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AbstracL This paper gives a detailed description of a method of 
constructing cubic graphs. All the non-isomorphic, connected cubic 
graphs on up to 20 vertices are found by this method, and 
catalogued with the graph theoretic properties of connectivity, 
order of automorphism group, chromatic number and index, 
diameter and girth, hamiltonicity and the size of a maximum 
independent set. 

The cubic graphs on 16 and 18 vertices have previously been 
constructed by Faradzhev, but his catalogue is not readily 
available. To our knowledge this is the first construction of the 
cubic graphs on 20 vertices. 

SO. Introductioni 

In this section we describe the background to this research, 
and the terminology and notation to be used throughout this paper. 

0.1 Basic Notation 

Throughout this paper, we follow the graph theoretic 
notation of Behzad and Chartrand [2], except that a graph will be 
undirected without loops or multiple edges. In particular, a graph 
is regular if each vertex is adjacent to the same number of edges 
(that number being called the valency). A cubic graph is a 
regular graph of valency 3. 

The following denote special classes of graphs. 5(v) denotes 
the regular graphs of valency v, v denotes the graphs such that 
each vertex has valency 2 or 3, and Ã denotes the graphs whose 
connected components are regular of valencies 2 or 3, such that at 
least one component is regular of valency 2, and at least one 
component is regular of valency 3. 

Permuting the labels on the vertices of a graph produces an 
isomorphic graph. For each isomorphism class of graphs we 
distinguish one of the possible labellings, called the canonical 
labelling. The graph with this distinguished labelling is said to 
be canonically labelled. A canonical labelling algorithm is an 
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algorithm that, when presented with a graph, produces the 
canonically labelled isomorph. A rigorous definition and 
description may be found in McKay [8]. 

0.2 The search for cubic araohs 

Considerable effort has been expended in the production of 
catalogues of graphs of various kinds. Such catalogues have uses in 
suggesting conjectures, providing counterexamples or as sample 
graphs. As cubic graphs are of great importance in graph theory, 
several catalogues of cubic graphs have been produced. The cubic 
graphs on up to 10 vertices were drawn by Balaban [I]. Petrenjuk 
and Petrenjuk [ lo ]  found all the cubic graphs on up to 12 vertices 
and Faradzhev [7] found those on up to 18 vertices. Meanwhile 
Bussemaker, Cobeljic, Cvetkovic and Seidel [3],[4] produced a 
catalogue of all the cubic graphs with up to 14 vertices including 
information on several of their properties. As the listing of the 
graphs produced by Faradzhev is not readily available, we decided 
to repeat his work on 16 and 18 vertices, extend it to 20 vertices, 
and produce a catalogue similar to that in [3]. 

51. Method 

This section gives a detailed description of the method used 
for the construction of cubic graphs. 

1.1 Definitions 

For any graph G E H ,  we define an ear of length k, as a sequence 
vO,vl, . . . ,vk of vertices such that 

(1) vi and vi are adjacent, for 1 < i < k; 
(2) v,, . . . ,vk-- have valency 2, and vQ,vk have valency 3; 
(3) the vi are distinct, except that v0 = vk is permissible 

The internal vertices of the ear are 

{vl , . . . ,vkT1} if vo + vk, and 
{vo, . . . , v ~ - ~ }  if vo = vk 

and the end vertices are 



{vo,vk} if v0+vk, and 
{x I x is adjacent to v0, x + vl,vk-l} if v0 = vk. 

We can distinguish 3 different types of ear (see Figure 1) 

(a) type 0 ear - v0 # vk, and v0 is adjacent to vk. 
(b) type 1 ear - v0 + vk, and v0 is not adjacent to vk. 
(c) type 2 ear - vo = vk. 

Notice that ears of type 0 or 1 have two end vertices, and 
ears of type 2 have only one end vertex. 

The quality of a vertex is defined to be the number of 
vertices at distance 2 from that vertex plus 100 times the number 
of vertices at distance 3. Notice that this definition assigns an 
integer to each vertex of a graph in a fashion that is independent 
of the labelling. The purpose of such a definition is to provide a 
simple method of distinguishing the vertices of a graph to reduce 
uses of the canonical labelling algorithm as much as possible (see 
1.2 below). Our particular definition is arbitrary. 

(a) a  type 0 ea r  (b) a type 1 ea r  (c) a  type 2 ear  

Figure 1. 

1.2 Parents and a forest 

For any graph G v ,  we define the parent of G to be the 
graph H E v formed by applying the following rules. 

(1) If the graph G 5(2) or G e i ,  then G has no parents. 

(2) If the graph G is cubic 



From the set of vertices of lowest quality, select the 
one with the lowest canonical label, and form H by 
removing that vertex from G.  

(3) If the graph G is not regular 
From the set of ears of lowest type, select the subset 
of those of greatest length. Then choose from this 
subset the ear containing the vertex with the lowest 
canonical label, and form H by removing all the 
internal vertices of that ear from G .  

As each graph has at most one parent, and parents are 
always smaller than their children, the set -K forms a forest of 
directed rooted trees under the parent relation. The roots of the 
trees are precisely the graphs 5(2) u Ãˆ and the leaves (that is, 
nodes without children) are precisely the cubic graphs 5(3). The 
reduction path of a graph G is the path from G to the root of the 
tree it lies in (See Figure 2). 

1.3 Searchina the forest 

It is clear that all the connected cubic graphs will be on the 
trees with roots that are regular of valency 2, and that all the 
disconnected cubic graphs will have roots in i. It is also clear that 
considering only nodes with less than N+1 vertices selects a finite 
subtree from each tree, which still contains the reduction paths 
for all the connected cubic graphs on N vertices. 

Each of these finite subtrees is searched using a depth first 
search (also known as a backtrack algorithm). 

(a) The parent forming 
operation 

(b) A small portion of 
one of the trees 

Figure 2. 



1.4 Findina the children and orunina the tree 

Due to the immense size of the trees, and the relative 
scarcity of the N-vertex cubic graphs, it is important to recognise 
as early as possible when a particular child cannot possibly lead 
to one of the target nodes (cubic graphs with N vertices). 

A target node has N vertices, and 3Nl2 edges. Hence, its 
parent will have N -1 vertices and 3Nl2 - 3 edges (which follows 
immediately from rule (2) above). Any other node on the path to the 
root is formed by removing an ear from its immediate child. 
Removing any ear will remove m vertices and m +1 edges, for some 
m 2 1, so we can find a bound for the number of edges that any node 
on the path from a target node to the root must satisfy. 

If the node has n vertices and e edges, then the smallest 
value that e could take occurs when N-n-1 ears of length one have 
been removed (each ear consisting of one vertex and two edges), 
whilst the greatest value that e could take occurs when one ear of 
length N-n-1 has been removed. 

Therefore at any stage we must have 
e >  3 N l 2 - 3 - 2 ( N - n - I ) ,  

that is e >  2n - Nl2 -1, (*I 
and e < 3Nl2 - 3 - (N - n), 
that is e < Nl2 + n -3 .  

Now consider how the children of a node are found. The 
children of a node are bigger than it, and due to the definition of 
'parent', are formed by adding an ear to it (forming a non-cubic 
graph) or by adding a single vertex (forming a cubic graph). If the 
node G has N - 1 vertices and 3Nl2 - 3 edges, then it may have a 
target node as a child. This is checked by adding one vertex and 3 
edges, making a candidate child C ,  and then applying the parent 
rules to C to see whether G is in fact its parent. This final stage 
is achieved by seeing whether the newly added vertex is in the 
same orbit as the one that would be removed from C. (For removing 
the vertex that has just been added forms G). If the node G has N - 
1 vertices but not the right number of edges, then it has no 
children leading to a target node and we backtrack. 

We form the children of any other node in a similar fashion. 
A list of candidate children is formed by adding ears of all 
possible lengths, between all possible inequivalent pairs of points. 
The canonical labelling algorithm nauty [9] is used to find the 



orbits of points, and of pairs of points under the action of the 
automorphism group of the graph. Then only one pair of points from 
each orbit is used. This ensures that the candidate children are all 
different (see Proposition 1.5 below). Of course when adding ears 
of type 2 which have only one end vertex, we only use one point 
from each of the orbits on points. Then the parent rules are 
applied to each candidate child C, and it is accepted as a genuine 
child only if the ear just added is equivalent to the one that would 
be removed to form the parent of C. 

We try to avoid using the canonical labelling algorithm as 
much as possible, due to its heavy use of computer time. For 
example if the newly added ear is the only one of lowest type, or 
the only one of greatest length amongst those of lowest type, then 
we are certain that we have a genuine child regardless of the 
canonical labelling. 

We prune the tree by using the bounds on edges given above. 
If a node G has n vertices and e edges, then its child C will be 
formed by adding an ear, thus adding m vertices and m+l edges, for 
some m. The equation (*) must still be satisfied after the addition 
of this ear, so 

e + m +1 22(n + m) - N12 - 1, 
that is m < e + 2 + N l 2 - 2 n .  

The second bound may also be used to place a minimum 
length on the possible ears, but in practice such a bound is 
useless, as it is almost always less than 1. 

1.5 Proposition 

Each unlabelled connected cubic graph is found exactly once 
by the search procedure described above. 

The argument above shows that only genuine children are 
produced, and that all such are produced, except those known not 
to be on the reduction path of any connected cubic graph on N 
vertices. Hence every connected cubic graph is found at least once. 
It remains to demonstrate that each child of a node is produced 
only once, that is, that distinct children of any given node are 
nonisomorphic. If the node has N - 1 vertices, then there is only 
one child produced. Now, suppose that two children of G are formed 



by adding ears e and f in non-equivalent places, but that G+e is 
isomorphic to G+f. Let g and h be isomorphisms between G+e, G+f 
and their (identical) canonically labelled isomorph H. 

g: G+e -> H 
h: G+f -Ã H 

Then applying the parent rules to H will select an ear in the 
same orbit as g(e), and hence the same orbit as h(f). So g(e) must 
be in the same orbit as h(f). Therefore we can find an isomorphism 

i: G+e + G+f 
such that i(e) = f by combining g, h-I and an automorphism of G+f 
if necessary. 

Now restricting i to acting only on the vertices of G 
produces an automorphism of G, such that the end vertices of e are 
mapped to the end vertices of f, which contradicts the fact that 
ears of a particular length are only added between non-equivalent 
pairs of points (or, in the case that e and f are type 2 ears, 
non-equivalent single points).! 

This algorithm falls into the class of orderly algorithms in the 
sense of Colbourn and Read [5],[6] & [I I], because we apply a 
'canonicity' test to each graph produced (in this case the test is 
whether the graph is a bona-fide child) and if it passes the test 
then we are sure that it is uniquely produced and do not need to do 
any duplicate checking. 

1.6 Implementation 

The algorithm described above was coded in the C 
programming language. It was executed in late 1984 on the VAX 
111750 machine at the Department of Psychology, University of 
Western Australia. The approximate times for generation were: 14 
vertices - 10 min, 16 vertices - 2 hours, 18 vertices - 30 hours 
and 20 vertices - 500 hours. 

52. Results 

The following numbers of non-isomorphic, connected, cubic 
graphs were constructed. 

These numbers are in agreement with those found by 
Faradzhev [7], and the theoretical number of connected cubic 
graphs according to Robinson and Wormald [12]. 



Standard algorithms were programmed for the properties of 
hamiltonicity, connectivity, diameter, girth, maximum independent 
set size, chromatic number and chromatic index. 

This information together with the size of the 
automorphism group, which was found during construction, is 
tabulated below in the Appendix. 

Our catalogue is stored on magnetic tape with each entry 
consisting of the graph, the orbits of its automorphism group, and 
the information listed above. The complete catalogue of all the 
cubic graphs from 4 - 20 vertices occupies 27 megabytes. 

Hamiltonian Yes 1 2 5 17 80 474 
No 2 5 35 

1 1 4 29 
Connectivity 2 1 4 24 139 

3 1 2  4 14 57 341 

1 1  
2 2 2 1 
3 3 15 34 34 

Diameter 4 2 43 351 
5 1 6 93 
6 2 24 
7 6 
8 1 



3 1 1  3 13 63 399 
Girth 4 1 2  5 20 101 

5 1 2 8 
6 1 

Chromatic 2 1 1  2 5 13 
number 3 1 4 17 80 496 

4 1 

Chromatic 3 1 2 5 17 80 475 
index 4 2 5 34 

1 1  
2 1 

Maximum 3 1 4  
independent 4 1 17 7 
set size 5 2 73 80 

6 5 416 
7 13 

1 5 103 
Size of 2 2 22 159 
automorphism 4 1 4 20 117 
group 6 2 4 

8 3 15 62 
12 1 1  1 4 7 
14 1 
16 2 2 9 35 
18 1 
20 2 
24 1 3 2 
28 2 
32 1 2 11 
36 1 
48 1 1 2 1 
60 1 
64 1 2 
72 1 
96 1 

128 1 
336 1 



Property\Graphs on 16 vertices 18 vertices 20 vertices 

Hamiltonian Yes 3841 39635 495991 
No 21 9 1666 14498 

1 186 1435 12671 
Connectivity 2 1046 9398 101 668 

3 2828 30468 3961 50 

3 14 
4 2167 
5 1499 
6 26 1 
7 101 

Diameter 8 14 
9 4 
10 
1 1  
12 

3 3268 33496 41 2943 
Girth 4 743 7350 91 763 

5 48 450 5751 
6 1 5 32 

Chromatic 2 38 149 703 
number 3 4022 41152 509786 

Chromatic 3 3848 39687 496430 
index 4 21 2 1614 14059 

6 1074 21 
Maximum 7 2948 161 83 635 
independent 8 38 24948 268350 
set size 9 149 240801 

10 703 



PropertyVGraphs on 16 vertices 18 vertices 20 vertices 

1 
Size of 2 
automorphism 3 
group 4 

6 
8 

10 
12 
16 
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