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ABSTRACT 

We prove various properties of C(n, q), the set of n-vertex q-edge labeled connected 
graphs. The domain of validity of the asymptotic formula of ErdGs and Rinyi for IC(n, q)l 
is extended and the formula is seen to be the first term of an asymptotic expansion. The 
same is done for Wright's asymptotic formula. We study the number of edges in a random 
connected graph in the random edge model %"+. For certain ranges of n and q ,  we 
determine the probability that a random edge (resp. vertex) of a random graph in C(n, q )  
is a bridge (resp. cut vertex). We also study the degrees of random vertices. 

1. INTRODUCTION 

In this article graphs are labeled, and an (n, q )  graph is one having n vertices and 
q edges. Let C(n, 4) be the set of connected (n,  4 )  graphs and let c(n, q) = 
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IC(n, q) / ,  We will often speak of things chosen at random. Unless stated 
otherwise, this means uniformly at random. For example, “Let e be a random 
edge of C(n, q)” means that we choose a graph G E C(n,  q) using the uniform 
distribution and then an edge e of G using the uniform distribution. In [ l ]  we 
obtained an asymptotic formula for c(n, q) as n,  q-, CQ. Here we apply this result 
to study various properties of these graphs. In particular, we study 

(a) the asymptotics of c(n,  q )  when q / n  is near 1 and when qln is large, 
developing expansions whose first terms were found by Wright [3] and 
Erd6s and Rinyi [2], respectively, 

(b) connected graphs in the edge probability model for random graphs, 
determining their probability and the distribution of the number of edges; 

(c) the expected number and nature of bridges in C(n, q); 
(d) the expected number and degree of cut and noncut vertices in C(n, q).  

Throughout we let 

N = ( i ) ,  k = q - n  and x = q l n = l + k l n .  ( 1 . 1 )  

The function y = y ( x )  1 0  is defined implicitly by 

2xy = log( -) l + Y  , 
1 - Y  

for 1 I x < m. We will rely heavily on the results of [ l ] ,  particularly the following. 

Theorem 1.1. 
(n,  q) graphs, c(n,  q )  is given by 

With N ,  k ,  x ,  and y defined as above, the number of connected 

c(n,  q) = ( ~ ) w k e n Q ( x ) + a ( x ) ( l  + O ( ( k  + l )1”6/n9’50 1) (1.3) 

1 
2 as n+W, uniformly for 0 5  k 5 N - n ,  where q(1) = 2/e, a(1) = 2 + - log(3.2), 

1 
2 

U ( X )  = X ( X  + 1 ) ( 1 -  y )  + log(1- x + x y )  - - lOg(1  - x + X Y ’ )  (1 .5)  

and wk = (1 - 4 / ( ( k  + 1) + O ( ( k  + l)-*)). The exact value of w k  is given by 
(1, (1-6), (3.20)1. 

We also recall that 
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2. THE ERDOS R E N Y ~  FORMULA 

Recall the formula of Erdos and R h y i  [2] for the number of labeled connected 
graphs with n vertices and g edges 

1 
2 as n--,a with q = - n log n + p n  + o(n). With E = 1/4  and m = 2, this formula is 

a consequence of the following theorem, which extends the Erdos-RCnyi formula 
to lower values of g .  

Theorem 2.1. c f,(x)u' be defined implicitly by 
Let E > 0 and m > 1/(2e) be fixed. Let the power series f(u) = 

r > O  

f(u) = u(1 - f(u))e4*f(4 (2.1) 

and let 
m 

g(u) = c g, (x)u '=  -2xf(u) - log(1 -f(u)) - ( x  - 1) log(1- 2f(u)). (2.2) 
r = 1  

Then g,(x) is a polynomial of degree t - 1 and 

uniformly for g > En log n. The first few values of g,(x)  are 

2 4  1 
g3(x)  = - 8 x  - - x - - , 

3 3  g l ( 4  = -1 7 

1 128 1 
2 3 4 

g2(x) = -2x - - , g4(x) = -- x - 2x - - 

Proof. 
formula, gr(x) is the coefficient off 

By [l ,  (3.8), (3.12)], a(x)-+O as x-m. By the Lagrange inversion 
in 

- Zx) (1 - f )'e4rxf , i(L + 2 ( x  - 1) 
t 1 - f  1-2f 

which can be seen to be a polynomial in x of degree t - 1 with a bit of algebra. (In 
fact, for t >  1, the leading coefficient is -4(4t)'-*/t!.) If p l ,  p 2 ,  and p3 are 
polynomials in the variable f with positive coefficients, the coefficient of f r - l  in 
their product is bounded by p1(l)p2(l)p3(l) .  Thus, 

1 
lgr(x)l I - ( t  + 2(x - 1)2' + 2x)2'(t(4xr)'-'/(t - l ) ! )  

t 

5 6( 16e)'x' , 



1 86 BENDER, CANFIELD, AND McKAY 

using very crude bounds. Certainly, though, g(u) converges for 0 I u 5 e-2: and 

I g(")(u)( 5 K,,,x" , o 5 u s e-& , (2-3) 

where Krn is a constant depending only on m. 
Let S = (1 - y) /2 .  By (1.2) and some algebra, 

LS = e-&(1 - 8)e4"' . 

Comparing this with (2.1), we see that 6 = f(e-"). From (2.2) and the rightmost 
part of (1.4), q ( x )  = g(e-"). To complete the proof, we note that by Taylor's 
theorem with remainder, (2.3), the choice of m, and the fact that x 2 E log n,  

3. THE WRIGHT FORMULA 

In [3] Wright proved that the number of connected sparsely edged graphs is given, 
for k = 0(n113),  by 

c(n,  n + k )  = d(3~)''~(e/l2k)'/~n"+~(~~-~) (1 + O ( k - ' )  + O(k3'2/n112)),  

in which d is a constant which he evaluated to six decimal places. Later, Meertens 
proved that d = 1/2n,  and his proof appears in 111. Noting the value of d and that 
wk, which is defined below, is equal to 1 + O(k- ' ) ,  the next theorem shows, by 
taking m = 2 and E > 1/2,  that Wright's formula is valid for an actually wider 
range of k than originally proved. Moreover, Wright's formula appears as the first 
term of an asymptotic expansion which allows larger k .  

Theorem 3.1. 
E > 0 and integer m > 1 / E .  

There exists a sequence C, of constan@ such that for each fixed 

uniformly for k = O(n'-'). The first few values of the constants are 

Proof. Let p(kln) stand for a power series in kln having nonzero radius of 
convergence and no constant term. The value of p ( k l n )  is not necessarily the 
same at each occurrence. By (1.2) and standard complex analysis arguments, 
y2=p(k ln)  and the linear term of this power series is 3kln. Thus 
log(1- y2) = p(k /n )  and log( y m )  = p(k/n). It follows that 



PROPERTIES OF LABELED CONNECTED GRAPHS 187 

By Stirling's formula, 

and 

(3.5) 
1 
2 

a ( l +  k/n) = - 10g(3/2) + 2 + O(k'/2/n1'2) . 

Noting that (yl-')" =y-' and using (1.4) and (3.2-5) in (1.3), we obtain the 
theorem. m 

4. THE CONNECTEDNESS OF A RANDOM GRAPH 

Let R,(n, q )  be the probability that an n vertex graph constructed at random with 
edge probability p = p ( n )  is connected and has q edges; that is, 

R,(n, 4 )  = pQ( l  - p)N-9C(", 4) 7 (4.1) 

and let k,(n, q )  be the approximation of R,(n, q )  suggested by (1.3); that is, 

Note that although R,(n, q )  is defined only for integral values of q, we define 

k,  (n, q )  for nonintegral q by evaluating the binomial coefficient ( y )  as N ! /  
r( q + 1)T(N - q + 1). We define a random variable X,(n) to be the number of 
edges of a random graph with edge probability p conditioned on the event that 
the graph is connected. Thus 

In this section, we will determine the limiting behavior of X,(n) as n+w. 

Theorem 4.1. Dejine 

yo = tanh( pn/2) , qo = n2p/2yo , xo = qO/n (4.3) 
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(4.4) 

Then the following are true 

(a)  Equation (1.2) holds for x ,  and yo. 
( b )  I f  p2n3-+m and p =  O(logn/n), then qO-n-+m and (X,(n)-q,)/a 

( c )  If p = O ( ~ Z - ~ / ' )  as n + m, then 
converges to the normal distribution N(0, 1 )  as n+m. 

f o r k = - 1 ;  
for k = 0 ; 

, otherwise ; 
Prob{X,(n) - n = k} - ak = 

where c = pn'/*, w k  is given by [l, (1.6)], and A is chosen so that C ak = 1. 
( d )  If p 2 C log n / n  and C > 1,  then X,(n) is approximately a binomial dis- 

tribution with parameters p and N ;  more precisely, Prob{X,(n) = q }  = 

( : )pq( l  - p ) N - q  + O(n'-C) uniformly in n and q .  

We will actually prove somewhat more than this because we will obtain big-oh 
estimates for the errors in the distributions. These estimates are given in Lemmas 
4.2 and 4.3. 

In order to establish the theorem, we will use the three lemmas. We first state 
the lemmas and then give the proofs. 

Lemma 4.1. 
function of p and 

The function k,, equal by definition to qo - n,  is an increasing 

k,/2 < u2 < 4k, . (4.5) 

When 0 < p  = o(n-'), 

1 1 5 5  yo= - pn - - p3n3 + ~ ( p  n ) ;  2 24 

1 2 3  4 5  k ,  = q, - n= - p n + O ( p  n ) ;  12 

(4.6) 

(4.7) 

Lemma 4.2. 
we have 

When n-"" ' p  = O(1og nln) ,  q, + r is integral, and I r i s  n''32u, 

Further, 
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Lemma 4.3. 
Iris ck,, we have 

Fix 0 < c < 1. When p 2 n 3 4  a, p = O(n-’1’8), 4, + r is integral, and 

R,(n, 4, + r)  = R,(n, 4,) exp{-r2/2a2 + O(lr13/ki + k i / 2 / n ’ / 2 ) }  

Further, for  any fixed 6 > 0 

c R,(n, q)  = 6 u R p ( n ,  qo)( l  + O(k; - ’ / ’ ) ) .  
4 

Proof (of theorem from lemmas). Result (a) follows from noting that (1.2) is 
equivalent to y = tanh(xy). The first part of result (b) follows from Lemma 4.1, 

p2n3 and then for larger p by the monotonicity of 
1 

first for small p from k, - - 12 
k,. The rest of (b) follows from Lemmas 4.2 and 4.3. Result (c) follows by simple 
calculation from (4.1), Cayley’s formula n”-* for the number of trees, and 
[ l ,  (1.9)J .  Finally, result (d) follows from the well known fact that, for C > 1,  
random graphs are almost certainly connected. 

Proof (of Lemma 4.1). Since 

dk,ldp = ( y o  - pdy,/dp)n2J2yi and pdy,ldp = ( p n / 2 )  cosh-‘( p n / 2 )  , 

the monotonicity of k, follows easily from the simple inequality P < sinh p cosh /3 
for p >O. 

For simplicity, write a = -1 /p”(xo). By definition, a2 = nx, - , and from 

[ l ,  (2.6)] we find u2 = nx,(l - xo(l - yi)). For the first inequality of ( 4 . 9 ,  note 
from [ l ,  (1.3)] that 1 - x ( 1 -  y‘) L 2y2/3,  and that xy’ 2 3(x - 1 ) / 4 .  For the 
second, note from [ l ,  (1.3)] that 3(x - 1)  2 y 2  2 1 - x(1 - y’ ) ,  and multiplication 
by x gives the result for 4 / 3  1 x ;  but for 4 / 3  5 x ,  4(x - 1 )  L x trivially. 

a 
a + x ,  

Equations (4.6) and (4.7) follow from 

1 
tanh(z) = z - - z3 + O(z5) 

3 

and (4.3). From 11, (2.6)], a = 2yiI3 + O(y:) .  On the other hand, 

- k0 = x o  - 1 = Y i  7 + O(y4,) 
n 

and qo 2 n - 1. Combining these with the definition of a gives (4.8). 

Proof (of Lemma 4.2). Let I r l sn’ /32u .  The assumed lower bound on yo  

o(k,) .  Recall that wk = exp(O(k-I)). We start with (4.1),  (1.3), and the following 
easy estimates: 

implies, for some c > 0, cn1j4 < k, = O(n log n), and so by (4.5) r < n 1 / 3 2  k, 112 = 
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and 

r3 
7 cp”’(xo + 8r/n) = ~ ( n - ” ~ ’  log3%) for lei 5 1 . 
n 

We have used [l ,  (3.3), (3.6), (3.11), (3.13)] to see that a’(x) = O(l/y) and that 
cp’”(x) = O( 1 /y4). Since 

r r’ r3 
q ( x 0  + r/n) = cp(x,) + ; cp’(xo) + 7 cp”(xo) + 2 cp’”(xo + W n )  

2n 

for some 8 E (0, I ) ,  and since exp(-cp’(x,)) = y o ,  we obtain 

The value for 

larger r is negligible because 

R,(n, q) is obtained by restricting r to [ r l I  n’132u. The sum for 
4 

is log concave with respect to q.  (Log concavity follows from the well-known log 
concavity of (:) p q ( 1 - P ) ~ - ‘  and the fact that cp“<O. )  rn 

Proof(ofLemma 4.3). By (4.7) we have k, = (p2n3/12)(l + O ( K ~ ’ ~ ) ) ,  and for 
such small k, [l, (1.9)] is a more convenient presentation of c(n,  n + k) than 
(1.3). From [l, (1.9)] 

fi,(n, 40) 
1 (e/12/~,,)~0/~(1+ ~ ( n - ~ ’ ~ ) )  , 
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and we find 

We now use the easy estimates (refer to Theorem 1 . 1  regarding w k )  

k y 2  
(k ,  + r ) (ko+r )12  = k,"' exp{-r/2 - r2/2a2 + O(r3 /k i ) }  

W k O + r  -- - exp{ O ( r / k i ) }  
- 4  
I -  - 

k0 

and 

to find 

Rp(n' 4o + r, = exp{ - r 2 / 2 a 2  + O(r3/k:)  + O ( k ~ ' 2 / n 1 ' z ) }  . 
40) 

Summing on r ,  with simple bounds for the tails, completes the proof. H 

5. BRIDGES 

We start by showing the probability that a random edge is not a bridge is 
approximately y ,  as given in (1.2). For small k this approximation breaks down, 
and an asymptotic expansion is found. For large x ,  1 - y is near zero and fails to 
give the asymptotic probability that a random edge is a bridge; instead, the latter 
probability is found by showing that almost all bridges, for large x are pendant 
edges. 

In this section we work in the probability space of all connected (n, 4 )  graphs 
with a distinguished edge, each such graph having a probability of l/qc(n, 4) .  We 
consider the events 

93 the distinguished edge is a bridge; 
93Tf 2% holds and one end of the distinguished edge is a tree with t vertices; 
BY the union of 2%Tf over all t. 

The symbol i is used to denote logical negation. 
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Theorem 5.1. 
ranges indicated. 

Let E > 0 be arbitrary. The following results hold uniformly in the 

(a) For I I k s N - n ,  

1/16 9/50 Prob{iB} = y(l  + 0 ( 1  lk) + O(k / n  )) . 

( b )  For 1 5  k = O(n’-‘ ), C, as in (3.1) and m > l / E ,  we have 

-112 (k-1) /2  m - 1  

y w k - l e  (L) exp{ -n c rC,kr/nr). Prob{iB} - 
k - 1  r = Z  wk 

(c) For k 20,  Prob{BF} = Prob{BTl}(l + O(xe-2x)). 
( d )  For k 2 0, Prob{ BSS} = Prob{ BFl}el(l-y)(l + O((k + l)1/16/n9/50)) . 
(e) For k = O(n”‘), 

Prob{BSSl} = e x v q ( l  - q / N ) “ - 2  exp{(l - q / N ) - ’ }  

x (1 + O((k + l)1/16/n9’50)) . 

Prob{ B} = Prob{ BT} + O(min(x’e-”/n, (nk)-’/’)) . 

Remark. We actually derive a big-oh error estimate for (b). See (5.2). 

Proof (of (a)). We have 

by (1.3). By Taylor’s theorem, 

cp“( 51 1 n(cp(x - 1 ln)  - cp(x)) = - cp‘(x) + - 2n 

and 

a’( 5 2 )  a(x - l /n )  - a(x)  = -- 
n 

for x - l l n  < ti < x. For k 2 2 ,  we use ( 3 4 ,  (3.10), (3.3), and (3.13) of [l]  to 
bound cpf‘ and a’. The ratio wk-l/wk is 1 + O(k-’), as given in Theorem 1.1. 
Combining this with (1.6)¶ we obtain (a) for k r 2 .  For k = 1, use [ l ,  (1.9)]. m 

Proof (of (b)). This follows fairly easily from (3.1) and the fact, proved there, 
that y2 is a power series in kln with lead term 3kln. By using (3.1), we obtain an 
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error in the exponent which is 

(5.2) O(k"+'ln") + O(k1'2/n1/2) + O(k 1/16 ln  9 / 5 0  ) . rn 

Proof(of(c)) .  
then Prob{ BY} = 0, so we may limit our attention to Prob{ BYl} # 0. Since 

For here and for the proof of (d) we note that, if Prob(BTl} = 0, 

n(n - l)c(n - 1, q - 1) 
Prob{BFl} = : 

qc(n7 4) 
, (5.3) 

it follows from Theorem 1.1 that this probability is bounded away from zero when 
x is bounded. Thus we need only consider the case x+ 00. It is easily shown, as 
was [ l ,  ( l . l l ) ] ,  that 

(5.4) 

tc(t, t - 1)  (n  - l),c(n - r ,  q - t )  
,=2  t! (n - l)c(n - 1, q - 1) 

n - 2  

f rob{ %5} = hob{ 9.Yl}( 1 + 

Let A ,  be the general term in the sum. We have 

where b is given by [ l ,  (1.9)], and CP and q are (see [ l ,  (4.1)]) 

Note ( t  + l),/(t + l)! = O(e') by Stirling's formula, 

9-1 ,,+ 1 1 9 -  1.1 = w q -  l . J q - 1  ,1  n) 
by [ l ,  (5.14)] and 

by the concavity of cp. Combining these observations with (5 .5) ,  we obtain 

Combining 
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(1.4), (1.6), and (5.7), we obtain 

A, , ,  = 0(1){(i + o(l/n))xel-xq-}f. (5.8) 

The expression inside {. -.} is bounded away from 1 and, by [l, (3.7)], is 
O(xe-2”).  This proves that the series in (5.4) can be bounded by a geometric 
series and (c) follows. 

Proof (of (d)). We will estimate the sum in (5.4). From (5.8), the sum is 
dominated by a geometric series with ratio bounded away from 1. It follows that 
we need only sum over t < C log n for some large enough constant C. From [l, 
( 3 . 9 ,  (3.1311, 

for such t. 
From the remarks following (5.8), it follows that the sum is O(k 1/16 / n  9/50  ) for 

x > C log n and C sufficiently large. Thus we assume that x = O(1og n). From [l, 
( 5 . 2 ) ~  

for t, x < O(1og n). Combining these with (5.5) and (5.9), we obtain 

Prob{ BY} = Prob{ 93Fl}(1 + O((k + l)1’16/n9’50)) 

Using [l, (1.12)] and (1.2), the summation can be simplified to 

which proves (d). 
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Proof (of (e)). From (1.6), (5.3), and (5 .9 ) ,  

n - 1  

Prob{ BYl} = 
4 

1/16 9/50 x exp{ - cp(x) + (x - l)cp’(x)}(l + O((k + 1) /n )) 

= e x d y ’ ( N + 2 - n ) (  N - *  
4 

x (1 + ~ ( ( k  + 1)1116/n9/50)) . 
The ratio of binomial coefficients equals 

1+2 
n-3 n-2  n - 3  1 - - 

N - 9  
=(l-;) i = O  n 1-- 1 

n N - q - 2 - i  
i = o  N -  i 

N 
n - 3  . 

i=o N N - q  

N - 4  

L i+2 n - 2  

= (1 - :) exp{ c - - - + O(n31(N - q)2 ) }  

= (1 - ;)‘-l exp{ 1 - - + 0(1/n)] 

n-2  

=(I - 2) exp{(l- q/N)-’ + O(l/n)} . 5 

Proof (of (f)). Writing A for Prob(48 - BSS}, we have by [ l ,  (1.11)] 
k - 1  .. - - 

2 n-1 
c(t, t +  s)c(n - t ,  q - t - s  - 1) 

(5.10) 
4 c h  4 )  

AS c c (:)t(n-r) 
130 r = 1  

Let T ( X )  be the exponential generating function for rooted trees; that is, 

T ( X )  = c tc(t,  t - l)X’/t!. We use the following, which holds for 0 5 X <  e-’, 
s r o :  

m 

( = I  

T ( X )  
n-1 c tC ( t ,  t + s) Xr = 0(1)(3/2)’s! 

t! (1 - T(x))3s+2 . 
(5.11) 

For s 2 1 this is a consequence of an inequality found in [3], as explained in [l, 
(lOS)]. For s = 0 see the explicit formula [ l ,  (2.4)]. Fix 6, e0 > 0 and Cl < 1 so 
that (see [ l ,  (6.2), (6.4)]) 

(5.12) 3XY - ( n / k ) ” ’ ~  (1 - 6 ) ~ : ”  , 2e x I 1 + e0 

and 
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(5.13) 

The proof consists of three cases. 
Case 

we may 

1 n  1 t  
(i), OC k I con. Using (1.3), (5.6), and - ( ) t ( n  - t )  = - - (n  - l), ,  
rewrite (5.10) thus 

4 t  x t! 

k - 1  - 

(5.14) 

Using sfx = O(n’) in [ l ,  (5.21)] to bound @.,,fe*s.‘, and then (5.13), 

k - I  

Now apply (5.11) with X =  ( 1 - - ‘f)/e, noting by 11, (8.4)] that 

1 - T (  (1 - y)/e) 2 ( C l k / n ) ’ / 2 ,  to obtain 

n 3s12 
2 

A = O(1) X Y  - - n (2xy/n)’(3/2)’s!( -) . 
n C,k  5-0 Clk 

k - 1  
2 5 1 - 6for s 5 - , and so the Condition (5.12) implies that 

sum on s is bounded by 0(1) C t / s ( l -S )”=  O(1). Hence, A = O ( y / k )  

= O ( ( k n ) - ’ / 2 ) ,  the last because y 5 3(x - 1) = 3 k / n .  This complete case (i). 
Case (ii), Eon 5 k 5 6n log n.  Let 1 - 6, be the value of ( x  + l ) f V / 2  when 

x = e0- Since [I, (8.9)] ( x  + l ) v 3 / 2  decreases when x and y increase, 6, > 0. 
Let so = C,n/x ,  where C, is b e d  and satisfies 

s = o  

e 
0 < c, 5 5 (1 - 6)6;’* . (5.16) 

Separate the bound (5.10) for A into two parts 

A s A ,  + A 2 ,  

where Al is that part of the summation in (5.10) where O r  s < so, and A2 is that 
part where so 5 s 5 - . We now consider each of A, and A, in turn. Again, 
stx = O(n‘) ,  and so, as in (5.14) and (5.15), we have 

k - 1  
2 

Since [ l ,  (8.9)] ( x  + l)l/mk2 decreases as x and y increase, since T ( X )  = 
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O ( X ) ,  and since [l, (8.4)]T((l - 2i0)/e) 5 1 - fi, we have by (5.11) with 
x = (x + 1 ) d i 7 / 2 e  

SO 

Al = 0(1) xy x v m  2 ( 2 ~ y / n ) ' ( 3 / 2 ) ~ s ! 6 , ~ ' ' ~ .  
n r = O  

2xy 3 s 
Condition (5.16) implies that - - - S03'2 5 1 - 6 for s 5 so, and SO the sum on 

s is again O(1). Since [l, (3.7)]1- y 2  = O(e-2x), we have A1 = O(xZe-"/n). 
n 2 e  

We turn now to A2. Because cp'(x) > 0 and p"(x) < 0 we have 

Since O <  a(x) = 0(1) ,  we may substitute from (1.3) into (5.10) and find 

Hence, by [l, (lO.l)], A2 = O(p(n)2-"O), where p ( n )  is a polynomial in n. This 
completes case (ii). 

Case (iii), 6n log n 5 k 5 N - n. First, note the bound, for 1 I t 5 n - 1, 

(",'", " >  - < ( N -  t(n N - t))q-l 5exp  ( - ( q  - l)t(n N - t )  ) .  (5.17) 

yl) 

As noted in [l, page 1551 

and so, since c(n,  q ) -  (r) by [2], we have from (5.10) and (5.17) 

Because n exp(-( q - l ) (n  - t ) / N )  5 n exp(-( q - l ) / n )  = O(n-') for 
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l s t s n 1 2 ,  the above sum on t is dominated by the first term; also, 
q ( y ) = ( N - q + i ) (  N ).( N ) ,  andso 

q - 1  q - 1  

A = 0 ( ~ ~ ~ - 2 ” )  , 

since (n  - 1)/N = 2ln. This completes case (iii), and the proof of Theorem 5.1. 
a 

6. VERTEX DEGREES AND CUT VERTICES 

Recall the convention of Section 1 that a “random vertex” is one selected 
uniformly from a graph G, with G selected uniformly from the class C(n, q) .  

We begin the study of vertices by computing the probability that a vertex is a 
noncut vertex of degree d. We then obtain information about the degrees of cut 
vertices by showing that removal of a typical cut vertex produces only one 
component which is not a tree. 

Theorem 6.1. 
vertex is a noncut vertex of degree d and let 9 = 1 Ik + k 
O(1og n) ,  we have 

Let n2I9 5 k 5 6n log n ,  let P(d)  be the probability that a random 
. For 1 5  d = 1 / 1 6  9 / 5 0  In 

For arbitrary d > do > 3x, 

P(d) < 0(1)P(do)(2 /3  + 0 ( 1 ) ) ~ - “ ~  . (6.2) 

For n and k as given, the probability that a random vertex is not a cut vertex 13 

Theorem 6.2. Let D(d)  be the probability that a random vertex has degree d and 
let D,(d) be the probability that, in addition, removal of the vertex leaves only one 
component that is not a tree. Let 77 = 1 Ik + k In . For n2l9 5 k 5 6n log n and 
1 5  d = O(1og n) ,  

1116 9 / 5 0  

vm (x( 1 + y))“ - (x(  1 - y))d 
D ( d )  = D,(d) + O(7) = i. + O h ) .  2Ye d !  

(6.4) 

Throughout this section, we let 

= { ;i67:8 , for n2I9 I k I eon , 
for ~ , , n < k I 6 n l o g n ,  

e0 being the constant defined in [l, (6.1)-(6.4)]. We require a technical lemma. 
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Lemma 6.1. For nz‘9 5 k 5 6n log n, t s  H and s = O(log n), we have 

1/16 9 / 5 0  where q = q(n, k) = l / k  + k /n 

Proof. Since 

q - t - s  ( t (x  - 1) - s 
= x + S with 6 = 

n - t  n - - t  ’ 

we have 

c ( n - - t , q - - t - s )  - 
4% 4 )  

- exp{a(x + 6 )  - a(x ) }  

We will treat each of the first three factors on the right of (6.6) separately. 
In the notation of [ l ,  Lemma 5.21, the first factor of (6.6) is *,-l,f/(n - l ) ,  and 

where B = t(n - t / 2 -  3/2). The exponential in (6.7) is exp(O(7)). We have 

and so ( q  - t ) ,  = ((1 + O(7)) .  Since 

and 

(2t + 1) + 2x - t ( t  + 3 ) l n  = I -  2(N - B - q )  
7 n2 n 

it follows that 

( N  - B - + s), = n2”2-”(1 + O(7))  . 

Using these estimates with (6.7), we have 
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(6.8) - - 

Since a’(x)  is O(n”2/k”z) for y 1 3 / 4  and bounded elsewhere by [ I ,  (3.2), 
(3.8), (3.13)], we have 

a(x + 6) - a(x) = O(7) . (6.9) 

We have 

(n - t)cp(x + 6) - ncp(x) = -tcp(x) + (n - t)6cp’(x) + O(n62cp”( 5)) , 
(6.10) 

where 6 is between x and x + 6. By [l, ( 3 3 ,  (3.10)], O(ns2cp”( 6 ) )  = O(7) .  Thus 
by (1.4), (1.6), (6.10), and the definition of 6, 

exp{(n - Ocp(x + 6 )  - ncp(x)) = ( exm);r(l  + O(7) ) .  (6.11) 

The lemma follows from (6.8), (6.9), and (6.11). m 

Proof (of Theorem 6.1) .  To make a vertex u a noncut vertex, we construct a 
connected graph on the remaining vertices and connect u to it with d edges. Thus 

n - 1  c ( n - 1 , q - d )  
P ( d ) = (  d ) c(n, q) (6.12) 

As in the proof of Lemma 6.1, (n - l ) d  = nd(l + O(7)) .  Using (6.5) with t = 1 
and s = d - 1, we obtain from (6.12) 

( %)d-l(l + O ( 7 ) ) .  
nd x V l -  y2 

P ( d ) =  - 
d !  neL 

This proves (6.1). 

of a and the positivity of cp‘,  it follows that 
We now prove (6.2). Substituting (1.3) into (6.12) and using the boundedness 
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Clearly each fraction inside the product is at most nq/do(N - q),  which, since 
do > 3x, is at most 213 + o(1). This proves (6 .2 ) .  

Using (6.1) and (6.2), sum P ( d )  over d > 0 to obtain 

Now use (1.2) to obtain (6.3). 

Proof (of Theorem 6.2). The plan of the proof is as follows. For the stated 
range of d ,  show that D,(d) equals the expression on the right side of (6.4). 
Define A(d)  to be D,(d) in that range and 0 otherwise, Next, conclude that 

C A(d) = 1 f O(q). Finally, since D ( d )  - A(d) 2 0  and c D ( d )  = 1, conclude 
that D ( d )  - A ( d )  5 O(q). 

Let $( t )  be the number of f vertex labeled forests that contain exactly j rooted 
labeled trees. The exponential generating function for f ,  is (T(z))’/j!, where 
T = ze’ is the exponential generating function for rooted labeled trees. 

d =  1 

By an argument like that for (6.12), it is easy to see that 

O&<” 
(6.13) 

d - j  n 
For t 5 H ,  we can replace (“a”) with@I-p . Also, we can apply Lemma 

6.1 with t replaced by t + 1 and s by d - j - 1. Thus, a term in (6.13) is 

We wish to sum this for 0 I f < n. We may bound the tails of the sum, where 
t > H ,  by using [l, Lemma 5.41 and arguments like those in [l, Section 81. This 
gives 

T ( p ) ’  (1 + O(q))  , (6.14) I/- (2xy)d-’ 
D,(d)= c ___ 

OSj<d  2ye’ ( d - j ) !  j !  

where p = xe-’d- is the same as in [l, (1.13)]. From [l ,  (1.12)], T( p )  = 
x ( l  - y). Using this in (6.14), we obtain 

which easily gives (6.4) for D,(d). Note that the formula vanishes for d = 0 .  



202 BENDER, CANFIELD, A N D  McKAY 

Summing this on d I 0, with easy estimates for d = O(log n), gives 

Using (1.2) and a bit of algebra, this reduces to 
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