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SUMMARY

We define three types of neighbour-balanced designs for experiments where the units are
arranged in a circle or single line in space or time. The designs are balanced with respect to
neighbours at distance one and at distance two. The variants come from allowing or forbidding
self-neighbours, and from considering neighbours to be directed or undirected. For two of the
variants, we give a method of constructing a design for all values of the number of treatments,
except for some small values where it is impossible. In the third case, we give a partial solution
that covers all sizes likely to be used in practice.

Some key words: Border plot; Circular design; Eulerian trail; Latin square; Neighbour design; Perfect cycle system;
Quasigroup; Universal sequence.

1. A DESIGN PROBLEM

The following experiment was brought to our attention by R. M. Cormack, University of St
Andrews. A marine biologist wanted to compare five genotypes of bryozoan by suspending them
in sea water around the circumference of a cylindrical tank. Each genotype was replicated five
times, so that altogether 25 items were suspended in the tank: see Bayer & Todd (1996).

When the experiment was being planned, there was a suggestion that neighbouring genotypes
might interfere with each other. The model assumed was that the response yi at site i satisfies

yi = λτ(i−1) + δτ(i) + ρτ(i+1) + εi , (1)
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944 R. E. L. ALDRED, R. A. BAILEY, B. D. MCKAY AND I. M. WANLESS

Fig. 1. Circular design for five treatments in 25 plots: it is strongly balanced
for neighbours at distances one and two.

where τ(i) denotes the genotype at site i , the εi are independent random variables with mean
zero and common variance σ 2, and arithmetic on the site labels is performed modulo 25. Here
δ j is the direct effect of genotype j , while λ j and ρ j are the left- and right-neighbour effects of
genotype j , respectively, which are not assumed to be the same.

Under model (1), the sums of the variances of the estimates of the difference between two
δ-parameters or two λ-parameters or two ρ-parameters are all minimized when (i) each ordered
pair of items occurs just once as neighbours around the circumference of the tank, and (ii) each
ordered pair of items occurs just once with a single item between them. Conditions (i) and (ii)
are called strong neighbour balance at distances one and two respectively. Designs that minimize
these sums of variances are called optimal.

A design with these properties is shown in Fig. 1. The parentheses indicate that the sequence
is to be interpreted as a circle. Later, we use square brackets to indicate a sequence that is simply
a line. From now on, sequence means circular sequence unless otherwise stated.

A design like the one in Fig. 1 can also be used for n treatments in a long line of n2 + 2
plots. The two end plots and the n2 inner plots are all used for the experiment but only those
measurements on the inner plots are analysed. In agriculture and forestry, such end plots are
known as guard plots or border plots: see Azaı̈s et al. (1993). To create the linear design, cut the
circular design open between any pair of items and straighten it out: this gives the inner plots.
The treatment on each border plot is the same as the treatment on the inner plot at the opposite
end of the design.

Jenkyn & Dyke (1985) argued that model (1) is appropriate for experiments on fungicides
or pesticides when plots are in a single line. Spores from plots with less effective treatments
may spread to their neighbours, and changeable wind patterns imply that neighbour effects from
different sides are not the same.

When there are n2 inner plots, conditions (i) and (ii) together are equivalent to the following
condition: (iii) among the triples of the form

[
τ(i − 1), τ (i), τ (i + 1)

]
, each ordered pair of

treatments occurs once in positions 1 and 2, once in positions 1 and 3, and once in positions 2
and 3. Such designs are suitable whenever model (1) can be assumed. There are 3n − 2 linear
parameters to be estimated from n2 measurements, so we require 3n − 2 � n2, which is true for
all positive integers n.

Another use of such designs is for cross-over trials on a single subject. If it is assumed that the
response yi in period i is affected not only by the direct effect of the treatment applied in period i
but also by the carry-over effects of the treatments applied in the two previous periods, then

yi = κτ(i−2) + λτ(i−1) + δτ(i) + εi .

In such an experiment, the first two periods are used as pre-periods and measurements are made
on the remaining n2 periods. Again, condition (iii) ensures minimum variance of the estimators.

The problem is: how do we construct designs satisfying condition (iii)? In the next section,
we show that our designs are equivalent to certain sorts of quasigroups and to certain sorts of
trails in graphs. After that, we introduce two variants on the design, both with no self-neighbours:
direction is relevant in one variant but not in the other. Both of these appear to be useful. In § § 5–6
we give complete solutions to the problem of constructing both the variant types of design, before
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Designs for neighbour effects 945

(a) (b)
0 1 2 3 4

0 1 0 2 3 4
1 2 3 1 4 0
2 3 4 0 2 1
3 0 2 4 1 3
4 4 1 3 0 2

0 1 2 3 4

0 1 2 3 0 4
1 0 3 4 2 1
2 2 1 0 4 3
3 3 4 2 1 0
4 4 0 1 3 2

Fig. 2. Two quasigroups: (a) corresponds to the circular design
in Fig. 1, while its transpose, (b), is not Eulerian.

returning to the original case in § 7 and giving a partial solution. Some related open problems are
discussed in § 8.

2. COMBINATORIALLY EQUIVALENT PROBLEMS

Condition (iii) turns up in another context. Applied to the triples of the form [row, column,
symbol], it is precisely the definition of a Latin square of order n. In our application, the neigh-
bour treatments are from the same set as the direct treatments, so we have a Latin square whose
rows and columns are labelled by the set of symbols used in the body of the square. Technically,
such a square is called a quasigroup: see Street & Street (1987, Ch. 5). The quasigroup operation
◦ is defined by

a ◦ b = symbol in row a and column b.

In the circular design, each triple should have the form [a, b, a ◦ b]. The quasigroup given by the
design in Fig. 1 is in Fig. 2(a).

Conversely, we can start with any ordered pair [x, y] and successively build the design from
the quasigroup as

x, y, x ◦ y, y ◦ (x ◦ y), (x ◦ y) ◦ (y ◦ (x ◦ y)), . . . .

The Latin property ensures that the sequence cannot return to any pair in the sequence before
the pair at the start. However, for the majority of quasigroups this sequence comes back to the
start in fewer than n2 steps. For example, the quasigroup in Fig. 2(b) gives the circular sequences
(0, 0, 1, 2, 4, 3, 3, 1, 4, 1), (0, 2, 3, 4, 0, 4, 4, 2, 1, 1, 3, 2, 2) and (0, 3), of lengths 10, 13 and 2,
rather than a single circular sequence of length 25. In analogy with Eulerian trails in graphs,
we call a quasigroup Eulerian if the above construction gives a single circle of length n2, and we
also call this circular sequence Eulerian. We seek an Eulerian quasigroup for each value of n. The
two quasigroups in Fig. 2 demonstrate that interchanging rows and columns need not preserve the
Eulerian property. However, if we interchange rows and symbols then each column is replaced by
its inverse permutation. This simply reverses the circular sequence associated with an Eulerian
quasigroup, thereby preserving the property.

Our problem can also be considered to be one in graph theory. The circular sequence in Fig. 1
gives a way of traversing the edges in the complete directed graph �K ◦

5 on five vertices with a loop
at each vertex. Condition (i) is equivalent to this sequence being an Eulerian trail; condition (ii)
imposes an extra constraint. In the graph-theoretical language used by Bryant & Adams (1993),
these conditions mean that the circle of items is 1-perfect and 2-perfect, although those terms are
usually applied to systems of cycles in which items cannot be repeated within a single cycle.
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3. NO SELF-NEIGHBOURS

Sometimes, practical considerations make it undesirable to have the same treatment on neigh-
bouring plots. See Dyke & Shelley (1976), who assumed model (1) and used n(n − 1)2 + 2 plots
to give all ordered triples with no self-neighbours. Slightly different are the serially balanced
sequences of Nair (1967), which have n(n − 1)(n − 2) + 2 plots with all ordered triples of three
distinct treatments. However, if condition (i) is modified to exclude self-neighbours, then it suf-
fices to use n(n − 1) inner plots. Estimability of all the differences requires 3n − 2 � n(n − 1),
which is true when n � 4. Then the incidence of direct treatments with either left- or right-
neighbour treatments is that of a symmetric balanced incomplete-block design for n treatments
in blocks of size n − 1. In the absence of left-neighbour effects, this would produce an optimal
design for the direct and right-neighbour effects, as shown in a 2000 University of London PhD
thesis by C. Lewis.

For similar balance between left- and right-neighbour effects, all that is needed is that every
right-neighbour occurs once with all but one of the left-neighbours. However, pairwise balance
among all pairs from three factors is not sufficient to give overall balance in the sense that estima-
tors of all differences between effects of the same sort have the same variance: see Bailey (1999)
and Preece (1966, 1976, 1988). To achieve overall balance, it is necessary for the missing pairs
at distance two to be the same as the missing pairs at distance one. Therefore we also modify
condition (ii) to exclude the same treatment at distance two.

Druilhet (1999) considered designs in circular blocks of size n or n − 1, and showed that
designs satisfying the modified conditions (i) and (ii) are optimal for estimating direct effects
and neighbour effects under model (1) among designs with no self-neighbours. The proof also
holds for our situation of an equireplicate design in a single large block.

Fortunately, the statistical desiderata match the combinatorial ones. In the quasigroup, suppose
that a ◦ a = b. If the sequence does not contain the pair [a, a], then it cannot have the pair [a, b]
either. So we must insist that a ◦ a = a for all symbols a. A quasigroup is said to be idempotent
if it satisfies this condition. Any collection of circular sequences built from such a quasigroup
has all distinct ordered pairs at distances one and two but no self-pairs at distance one or two.

In graph-theoretical terms, we now seek an Eulerian trail of the complete directed loopless
graph �Kn on n vertices subject to the constraint imposed by the modified condition (ii).

Let us call a circular sequence, or equivalent quasigroup, idempotent Eulerian if it contains
n treatments in n(n − 1) plots, with every ordered pair of distinct elements occurring once at
distances one and two. Of course, such a sequence can also be opened out into a linear sequence
for n(n − 1) + 2 plots. A similar notion, treated from a combinatorial perspective, is the idea of
a universal sequence: see, for example, Brockman et al. (2010).

4. UNDIRECTIONAL NEIGHBOUR EFFECTS

Finally, we consider designs for experiments where the effect of the neighbouring treatment
is the same whether it is from the left or the right. In agricultural experiments this is a reason-
able assumption if the neighbour effect is caused simply by proximity, such as competition for
resources (Kempton & Lockwood, 1984) or roots of plants reaching into nearby plots (Welham
et al., 1996). To improve control of heterogeneity, Philippeau et al. (1996) and David et al. (2001)
recommend that a variety trial should use long thin plots, each consisting of such a small number
of rows of plants along the plot length that it is wasteful to disregard the data from the exterior
rows. Now the model is

yi = λτ(i−1) + δτ(i) + λτ(i+1) + εi . (2)
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Designs for neighbour effects 947

(0, 1, 2, 0, 3, 4, 1, 5, 6, 0, 5, 3, 1, 6, 2, 4, 5, 2, 3, 6, 4)

Fig. 3. Circular design for seven treatments in 21 plots:
each pair of distinct treatments are neighbours at distances

one and two exactly once.

The previous designs are still suitable, but we could consider saving resources by using a
design in which each treatment is a neighbour of every other treatment just once and is at distance
two from each other treatment just once. This is impossible if n is even, because each treatment
has an even number of neighbours overall, but it may be possible if n is odd. Such a design would
use a circle of n(n − 1)/2 plots, or a long line of n(n − 1)/2 inner plots with two border plots.
Figure 3 shows such a design for n = 7.

It seems plausible that such a design is optimal among designs of this size. Proof would require
an extension of the work by Druilhet (1999).

We call such a circular sequence semi-Eulerian. A semi-Eulerian sequence can be used to
construct an idempotent quasigroup by defining a ◦ b = c and c ◦ b = a for every subsequence
[a, b, c]. This quasigroup is equal to its conjugate obtained by interchanging rows and symbols.

There seems to be no statistical reason to ban self-neighbours from a design for undirectional
neighbour effects. However, if we allow self-neighbours at distance one, then we must also allow
self-neighbours at distance two, for there are now n(n + 1)/2 plots for n(n − 1)/2 unordered
pairs and n self-pairs. Now, any triple of the form [a, b, a] gives the unordered pair {a, b} twice
at distance one, so it is impossible to have self-neighbours in a design in which each unordered
pair occurs exactly once at distance one and once at distance two.

There are now 2n − 1 independent parameters to estimate, so we need 2n − 1 � n(n − 1)/2,
which is true if n � 5.

5. SOLUTION WITH NO SELF-NEIGHBOURS

In this section we solve the existence question for idempotent Eulerian sequences. Let m =
n − 1. Throughout this section, the treatments are labelled by the integers modulo m, together
with ∞. All calculations are modulo m.

PROPOSITION 1. Let [a1, a2, . . . , am−1] be a linear arrangement of the nonzero integers mod-
ulo m. Put bi = ai + ai+1 for i = 1, . . . , m − 2. If there exists an arrangement in which (a) the bi

are all distinct and nonzero, (b) the nonzero element b′ missing from {b1, . . . , bm−2} is 1 if m is
odd and is m/2 + 1 if m is even, and (c) am−1 + a1 = 1, then there is an idempotent Eulerian
circular sequence of order n.

Proof. Put c0 = 0 and, for i = 1, . . . , m − 1, put ci = ci−1 + ai . Then cm−1 is the sum of
the nonzero integers modulo m, which is 0 if m is odd and m/2 if m is even; in both cases
cm−1 = −cm−1. Moreover, a1 + am−1 + b1 + · · · + bm−2 is twice this sum, which is zero in both
cases, so conditions (a)–(c) show that 1 = a1 + am−1 = b′ − cm−1.

Write the linear sequence [∞, c0, c1, . . . , cm−1] as the first row of an m × n matrix, and
develop subsequent rows by adding 1 modulo m, with the convention that ∞ + 1 = ∞. Put the
rows one after another to give the desired circular sequence.

All columns except the first contain each integer modulo m just once. It is therefore clear that
∞ is preceded and followed by every other treatment just once at both distances one and two.

If x and y are distinct integers modulo m, then there is some i such that y − x = ai . The column
with ci−1 at the top has x in a unique row; the next element in that row is ci + (x − ci−1) =
x + ai = y.
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( , 0, 4, 2, 3, 0, , 1, 0, 3, 4, 1, , 2 , 1, 4, 0, 2, , 3, 2, 0, 1, 3, , 4, 3, 1, 2, 4)

Fig. 4. An idempotent Eulerian circular sequence of order 6.

If there is some j such that y − x = b j , then a similar argument shows that there is a unique
row in which y occurs two places to the right of x . Otherwise, y − x = b′ = cm−1 + 1. Now,
there is a unique row in which x occurs in the final column; the second element of the next row
is c0 + (x − cm−1) + 1 = y. �

Write a and b for the linear sequences [a1, . . . , am−1] and [b1, . . . , bm−2] respectively.
For example, let n = 6, so that m = 5. Put a = [4, 3, 1, 2]. Then a1 + a4 = 1, b = [2, 4, 3], and

b′ = 1. The matrix is ⎡
⎢⎢⎢⎢⎣
∞ 0 4 2 3 0
∞ 1 0 3 4 1
∞ 2 1 4 0 2
∞ 3 2 0 1 3
∞ 4 3 1 2 4

⎤
⎥⎥⎥⎥⎦

and the circular sequence is in Fig. 4.
Any idempotent Eulerian sequence gives an idempotent Eulerian quasigroup. For a sequence

constructed by the method in Proposition 1, the quasigroup has a cyclic automorphism of order m
and so is bordered diagonally cyclic in the sense of Wanless (2004a) and Bryant et al. (2009),
who give a full analysis of such quasigroups and their many applications in design theory.

THEOREM 1. If n � 6, then there exists an idempotent Eulerian circular sequence of order n.

Proof. In view of Proposition 1, it suffices to give a linear sequence a of integers modulo m
with the right properties. We divide the values of n into five different cases. In each case, we use
a vertical bar to show a change in pattern in the sequence.

Case 1. Suppose that n = 4k and k � 2: then m = 4k − 1. Put

a = [2k − 2, 2k − 1, 2k − 4, 2k − 3, . . . , 2, 3 | 1 |
4k − 3, 4k − 2, 4k − 5, 4k − 4, . . . , 2k + 3, 2k + 4 | 2k + 1, 2k, 2k + 2].

Then b = [4k − 3, 4k − 5, . . . , 7, 5 | 4 | 4k − 2 | 4k − 4, 4k − 6, . . . , 8 | 6 | 2, 3]. Moreover,
a1 + am−1 = 1 and b′ = 1.

Case 2. Suppose that n = 4k + 1 and k is even: then m = 4k. Put

a = [k + 1, 3k + 1, 3k + 2, k + 2, k + 3, 3k + 3, 3k + 4, k + 4, . . . ,

2k − 2, 2k − 1, 4k − 1 | 2k + 1, 2k, 2, 1, 2k + 3, 2k + 2, 4, 3, . . . ,

3k − 1, 3k − 2, k, k − 1 | 3k].
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Designs for neighbour effects 949

Then

b = [2, 2k + 3, 4, 2k + 5, . . . , 4k − 3, 2k − 2 | 2k | 1, 2k + 3, 3, 2k + 4, . . . ,

2k − 3, 4k − 2, 2k − 1 | 4k − 1], a1 + am−1 = 1 and b′ = 2k + 1.

Case 3. Suppose that n = 4k + 1, k is odd and k � 3: then m = 4k. Put

a = [3k + 1, k + 1, k + 2, 3k + 2, 3k + 3, k + 3, k + 4, . . . ,

2k − 2, 2k − 1, 4k − 1 | 2k + 1, 2k, 2, 1, 2k + 3, 2k + 2, 4, 3, . . . ,

k − 1, k − 2, 3k, 3k − 1 | k].

Then

b = [2, 2k + 3, 4, 2k + 5, 6, 2k + 7, . . . , 4k − 3, 2k − 2 | 2k | 1, 2k + 2, 3, 2k + 4, . . . ,

2k − 3, 4k − 2, 2k − 1 | 4k − 1], a1 + am−1 = 1 and b′ = 2k + 1.

Case 4. If n = 4k + 2, then m = 4k + 1. Put

a = [2k, 2k − 1, . . . , 2, 1 | 4k − 1, 4k, 4k − 3, 4k − 2, . . . , 2k + 1, 2k + 2].

Then b = [4k − 1, 4k − 3, . . . , 5, 3 | 4k | 4k − 2, 4k − 4, 4k − 6, . . . , 2], a1 + am−1 = 1 and
b′ = 1.

Case 5. If n = 4k + 3, then m = 4k + 2. Put

a = [2k + 2, 1, 2k + 3, 2, 2k + 4, 3, . . . , 3k + 1, k |
k + 1, 3k + 2, k + 2, 3k + 3, . . . , 2k, 4k + 1, 2k + 1].

Then b = [2k + 3, 2k + 4, . . . , 4k, 4k + 1 | 2k + 1 | 1, 2, . . . , 2k], a1 + am−1 = 1 and
b′ = 2k + 2. �

An exhaustive computer search showed that there is no idempotent Eulerian quasigroup of
order five or less, whether or not made by the construction in Proposition 1. Hence Theorem 1
constructs an idempotent Eulerian quasigroup for every possible order.

The idempotent Eulerian sequences constructed above are balanced at distances one and two.
If we use a = [2, 9, 1, 13, 6, 7, 5, 3, 14, 4, 11, 10, 12, 8, 15] with m = 16 in Proposition 1, then
we produce an example of order n = 17 that achieves balance at distances one, two and three. It
remains an open question as to what other examples of this type exist. It is also not clear whether
an idempotent Eulerian sequence can be balanced at greater distances.

6. SOLUTION IN THE UNDIRECTED CASE

In this section we construct a semi-Eulerian sequence for all odd values of n � 7.

PROPOSITION 2. Let n = 2r + 1 and let (a1, . . . , ar ) be a circular sequence of integers mod-
ulo n. Put bi = ai + ai+1 for 1 � i � r − 1 and br = ar + a1. Let c = ∑r

i=1 ai . If the ±ai are all
different modulo n and the ±bi are all different modulo n and c is coprime to n, then there is a
semi-Eulerian sequence of order n.
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Proof. The desired circular sequence is

(a1, a1 + a2, a1 + a2 + a3, . . . , c, c + a1, c + a1 + a2, . . . , 2c, . . . , −ar , 0).

If c is coprime to n, this gives a circular sequence of length nr where each circular subsequence of
entries at distance r contains all the integers modulo n just once. Suppose that x and y are distinct
integers modulo n. The condition on the ai implies that none of them is zero, so there is some i
such that y − x = ±ai . If y − x = ai , then the ordered pair [x, y] occurs in the circular sequence;
otherwise the ordered pair [y, x] occurs. The condition on the bi gives the same property at
distance two. �

THEOREM 2. There exists a semi-Eulerian sequence of order n for all odd n with n � 7.

Proof. We gave an example for n = 7 in Fig. 3. For larger n we display a circular sequence
satisfying the hypotheses of Proposition 2. For n = 11 the sequence a = (1, 2, 3, 7, 6) suffices.
For n = 9 and n � 13 we treat different cases depending on the residue of n modulo 12.

Case 1. If n = 12k + 1, we take

a = (
1, . . . , 2k | 6k, . . . , 5k + 1 | −5k, . . . , −(2k + 1)

)
,

so that c = −3k2. It is clear that gcd(c, n) = 1 since n ≡ 1 mod 3 and n ≡ 1 mod k.

Case 2. If n = 12k + 3 and k |≡ 2 mod 3, then we can take

a = (
1, . . . , k | −(k + 1), . . . , −2k | 4k + 1, . . . , 2k + 1) | −(6k + 1), . . . , −(4k + 2)

)
,

so that c = −5k2 + 2k + 1. Now 9 = 48c + (20k − 13)n so gcd(c, n) divides 9, but c ≡ 1
mod 3, so gcd(c, n) = 1.

Case 3. If n = 12k + 3 and k |≡ 1 mod 3, then we can take

a = (
1, . . . , 2k | 6k + 1, . . . , 5k + 2 | −(5k + 1), . . . , −(4k + 1) | 2k + 1, . . . , 4k

)
,

so that c = 9k2 − 2k − 1. To see that gcd(c, n) = 1 we note that 3 = 48c − (36k − 17)n so
gcd(c, n) divides 3, and yet c |≡ 0 mod 3.

Case 4. If n = 12k + 5, then we take

a = (
1, . . . , k | −3k, . . . , −(2k + 1) | 2k, . . . , k + 1 | 5k + 3, . . . , 6k + 2

| −(4k + 1), . . . , −(3k + 1) | −(5k + 2), . . . , −(4k + 2)
)
.

Then c = −3k2 − 8k − 3, so 3 = −16c − (4k + 9)n but n ≡ 2 mod 3, so gcd(c, n) = 1.

Case 5. If n = 12k + 7, then we take

a = (
1, . . . , k | 3k + 1, . . . , 2k + 1 | −2k, . . . , −(k + 1) | 3k + 2, . . . , 6k + 3

)
.

Now c = 15k2 + 20k + 6, so 9 = −16c + (20k + 15)n and n ≡ 1 mod 3, so gcd(c, n) = 1.
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Designs for neighbour effects 951

Case 6. If n = 12k + 9, then we take

a = (
1, . . . , 4k + 2 | −(6k + 4), . . . , −(5k + 4) | 5k + 3, . . . , 4k + 3

)
.

Now c = 7k2 + 8k + 2, so 3 = −48c + (28k + 11)n and c |≡ 0 mod 3, so gcd(c, n) = 1.

Case 7. If n = 12k + 11, then we take

a = (
1, . . . , k + 1 | 5k + 5, . . . , 4k + 4 | −(4k + 3), . . . , −(3k + 3)

| 5k + 6, . . . , 6k + 5 | −(2k + 2), . . . , −(3k + 2) | −(k + 2), . . . , −(2k + 1)
)
,

so that c = 3k2 + 8k + 5. Now 3 = 16c − (4k + 7)n and n ≡ 2 mod 3, so gcd(c, n) = 1.

The above cases together cover all possibilities. �

As we have noted earlier, semi-Eulerian sequences can exist for odd n only. By exhaustive
computation, it is simple to confirm there is no example for n = 5. Thus Theorem 2 solves the
existence question for semi-Eulerian sequences in the estimable case when n � 5. The sequences
(0) and (0, 1, 2) provide simple, although arguably degenerate, examples of order n = 1 and n = 3
that satisfy the combinatorial constraints, though not the statistical ones.

7. EULERIAN QUASIGROUPS

In this penultimate section we give a partial solution to the existence question for Eulerian
quasigroups. For n ∈ {2, 3, 4} it is quickly established by exhaustive search that there are none.

Conjecture 1. There exists an Eulerian quasigroup of every order n � 5.

We will confirm Conjecture 1 for all small n. In particular:

THEOREM 3. If n is a counterexample to Conjecture 1, then n is divisible by a prime power
exceeding 1000.

Given two quasigroups (Q1, ·) and (Q2, ◦) of orders n and m, we can form their tensor product
Q1 ⊗ Q2, which is a quasigroup of order nm. The underlying set is Q1 × Q2 and the operation •
is defined by (a, x) • (b, y) = (a·b, x ◦ y) for a, b in Q1 and x , y in Q2.

PROPOSITION 3. If Q1 and Q2 are Eulerian quasigroups of orders n and m, and n is coprime
to m, then Q1 ⊗ Q2 is an Eulerian quasigroup.

Proof. In the sequence

(a, x), (b, y), (a·b, x ◦ y),
(
b·(a·b), y ◦ (x ◦ y)

)
, . . . ,

adjacent pairs of first coordinates repeat every n2 steps but not earlier, while adjacent pairs of
second coordinates repeat every m2 steps but not earlier. If m is coprime to n, then adjacent pairs
in both coordinates do not repeat until n2m2 steps. �

We build Eulerian quasigroups by exploiting the fact that the Eulerian property is not preserved
by isotopy, that is, when the rows, columns, and/or symbols are permuted. Indeed, every Eulerian
quasigroup of order at least two is isotopic to a non-Eulerian quasigroup since the symbols can
always be permuted so that symbol 0 is in the cell in row 0 and column 0.
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Table 1. Permutations for odd prime powers q in the range 5 < q < 100

q permutation

7 π0π3,1

9 π0π4,2

11 π0π5,1

13 π0π8,2

17 π0π3,2π8,4

19 π0π3,1π6,1π14,1

q permutation

23 π0π15,3

25 π0π3,1π6,9

27 π0π5,1

29 π0π5,4

31 π0π12,1

37 π0π3,3π18,7

q permutation

41 π0π3,5π30,5

43 π0π3,1π27,2

47 π0π11,13

49 π0π16,10

53 π0π32,2

59 π0π27,1

q permutation

61 π0π37,2

67 π0π3,5π19,2

71 π0π4,15

73 π0π3,1π20,25

79 π0π29,5

81 π0π47,2

q permutation

83 π0π15,3

89 π0π34,10

97 π0π46,4

0 1 2 3 4 5 6

0 1 2 0 4 3 5 6
1 2 0 4 3 5 6 1
2 0 4 3 5 6 1 2
3 4 3 5 6 1 2 0
4 3 5 6 1 2 0 4
5 5 6 1 2 0 4 3
6 6 1 2 0 4 3 5

Fig. 5. Eulerian quasigroup corresponding to a circular design for
seven treatments in 49 plots, balanced for neighbours at distances

one and two.

If n is odd, it seems that an effective approach to constructing an Eulerian quasigroup is to
permute the symbols in the addition table of the cyclic group (Zn, +). In other words, we choose
a permutation π : Zn → Zn and define a new quasigroup (Zn, �) by the rule x � y = π(x + y),
for all x , y ∈ Zn . For most small odd orders there are numerous permutations that produce an
Eulerian quasigroup, and we have the luxury of choosing one that can be specified compactly.

Define πi, j to be the permutation with cycles

(i, i + 1)(i + 2, i + 3) · · · (i + 2 j − 2, i + 2 j − 1);

in other words j consecutive transpositions starting at i . Also, let π0 denote the cycle (0, 1, 2).
For each odd prime power q with 5 < q < 1000, we found a permutation π for which the above
rule gives an Eulerian quasigroup. Those for q < 100 are shown in Table 1, whose extension to
q < 1000 is in the Supplementary Material. For n = 5 an example of an Eulerian quasigroup is
in Fig. 2(a). Hence we have one for every odd prime power below 1000, except for n = 3.

For example, for q = 7 Table 1 gives the permutation π0π3,1, which is (0, 1, 2)(3, 4). This
gives the Eulerian quasigroup in Fig. 5, which in turn gives a circular design for seven treatments
in 49 plots, balanced for neighbours at distances one and two.

To work around the nonexistence of an Eulerian quasigroup of order 3, we found a permutation
of Z3q for each prime power q coprime to 6 with q < 1000. Table 2 gives these permutations for
q < 100, and the full list is in the Supplementary Material. The interpretation is analogous to
Table 1. Combining these results with Proposition 3 proves Theorem 3 for odd n.

When n is even, there is an obstacle that prevents us from using the same method that we used
for the odd orders. To describe the obstacle we need some theory from Wanless (2004b).

Suppose that ◦ is a right-cancellative binary operation on a set Q, which means that it satisfies
the law a ◦ c = b ◦ c ⇒ a = b. For each element y ∈ Q we can define a permutation φy : Q → Q
by x → x ◦ y. Let sgn denote the parity homomorphism from the symmetric group to Z2, so that
sgn(π) = 0 if π is an even permutation and sgn(π) = 1 if π is an odd permutation. The binary
value

∑
y∈Q sgn(φy) is known as the column parity of (Q, ◦).
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Table 2. Permutations for order n = 3q < 300 where q is a power of a prime p > 3

n permutation

15 π0π12,1

21 π0π7,1π12,1

33 π0π3,1π22,3

39 π0π9,3

51 π0π3,2π30,9

n permutation

57 π0π3,1π19,3

69 π0π16,20

75 π0π3,2π14,11

87 π0π3,4π14,11

93 π0π12,28

n permutation

111 π0π3,1π31,8

123 π0π3,1π37,32

129 π0π12,58

141 π0π3,1π68,9

147 π0π84,21

n permutation

159 π0π86,13

177 π0π120,4

183 π0π3,2π19,51

201 π0π176,6

213 π0π155,4

n permutation

219 π0π3,1π26,22

237 π0π191,20

249 π0π6,10

267 π0π3,1π43,24

291 π0π3,2π32,7

THEOREM 4. An Eulerian quasigroup of order n has column parity equal to{
0 if n ≡ 1 or n ≡ 2 mod 4,

1 if n ≡ 0 or n ≡ 3 mod 4.

Proof. Suppose that ◦ is any binary operation on a set Q of cardinality n. We can form a
digraph D◦ that for each a, b ∈ Q has a vertex [a, b, a ◦ b] and an arc from

[
a, b, a ◦ b

]
to[

b, a ◦ b, b ◦ (a ◦ b)
]
. If ◦ is right-cancellative, then D◦ consists of directed cycles, and, when

(Q, ◦) is an Eulerian quasigroup, D◦ consists of a single directed cycle.
Consider the effect of a local switch where we change the operation ◦ by replacing a ◦ c = d

and b ◦ c = e with a ◦ c = e and b ◦ c = d. If [a, c, d] and [b, c, e] are in the same cycle of D◦,
that cycle is split into two by the switch. On the other hand, if [a, c, d] and [b, c, e] are in different
cycles, then these two cycles are merged. No other cycles are affected. Thus, in both cases, our
local switch changes the number of cycles in D◦ by one. The local switch also changes the column
parity of (Q, ◦) by 1, since it applies a single transposition to φc.

In the case when ◦ is defined by the rule a ◦ b = a we see that D◦ has n loops, one on each
vertex [a, a, a] for a ∈ Q. It also has n(n − 1)/2 cycles of length two, one from [a, b, a] to
[b, a, b] and back again, for a |= b. Thus there are n + n(n − 1)/2 cycles in total. By an appro-
priate sequence of local switches we can move from (Q, ◦) to any Eulerian quasigroup. In doing
so, we reduce the number of cycles by n − 1 + n(n − 1)/2. The column parity is initially 0, since
φy is the identity for all y in Q. Thus, when we reach the Eulerian quasigroup, the column parity
will be congruent to 1

2(n − 1)(n + 2) modulo 2. The result follows. �

COROLLARY 1. There is no Eulerian quasigroup isotopic to any group of even order.

Proof. By Propositions 3 and 4 of Wanless (2004b), any quasigroup isotopic to a group of
even order has the wrong column parity to be Eulerian. �

In particular, it is not possible to create an Eulerian quasigroup by permuting the symbols
of the cyclic group as we did for odd orders. Nevertheless, Eulerian quasigroups of even order
do exist. To construct them, we permute the symbols of a quasigroup of the correct column
parity. Suppose that p is an odd prime, s and t are positive integers, and n = 2s pt . We define
a quasigroup (Zn, �) of order n by putting v = n/p, 0 � b = b + v and v � b = b if v divides b,
and a � b = a + b otherwise. In Tables 3 and 4 we give a permutation for each order n = 2q
and n = 4q where q < 100 is an odd prime power. Again, these are extended to q < 1000 in the
Supplementary Material. The interpretation is analogous to Table 1, except that the permutation
should be applied to the symbols in the operation table of (Zn, �).

For example, when n = 6 we first construct the quasigroup (Z6, �) shown on the left of Fig. 6.
Applying the permutation (0, 4)(1, 5)(2, 3) from Table 3 gives the quasigroup (Z6, �) shown on
the right of Fig. 6. This in turn gives the circular design in Fig. 7.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/101/4/943/1776285 by R
.G

. M
enzies Library, Building #2, Australian N

ational U
niversity user on 07 N

ovem
ber 2023



954 R. E. L. ALDRED, R. A. BAILEY, B. D. MCKAY AND I. M. WANLESS

Table 3. Permutations for order n = 2q for odd prime powers q < 100

n permutation

6 (0, 4)(1, 5)(2, 3)

10 (0, 9)(2, 5)

14 π0,2π8,2

18 π3,2π8,2

22 π0,2π12,1

26 π0,2π12,6

n permutation

34 π0,10

38 π0,2π5,2

46 π0,2π11,2

50 π0,1π6,15

54 π0,4π13,4

58 π0,3π10,10

n permutation

62 π0,2π30,14

74 π0,2π30,6

82 π0,2π8,9

86 π0,3

94 π0,2π53,13

98 π0,8π22,12

n permutation

106 π0,2π14,34

118 π0,2π16,2

122 π0,2π27,17

134 π0,2π13,10

142 π0,2π39,6

146 π0,2π6,60

n permutation

158 π0,2π10,33

162 π0,2π33,23

166 π0,2π14,71

178 π0,2π103,12

194 π0,2π18,76

Table 4. Permutations for order n = 4q for odd prime powers q < 100

n permutation

12 π0,1π3,4

20 π0,3π7,1

28 π0,1π4,4

36 π0,1π9,12

44 π0,3π23,7

52 π0,3π11,15

n permutation

68 π0,1π3,8

76 π0,3π49,13

92 π0,4π9,10

100 π0,11π29,30

108 π0,8π17,31

116 π0,3π41,16

n permutation

124 π0,3π17,27

148 π0,3π67,3

164 π0,3π79,29

172 π0,3π137,6

188 π0,3π41,37

196 π0,4π11,53

n permutation

212 π0,3π21,17

236 π0,3π35,4

244 π0,3π9,28

268 π0,3π17,110

284 π0,3π23,86

292 π0,4π17,137

n permutation

316 π0,3π61,116

324 π0,2π11,109

332 π0,3π45,123

356 π0,3π50,35

388 π0,3π22,67

0 1 2 3 4 5

0 2 1 4 3 0 5
1 1 2 3 4 5 0
2 0 3 2 5 4 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

0 1 2 3 4 5

0 3 5 0 2 4 1
1 5 3 2 0 1 4
2 4 2 3 1 0 5
3 2 0 1 4 5 3
4 0 1 4 5 3 2
5 1 4 5 3 2 0

Fig. 6. Two quasigroups used in the construction of a circular design
for six treatments.

(0, 0, 3, 2, 1, 2, 2, 3, 1, 0, 5, 1, 4, 1, 1, 3, 0, 2, 0, 4, 4, 3, 5, 3, 3, 4, 5, 2, 5, 5, 0, 1, 5, 4, 2, 4)

Fig. 7. Circular design for six treatments in 36 plots: it is balanced for neighbours at distances one
and two.

Table 5. Permutations for powers of two and three times a power of two

n permutation

8 (0, 1)(2, 4)(3, 7)

16 π0,4

32 π0,1π7,2

64 π0,3π14,3

n permutation

128 π0,3π15,14

256 π0,1π4,48

512 π0,3π41,101

n permutation

24 π0,1π3,8

48 π0,2π8,4

96 π0,1π8,12

192 π0,1π12,27

n permutation

384 π0,5π30,76

768 π0,3π94,60

1536 π0,3π317,158

It remains to treat the case when n = q or n = 3q where q is a power of 2 in the range
8 � q � 1000. Put w = n/8, and define the quasigroup (Zn, �) by 0 � w = 7w � 0 = 0, 0 � 4w =
5w � w = w, 0 � 0 = 2w � 2w = 2w, 0 � 2w = 2w � 4w = 4w, 2w � 0 = 5w � 4w = 6w � w =
6w, 6w � 0 = 7w � w = 7w and a � b = a + b otherwise. Applying the relevant permutation
from Table 5 to the symbols in the operation table of (Zn, �) produces an Eulerian quasigroup.
Together with Proposition 3, the examples we have found prove Theorem 3.
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8. FURTHER WORK

The most obvious outstanding questions are the proof or refutation of Conjecture 1, and the
optimality of the semi-Eulerian sequences under model (2), but there are others.

In order to find neighbour-balanced designs in as small a number of plots as possible, we have
specified that certain configurations should each appear exactly once. This could be generalized
to r times for any positive integer r . When there is no solution for r = 1, there might be solutions
for some larger values of r . In particular, when r = 2 then (0, 0, 0, 1, 1, 1, 0, 0) is a solution to
the original problem for n = 2, as are (0, 0, 1, 1, 2, 2, 0, 0, 2, 0, 2, 2, 1, 2, 1, 1, 0, 1) for n = 3 and
(1, 0, 3, 3, 3, 1, 2, 1, 1, 0, 0, 1, 3, 1, 3, 2, 0, 1, 1, 2, 3, 0, 0, 2, 0, 3, 0, 2, 2, 2, 3, 2) for n = 4.

THEOREM 5. If there is a circular sequence for n treatments in which each ordered pair occurs
exactly r times at distances one and two, then there is also a circular sequence in which each
ordered pair occurs exactly r + 1 times at distances one and two. The same is true when self-pairs
are banned at distances one and two.

Proof. Let Q be the set of n treatments. Build a digraph D1 with vertices [a, b] for a, b in Q.
For each subsequence [a, b, c] of the first sequence, put a directed edge from [a, b] to [b, c]. Then
D1 is connected. Let (Q, ◦) be any quasigroup on Q. For each vertex [a, b], insert a new edge
from [a, b] to [b, a ◦ b], making a new digraph D2. Then D2 is connected, and the in-degree and
out-degree of each vertex are both equal to r + 1. Hence D2 has an Eulerian trail, which gives a
circular sequence with the desired property.

When self-neighbours are banned, omit vertices of the form [a, a] and insist that (Q, ◦) be
idempotent. �

Alternatively, we might look for smaller designs. Equality of all variances of differences needs
the factors for direct effects, left-neighbour effects, and right-neighbour effects to have the overall
balance of Preece (1976). For a design with nk inner plots, a necessary condition is the existence
of a balanced incomplete-block design for n treatments in n blocks of size k. Existence of a set
of nk triples satisfying the conditions is the analogue of the existence of a quasigroup of order n.
Whether there exist such sets that also have the Eulerian property seems to be a hard question.

The design at the end of § 5 has neighbour balance at distances one, two, and three. It would
be suitable for a cross-over trial in which carry-over effects are expected on the three succeeding
periods. Have such effects ever been recorded? Are there other such designs with only n(n − 1)

inner plots?
The designs given by Dyke & Shelley (1976) have the further property that the circle or line

can be divided into blocks of n consecutive plots in which each treatment occurs once. Then
block effects can be fitted to allow for variation in space or time. Can this be done for any of the
designs discussed in this paper?

Neighbour-balanced designs always present a problem for randomization. To avoid bias in
the estimation of treatment effects, the actual treatments should be randomized to the treatment
labels in the combinatorial design. In addition, the design can be rotated through a random num-
ber of places, and reversed with probability one half. However, this is not enough to make the
randomization valid in the sense of Yates (1933). Bailey (1984) showed that, for some classes of
neighbour-balanced design, there are some values of the parameters for which there exists a set of
designs among which random choice leads to validity, while there are other parameter values for
which no such set exists. Do such sets of designs exist for any of the types of neighbour-balanced
design considered in this paper?
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Within each of our three categories, all designs satisfying the combinatorial conditions are
equally good if the assumed model is correct. If it is not, are some designs better than others for
protecting against model inadequacy?
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes full versions of Tables 1–4 for
q < 1000.
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