Information Processing Letters 19 (1984) 131-133
North-Hoiland

19 October 1984

AN ALGORITHM FOR GENERATING SUBSETS OF FIXED SIZE WITH A STRONG

MINIMAL CHANGE PROPERTY

Peter EADES

Department of Computer Science, University of Queensland, St. Lucia, Queensland, Australia 4067

Brendan McKAY

Australian National University, Canberra, A.C.T. 2600, Australia

Communicated by G.R. Andrews
Received 24 January 1984

Keywords: Combinatorial algorithm, minimal change algorithm, Hamilton path, combinations

1. Introduction

In this paper we present an algorithm for gener-
ating a list

Si, S, - S, (m=(:))

of all subsets of size k of a set of size n. The
algorithm has two important properties: it is a
minimal change algorithm in that successive sub-
sets S; and S, , are minimally different, and it is
fast in the sense that the time required to produce
the list is bounded by a constant multiple of ().
There are many algorithms (see [4] for a survey),
including the one presented in this paper, which
have the following Minimal Change Property:

(MCP): if S; and S;,,; are successively gener-
ated, then S;,, is obtained from S, by
changing exactly one element.

That is, S,,,; and S; have exactly k — 2 elements
in common. Eades, Hickey and Read [5] note that
(MCP) is not a sufficiently strong minimal change
criterion when the subsets are represented as sorted
arrays, that is, {s,, s,, ..., s, } wheres; <s, < ---
<s, Is represented as the array (s, s,, ..., s,).
The difficulty is that although only one element of

the set is changed, more than one entry of the
array may have to change to retain the ordering of
the entries. ,

The algorithm presented in this paper over-
comes this difficulty. In fact, it generates all (})
elements of the set

U= {(s1,85, - 8)

I<s;<s;<--- <s, <nj
such that the following Strong Minimal Change
Property holds:

(SMCP): if (s, S35 ..., i) and (s, 85, ..., Sh)
are successively generated elements of
U, .. then, for some m, s; =s] for all
1# m.

This property admits another description, rele-
vant to the case where the subsets are stored as
bitstrings. Suppose that a chord is a selection of k
notes from a contiguous group of n keys on a
piano. There are () chords. An algorithm with
(SMCP) gives a person with k fingers a way of
playing every possible chord, changing one note at
a time, so that no two fingers are ever crossed.

The algorithm is presented in the next section,

0020-0190,/84 /$3.00 © 1984, Elsevier Science Publishers B.V. (North-Holland) 131

Volume 19, Number 3

)

Fig. 1. Seven fingered person playing a chord with k = 7.

and analysed in Section 3. Finally, in Section 4 we
compare its performance to other algorithms with
(MCP) and (SMCP).

2. The algorithm

In this section we describe a list L(n, k) of the
elements of U, so that (SMCP) is satisfied. If
k <0 or k > n, then L(n, k) is empty. If k =0, then
L(n, k) consists of the single null vector (); if
k =n, then L(n, k) consists of the single vector
(1, 2, ..., n); and if k =1, then L(n, k) is the list
1),), ..., (n). For 1 <k <n the list L(n, k) is
described in Fig, 2.

The list in Fig. 2 can be produced with Algo-
rithm GENERATE in Fig. 3. The procedure FoRr-
WARD, when called with parameters POINTER = p

3,4, . k) L(n—2,k—2) with 2
(1,2 added to each entry

n—k+3,n—k+4, ... ,n)/ ofeacharray.

Reverse of L(n—2,
k —1) with 2 added to

each entry of each

n—-k+2,n—k+3, ... ,n)

(1, :
3,4, e L k1)
array.

(2,3,4, ,k+1)) L(n—1, k) with 1 added
to each entry of each

(n—k+1,n—-k+2, .. ,n)/ array.

Fig. 2. The list L(n, k) for 1 <k < n.

132

INFORMATION PROCESSING LETTERS

19 October 1984

Algorithm GENERATE(n, k)
declare SUBSET : array [0..k] of integer

main program
SUBSET=(1, 2, ..., k)
PROCESS(0, 0)
"FORWARD(1, 0)

procedure FORWARD(POINTER, DIFFERENCE)
if (POINTER < k) and
(DIFFERENCE —POINTER <n—k—1)
then
FORWARD(POINTER + 2, DIFFERENCE + 2)
PROCESS(POINTER +1, n—k+ POINTER +1)
REVERSE(POINTER + 1, DIFFERENCE +2)
PROCESS(POINTER, DIFFERENCE +2)
FORWARD(POINTER, DIFFERENCE+1)
else if POINTER = k
then
for LASTINARRAY = DIFFERENCE +2 to n do
PROCESS(k, LASTINARRAY)

procedure REVERSE(POINTER, DIFFERENCE)
if (POINTER < k) and
(DIFFERENCE —POINTER <n—-k—1)
then :
REVERSE(POINTER, DIFFERENCE+1)
PROCESS(POINTER, DIFFERENCE + 1)
FORWARD(POINTER + 1, DIFFERENCE + 2)
PROCESS(POINTER + 1, DIFFERENCE +2)
REVERSE(POINTER +2, DIFFERENCE + 2)
else if POINTER = k
then
for LASTINARRAY ==n—-1
downto DIFFERENCE +1 do
PROCESS(k, LASTINARRAY)

procedure PROCESS(POSITIONCHANGED, NEWVALUE)
SUBSET[POSITIONCHANGED]= NEWVALUE
append SUBSET to the list L(n, k)

Fig. 3. Algorithm GENERATE.

and DIFFERENCE = d, operates on the array SuUB-
SET as follows. Suppose that, prior to the call,
SUBSET had value s = (s, s,, ..., 8,). Let V, 4, be
the set

{(sl, e Spo 1 Xy Xpy s ooy Xy

d<x,<x,,; < - <x,<n}.

Note that V, 4y is U,,. In fact, V_ , has (,27¢,)
elements and the correspondence between V4
and U, _4_, 41 1s clear. The procedure FORWARD

Volume 19, Number 3

adds all elements of U, 4 to L(n, k) in such a way
that (SMCP) ‘holds for successively added vectors,
and REVERSE does the same in reverse order.

It is interesting to note that FORWARD and
REVERSE are oblivious to the value of SUBSET; that
is, they do not need to use the present value of
subset to compute the next value.

The algorithm can be optimised by a clever
implementation of the stack in a way similar to [7]
and [1]. Such a version is available from the
authors.

3. Analysis

It is clear from the text that the time complexity
of GENERATE(n, k) 1s O(k + (}) + c(n, k)), where
¢(n, k) is the number of calls to FORWARD or
REVERSE. Now consider the invocation tree of calls
to these procedures: since every node which is not
a leaf has three children and produces at least two
subsets, it follows that ¢(n, k) <1+ 2(}).

Proposition 3.1. The time complexity of the algo-
rithm GENERATE(n, k) is Q(k +(§))-

This shows that the algorithm is fast in the
sense that the average time required to generate a
subset is bounded by a constant, independent of n
and k if k <n.

In fact, an inductive argument may be used to
calculate c¢(n, k) explicitly, as well as the average
p(n, k) of PosiTioNCHANGED over all calls to Pro-
CESS.

Proposition 3.2

(a) p(n, k) =[k(n — k)]/(n —k + 1), and
k/2]|)

e =1+3% ("2
i=1

It is interesting to note that c(n, k)= O(n* 1)

INFORMATION PROCESSING LETTERS

19 October 1984

for fixed k. This implies that all but O(n™!) of the
subsets are produced by the for loops, explaining
the exceptional speed when k is much smaller than
n.

4. Conclusion

In [6, p. 42] and [3] two other subset generating
algorithms which satisfy (SMCP) are given. Both
these algorithms are fast in the sense of the previ-
ous section. However, the tests of [2] indicate that,
in practice, both are considerably slower than Al-
gorithm GENERATE when k is small in comparison
to n. When k is close to n, the algorithm in [3] is of
comparable speed to GENERATE, but the algorithm
of [6] remains slower.

The algorithm of [7] is considerably faster than
GENERATE; although it satisfies (MCP), it does not
satisfy (SMCP).

We refer the reader to [2] for detailed compari-
sons.

References

[1] J.R. Bitner, G. Ehrlich and E.M. Reingold, Efficient gener-
ation of the binary reflected Gray code and its applications,
Comm. ACM 19 (9) (1978) 517-521.

[2] M. Carkeet and P. Eades, Performance of subset generating
algorithms, in: Algorithms in Combinatorial Design The-
ory, Annals of Discrete Mathematics, to appear.

[3] P.J. Chase, Algorithm 382: Combinations of M out of N
objects, Comm. ACM 13 (6) (1970) 368.

[4] P. Eades, Generations of subsets of fixed size, Tech. Rept.
No. 44, Dept. of Computer Science, Univ. of Queensland,
1982.

[5] P. Eades, M. Hickey and R.C. Read, Some Hamilton paths
and a minimal change algorithm, J. ACM (January, 1984).

[6] S. Even, Algorithmic Combinatorics (MacMillan, New
York, 1973).

[7] CW.H. Lam and L.H. Soicher, Three new combination
algorithms with the minimal change property, Comm. ACM
25 (8) (1982) 555-559.

133

