
Constructina the cubic araphs on up to 20 vertices.

Brendan D. McKay
Computer Science Department
Australian National University
Canberra
Australian Capital Territory

Gordon F. Royie
Department of Mathematics
University of Western Australia
NecBands
Western Australia 6009

AbstracL This paper gives a detailed description of a method of
constructing cubic graphs. All the non-isomorphic, connected cubic
graphs on up to 20 vertices are found by this method, and
catalogued with the graph theoretic properties of connectivity,
order of automorphism group, chromatic number and index,
diameter and girth, hamiltonicity and the size of a maximum
independent set.

The cubic graphs on 16 and 18 vertices have previously been
constructed by Faradzhev, but his catalogue is not readily
available. To our knowledge this is the first construction of the
cubic graphs on 20 vertices.

SO. Introductioni

In this section we describe the background to this research,
and the terminology and notation to be used throughout this paper.

0.1 Basic Notation

Throughout this paper, we follow the graph theoretic
notation of Behzad and Chartrand [2], except that a graph will be
undirected without loops or multiple edges. In particular, a graph
is regular if each vertex is adjacent to the same number of edges
(that number being called the valency). A cubic graph is a
regular graph of valency 3.

The following denote special classes of graphs. 5(v) denotes
the regular graphs of valency v, v denotes the graphs such that
each vertex has valency 2 or 3, and Ã denotes the graphs whose
connected components are regular of valencies 2 or 3, such that at
least one component is regular of valency 2, and at least one
component is regular of valency 3.

Permuting the labels on the vertices of a graph produces an
isomorphic graph. For each isomorphism class of graphs we
distinguish one of the possible labellings, called the canonical
labelling. The graph with this distinguished labelling is said to
be canonically labelled. A canonical labelling algorithm is an

ARS COMBINATORIA 21-A (1986). pp. 129-140

algorithm that, when presented with a graph, produces the
canonically labelled isomorph. A rigorous definition and
description may be found in McKay [8].

0.2 The search for cubic araohs

Considerable effort has been expended in the production of
catalogues of graphs of various kinds. Such catalogues have uses in
suggesting conjectures, providing counterexamples or as sample
graphs. As cubic graphs are of great importance in graph theory,
several catalogues of cubic graphs have been produced. The cubic
graphs on up to 10 vertices were drawn by Balaban [I]. Petrenjuk
and Petrenjuk [lo] found all the cubic graphs on up to 12 vertices
and Faradzhev [7] found those on up to 18 vertices. Meanwhile
Bussemaker, Cobeljic, Cvetkovic and Seidel [3],[4] produced a
catalogue of all the cubic graphs with up to 14 vertices including
information on several of their properties. As the listing of the
graphs produced by Faradzhev is not readily available, we decided
to repeat his work on 16 and 18 vertices, extend it to 20 vertices,
and produce a catalogue similar to that in [3].

51. Method

This section gives a detailed description of the method used
for the construction of cubic graphs.

1.1 Definitions

For any graph G E H , we define an ear of length k, as a sequence
vO,vl, . . . ,vk of vertices such that

(1) vi and vi are adjacent, for 1 < i < k;
(2) v,, . . . ,vk-- have valency 2, and vQ,vk have valency 3;
(3) the vi are distinct, except that v0 = vk is permissible

The internal vertices of the ear are

{vl , . . . ,vkT1} if vo + vk, and
{vo, . . . , v ~ - ~ } if vo = vk

and the end vertices are

{vo,vk} if v0+vk, and
{x I x is adjacent to v0, x + vl,vk-l} if v0 = vk.

We can distinguish 3 different types of ear (see Figure 1)

(a) type 0 ear - v0 # vk, and v0 is adjacent to vk.
(b) type 1 ear - v0 + vk, and v0 is not adjacent to vk.
(c) type 2 ear - vo = vk.

Notice that ears of type 0 or 1 have two end vertices, and
ears of type 2 have only one end vertex.

The quality of a vertex is defined to be the number of
vertices at distance 2 from that vertex plus 100 times the number
of vertices at distance 3. Notice that this definition assigns an
integer to each vertex of a graph in a fashion that is independent
of the labelling. The purpose of such a definition is to provide a
simple method of distinguishing the vertices of a graph to reduce
uses of the canonical labelling algorithm as much as possible (see
1.2 below). Our particular definition is arbitrary.

(a) a type 0 ea r (b) a type 1 ea r (c) a type 2 ear

Figure 1.

1.2 Parents and a forest

For any graph G v , we define the parent of G to be the
graph H E v formed by applying the following rules.

(1) If the graph G 5(2) or G e i , then G has no parents.

(2) If the graph G is cubic

From the set of vertices of lowest quality, select the
one with the lowest canonical label, and form H by
removing that vertex from G.

(3) If the graph G is not regular
From the set of ears of lowest type, select the subset
of those of greatest length. Then choose from this
subset the ear containing the vertex with the lowest
canonical label, and form H by removing all the
internal vertices of that ear from G .

As each graph has at most one parent, and parents are
always smaller than their children, the set -K forms a forest of
directed rooted trees under the parent relation. The roots of the
trees are precisely the graphs 5(2) u Ãˆ and the leaves (that is,
nodes without children) are precisely the cubic graphs 5(3). The
reduction path of a graph G is the path from G to the root of the
tree it lies in (See Figure 2).

1.3 Searchina the forest

It is clear that all the connected cubic graphs will be on the
trees with roots that are regular of valency 2, and that all the
disconnected cubic graphs will have roots in i. It is also clear that
considering only nodes with less than N+1 vertices selects a finite
subtree from each tree, which still contains the reduction paths
for all the connected cubic graphs on N vertices.

Each of these finite subtrees is searched using a depth first
search (also known as a backtrack algorithm).

(a) The parent forming
operation

(b) A small portion of
one of the trees

Figure 2.

1.4 Findina the children and orunina the tree

Due to the immense size of the trees, and the relative
scarcity of the N-vertex cubic graphs, it is important to recognise
as early as possible when a particular child cannot possibly lead
to one of the target nodes (cubic graphs with N vertices).

A target node has N vertices, and 3Nl2 edges. Hence, its
parent will have N -1 vertices and 3Nl2 - 3 edges (which follows
immediately from rule (2) above). Any other node on the path to the
root is formed by removing an ear from its immediate child.
Removing any ear will remove m vertices and m +1 edges, for some
m 2 1, so we can find a bound for the number of edges that any node
on the path from a target node to the root must satisfy.

If the node has n vertices and e edges, then the smallest
value that e could take occurs when N-n-1 ears of length one have
been removed (each ear consisting of one vertex and two edges),
whilst the greatest value that e could take occurs when one ear of
length N-n-1 has been removed.

Therefore at any stage we must have
e > 3 N l 2 - 3 - 2 (N - n - I) ,

that is e > 2n - Nl2 -1, (*I
and e < 3Nl2 - 3 - (N - n),
that is e < Nl2 + n -3 .

Now consider how the children of a node are found. The
children of a node are bigger than it, and due to the definition of
'parent', are formed by adding an ear to it (forming a non-cubic
graph) or by adding a single vertex (forming a cubic graph). If the
node G has N - 1 vertices and 3Nl2 - 3 edges, then it may have a
target node as a child. This is checked by adding one vertex and 3
edges, making a candidate child C , and then applying the parent
rules to C to see whether G is in fact its parent. This final stage
is achieved by seeing whether the newly added vertex is in the
same orbit as the one that would be removed from C. (For removing
the vertex that has just been added forms G). If the node G has N -
1 vertices but not the right number of edges, then it has no
children leading to a target node and we backtrack.

We form the children of any other node in a similar fashion.
A list of candidate children is formed by adding ears of all
possible lengths, between all possible inequivalent pairs of points.
The canonical labelling algorithm nauty [9] is used to find the

orbits of points, and of pairs of points under the action of the
automorphism group of the graph. Then only one pair of points from
each orbit is used. This ensures that the candidate children are all
different (see Proposition 1.5 below). Of course when adding ears
of type 2 which have only one end vertex, we only use one point
from each of the orbits on points. Then the parent rules are
applied to each candidate child C, and it is accepted as a genuine
child only if the ear just added is equivalent to the one that would
be removed to form the parent of C.

We try to avoid using the canonical labelling algorithm as
much as possible, due to its heavy use of computer time. For
example if the newly added ear is the only one of lowest type, or
the only one of greatest length amongst those of lowest type, then
we are certain that we have a genuine child regardless of the
canonical labelling.

We prune the tree by using the bounds on edges given above.
If a node G has n vertices and e edges, then its child C will be
formed by adding an ear, thus adding m vertices and m+l edges, for
some m. The equation (*) must still be satisfied after the addition
of this ear, so

e + m +1 22(n + m) - N12 - 1,
that is m < e + 2 + N l 2 - 2 n .

The second bound may also be used to place a minimum
length on the possible ears, but in practice such a bound is
useless, as it is almost always less than 1.

1.5 Proposition

Each unlabelled connected cubic graph is found exactly once
by the search procedure described above.

The argument above shows that only genuine children are
produced, and that all such are produced, except those known not
to be on the reduction path of any connected cubic graph on N
vertices. Hence every connected cubic graph is found at least once.
It remains to demonstrate that each child of a node is produced
only once, that is, that distinct children of any given node are
nonisomorphic. If the node has N - 1 vertices, then there is only
one child produced. Now, suppose that two children of G are formed

by adding ears e and f in non-equivalent places, but that G+e is
isomorphic to G+f. Let g and h be isomorphisms between G+e, G+f
and their (identical) canonically labelled isomorph H.

g: G+e -> H
h: G+f -Ã H

Then applying the parent rules to H will select an ear in the
same orbit as g(e), and hence the same orbit as h(f). So g(e) must
be in the same orbit as h(f). Therefore we can find an isomorphism

i: G+e + G+f
such that i(e) = f by combining g, h-I and an automorphism of G+f
if necessary.

Now restricting i to acting only on the vertices of G
produces an automorphism of G, such that the end vertices of e are
mapped to the end vertices of f, which contradicts the fact that
ears of a particular length are only added between non-equivalent
pairs of points (or, in the case that e and f are type 2 ears,
non-equivalent single points).!

This algorithm falls into the class of orderly algorithms in the
sense of Colbourn and Read [5],[6] & [I I], because we apply a
'canonicity' test to each graph produced (in this case the test is
whether the graph is a bona-fide child) and if it passes the test
then we are sure that it is uniquely produced and do not need to do
any duplicate checking.

1.6 Implementation

The algorithm described above was coded in the C
programming language. It was executed in late 1984 on the VAX
111750 machine at the Department of Psychology, University of
Western Australia. The approximate times for generation were: 14
vertices - 10 min, 16 vertices - 2 hours, 18 vertices - 30 hours
and 20 vertices - 500 hours.

52. Results

The following numbers of non-isomorphic, connected, cubic
graphs were constructed.

These numbers are in agreement with those found by
Faradzhev [7], and the theoretical number of connected cubic
graphs according to Robinson and Wormald [12].

Standard algorithms were programmed for the properties of
hamiltonicity, connectivity, diameter, girth, maximum independent
set size, chromatic number and chromatic index.

This information together with the size of the
automorphism group, which was found during construction, is
tabulated below in the Appendix.

Our catalogue is stored on magnetic tape with each entry
consisting of the graph, the orbits of its automorphism group, and
the information listed above. The complete catalogue of all the
cubic graphs from 4 - 20 vertices occupies 27 megabytes.

Hamiltonian Yes 1 2 5 17 80 474
No 2 5 35

1 1 4 29
Connectivity 2 1 4 24 139

3 1 2 4 14 57 341

1 1
2 2 2 1
3 3 15 34 34

Diameter 4 2 43 351
5 1 6 93
6 2 24
7 6
8 1

3 1 1 3 13 63 399
Girth 4 1 2 5 20 101

5 1 2 8
6 1

Chromatic 2 1 1 2 5 13
number 3 1 4 17 80 496

4 1

Chromatic 3 1 2 5 17 80 475
index 4 2 5 34

1 1
2 1

Maximum 3 1 4
independent 4 1 17 7
set size 5 2 73 80

6 5 416
7 13

1 5 103
Size of 2 2 22 159
automorphism 4 1 4 20 117
group 6 2 4

8 3 15 62
12 1 1 1 4 7
14 1
16 2 2 9 35
18 1
20 2
24 1 3 2
28 2
32 1 2 11
36 1
48 1 1 2 1
60 1
64 1 2
72 1
96 1

128 1
336 1

Property\Graphs on 16 vertices 18 vertices 20 vertices

Hamiltonian Yes 3841 39635 495991
No 21 9 1666 14498

1 186 1435 12671
Connectivity 2 1046 9398 101 668

3 2828 30468 3961 50

3 14
4 2167
5 1499
6 26 1
7 101

Diameter 8 14
9 4
10
1 1
12

3 3268 33496 41 2943
Girth 4 743 7350 91 763

5 48 450 5751
6 1 5 32

Chromatic 2 38 149 703
number 3 4022 41152 509786

Chromatic 3 3848 39687 496430
index 4 21 2 1614 14059

6 1074 21
Maximum 7 2948 161 83 635
independent 8 38 24948 268350
set size 9 149 240801

10 703

PropertyVGraphs on 16 vertices 18 vertices 20 vertices

1
Size of 2
automorphism 3
group 4

6
8

10
12
16

[I] Balaban A.T. Valence-isomerism of cyclopolyenes. Rev.
Roumaine Chim. 11 (1 966) 1097-1 1 16; erratum 12(1967)
103.

[2] Behzad M.B, Chartrand C.D. Introduction to the theory of
graphs. Allyn and Bacon. Boston (1971).

[3] Bussemaker F.C, Cobeljic M.S, Cvetkovic D.M, Seidel J.J.
Computer Investigation of cubic graphs. Technological
University Eindhoven, Dept of Math., Technical Report
76-WSK-01 (1 976).

[4] Bussemaker F.C, Cobeljic M.S, Cvetkovic D.M, Seidel J.J.
Cubic graphs on < 14 vertices. J. Combinatorial Theory. Ser.
B. 23 (1 977) 234-235.

[5] Colbourn C.J, Read R.C. Orderly algorithms for graph
generation. Intern. J. Computer Math. 1979, Sect. A. 7,
1 67-1 72.

[6] Colbourn C.J, Read R.C. Orderly algorithms for generating
restricted classes of graphs. J. Graph Theory 3 (1 979)
187-1 96.

[7] Faradzhev I.A. Constructive Enumeration of combinatorial
objects. Problemes Combinatoires et Theorie des Graphes
Colloque Internat. CNRS 260. CNRS Paris (1 978) 131 -1 35.

[8] McKay B.D. Practical graph isomorphism. Proceedings of
the 10th Manitoba Conference on Numerical Maths and
Computing. Congressus Numerantium, 30 (1 981) 45-87.

[9] McKay B.D. nauty User's guide. Australian National
University Computer Science Technical Report TR-CS-84-05
(1 984).

[I 01 Petrenjuk L.P, Petrenjuk A.N. On constructive enumeration
of 12 vertex cubic graphs (Russian). Combinatorial
analysis, no. 3 . Moscow (1974).

[I 11 Read R.C. Every one a winner. Ann. Discrete Math. 2 (1978)
1 07-1 20.

[I 21 Robinson R.W, Wormald N.C. Numbers of cubic graphs.
Journal of Graph Theory. Vol7 (1983) 463-467.

