o  t h e  c l a s s  of  graphs i l l u s t r a t e d .  

FIGURE 8 

10. COSPECTRAL TREES WITH COSPECTRAL LINEGRAPHS 

A search of t h e  cospec t ra l  t r e e s  on up t o  1 4  v e r t i c e s  has produced a small 

number o f  p a i r s  which a l s o  have cospec t ra l  l inegraphs.  Spec i f ica l ly ,  t h e r e  is 1 p a i r  

on 11, 1 p a i r  on 12,  1 p a i r  on 1 3  and 5 p a i r s  on I 4  v e r t i c e s .  Those on 11 v e r t i c e s  

a r e  shown i n  Figure 9. 

FIGURE 9 

11. COSPECTRAL FORESTS 

The smallest  p a i r  o f  cospec t ra l  f o r e s t s  a r e  those shown i n  Figure 10. 

FIGURE 10 

The d i s t r i b u t i o n  o f  such fami l ies  f o r  f o r e s t s  on up t o  13  v e r t i c e s  is given i n  

Table 9. It  i s  seen t h a t  t h e  proportion of f o r e s t s  determined by t h e i r  spec t ra  drops 

more rap id ly  with increas ing  s i z e  than it does f o r  t r e e s .  Extrapolat ion by hand 

suggests  t h a t  the f i g u r e  may drop below 50% by 16 v e r t i c e s .  



APPENDIX 

I n  o rder  t o  reduce space requirements, a compact notat ion f o r  graphs w i l l  be 

used. This i s  b e s t  i l l u s t r a t e d  by an example. Take t h e  eight-vertex graph shown i n  

Figure 11, together  with i ts adjacency matr ix,  

FIGURE 11 A 2 

The lower t r i a n g l e  o f  t h e  adjacency matr ix,  excluding t h e  diagonal ,  i s  wr i t t en  

down row by row a s  a b inary  i n t e g e r :  

Zeros a r e  added t o  the  right-hand end i f  necessary t o  make t h e  number of d i g i t s  up t o  

a mul t ip le  o f  t h r e e ,  and then t h e  whole i s  wr i t t en  a s  an o c t a l  in teger :  

6 4 4 0 3 0 3 0 4 0 .  This no ta t ion  is  e s s e n t i a l l y  the same a s  t h a t  employed by Baker, 

Dewdney and S z i l a r d  E l ] .  

The following t a b l e s  have been computer generated and checked care fu l ly .  Where 

overlap occurs with o ther  e x i s t i n g  t a b l e s  E l l ] ,  C131, C161, no discrepancies  have been 

found. 



5 VERTICES: 6 VERTICES: 

e ge tJ2 ce c e / g e  

4 6 1 2  .333 

TOTALS : 

34 1 2 .059 

7 VERTICES: 

TOTALS : 

1044 52 2 110 

TOTALS : 

8 VERTICES: 

TOTALS : 

TABLE 1. COSPECTRAL GRAPHS 



9 VERTICES: 

TOTALS : 

274668 21025 

TABLE 1. COSPECTRAL GRAPHS ( c o n t . )  



761644106510 
746262406450 
363646144011 
756222120451 
743704411430 
743234426042 
761614130430 
365166244011 
365233124012 
761613006604 

TABLE 3. 10  

TABLE 2. COSPECTRAL GRAPHS ( 5 , 6 , 7  VERTICES ) 

ft I n d i c a t e s  complements a l s o  c o s p e c t r a l  

677546161040 765546144015 
771746442110'? 376252650121* 
767642550120* 770315226070"' 
7762526501209: 367645025122h 
776315244044 765164660015 

776252644140* 367644430524* 
775714120502 765062362026 
777320340502* 753212544514;k 
377326340101* 377320340503* 
7662633441105 353726241103* 

COSP. 9-GRAPHS 
TABLE4. COSP. 
GRAPHS WITH COSP. 777326340100* 
LINEGRAPHS 777346460001 577325211201 765130350522* 

777706014060* 765234631140 353726240505h 
777705024060* 376252750120 754542343122h 
776657041100 766263242121 765130344542* 
757562560200 367706114061* 227645025526* 
773364242030 7703162160 70* 354542343123* 
777135140201 637642445142* 37621221142725 
377746440101* 766263412031'': 365223126017k 

TABLE 5 .  GRAPHS COSPECTRAL TO THEIR OWN COMPLEMENTS 
;^ Ind i ca t e s  se l f -complementary  [ I n d i c a t e s  c o s p e c t r a l i t y  



7 VERTICES: 8 VERTICES: 

ge % ' e  
6 4 1 1 2  
7 6 5 1 2  
8 9 7 2 4  
9 1 3 1  3 6 

10  148  3 6 

TOTALS : 

1044 20 40 

TOTALS : 

9 VERTICES: 

e 
'e "'2 

6 63  1 
7 148  3 
8 345 6 
9 771  29 

10 1637 6 1  
11 3252 180 
12  5995 284 
1 3  10120 646 
1 4  15615 935 
15  21933 1550 
16 27987 1 8 6 1  
1 7  32403 2482 
1 8  34040 2401 

TOTALS : 

274668 18477 

TABLE 6. COSPECTRAL GRAPHS WITH COSPECTRAL COMPLEMENTS 

TABLE 7. COSPECTRAL TREES TABLE 8. TREES WITH 1-FACTORS 



I 
5 VERTICES : 

TOTALS : 

I 7 VERTICES: 
I 

I TOTALS : 

TABLE 9. COSPECTRAL FORESTS 

6 VERTICES: 

TOTALS : 

8 VERTICES: 

be ^ 
1 1 0  
2 2 0  
3 4 0  
4 9 2  
5 1 6  1 
6 3 2  6 
7 4 5  7 
8 52 5 
9 4 8  1 

1 0  4 0  5 
11 2 4  0 
1 2  1 6  1 
13  7 0 
1 4  3 0 
1 5  2 0 
1 6  1 0 

TOTALS : 

3 0 2  2 8  

TABLE 1 0  - COSPECTRAL BIPARTITE GRAPHS 



9 VERTICES: 

TOTALS : 

TABLE 1 0 .  COSPECTRAL BIPARTITE GRAPHS (cont.) 



Added i n  p roof :  

Recent computat ional  work h a s  extended t h e  r e s u l t s  o f  Table 7  t o  inc lude  t r e e s  

on up t o  1 8  v e r t i c e s .  The extended ve r s ion  o f  t h e  t a b l e  is p resen ted  below. 

EXTENDED TABLE 7. COSPECTRAL TREES 

It  i s  i n t e r e s t i n g  t o  no te  t h a t  t h e  p ropor t ion  c / t  t ends  t o  be  l a r g e r  f o r  n  n  
odd n  than  f o r  even n ,  and t h a t  t h e  l a s t  few va lues  appear  t o  be dropping,  d e s p i t e  

t h e  f a c t  t h a t  c / t  t ends  t o  1 f o r  l a r g e  n (by  7 .2) .  We have no exp lana t ion  f o r  

t h e s e  phenomena. 
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