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The problem of a macromolecule adsorbed on a single surface is treated by means of a 
generating function technique. The basic method has the virtues of simplicity and flexibility. 
The statistical weights that appear in the generating functions for tails, trains, and loops can be 
calculated with use of a variety of models. The essential physics of the adsorption process, and 
the occurrence of a critical point, are transparent in this treatment. Illustrative calculations are 
done for the simplest case, in which tails have unit weight, trains have binding energies 
proportional to their lengths, and loops are weighted by lattice walk statistics. Methods for 
treating more realistic models for chains, and for handling their interactions when there is 
multiple chain adsorption, are discussed. 

INTRODUCTION 

The problems of polymer adsorption on a surface and 
between two surfaces have attracted a great deal of atten­
tion. 1-14 The technical importance of both adhesion and col­
loid stabilization justifies the efforts devoted to them. There 
seems to be general agreement on the nature of the problems 
involved, but diverse opinions as to how best to formulate 
the statistical mechanical calculations. Two different, 
broadly characterized, techniques appear to have been most 
popular: (i) combinatorial enumeration and (ii) transfer 
matrix methods. The two methods must, when properly ap­
plied to the same model, give equivalent results. However, 
the ease of application of a theory is highly dependent upon 
the methods used in its formulation. Combinatorial methods 
tend to obscure the essentials of the problem in lengthy alge­
braic equations,I-5 while matrix methods devolve into nu­
merical evaluation at a very early state of their develop­
ment.8,IO,1I It has occurred to us that generating function 
methods have a generality that is unexcelled, and that they 
permit one to explore successively higher approximations as 
experience dictates. 

The last point is an important one that requires elabora­
tion. It is a well established result that the loops that are 
present in a reasonably strongly bound homopolymer are 
fairly short. However, the models that are used for this cal­
culation are all based on lattice walks. Real chains do not 
execute random walks on lattices; their statistics are better 
described in terms of the rotational isomeric state model. 15 

How serious, then, is the error that might be introduced on 
using a lattice to calculate the weights for short chains, for 
which the law oflarge numbers does not rule the phenome­
na? Here is a situation where the weights might best be calcu­
lated by methods that are more or less independent of the 
surface per se, and which would serve as input to the generat­
ing functions. 

It will be shown that by formulating the distribution of 
sequences of tails, trains, and loops in terms of generating 
functions that a very general formulation of the surface ad­
sorption problem for a single chain may be realized. The 
expectation numbers for the lengths of these sequences are 
readily obtained as derivatives of the generating function. 
The general equations will then be applied to a specific exam­
ple, chosen so that the weighting scheme is particularly sim­
ple, yet nonetheless applicable to the real situation of a ma­
cromolecule adsorbed on a liquid-gas interface. Finally, we 
will indicate how one might proceed to include the effects of 
mutual exclusion of configurations by means of a self-consis­
tent treatment of site occupancy in the Flory-Huggins ap­
proximation. 

GENERATING FUNCTION 

Define the generating functions for tails, trains, and 
loops as 

T(X) = L tjX
j
, to = 1, 

j>O 

C(X) = LCjXj, (1) 
j>1 

R(x) = L rjx
j
. 

j>1 

The respective coefficients tj' cj , and rj are statistical weights 
for a sequence ofjbackbone atoms of the appropriate class. If 
spring bead or lattice models are to be used, the units, j in 
number, will be chosen to be the beads or the occupied lattice 
points, rather than the springs or edges. In any event, the 
atoms, beads, or lattice points will be called vertices, and the 
bonds, edges. When either vertices or edges or both are dis­
cussed generically, they will be referred to as segments. 

The weights in Eq. (1) can be calculated quite indepen-
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dently of the basic formulas that will now be developed. De­
fine the set x = (X I,X2,X3), and the generating functionF(x) 
for all configurations of tail, train, and loop sequences in 
molecules of all lengths. It is easily seen that 

F(x) = T(x l ){C(X2) + C(x2)R(x3)C(X2) 

+ C(x2)R (X3)C(x2)R (X3)C(X2) + ... }T(x l ) 
(2) 

generates all configurations for molecules that are bound to 
at least one site. The first term generates the sequences tail­
train-tail, the second generates tail-train-Ioop-train-tail, 
and so on for the rest of the terms in the series. It will be 
noted that there might not be any nodes in the tail sequences, 
since the generating function T(x) is defined with to = 1. 

Equation (2) may be rearranged to 

F(x) = T(x l )2C(x2)[1- C(x2)R(X3)]-1 (3) 

and when XI = X2 = X3 = X this becomes 

F(x) =F(x,x,x) = T(x)2C(x)[1- C(x)R(x)]-I. 
(4) 

The general function, Eq. (3), will later be used to extract 
information on the sequence length distributions by differen­
tiation. For the present, the statistical mechanical partition 
function for a canonical ensemble of single chains of n seg­
ments, each adsorbed on a surface, is the coefficient of xn in 
Eq. (4). The operation of extracting this coefficient is de­
noted by [xn]F(x). 16 We choose not to use the grand ensem­
ble, for which Eq. (4) is the partition function, so as to avoid 
the awkward interpretation of simultaneous adsorption and 
polymerization equilibria. 

Equation ( 4 ) is essentially the same generating function 
as that formulated by Lifson 17 for the helix--coil equilibrium 
problem. In fact, any problem in statistical mechanics that 
can be represented by configurations of sequences of two 
symbols will have Eq. (4), or a minor variation thereof, as 
the generating function. 

ASYMPTOTIC ANALYSIS 

The generating functions T, C, and R must all have a 
radius of convergence > 0. This is certainly the case because 
each is a grand partition function for a single phase, with X 

being the activity. Let the radius of convergence of F(x) in 
Eq. (4) bep > 0. What is needed to evaluate the coefficient of 
xn is an asymptotic analysis of F(x). This will be done with 
the aid of Darboux's Theorem, 18.19 the basic notion of which 
is that if F(x) = l:j jjx j has a radius of convergence p, then 
jj + II jj - p - I for large j. But note that, for large n, the seg­
ment chemical potential f-l is given by 

f-l =An+ 1 -An = kTln(/nl/n+ 1) as n--H:IJ. (5) 

If the theory being developed is a statistical mechanical the­
ory, which we presume it to be, thenf-l exists, asdoes/nl/n + I 
-A = thermodynamic activity. These comments suggest 
that A is then related to p, and this we shall now prove with 
the first two theorems. 

Theorem A 

Let F(x) = G(x)/[ 1 - H(x)], where 

(1) H(x) = l:jhjx j, hI = h2 = ... = hk = 0, 

hk + I> 0, and h/~O for j> k + 1. 

(2) ForI={i-k-1Ih i ;60}, g.c.d.(I)=1. 

(3) The smallest positive root p of H(x) = 1 is less 
than the radius of convergence of the series H(x). 

(4) G(x) has radius of convergence >p, and 
G( p) ;60. 

Then F(x) has a pole at x = p, and has no other singu­
larities on the circle of convergence. 

Proof 

Rewrite H(x) as Xk+l(hk+l+hk+2X+"') 
= Xk + I (bo + blx + ... ). The power series B(x) = bo 
+ b1x + ... has the property that the greatest common divi­
sor of its exponents that actually appear is one. We want to 
prove that IB(rei8 ) I = B(r) implies (J = 0. Observe that 

IB(rei8 ) I = Ibo + blre
i8 + b2re

2i8 + ... + bk~eki8 + · .. 1 

<bo + blr + b2r + ... 

with equality if and only if all the nonzero terms have the 
same argument. Since bo > 0, the latter can be true if e ji8 = 1, 
that is,j(J is a multiple of21Tforeveryjwith b· > 0. Thus (Jis a 
rational multiple of21T, say (J = 2(a!c)1Tfo/g.c.d.(a,c) = 1. 
For anyjwith bj ;60, we thushaveja = csfor some integer s. 
Sinceg.c.d.(a,c) = 1, it must be thecasethatc dividesj. This 
contradicts condition (2) unless c = 1. 

The singularity is a simple pole, since H' ( p) > ° by vir­
tue of H' ( p) being a sum of positive terms. 

The functions to be developed will depend upon param­
eters that appear in the statistical weights. Theorem A will 
apply to these functions for certain ranges of parameter val­
ues, and where it does not, because of failure of one or more 
of the conditions, the system is at a critical point. A trivial 
example of a generating function that does not satisfy condi­
tion (2) is F(x) = F( v2). Such a function might be con­
structed by counting objects in pairs, and could obviously be 
made to conform to condition (2) by simply redefining the 
elementary unit. The evaluation of the partition function 
and various averages for a chain of n nodes is contained in 
the next two theorems. 

Theorem B 

Let F(z) = c (z) I d (z), where for some finite p > 0: 

( 1) c (z) and d (z) have a radius of convergence> p. 

(2) p is the unique, simple zero of least modulus of 
d(z). 

Then, for some (JI >p, 

[zn]F(z) = - c( p)ld'( p)pn+ 1 + O((J I- n
). (6) 

Proof 

LetH(z) = c( p)/(z - p)d'( p). (The denominator is 
approximated by the first term of the Taylor's series expan­
sion about the zero of least modulus.) Then H(z) has the 
same least-modulus singularity as does F(z), and 
F(z) - H(z) has radius of convergence> (JI >p for some 
(Jl' Thus, 
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But 

[zn]F(z) = [z"]H(z) + [z"] [ F(z) - H(z)] 

= _c(p)ld'(p)pn+I+O(OI-n), 

as can be seen by expanding (Z-p)-I = -l/p(l-zlp). 
Theorem 4 of Ref. 18 is a variation of this theorem ap­

plied to a pole of arbitrary weight; it will be our Theorem D. 
If the singularity is not a simple pole, then the physical sys­
tem is at a critical point. Theorem B gives the free energy 
everywhere except at these isolated critical points. 

To evaluate certain expectation values we require the 
following variation of the last theorem. 

TheoremC 

Let 

= c(x,y)ld(x,y), 

where./j,k;;;'O forj,k;;;.O, and c, d are power series. For n;;;'O, 
define 

(k)n = I kln.k /Iln,k' 
k;.O '/ k;.O 

if the sums converge and the denominator is nonzero. For 
the function F(x,y), denote aF(x,y)lax by Fx (x,y), etc. 
Suppose 

(e 1) F(z,l) and Fy (x, 1) have a common finite radius 
of convergence p > O. 

(e2) d(x,l) has a unique least-modulus zero atx =p. 

(e3) c(x,I), d(x,l), and m(x) =cy(x,l)d(x,l) 
- c(x,1 )dy (x,l) have radius of convergence ;;;.p. 

(e4) dx (p,l) #0. 

Then, for sufficiently large n, (k ) n exists and 

(k)n = Cln + C2 + o(on), 

where 

dy (p,l) 
CI =--'----

pdx (p,l) 

(7) 

dxx (p,l)dy(p,l) cy (p,l) dyx (p,l) 
C2 = CI + 2 + - ""':""'---'--

dx(p,l) c(p,l) dx(p,l) 

_ .....;dy:.....(..:...p_, 1_)~c x;.....(..:...p_,I_), 0 < 0 < 1. 
c( p,l)dx (p,l) 

Proof 

By (e 1) and (e2), the point x = p is the unique least­
modulus singularity of F(x,l). By (e3) and (C4), x =p 
must be a simple zero of d(x,l) and a simple pole of F(x,I), 
and c( p,l) #0. 

Define In = ~k;.oln.k = [xn]F(x,l) and In (k)n 
= l:k;'O k/,.,k = [xn]Fy(x,I). These exist by (e3). Follow­

ing Darboux's method described in Theorem B, we estimate 
In and (k ) n by finding simpler functions with the same first 
singularity: 

In = [xn] c(x,l) 
d(x,l) 

= [xn] c(p,l) +O(OI-n) for some OI>P 
(x -p)dx (p,l) 

c(p,l) +O(OI-n). 
pn+ Idx (p,l) 

To estimate (k )n, define m(x) = d(x,l)cy (x,l) 
-dy(x,l)c(x,I). Then 

f, (k) - [xn] m(x) 
n n - d(x,I)2 

=[xn]( m(p) (X_p)-2 
dx (p,I)2 

+ [mx(p) _ m(p)dxx (P,I)] (X_p)-l) 
dx (p,l)2 dx (p,l)3 

+ 0(0 2- n), for some O2 >p 

= (n + l)m(p) p-n-2 _ ( mx(p) 
dx(p,I)2 dx (p,I)2 

_ m(p)dxx(P,I») -n-I+o(o-n). 
d ( 1)3 P 2 x p, 

The theorem now follows. 

Theorem D 

Suppose that the function F(x) = l:Jj./jx j has only one 
singularity of least modulus at p, and that near p, F(x) can 
be written as an analytic function plus a finite sum of terms 
of the form (l-xlp) -Wg(x), whereg(x) is analytic nearp 
andg( p) #0. The real part ofw is the weight of the singular­
ity, and w#O, - I, - 2,··· . Then the dominant term in/n is 
contributed by the singularity of highest weight w = Re (w), 
and 

In =g(p)n
W

-
1 

[1 +o(on)], 0<1. 
r(w)pn 

The proof is obtained by expansion of the singular term in a 
binomial series, and then using Stirling's approximation to 
evaluate the factorial functions. 

We now have the necessary tools to evaluate the free 
energy, given the generating functions. Theorem A tells us 
that there will only be one singularity to contend with, Theo­
rems Band e give simple methods to evaluate the equations, 
and Theorem D enables us to handle critical point. 

EXPECTATION VALUES 

To evaluate various averages pertaining to the configu­
rations of the adsorbed chains it is convenient to define sev­
eral auxiliary functions. Let 

F'(x,y) = T(xy)2C(X)/[ 1- C(x)R(x)], 

F'(x,y) = T(X)2C(X)/[I- C(x)R(xy)], 

Fb(x,y) = T(x)2C(xy)/[ 1- C(xy)R(x)], 

F1(x,y) = T(X)2C(x)/[1 - C(x)yR(x)]. (8) 

It is easily seen that the terms of [xn]F'(x, y), for example, 
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are weighted by factors of yk, where k is the number of ver­
tices in the tail sequences. Similarly, all vertices in loops are 
counted in F r, the bonded vertices are counted with F b, and 
the number of loop sequences is contained in F I. Let 
FC (x, y) be anyone of these functions that counts objects in 
class c. The averages that are sought are all ofthe form 

(k) = [xn]F~ (x,l) 

C n [xn]FC(x,l) 

which may be evaluated by application of Theorem C, or by 
Theorem D at a critical point. 

EXAMPLE: WALKS ON LATTICES 

To illustrate the use of the equations, especially those for 
the asymptotic analysis, the generating function for paths 
will be developed.20 All paths considered are nearest-neigh­
bor walks on the integer half-space {(x,y,z) Iz>O}. The 
walks are normalized by considering only those which touch 
the plane P = {(x, y,z) Iz = O} and for which the first point 
on P is (0,0,0). 

For any class X of such walks and any weighing function 
wt, the generating function (gf) is 

gf= I wt(w)x lwl , 
weX 

where Iwl is the number of vertices in w. Clearly, one might 
just as well count edges in the paths; the choice is arbitrary. 

First consider the gf R (O',x) for all walks that start at 
(0,0,0) and end on P, with the weighting factor 0' for each 
vertex on P, and one for all other vertices. We determine 
R(O',x) by dividing the possibilities as shown in Fig. 1. The 
walk may consist of a single vertex, with gf = ux. If the walk 
has more than one vertex, the first step might be horizontal. 
The vertex at the origin has a weight 0', and the first step can 
be in any of four directions. The remainder of the walk has 
gf = R (O',x), so that these configurations are generated by 
40'R (O',x) , as indicated in the figure. If the first step is verti­
cal, there must be at least one other vertical step in the walk, 
since R (O',x) counts walks that end on P. The sequence 
between the first step and the next vertical step that returns 
to P is generated by R ( 1 ,x). The remainder of the walk, 
beyond the first step that returns to P, is generated by 
R(O',x). Walks in this class are thus generated by 

• 

.. & cD. 

--~-Cl-u-

crx 

crxR(l, x I R(cr, x I 

FIG. 1. Terms in the generating function for paths that begin at the origin 
and end anywhere on the surface. The weight for a vertex on the surface is u, 
x is the counting variable, and R (u,x) is the generating function. On the 
first line, the path consists of a single vertex; on the second, the path takes its 
first step in any of four directions on the surface, and is then followed by a 
path in the same class; on the third, the path takes its first step in the vertical 
direction, it then becomes a path in the class R ( l,x) at a lattice layer once 
removed from the surface, and then it returns to the surface to continue as 
R(u,x). 

uxR (l,x)R (O',x) , so that the recurrence relation for R (O',x) 
is 

R (O',x) = O'X + 4uxR (O',x) + O'xR( 1,x)R (O',x) (9) 

or 

O'X 
R(O',x) =-------

1 - 4ux - uxR(1,x) 

For the case 0' = 1, it follows from Eq. (9) that 

or 

xR(1,X)2 + (4x - I)R(1,x) - x = ° 

R (1,x) = 1 - 4x - ~ (1 - 2x)( 1 - 6x) . 

2x 

( 10) 

(11) 

The next walks to be considered are those that start at 
(0,9,0) and end anywhere in {(x, y,z) Iz>O}. The weights 
will be as above. The possibilities are displayed in Fig. 2, and 
these lead to a recurrence relation for the gf V(O',x) of the 
simple form 

V(O',x) = O'X + 4uxV(O',x) 

+ O'xR( 1,x) V(O',x) + O'xV( 1,x) 

or 

V( ) 
_ O'x[ 1 + V(1,x)] O',X ___ ..:...---:.....--.:c...:......:....:~ 

1 - 4ux - O'xR( l,x) 
(12) 

Again, when 0' = 1 it is seen that 

V(1,x) = ___ x __ _ 
1- 5x -xR(1,x) 

(13 ) 

so that 

V( ) 
_ [1 - 4x - xR (1 ,x) ] ux 

O',X - ~------.:.--:.........:....::...---------

[1 - 5x - xR(1,x)] [1 - 4ux - O'xR(1,x)] 
(14) 

From Eq. (13) it follows that walks that begin at (0,0,0) and 
never return to Pare generated by 1 + V( 1,x) if the vertex at 
(0,0,0) has unit weight. 

We now have the pieces needed for the gfs for tail, train, 
and loop sequences. Tails leave the surface never to return; 
they are generated by 

T(x) = 1 + V(1,x) = 1 - 4x - xR(1,x) . (15) 
1 - 5x -xR(1,x) 

The intervening sequences oftrains and loops are generated 
by 

• crx 

---6n-~-- crxR(l, xIV(cr, x I 

--~--- crxV(l, xl 

• ,0 dJ-!L-. 4crxV(cr, x) 

FIG. 2. Same as Fig. 1, but for paths that begin at the origin and end any­
where on or above the surface. The generating function for paths of this 
class is V(u,x). Otherwise, the terms are constructed much as they are in 
Fig. 1. 
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ux C(x) 
R(u,x) = =--..:......:.--

1 - 4ux -uxR(1,x) 1 - C(x)R(x) 

from which it follows that 

and 

C(x) = ux (16) 
1-4ux 

R(x) =R(1,x) = 1-4x-~(1-2x)(I-6x) . 
2x 

(11 ) 

The equation for C(x) is obviously true, and that for R (x) 
will be seen to be correct on referring to Fig. 1, where the 
sequence between the vertical steps is stated to have the 
gf R ( 1,x). We thus have, for this simple model, 

F(x) = (1 - 4x - XR(X»)2 ux . 
1 - 5x - xR(x) [1 - 4ux - uxR(x)] 

(17) 

It is of interest to note that the asymptotic behavior of 
the coefficients of R (x) is 

F(x) = x [ 1 - 4x + ~ (1 - 2x)( 1 - 6x) ] 

(1 - 6x) [2u 1 - 1 - 4x + ~ (1 - 2x)( 1 - 6x) ] 

Location of pole 

When u = 1, terms in the numerator and denomination 
ofEq. (20) cancel, and we are left with 

F(x) = x/(1 - 6x), u = 1. (21) 

It is easy to see that [xn] F( x) = 6n - 1 in this case. 
It is also instructive to apply Theorem B to Eq. (21). We 

havec(x) =x,d(x) = 1-6x,p= 1/6,andd'(p) = -6, 
so that 

[xn]F(x) = _ 1/6 = 6n- l. (22) 
(1/6)n+l( -6) 

This equation is readily interpreted: There are six choices for 
each step of the walk, with one vertex fixed at the origin. 
Clearly Eq. (22) is the partition function for polymer chain 
that is modeled by a walk on a cubic lattice. Since there is an 
entropic disadvantage in being attached to the surface, and 
no energetic advantages, the chain shuns the surface, and in 
fact acts as if the surface were not present. 

For u# 1, the application of Theorem B requires that 
one find the zero ofleast modulus of the denominator ofEq. 
(20), i.e., the solution of 

d( p) = (1- 6p)[2u- 1 
- 1 - 4p 

+ ~ (1 - 2p) (1 - 6p) ] = 0 (23) 
I 

(18) 

as determined with use of Theorem D. This coincides with 
the weights for Gaussian random Walks l4 to within constant 
terms that depend upon the details of the models. 

EXAMPLE: EVALUATION 

The partition function and expectation values will now 
be evaluated from the foregoing equations for walks on lat­
tices. The free energy will be obtained from Eq. (17) by 
application of Theorem B, and expectation values for the 
number ofvertices in tails, trains, and loops, and the number 
ofloops, are obtained from Eqs. (8), (11), (15), and (16) 
by application of Theorem C. There is a critical point in this 
problem, and it is handled separately with Theorem D. 

We begin by simplifying the equation for T(x). Upon 
substituting Eq. (11) into Eq. (15), it is easy to show that 

[T(x)J2= 1-4x+~(1-2x)(I-6x) (19) 
2(1- 6x) , 

so that Eq. (17) becomes 

(20) 

is required. Either p = 1/6 or 

2u- 1 
- 1- 4p + ~(1- 2p)(I- 6p) = O. (24) 

Since p is the zero of least modulus, solution of Eq. (24) 
requires p<1/6 and 4p+1-2u- I >0, or 1/6>p>1/ 
2u - 1/4, which implies u>6/5. Thus, when u = 6/5, there 
is a nonsimple zero. In fact, for this case, 

d(p) = (2/3)(1- 6p)3/2[~1_ 6p + (3/2)~1- 2p], 

u = 6/5. (25) 

Further examination of this critical point is deferred to a 
later section. 

The following results are thus established: For u < 6/5 
the zero ofleast modulus isp = 1/6 and is simple; for u = 6/ 
5 the zero ofleast modulus is stillp = 1/6, but the weight of 
the pole of F(x) is 3/2; and for u> 6/5 the zero of least 
modulus is 

p = ~ (4 - 3/u)( 1 - 1/s) - 2(1 - 1/u) (26) 

by solution ofEq. (24), and again the zero is simple. 

Expectation values 

The following equations are obtained from Eqs. (8) 
with use of Eqs. (11), (16), and (19): 

F '( ) _ x [ 1 - 4xy + ~ (1 - 2xy)( 1 - 6xy) ] x,y - , 
(1 - 6xy) [2u 1 - 1 - 4x + ~ (1 - 2x) (1 - 6x) ] 

(27) 

F '( ) _ xy[1-4x+~(1-2x)(1-6x)] x,y - , 
(1 - 6x) [2u Iy - 1 - 4xy + ~ (1 - 2xy)( 1 - 6xy) ] 

(28) 

F b ( ) _ xy[1-4x+~(1-2x)(1-6x)] x,y - , 
(1- 6x) [2u 1 - Y - 4xy + y~(1- 2x)(1- 6x)] 

(29) 
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x [ 1 - 4x + ~ (1 - 2x)( 1 - 6x) ] 
F I (x, y) = --:-:--:-:-r:~-;-----,:.:.--'-:----:--~~==:;::~==~::-:;­

(1 - 6x) [2q 1 - Y - 8x + 4xy + y~ (1 - 2x) (1 - 6x) ] 
(30) 

The analysis of these equations will be illustrated with a thorough discussion ofEq. (27), which is typical of the set. There 
are three cases to consider: q < 6/5, q = 6/5, and q> 6/5. The first and third are covered by Theorem C, and the second by 
Theorem D. 

(i) q < 6/5. As required by Theorem C, the factor 

d(x,y) = 1 - 6xy (31) 

in the denominator ofEq. (27) locates the zero ofleast modulus. The balance ofEq. (27), i.e., 

( ) x[I-4xy+~(I-2xy)(I-6xy)] (32) c x,y = , 
2q 1 - 1 - 4x + ~ (1 - 2x)( 1 - 6x) 

satisfies the conditions of Theorem C. It follows that dy (p, 1) = - 1, dx (p, 1) = - 6, P = 1/6, so that C 1 = 1. Thus, all of 
the segments are in tail sequences when q < 6/5. 

(ii) q = 6/5. At the critical point, Eq. (27) may be expressed as 

Ft(x,y) = x[ 1- 4xy + ~(1 - 2xy)(1 - 6xy)] [3/f=2X - 2/f=6Xl (33) 

(1 - 6xy)~1 - 6x(2x + 5/3) 

The dominant contribution to [xn]Ft(x,l) is contained in 

(1 - 6x) _3/23x(1 - 4x).JT=2X . 
2x + 5/3 

The other terms in Eq. (33) are oflower weight. The deriva­
tive F ~ (x, y) consists of several terms, the dominant one 
being 

(I _ 6x) -5/2 18x
2

( 1 - 4x)~ 
2x + 5/3 

as may be shown by differentiation ofEq. (33). Application 
of Theorem D yields 

[xn]F~(x,1) = r(3/2) n = 2n/3. 
[xn ]pt(x,l) r(5/2) 

(34) 

Thus, at the critical point, two-thirds of the segments are in 
tail sequences. 

(iii) q> 6/5. The zero of least modulus is now deter­
mined by the second term in the denominator ofEq. (27). 
Since this term is independent of y, dy ( p, I) = 0, and the 
proportion of segments in tail sequences is negligible for 
large n. In this instance, C2 in Theorem C is easily computed, 
as the only term that contributes is cy ( P, 1 )/c( p, I). Since 

( ) 
x [1 - 4xy + ~ (1 - 2xy)( I - 6xy) 1 

c x,y = 
(1- 6xy) 

one finds 

C2 =4+P(_6_+ 2 ) 
1- 6p 1- 1/q 

which shows that the tails are only a few segments in length. 
The other three equations, (28)-(30), are treated simi­

larly. The following results are obtained: 

p=~(4-3/q)(I-1/q) -2(1-1/q), 

{} _ 4up+q-2 
b- , 

4upJ (4u - 3)(q - 1) 

(l)n/n = (1- 4uP){}b' 

1 - ()b 

(n,) = (1 - 4up){}b 

(35) 

(36) 

(37) 

(38) 

Here (}b is the fraction of bound vertices, (In) is the average 
number ofloops in a chain ofn vertices, and (n,) is the ratio 
of the average number of unbounded vertices to the average 
number ofloops, which is essentially the expected length of a 
loop. Figure 3 depicts these results for various values of 
In q = - €/kT, where € is the (negative) binding energy 
and kT has its usual meaning. 

DISCUSSION 

The critical point at q = 6/5 deserves attention to deter­
mine the nature of the transition that occurs there. The 
chemical potential J.L of a chain segment is given by 
J.L = kTlnp with use of Theorem B and the rules of statist i­
cal thermodynamics. The first temperature derivative of J.L is 

1 25 

1 00 

e 75 

e 50 

o 25 

o 00 

o 0 o s 1 0 

In cr 

o 25 

o 20 

e 15 

o 10 

o 05 

o 00 

1 5 2 0 

FIG. 3. Results of numerical calculations based on Eqs. (35)-(38). The 
symbols are defined by those equations and the sequel. Curves for (n/). 8 •• 
andp are to be read from the scale on the left, and that for (/ >n/n from the 
scale on the right. The critical point is at u = 6/5, In(6/5) = 0.18, and the 
transition from unbound to bound states that occurs there is of second or­
der. 
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af..l = _ dp ku lnu 
aT du p 

{

O' u<.6/5 

= k In u [ - 7 + 6/ u ] 2/ 
-p- 2~(4u- 3)(u-l) + u, 

which is continuous at the critical point. The second deriva­
tive is discontinuous: 

a2f..l lim --2 =0, 
CT~6/L aT 

lim a2~ = -150[kln(6/5)]2, 
CT~6/S+ aT 

and the transition is thus of second order. 
It is important to observe that the loops that are formed 

in a fairly strongly bound polymer are quite short. For exam­
ple, Fig. 3 shows that at - E/kT = 0.5, the average loop 
contains about three vertices. The model leading to this re­
sult is based on the lattice, but the generating function, Eq. 
( 4 ), may be formulated independently of a lattice. It is im­
perative that more accurate representations of the statistical 
weights be developed, by means of the rotational isomeric 
state model, for example, before attaching too much signifi­
cance to the precise values calculated for this aspect of the 
adsorbed molecule. 

To illustrate how the configurational freedom of the 
chain might influence the binding, assume that the total 
(normalized) configuration space available to a segment in 
d-dimensional space is (tJd' In Eq. (9), the factor 4 in the 
second term of the right-hand side is replaced by (tJ2' and the 
coefficient ofthe last term becomes [«(tJ3 - (tJ2)2P. The last 
follows if it is assumed that (tJ3 - (tJ2 represents the number of 
steps that leave a surface to enter 3-space, and one-half of 
these leave the surface in either the upward or the downward 
direction. The radical in Eq. (11) then becomes 

~ (1 - 2x) (1 - 6x)---+J (1 - (tJ3X)[ 1 - (2w2 - (tJ3)X] • 

The critical point is now located at U c = 2w3/«(tJ3 + (tJ2); for 
u < u c' P = 1/ (tJ3 and the chemical potential of a segment is 
- kTln (tJ3' The critical point depends upon the chain stiff­

ness through (tJ3 and the influence of the surface on the chain 
configurations through (tJ2' It is reasonable to assume that 
the stiffer the chain, the closer is (tJ3 to (tJ2' and the closer is 
the critical point to u = 1, i.e., zero binding energy. This 
discussion is not pursued further, since it is only intended to 
illustrate the versatility of the technique, rather than being 
definitive on the binding of one type of molecule vs another. 
A more careful consideration of the configuration statistics 
of chains would take us far afield of the present purpose. 

CONCLUSIONS 

The generating functions that have been developed, and 
the theorems that are used to evaluate the partition functions 
and averages, have been shown to be easily manipulated and 
interpreted. One advantage of the technique, at least at this 
stage of its development, is that it is algebraic to the end, 
requiring no more than elementary computations for reduc­
tion to numerical form. As we consider more intricate prob-

lems this will doubtless change, but the salient features of the 
adsorption problem are now clear. 

Polymer chains have much entropy to lose by binding to 
a surface, and will do so only if the attractive energy is suffi­
cient to overcome this disadvantage. It is interesting to ob­
serve that the chain acts as if the surface were not present if 
the binding energy is too small. Except for a very small range 
of energies very near to the critical energy, the bound chain is 
adsorbed very strongly, as evidenced by the shortness of the 
loops that exist, and the fact that there is a relatively large 
number ofloops. For example, it will be seen on inspection of 
Fig. (3) that at In u~0.3, where the number ofloops is max­
imal, about 1 in 14 segments initiates a loop sequence that is 
about five vertices long. Approximately 60% of the seg­
ments are bound at this energy. This is a consequence of the 
apparent fact that the entropy of the bound chain is greater 
when it contains many short sequences than it is when it 
contains only a few long sequences. 

In future papers of this series we will address in succes­
sion the problems of adsorption between two parallel planes 
and multiple chain adsorption. The generating functions for 
these problems are more intricate, but the method remains 
powerful. 
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