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ABSTRACT 

Let c(n,  q) be the number of connected labeled graphs with n vertices and q 5 N = ( ) 
edges. Let x = q/n and k = q - n. We determine functions w k  - 1 ,  a(x )  and cp(x) such that 
c (n ,  q) - w k ( z ) e n r p ( x ) e o ( x )  uniformly for all n and q 2 n. If Q > O  is fixed, n+= and 
4q > ( 1  + ~ ) n  log n, this formula simplifies to c(n, q) - ( t )  exp(-ne-zq’n). On the other 
hand, if k = o(n”’), this formula simplifies to c(n, n + k) - 4 ~ ~ ( 3 / 7 ~ ) ” ~  
(e,*2k)k’2n“+(3k--l)/2 

1. INTRODUCTION AND STATEMENT OF RESULTS 

In this paper all graphs are labeled, and an (n, q) graph is one having n vertices 
and q edges. Let c(n,  q)  equal the number of connected (n, q)  graphs. Our object 

* Research supported by the Office of Naval Research and the National Security Agency. 
AMS-MOS Subject Classification: 05C30, 05C80, 05C40 
’The United States Government is authorized to reproduce and distribute reprints notwithstanding 

any copyright notation hereon. 

Random Structures and Algorithms, Vol. 1, No. 2 (1990) 
0 1990 John Wiley & Sons, Inc. CCC 1042-9832/90/020127-43$04.00 



128 BENDER, CANFIELD, AND McKAY 

is to study the asymptotic behavior of c(n,  q )  as n, q+w. Throughout we let 

N =  (i) , k = q - n and x = qln = 1 + kln . (1.1) 

The function y = y ( x )  > 0 is defined implicitly by 

2xy = log( -) l + Y  , 
1 - Y  

for 1 < x  <a. We can extend it continuously to x = 1 by defining y(1) = 0. 
Another way to express the relationship between x and y is 

Y 2  Y 4  x = l + - - 1  - + . . . .  
3 5  

This given, we can state our main result. 

Theorem 1. 
graphs, c(n, q ) ,  is given by 

With k ,  N ,  x ,  and y defined as above, the number of connected (n, q )  

as n -+ a, uniformly for 0 < k 5 N - n ,  where 

a(x) = x ( x  + 1)( 1 - y )  + log( 1 - x + x y )  - $ log( 1 - x + xy’) . (1.5) 

The binomial coeficient ( y )  is the total number of ( n ,  q )  graphs, so the rest of the 
expression on the right side of (1.4) may be interpreied as the probability of 
connectedness. 

Erd6s and Renyi [5] proved a formula equivalent to (1.4) when x - 4 log n is 
bounded below. Wri ht [14] proved a formula like (1.4) but without the 0 ( 1  l k )  
term when k = o(n ). We will use Wright’s result in Corollary 1 to eliminate our 
O( 1 l k )  term. In Corollaries 2 and 3,  we will show that the forms given by Erd6s 
and Renyi and by Wright are valid over a larger range. Stepanov [lo] estimated 
the probability of connectedness for random graphs with edge probability p .  
Although the expected number of edges given that the graph is connected is 
significantly larger than pN [2],  Stepanov’s results can be used to obtain a close 
upper bound on c(n, q )  [9]. The formula €or connected graphs is closely related to 
that for weakly connected digraphs [3]. 

We wish t o  thank Tomasz tuczak  for suggesting the simple proof of Lemma 
3.7, Lambert Meertens for suggesting the simple proof of Lemma 3.4,  and Maple 
for integrating a‘(x). 

I 2  
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Corollary 1. 

129 

Define wo = 7 r / f i  and 

where d,  k given by the recursion 

k - 1  

h=I  (k + I ) ( ; )  
f o r k > O .  5 d h d k - h  

d k + l  = d k  + 2 d = -  
36 ' 

For k 2 0 ,  we have 

where the indeterminate value of y'-" at x = 1 is taken to be 1 and that of a (1 )  is 
taken to be 2 + 1 log(3/2). 

Corollary 2. If wk is given as in Corollary 1 ,  then 

c(n, n + k )  = 4 ~,(3/7r)~'~(el12k)~'~n~+(~~-~)'~ 
[ I  + O(kz/n)  + O((k + 1)1'16/ny/50)] , 

uniformly for 0 5 k = O(n'/ ') .  

Corollary 3. If E > 0 is fined, then 

(1.10) 

uniformly for 4q > (1 + E)n log n. 

The definition of y'-" at x = 0 in Corollary 1 is not arbitrary. By (1.3), it is the 
value that makes y'-" continuous at 0.  Wright [14] introduced d ,  and (1.7) and 
proved that d = limk-=dk exists. Meertens [7] and Voblyi [ l l ]  proved that d = 
1/27r. At the cost of some complication in the expressions, (1.10) and (1.9) can 
be extended to wider ranges of x [2]. 

Our proof of Theorem 1 is based on the following recursive formula for 
c(n, 9):  

qc(n, q )  = ( N  - q + I)c(n,  q - 1) 

This identity follows from counting in two ways the connected ( n ,  q )  graphs 
having a distinguished edge. The left side of (1.11) corresponds to starting with a 
connected ( n ,  q)  graph and then choosing one of its edges to distinguish. The two 
quantities on the right side of ( l . l l ) ,  the first a single term, the second a summa- 
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tion, correspond to adding a distinguished edge to an existing graph in two ways: 
First we may add the distinguished edge to a connected (n, q - 1) graph, choosing 
a pair of vertices not already connected; second we may choose one vertex from a 
connected (n -- t ,  q - t - s - 1 )  graph and a second vertex from a disjoint con- 
nected ( t ,  t + s )  graph, between which we add the distinguished edge. These two 
cases on the right side of (1.11) correspond respectively to the cases where the 
distinguished edge is not, and is, a bridge. 

We now state Theorem 2, which describes the asymptotic behavior of c(n,  q )  in 
different terms than Theorem 1 does. In fact, (1.12) and (1.17) below are the 
equations which arise "naturally" when one assumes formula (1.19) for c(n, q ) ,  
and then uses recursion ( 1 . 1 1 )  to find conditions on q ( x )  and a(x) .  We will prove 
Theorem 2 and derive the other results from it. 

Theorem 2. Let q ( x )  be the solution of the differential equation 

1 1 = e v ' ( x )  + ~ ( p )  

where cp'( 1) = +m and p = p ( x )  is defined by 

(1.12) 

and T(u)  is the exponential generating function for labeled and rooted trees: 

= tc(t, t - 1 )  
r - l  t !  

[ T(u)  = c u .  (1.14) 

Let U( u)  be the exponential generating function for labeled and rooted unicyclic 
graphs: 

(1.15) 

Let 

( x  - 1)(2x - 1 )  
gl(x) = -2(x - l)(x t 1 )  and g2(x) = - (1.16) 2x 

and let a ( x )  be the solution of the differential equation 

1 1 1 
0 = [ 5 cp"(x) - a f ( x ) ]  e-v ' (x)  t ; P2T"( p ) [  g2(x) + 5 cp"(x)(x - 1)2] 

which satisfies the boundary condition 

a(1) = 1 log(3/2) + 2 .  (1.18) 
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Then, if b(n, k )  is defined by the identity 

(1.19) 

we will have 

b(n, k)  = U(l /k )  uniformly for O <  k 5 n1I5 , (1.20a) 

and 

1/16 9 / 5 0  b(n, k )  = O(k l n  ) uniformly for  n1I5 < k 5 N - n . (1.20b) 

It is not immediately evident that the boundary condition p’(1) = +* determines 
cp(x). This will follow in the process of proving Lemma 2.1. 

The functions p(x) and a(x)  are rather complicated, so we have included some 
plots at the end of the paper. We have also included some plots of error estimates 
given by 

and 

These suggest that our approximations are rather good. 
l h e  rest of the paper is organized as follows. In the next section, we prove the 

equivalence of Theorems 1 and 2. Section 3 begins with a variety of easy estimates 
involving y ( x ) ,  p(x) and a(x) .  Then we (a) show that the theorems plus Wright’s 
result imply the corollaries, (b) use Wright’s result to prove Theorem 2 for 
k 5 n , and (c) obtain an upper bound for c(n,  4) .  In Section 4 we state Lemma 
4.1 and show that it is all that is needed to complete the proof of Theorem 2. 
Section 5 contains three lemmas that estimate two functions appearing in the 
statement of Lemma 4.1. Sections 6-10 are devoted to proving Lemma 4.1. To do 
this, we divide the range n2I9 5 k 5 N - n into subranges. The points of division 
are k =  con and k = 6 n  logn, where e0 is a constant that will be specified later. 

Throughout the remainder of this paper, the symbol ?’ with no explicitly stated 
argument will be understood to mean T ( p ( x ) ) .  Likewise, U will always mean 
U(p(x ) )  and expressions like T‘ will mean dT(u)ldu with u then set to p ( x ) .  We 
will often use standard asymptotic methods without explicit reference. Informa- 
tion on these methods can be found in de Bruijn [4] and Bender [1]. 

2 / 9  

2. THEOREMS 1 A N D  2 ARE EQUIVALENT 

We require some preliminary results. 
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Lemma 2.1. We have 

Between y ( x )  introduced in (1.2) and cp(x) defined by (1.12) we have the relations 

Proof. Equation ( 2 . 1 )  follows easily from (1.2) and (1.3). 
Equation (2.2) follows from the well-known identity 

(See, e.g., [8, p. 771.) Differentiating (2.9) with respect to u and rearranging, we 
obtain (2.3). Equation (2 .4)  was proved by Wright [13,15]. 

Let f ( x )  = e--lp'(x! We will show that f ( x )  satisfies (2.1) with y replaced by f .  
Rearrange (1.12) as 

x - x f =  T (2.10) 

and differentiate both sides of the equation with respect to x. Rewrite the result- 
ing right side by using (2.3) evaluated at /3 and the logarithmic derivative of 
(1.13). The latter will contain neither q ( x )  nor cp'(x), but will contain ~"(x), 
which can be replaced by - (df /dx) / f ,  from (2.5). In this manner, both sides of 
(2.10), after differentiation with respect to x ,  are rational functions of dfldx, x ,  f ,  
and T. Multiplying through by xf(  1 - T )  to clear functions and eliminating T with 
(2.10), we obtain 
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dx dx 
Solving for dx/df, we find that 

dx x 1 - -  - - - -  
df f f ( f2- - l )  ’ 

which is (2.1) with y replaced by f. Sincef(1) = e-m = 0 by the definition of cp, we 
have f =  y. Hence, (2.5) is verified. Equations (2.6) and (2.7) follow easily. 

Next we consider (2.8). Let u = P ( x )  in (2.2) and then use (1.13) to eliminate 
p ( x )  on the left and (2.10) to eliminate T on the right. Use (2.5) to eliminate 
cp’(x). The resulting equation can be solved for e“’) and (2.8) results. w 

Lemma 2.2. Theorem 1 is equivalent to Theorem 2. 

Proof. By (2.8), it suffices to show that a(x) given by (1.5) is the same as a(x) 
given by (1.17) and (1.18). To distinguish between the two versions of a(x) in our 
proof, we will use a(x) to denote the value given by (1.5). 

It follows easily from (1.3) that, for any E > 0 

y = a( X) l‘’ (1 + 0 ( t )) (2.11) 

uniformly for 0 5 k/n < E. Using this fact, it is easy to see that lim,,,a(x) is 

A messy algebraic calculation, which we present in summary, shows that a(x) 
satisfies (1.17). Rearrange (1.17) so that all occurences of a’(x) are on one side, 
use (2.3) to express P T ’  and P ’ T  as rational functions in T, use (2.4), and 
replace e-”‘(’) by y to obtain 

log(3/2) + 2. 

(2x - l)(x - 1) + 

(2.12) 
(X - 1)(4x2 + 2~ + 1) Y T3 

1 - T  2x2 + (1 - T)’ ‘ 

The quantity multiplying a’(x) on the left is x( 1 - x + xy’) /x( 1 - T). Divide both 
sides of (2.12) by this expression, multiply both sides by dxldy, given by (2.1), 
and use (2.6) to eliminate cp”(x). This leads to 

1 - T  (x - - Y) 

(2x - l)(x - 1) 
- 2 ~ y (  1 - T)’( 1 + y) 

+ dx 
a’(x) - = 

dy -2(1- x + XY’) -2y(l- T)’(1 - x + XY’) 

(1 - x)(4x2 + 2x + 1) 
2XY(l+ Y) 

+ + 

(2.13) 
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Use (2.10) to eliminate T. From (1.5) we can compute da ldy  and verify that this 
equals the previous expression. 

We remark for future use that, after some rearrangement, (2.13) can be writ- 
ten as 

dx 2 4x2 - 2 x -  1 - 2x2 1 - y  + X Y  a”(x) - = - x + 
l - x + x y  l + y  1 - x + x y 2  

(2.14) 
dY 2Y 

3. S O M E  EASY ESTIMATES 

Lemma 3.1. 
5 log7, the following: 

We have, uniformly for  0 < y 5 314, or equivalently for  1 < x 5 

I,/- = 1 - 3 k / 2 n  + O ( k 2 / n 2 )  , (3.1) 

4x1  = O(1) 7 (3.2) 

a’(x) = O(n”2/k”2) , (3.3) 

(3.4) 
qo”(x) = 0 ( 1  ly’) = O ( n / k )  , (3.5) 
cp’”(x) = 0 ( 1  / y 4 )  = O(n2 /k2 )  . (3.6) 

312 312 a”(x) = O(n / k  ) , 

Proof. Equation (3.1) is an easy consequence of (1.3).  Some calculations with 
(1.5) and (1.3) show that a(x)  has a power series expansion about y = 0 and so 
dka(x) l (dy)k  is bounded for all k .  Equation (3.2) follows immediately and (3.3) 
and (3.4) follow upon use of the chain rule, (2.1) and (2.11). Equations (3.5) and 
(3.6) are easily obtained in a similar manner from (2.7).  w 

Lemma 3.2. As x -  m, 

where the constant implied by the big-oh depends on A and m, 

dY - = O( 1 - y )  , 

cp”(x) = O(1  - y )  9 

p’”(x) = O( 1 - y )  , 

44 = O(x2(1 - y)> , 

a’(x) = 0(x2(  1 - y ) )  , 

a”(x) = 0 ( x 2 (  1 - y ) )  . 

dx (3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 
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Proof. From (1.2) with 6 = 1 - y, 

(1 - y)"Y 1 - y (6/2)-& 1 
e-2X = 

(1 + y)"Y 2 1 - 6/2 
- - - (-) = 5 6 exp(O(6 log 6))  . (3.15) 

Since 6 log 6-0, it follows that e-'" - 6/2. Combining this with (3.15), we 
obtain 

This proves (3.7) and (3.8) and so 

1 - x + xy = 1 - x(1- y)- 1. (3.16) 

Combining (2.1) and (3.16) gives (3.9). 
We will say that f(x, y) is Rat,,, for r 2 0, rn z- 0 iff  = O(xr( 1 - y)") and there 

are polynomials P(x ,  y) and Q(x, y )  such that f =  P/Q and limx,,Q(x, y )  exists 
and is not zero (of course, y -  1 as x-+ a). We now prove 

(3.17) df iff  is Rat,,,, then - is Rat,,, . dx 

Let S = 1 - y and write P and Q as polynomials in x and S, say C pi,,xi6' and 
C qi,jxlS'. By the assumption on lim Q and (3.8) we see that qo,o f 0 and qi,o = 0 
for i > 0. By this, (3.7) and the assumption on f, pi,j = 0 if j < rn or j = rn and 
i < r .  It follows easily using this and (3.8) that for some t 

. .  

P,Q - PQx = O(xr-'(1 - y)")O(1) + O(x'(1 -Y)"')O(X'(I - y)) 

= O(X'( 1 - y)") . (3.18) 

Also, for some u, 

PyQ - PQy = O(x'(1- y),-l)O( 1) + O(x'(1 - ~)")O(X") 

= O(x'(1- y)"-'). 

Combining this with (3.18) and (3.9) gives (3.17). 
From (2.6), (2.1) and (3.9), p"(x) is a rational function of x and y and (3.10) 

holds. Now (3.11) follows from (3.17). Equation (3.12) follows from (1.5) and 
(3.8). From (2.14) and (3.8), 

dx 
a'(x) - = O(x') and is a rational function of x and y. 

dY 

By (1.5) and (2.1), a'(x) is Rat,,,, implying (3.13). We have (3.14) by (3.17). 
rn 

In the next lemma, we estimate np(x)  + a(x) for large x. 
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Lemma 3.3. 
When q > ( $  + E)n log n, 

Fix E > 0. When 4x > (1 + E )  log n, Theorem 2 implies Corollary 3. 

exp[np(x) + a(x)]  - 1 . (3.19) 

Proof. From (1.2) and (2.8), 

Combining this with (3.12) and using (3.7), we have 

exp[np(x) + a(.)] = exp[-ne-'"(I + O(xe-'") + ~ ( n x ~ - ~ " )  + ~(x'e-'")] 

= exp[-ne-'" + ~ ( n x e - ~ " )  + ~(x'e-'")] . 

Since 4x > (1 + E )  log n and since x2e-x is a decreasing function for such x ,  it 
follows that the O( ) terms are o(1). This implies the lemma. 

Lemma 3.4. The numbers d, given by (1.7), satisfy dk = 1125- + O(l/k) .  

Prouf. The following simple proof was suggested by Meertens [7].  It can be 
sharpened to give the asymptotic expansion suggested by Wright [14, Sec. 61, 
which begins 

(3.20) 

and it can be used for any d ,  E (0, a), with different constants appearing in 
(3.20). 

Define the formal power series 
m 

m 

From (1.7), x2Dfr + (2x - 1)D' + ~ ' ( 0 ' ) ~  - d, = 0. Thus 

x'J" + ( 2 ~  - 1 ) l '  + d,J  = 0 .  

Equating coefficients, we find that 
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Hence 

dl 1 1 
j m  = d, fi ( 1  + ici+rj) = ; cos( 

i= I 

and 0 < j k  < j m .  It follows from [12, Theorem 21 that for any fixed R > 0 

where C ckxk = l / J ( x )  and ( ) k  denotes the falling factorial. rn 

We now prove (1.20) for sufficiently small k .  This will be a beginning of a 
proof by induction of the full statement of (1.20b). 

Lemma 3.5. Theorem 2 is true for 1 I k 5 n2l9 and (1.9) follows from (1.8). 

Proof. We begin by estimating terms in (1 .19) .  Then we use Wright's and 
Meertens' results to estimate b(n, k ) .  The claim concerning Corollary 2 then 
follows easily. 

If we use (2.8) and let x = 1 + k / n ,  we have 

Using (3.1), we obtain 

( 1  - y y  = [ l -  
2n 

and so (3.21) becomes 

,nip(x) - n - n + k / 2  - k  - 2  e y [ I +  0 ( k 2 / n ) ] .  

Referring to (2.11), we may rewrite this as 

We easily have 

(3.21) 

(3.22) 
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and 

Combining these results gives 

(3.23) 

By Stirling’s formula, 

From (1.18) and (3.3), 

a ( l  + k / n )  = log(3/2) + 2 + O(k”2/n”2) . (3.25) 

Multiplying (3.22), (3.23), and the exponential of (3.25), and dividing by (3.24), 
we have, assuming k2 = o(n), 

x [1+ O(k2/n)] . (3.26) 

Wright [14, Theorem 21 shows that c(n, n)  - m n ’ * - ’ 1 2  and 

uniformly for O <  k = o(n1I3), where d k  is given by (1.7). If Stirling’s formula is 
used for F(k)  and I‘(3k/2) in (3.27) and the result is compared with (3.26), we 
find that (1.8) implies (1.9). If we also use Lemma 3.4 and the definition of 
b(n, k )  in (1.19), we find that, for k 5 n2’4 

b(n, k )  = 0(1 / k )  + ~ ( k ~ ~ ~ / ~ ~ ~ ~ )  + O(k2/n) . (3.28) 

, O ( k 3 1 2 / n 1 1 2 )  domi- 219 For k I n”’, O(l /k)  dominates in (3.28). For n115 I k I n 
nates in (3.28) and is dominated by O(k11’6/n91s0 1. 

Lemma 3.6. 

Proof. 

Theorem 2 with Wright’s result implies Corollaries 1 and 2. 

By Lemma 3.5, it suffices to prove (1.8). For k 2 n2I9, it follows from the 
theorem. For k < n2‘9, it follows from (1.6), (3.27), and (3.26). w 

In order to carry out the induction, we need some sort of crude upper bound 
for c(n, 4). This result is needed to bound parts of the sum in (1.11). The exact 
form of the bound is somewhat arbitrary. 
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Lemma 3.7. For n > 0 and n < q 5 N ,  

We originally produced a lengthy proof of lemma with O(n3'2) replaced by q2. 
Tomasz kuczak told us about this simple probabilistic method 161 for proving this 
type of result. Later, Boris Pittel [9] showed us how to use Stepanov's up er 
bound on the probability of connectedness to obtain a factor of O((n log n )  ). 

I p 2  

Proof. We use f = O( g )  to indicate that I f/gl is bounded away from 0 and m. We 
may assume that x < $ log n + U(1) ,  since otherwise en'(*) = O(1). Thus, from 
(3.7) and y'(x) > 0, we may assume that (1 - y)n 2 1. 

Following kuczak, we use the edge probability model G(m, p )  of random 
graphs and compute the expected number of components having n vertices and q 
edges. Since this number cannot exceed mln,  we have 

Set p = 2xy/n and m = ( 1  + y)n/2y + 6, where 0 I 6 < 1 and m is an integer. We 
use z !  for r (z  + 1) .  Note that ( z  + S ) !  = O ( z ! z s )  for z > 1/2.  Using this and 
(1 .2) ,  we have 

((1 + y)nl2y + S ) !  
n!( ( l  - y)n/2y + S) !  

From this and the easily derived (1 - P ) " ~  - exp(-2Sxy), it follows that we can 
neglect S with a multiplicative error of O(1). Rearranging (3.30), using Stirling's 
formula to eliminate the binomial coefficient, and using Taylor series to expand 
log(1 - p ) ,  we obtain 

Note that 
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N"" n (1 - k) 
nx i < n x  

(3.32) 

and, by (1.2), 

Combining (3.31)-(3.33), rearranging, and using (2.8) and (3.8), we obtain 

The lemma follows from (2.11). 

4. THE REDUCTION OF THEOREM 2 TO A CRUCIAL LEMMA 

Our plan is to prove (1.20b) by a double induction on k and n. This hinges on 
Lemma 4.1 which we will soon state. In this section we show that Lemma 4.1 
implies (1.20b). The proof of the lemma itself occupies the remainder of this 
paper. 

It will be useful to have the following notation for two frequently occuring 
complicated expressions. 

and 

(4.lb) 

with ( ), denoting the falling factorial and the dependence on n and k of both 
and W being understood. 

We begin by converting (1.11) into a recursion for b(n, k ) .  To do this, divide 
both sides of (1.11) by q( y )  exp[nq(x) + a(x)] and replace c(n, q ) ,  c(n, q - l ) ,  
c(n - t, q - t )  and c(n - t, q - t - 1) by their equivalents as given in (1.19). Mak- 
ing use of the relations 

n t  n 1  
4 4 t*  4 x  
' (:)t(n - t) = - 7 (n - l ) ,  and - = - , 

we find that 
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1 + b(n, k )  = exp(@,,,)[l+ b(n, k - l)]  

We rewrite this as 

1 + b(n, k )  = A + S-, + So + S , (4.3) 

defining A to be the first term on the right of (4.2) and S-,, So,  and S to be first, 
second, and third summations on the right of (4.2), respectively. Si results from 
combining the s = i and s = k - i - 1 summations on the right of (1.11) and S 
results from the remainder of the double summation on the right of (1.11). 

Using (4.2) to bound b(n, k )  is complicated by the appearance of the quan- 
tities of interest on both sides. We use a double induction on k and n ,  the crux of 
which is expressed in Lemma 4.1 below. Before stating this lemma, we define the 
relevant partial order for our double induction and also two functions of x whose 
origin will become apparent as the proof progresses. 

Recall the definitions (1.13) and (1.16) of p,  g, and g,. 

Definitions. 

P(x)  = 

QW = 

+ 

$cp”(x) -a‘@) 

PT’ 
~ [ g,(x) + (x - l),q”(x) + ( x  - l)a‘(x)] X 

We use < to denote the product order on the product N X N, that is, 

provided that either nl 5 n2 and k ,  < k,, or n ,  < n2 and k ,  5 k,. 

Lemma 4.1. Let A ,  S.-l, S o ,  and S be the functions of n and k defined in the 
remarks following (4.3) above, and let P and Q be the functions of x given in (4.4) 
and (4.5). Then there is an no and a C, > 0 such that, for all C 2 1, all n 2 no and 
all k in the range n2I9 < k 5 N - n ,  we have either 
( a )  for some (v, K )  < ( n ,  k )  with K 2 v1I5 
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or ( b )  all four of the following inequalities hold: 

Ck"16 1 + 7 ( e-v ' (x) (  1 + - P(x) - 

+ 7 (: T + ;  ~ ( x ) +  - - P T ' +  

n 

~ S - l - ( ; T + - Q ( ~ ) ) ~ s ~ k - 3 1 2  1 1 - l i2  - c e x p ( - ~ , n " ~ )  n + 
n c2 

1 9 1  
50 xn 

Ck1116 

-312 -112 k n + -C e~p(--C,n ' /~)  
c2 

- q ' ( x ) ~  + 1 k-3i2n-112 
c2 

k-3i2n-"2 . (SI 5 - Ck1'16 1 
c2 

(4.6a) 

(4.6b) 

(4 .6~)  

(4.6d) 

Now, before proving Lemma 4.1 in the next several sections, we will first see 
how it implies (1.20b). We begin with a technical inequality. 

Lemma 4.2. There is a universal constant B > O  such that for k>O 

(1/16) e-"''(l)  (9/50)pT1 Blk, if k 2 4nl5, 
k xn > [ B/(kn)1i2, if k 9 4n/5. (4.7) - 

Proof. Suppose that k 2 4n/5; i.e., x B 1.8. It follows easily from (2.1) that 
x(l - y) is a decreasing function. Since y(1.8) >0.9, we have x(1 - y) <0.18. 
Hence, by (1.14) and (2.3), 

- x(l - y) < 0.22 T 
I--- 

P T  - 1- T 1-x(1-y)  

Since xn = q > k and (1/16)(9/10) > (9150)(0.22), the proof is complete for 
k 2 4n/5 .  

Now suppose that k I 41115. By (1.3) and 0 < y < 1, 

9 2  9 1 9 "  
- y (x - 1) - -(x - 1) + -y2 = 50 50 16 

(9l5O)y2 1 2 
+ - y 2 = Y  

3 16 400 ' 
> -  

Since y < 1, (4.8) yields 
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9 1 
50 16 

(5’0 1’6) 50 16 400 

($ - k ) y ( x  - 1) - - ( x  - 1) + - xy2 

9 1 2 Y2 > - - -  y ( x - l ) - - ( x - l ) + - x y  >- 

Rearranging. 

Since x(  1 - y) is a decreasing function, 1 - x + xy > 0 when x > 1. Thus we may 
divide (4.9) by x - 1 and 1 - x + xy to obtain 

(4.10) 

By (2.5), (2.3), and (2.10), the left sides of (4.7) and (4.10) differ by just a factor 
o f n .  Since l - x + x y = Z - x ( l - y ) < 1 - ( 1  - y ) = y ,  

Y >-. (4.11) Y2 
(x-1)(1 - x + x y )  x - 1  

When x 9 1.8, y 4 0.94 and, by (1.3), kin = x - 1 < y2/(1 - y) < 17y’ and so y = 
R ( V m ) .  [We define f = R ( g )  to be the same as g =  O(f).] Thus 
yl(x - 1) = il(m). This, with (4.10) and (4.11), completes the proof of the 
lemma. 

w 

Proof of Theorem 2, Assuming Lemma 4.1. 
define 

For the purposes of this proof, 

(kn)’”, if k 2 4n/5, 
if k 5 4n/5. f ( n 7  k ,  = { k ,  

Let no and C2 be as given by Lemma 4.1. We must show that there is a C 
sufficiently large that 

lb(n, k)l < Ck”’6/ny’s0 for nl” < k 5 N - n . (4.12) 

Choose n I L n,  sufficiently large that 

for n 2 n ,  and 1 P k I N - n .  Choose n2 2 n ,  sufficiently large that 

Bf(n, k )  , 5 + n9/5” 
2 C2 

(4.13) 

(4.14) 
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for n z n2 and k 2 n2I9. (This B is the constant given in Lemma 4.2.) Finally, 
choose C sufficiently large that 

i. (4.12) holds for all pairs ( n ,  k )  with n1l5 < k 5 n2I9, which can be done by 

ii. (4.12) holds for n < n,, a finite set of pairs ( n ,  k ) .  
iii. 3 / C 2  5 (Ck1’16/n9’50)Bf(n, k ) / 2  for n 2 n2 and k 2 n2I9. 

Lemma 3.5. 

Recall the defining relations (1.12) and (1.17) for ~ ( x )  and a ( x ) ,  the latter of 
which can be stated more succinctly using P(x)  and Q(x):  

(4.15) 

Thus 

using (4.3) and the triangle inequality. 
The proof that (4.12) holds for all pairs (n ,  k )  satisfying n1I5 5 k 5 N - n is 

completed by double induction once we verify that, when n 2 n 2 ,  the sum of the 
four quantities appearing on the right sides of (4.6a)-(4.6d) is less than Ck1’16/ 
n9”’. By (4.13), it suffices to verify this inequality after each of the two occur- 
ences of C exp(- C2n-119) has been replaced by (Ck1”6/n9’50)k-312n-1’2. Making 
these replacements and transferring all items involving C to the right side, we find 
that we must verify 

312 112 After multiplication by k n and use of relations (4.15) 
comes 

n 

and (4.16), this be- 
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By Lemma 4.2 it suffices to have 

and then by (4 .14)  it suffices to have 

This is condition iii on the choice of C and so the proof of Theorem 2 assuming 
Lemma 4.1 is complete. rn 

5. THREE LEMMAS F O R  Ws,t AND a,,, 
Recall the definitions ( 4 . 1 )  of Ts,, and DS,,. In this section we prove three lemmas 
about them which will be used in the following sections. We need to have the 
following result on binomial coefficients ready. 

Lemma 5.1. Let A 2 1 be an integer. Then, 

Proof, Call the summation f( A). By using 

it is easy to prove that Af( A) = g( A) - g( A - 2 ) ,  where 

g(A) = 2 ( j 9 2 f - h ( - 1 ) h  
j + h = A  

Then, by using 

it is easy to prove that g( A) = 2g( A - 1 )  - g( A - 2 ) .  Examining the first few val- 
ues, by induction we have g( A) = A + 1. 
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Lemma 5.2. If E > 0 is fixed but arbitrary, then 

( 4  - t),+1 
Y,, = (2x1' ( N -  B - + s + l)s+l 

( x  - 1)t3 
o( 2 ) + o($)] (5.2) 

t t(t - 1 )  
x exp[ -2xt + 2 gl (x> + ~ 

n n 

uniformly for 

where g,(x) and g2(x)  are given by (1.16) and 

B = B ( t )  = (n  - l ) t  - ( t2  + t )  / 2 .  

Remark 1. 
t ln  and t(t - l ) / n  instead of t in  and t2/n to facilitate later summation. 

We have expressed the expression inside the exponential in terms of 

Remark 2. The constants implied by the big-oh notation depend on E .  

Proof of Lemma 5.2. 
t ,  q ,  and s + 1.  Let M =  (";'). We start with 

We first express the desired quantity as products of lengths 

Next we have 

and, with B given as in the statement of the lemma, we see that 

and that q = O(n2-') = o(N - B ) .  Hence 

Thus, altogether, 

Let m 2 2 be a fixed positive 

( N  - W q  
( N ) ,  

( 4  - f ) s + l  

( N  - B - 4 + s + I ) ,+* . 

integer sufficiently large that 

(5.4) 



THE NUMBER OF LABELED CONNECTED GRAPHS 147 

tm-' 5 nm-' and tm I (n  - 

for t < nl-' and t < n - 1 .  We shall use the obvious relation (t/n)' = O ( t 2 / n 2 ) ,  for 
j 2 2 ,  several times, without explicit mention after the first use. 

We now treat the first two fractions appearing in (5.5) individually. First, 

Interchange the order of summation, replace B / ( N  - i) by ( B / N ) [ l  + i / N  + 
O(i2/N2)]  when j = 1 in the resulting outer summation, and [ B / ( N  - i)]' = 

2 + O( q )  to obtain 
( B / N ) ' [ l  + O ( i / N ) ]  by (BlN)' + O ( i B 2 / N 3 )  when j 2 2 and use I:=-: i = q 2 / 

Since q2B2/N3 = U((xt /n)2) ,  q 3 B / N 3  = 0 ( x 3 t / n 2 ) ,  and 

q(B/N)"+' = O(xtm+'/nm) = O(xt2/n2) 

by the choice of m, we find 

(5.7) 

If we use ~ f ~ t  i = t2/2 - t / 2 ,  c::: i' = t '+' / ( j  + 1 )  + O(t ' )  for 2 ~j 5 m, ex- 
pand the logarithm to m terms as in (5.6),  and make a few easy estimates, we find 

and 

Next, 

f-1 

( N -  B ) ,  = N' n ( 1  - K)  M 
i = O  

(5.9) 

tBm+l m 1 - 1  

= N'exp[-C j = 1  i = O  c J (y)'+ O(-)] .  N"+l 
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Replacing [ (B  + i) IN]’ by (B/N)’[ l  + O(i /B) ] ,  
2 

(N - B), = N‘ exp[ - t 5 7 ( N) j + * -  ( L2)] . 
r = l  J 

( 5 . 1 0 )  

We are ready to multiply together (5.7), (5.8), and (5.9), and divide by (5.10). 
This will give 

(5.11) 

where y is the result of collecting the various arguments of the exponential in the 
four equations. The quantity raised to the tth power on the right, (n - l ) q / N ,  is 
2x.  As for y, we first note that for bounded j 

B t(n - 1 )  (t2 + t) /2 
N n(n - 1)/2 n(n - 1 ) / 2  

- - - _  

n n  

n 

[ h = o  ( h j ) (  f ) i + h 2 ’ - h ( - l ) h ] [  It 1 + o( 91 , 

-- 
n qB - 2xt - N 

q2B - 4x2t 
N 2  n 

tB - 2t2 t3 
N n n  
_ _  - - 

(5 .12 )  

Taking the four equations (5.7), (5 .8) ,  (5.9), and (5.10) in that order and treating 
the j = 1 term of each summation separately, we find 

t 2  ) y = ( - 2 x t +  n - -> n (in 2,) (2:n 2xn 
t2 + ---  + x(t2 + t )  2X2t 

( 5 . 1 3 )  

Collecting and rearranging [note that the first j = 2, h = 0 term of the double 
summation equals -2xt2/n, and that the - t3/n2 term of ( 5 . 1 3 )  has been absorbed 
into the second summation on A below when j = h = 11, we have 
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A = 2  A( A + 1 )  

h=m n 
j z h  

In the first summation on the right, the coefficient of t"'/n'' is a rational function 
of x which grows linearly as x + ~ .  According to (5.1), this function vanishes 
when x = 1. Thus this function is O(x - 1) .  Hence, since g, - g, = (-2x2 + x + 1 / 
2 + 1 / 2 x ) ,  

t t(t - 1)  
y = -2xt + - g l (x )  + ~ 

n n n 

Combining this last equation, (5.11), and ( 5 4 ,  we obtain the lemma. m 

Lemma 5.3. 
concave; that is 

For fixed n, k ,  and s with -1 I s < k ,  the numbers qs are log 

Proof. Letting J = ("; '), the desired result is equivalent to 

(5.15) 

As a first step toward proving (5.15), we claim that 

x (J + (n - t )  - ( q - t - s )  + 1) 

(5.16) 

Dividing both side by .I2, one sees that this last inequality is equivalent to 

2(k  - s - 1 )  
n - t - 1  n - t - 1  

(5.17) 

When the latter is multiplied out, -4(k - s - l ) / [ ( n  - t ) (n  - t - l)'] is ignored 
on the right, and like terms are cancelled from each side, we find that (5.17) is 
implied by 
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2 ( k - s - 1 )  , k - s - 1  
(n  - t)(n - t - 1) - (n  - t - l ) (q  - t - s - 1) . 

The latter is certainly true since ( q  - t - s - 1)  = ( n  - t )  + ( k  - s - I ) ,  and k - 
s - 1 2 0 .  

Thus (5.16) is true as claimed, and so (5.15), and the lemma, follow from 

Let m be the midpoint of the left side factors in (5.18): 

( J -  1) + [ J  - 1 - ( q  - t - s - 2) + 11 
2 m =  

say. Let m, and m2 be the midpoints of the two sets of factors on the right side of 
(5.18): 

m, = J + (n  - t )  - A/2 

m2= J -  (n  - t )  + 2 -  A/2.  

We may rewrite (5.18) as 

+ W  +W 

ll (m + h)(m - h)  2 Il (m,  + h>(m2 - h)  , (5.19) 

where h runs over either a set of whole numbers or half integers, depending upon 
whether m is an integer or not. If we combine each factor in (5.19) corresponding 
to an index h with the factor corresponding to - h, we find that it will suffice to 
prove 

h=-w h=-w 

(m2 - h2)’ 2 (mf - h2)(mg - h2)  

= (m,m2 - h2)‘ - h’(m, - m2)’ . 

This is certainly true if 

m2 - h2 2 mlm2 - h 2 .  (5.20) 

This last is also the required inequality in the event that the products on each side 
of (5.19) contain an index h = 0, in which case there is no different term corre- 
sponding to -h to pair it with. The inequality (5.20) is equivalent to 

( J  - h /2)’ 2 [ J  - A 12 + (n  - t ) ] [ J  - A 12 - (n - t )  + 21 , 

that is, 
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( n  - t )  2 5 2[5 - A /2 + ( n  - t ) ]  . 

Since 5 = ( 2 ' ), this calls for 

2 (n  - t )  2 (n  - t)(n - t - 1) - A + 2(n - t )  

= (n  - t)(n - t + 1) - A , 

that is, A 2 n - t. This is true since A = (n  - t )  + (k - s - 1). This concludes the 
proof of the lemma. rn 

Lemma 5.4. Uniformly for 

1 5  t 5 n - 1 ,  -1 5 s 5 k i 2 ,  and O <  k =s n4I3, 

'9' eq5J 5 (%)'+'[ y x + l  v g } '  exp[O(l) + O( s)] . (5.21) s , t  

For any given constant C,  < 1, there is a positive constant E,, such that 

uniformly for 

l s t s n - 1 ,  - 1 5 s 5 k i 2 ,  andO<kSE,,n. 

Proof. We have 

(5.22) 

(5.23) 

where the inequality has been obtained b an application of Lemma 5.3. Using 
Lemma 5.2, the facts that g l ( x )  = O(x2),  x in  = 0 ( 1 ) ,  andxqin2 = 0(1), we have Y 

( 4  - 1 L + l  
( N  - n - q + s + 3)s+1 * '9's,l = 2x exp[ -2x + O( l)] (5.24) 

Using Lemma 5.2 again, the big-oh observations we just made, and the fact that 
gi < 0 for x > 1, we have 

(5.25) 
Easily, 

and 

(5.26) 
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( N  - n - q + s + 3)s+1 
(N - 2n - q + s + 6)s+1 

1 - (2x + 2 ) / ( n  - 1) + 2(s + 3 - j) /n(n - 1) 
1 - [2+ (2x +2)]/(n - 1) + [6+2(s + 3  - j)]/n(n - 1) 

2/(n - 1) - 6/n(n  - 1) 
1 - (2x + 4)/(n - 1) + [6+ 2(s + 3 - j ) J / n ( n  - 1) =; 

1 - (2x + 4)/(n - 1) 
s + l  

= [ 1 + ; + o( 31 
= expj (s + I)[ 1 + 0( >)]I . 

Combining (5.25)-(5.27) , 

s + l  Q 5 2x exp( -2x + $)( 1 - ---) Y,l q - 1  

x exp[ o( 3) + 0( 31. 
Next, we have 

(5.27) 

(5.28) 

(5.29) 

Now 

fi ( n - ( j + I ) / x )  j + l  2 x + 3  
5 fI exp[ - 7 + - 

i = o  n - 2 x - 3  j = o  n 

s2 5sx 
s e x p  -- + - + 0(1)] 5 0 ( 1 ) ,  (5.30) [ 2xn n 

where the rightmost inequality follows from the observation that 

s2 5sx s 2 
- - + - = ~ (-s + lox ) 

2xn n 2xn 

is negative when s > lox2 and, since x 5 n1'3, is bounded otherwise. Combining 
(5.23), (5.24), (5.28)-(5.30), we find 



153 THE NUMBER OF LABELED CONNECTED GRAPHS 

(5.31) 

Next, starting with 

q - t - s - 1 -  - -+(!k&S), q 
n - t  n 

we use Taylor's theorem and the fact that the second derivative 
x >  I ,  as shown by (2.6),  to find 

9'' is negative for 

By (3.2) and (3.13), we then find 

q r  5 -tcp(x) + t(x - l)cp'(x) - (s  + l)cp'(x) + O(1). 

Combining this with (5.31), recalling (2.5) and the definition (1.13) of p,  and 
using e2"" = O(1), we obtain 

* e ' s ~ t ~ ( ~ ) s + l [ ( l -  -)pe2s'fl]fexp[O(l)+ s + l  .(?)I. (5.32) 
q - 1  S , f  

For q L 4 and s 5 k i 2 ,  

d log{[l- (s + l ) / ( q  - I ) ]  e2"") 2 1 
L O  - _ - -  

d S  n q - s - 2  

because 
( q  - 1)) e2s/n is bounded above by its value at s = k / 2  which is 

q - s - 2 2 n + k / 2  - 2 2 n / 2  + ( q - 4) / 2  2 n / 2 .  Thus (1 - ( s  + 1 )  / 

We now prove that 

p = x exp(-1 - k/n)v- , 

(5.33) 

(5.34) 

From (2.2), (2.10), and then (1.2), 
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= Te-T = x(1- y )  e-x*xY = x(1- y )  e-.v(1 + y ) / ( l -  y) . (5.35) 

Replacing x by 1 + k/n proves (5.34). Combining (5.32)-(5.34), we obtain 
(5.21). 

We now suppose that k 5 Eon and turn our attention to (5.22). Then stx/n2 is 
bounded and so, to prove (5.22), it suffices to show that 

x + l  C k  
2 n 
- y i q 7  5 1 - 2, 

Since ( x  + 1)/2 = 1 + k/2n, this follows from (3.1) for E~ sufficiently small. rn 

6. PROOF OF (4.6a) 

We now assign to e0 and C, the values which they will keep for the rest of the 
paper. First, when x is bounded, we have, by (2.11), (2.10), and (2.2), 

T = x (  1 - y) = 1 - + k/n + O(k312/n3/2) , 
312 312 p = TeCT = e-’[l- 3 k / 2 n  + O(k l n  )] 

and 

y m  = fl+ O(k/n) , 

and so we may fix eo so small and C ,  sufficiently close to 1 that the following four 
conditions are satisfied: 

conclusion (5.2) of Lemma 5.2 holds for E = 1 /9  , 

conclusion (5.22) of Lemma 5.4 holds, 
(6.2) 

(6.3) 

< l - A f o r  k s q , n a n d s o m e A > O .  (6.4) 
3(1+ k/n)y (;>’” 

2 e ~ : ”  

Note that (6.4) is true for e0 close to 0 and C ,  < 1 close to 1 since 3 f l l 2 e  < 1. 
Assume that C 2 1 and that the upper bound Ib( v, K ) I  5 CK 1’16/v9150 holds for 

(v, K )  < (n, k) and K 2 v”’. 
By Taylor’s theorem 

for some between ( q  - 1) / n  and qln.  Similarly, 

1 1 .( +) = a(x)  - - n a’(x) + 2 2n a”( &) . 
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Thus, recalling the definition (4. la) of @ s , t ,  

1 1  1 
n n = - q ’ ( x )  + - ( 5  cp”(x) - u ’ ( x ) )  + 7 [O(q”’( 5,)) + O(a”(t2))]  , 

(6.5) 

where x - l / n  < ti < x .  
When n2I9 5 k 5 Eon, the sum of the big-ohs in (6.5) is O(n2/k2)  by (3.6), 

(3.4), and the fact that n1I2 2 e0 . When k 2 Eon, the sum of the big-ohs is 
O(x2(1 - y ) )  by (3.11) and (3.14). By (3.7) and the trivial e-’* = O ( X - ~ ) ,  we have 

1 
7 0(x2(1 - y ) ) =  O(1/q2)= O(l /k2) .  
n 

-112 1 / 2  k 

Thus 

A = , -P’(x) exp((lln)[$cp”(x) - a’(x)] + O(l/k2)}[1 + b(n, k - l ) ]  . (6.6) 

By an argument like that in the last paragraph, but using ( 3 . 3 ,  (3.3), (3.10), 
and (3.13), we see that the quantity enclosed in { } in (6.6) is O(1lk). If we 
bound b(n, k - 1) by 

C(k - 1)1’16 = ___ Ck“I6 [I - - 1 + o($)] , 
n9150 n9”0 16k 

rewrite the exponential as 

(1  + (l/n)[kcp”(~) - u’(x)] + O(l/k2)} , 

expand, bound e-’ ’ (x)  by O(k1’21n’/2) [as given by (2.5) and (2.11)], and rear- 
range, the result is (4.6a). 

7. PROOF OF (4.6b)-(4.6d) FOR x 2 6 IOg /I 

We first bound S-,  + So + S. Note that 

because the left side counts certain ( n ,  q - 1) graphs with a particular set of 
t(n - t )  edges forbidden. Thus, 

i1 5 (; )t(n - t>c(t, t + s)c(n - t ,  q - t - s - 1) 
f = l  s = - l  

N - t(n - t )  

= o(n2) (  N ) ‘F (;) ( q - 1  

q - 1  t = l  (qNl) 
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= O(n 3 e - 1 4 - 1 ) l n ) (  N ) 
q - 1  . 

Combining this with (3.19), we have 

for x 2 6 log n. 

with, note that for x 2 6 log n, using (5.35) and (3.7), 
We now bound the various other terms appearing in (4.6b)-(4.6d). To begin 

where the constants implied by the big-ohs depend on i. Since /3 is well away from 
1f e, we may bound T,  U ,  and their derivatives by their first terms. Thus, by (7.2), 
( T l x )  and yU/n are both O(n-'). Recalling the definitions (1.16) of g,(x)  and 
(4.5) of Q(x) ,  it also follows that Q ( x )  = 0 ( K 6 ) .  Combining these results with 
(7.1) and noting that k n ~n n , we obtain (4.6b)-(4.6d). 

In view of this result and the hypothesized lower bound on k in the statement 
of Lemma 4.1, we will assume that n2I9 5 k 5 6n log n for the remainder of the 
paper. 

312 112 3 1 /2  

8. PROOF OF (4.6b) FOR x 5 6 log n 

In addition to  e0 and C, having the values assigned to them at the start of Section 
6, we also fix a function H for the proof of (4.6b) and (4 .6~)  as follows: 

C,nlk1l2 for n2I9 5 k 5 Eon , 
for Eon < k 5 6n log n , (8.1) H = H(n, q)  = 

where C3 > 0 is sufficiently small that 

t 
n 1 + - [ g l ( x )  + ( x  - l)a'(x> + t ( x  - ~)~rp '~(x) ]  
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for 1 5 t 4 H .  [Recall the definition (1.16) of g,.] For k I eon, this choice of C,  is 
possible by (3.3), ( 3 . 3 ,  and the fact that gl (x)  and g2(x) both contain a factor of 
x - 1 = k / n .  For k > eon, (8.2) holds for n sufficiently large by g,(x) = O ( x 2 ) ,  
(3.8), (3.10), and (3.13). We define 

C, = $ min( C, C, , 7) , (8.3) 

where 9 is defined by e-'-'= h , ( l  + e0) and h, (x )  = [ ( x  + 1 ) / 2 e ] v g .  (We 
will see shortly that 7) > 0.) 

Before proving (4.6b), we collect some preliminary estimates that will be 
useful here and in the proof of (4.6~).  

Lemma 8.1. With T(u)  the exponential generating function for labeled and rooted 
trees, as defined in (1.14), and U(u)  the same unicyclic graphs, as defined in 
(1.15), we have the following bounds, uniformly for n2" 4 k 5 Eon: 

T ( ( l - - S ) / e ) S l - l h ,  f o r O < S < l ,  (8.4) 

(8.5) 

(8.6) 

T( ' )  = O((n/k) i -"2)  , for 1 I i 5 4 ,  

U ( * )  = O((n/k) '+')  , for 0 I i 5 2 .  

The value of 7, defined above is positive. We have the following bounds for the tails 
of the sums defining T" )  and U") ,  uniformly for  n2l9 4 k I 6 n  log n and 0 I i I 4: 

t'A' = O(exp(- C,n"')) 
t > H  t !  

and 

where A is @ or either of the quantities in { } in (5.21) and (5.22). 

Proof. For the first part of this proof only, we suspend the convention regarding 
T set forth just after (2.3), and we let T be instead only a variable, while T(u)  still 
denotes the usual function. Note that (d/dT)(Te- ' )  is ( 1  - T)e -T ,  so that TeKTis 
an increasing function of T for O <  T < 1. From (2.2), u = T(u)  e-T'U), so that it 
suffices to show that TeCT > ( l / e ) ( l  - 6)  when T is set to 1 - V%. But for T = 

1 - V%, we see easily that e-T > (1 /e)( 1 + a), and then 

T e - T > ( l / e ) ( l - f i ) ( l + f i ) = ( l / e ) ( l - S ) ,  

as was to be shown. This proves (8.4), and now we restore the usual convention 
regarding the notation T.  By using (2.3) for uT' (u) ,  and successive differentia- 
tion, one finds that @'"') is a polynomial in T divided by ( 1  - T)2i-'. Hence, 
(8 .5)  follows from the bound (6.1) for p and (8.4) with S = C,k/n .  

The three bounds for U',) given in (8.6) are obtained similarly from (2.4). This 
concludes the proof of (8.6). 
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Finally we consider the tail sums (8.7) and (8.8). Let A, and A, be the values of 
A from (5.21) and (5.22), respectively. By the derivation of (5.22), A, 5 A,. We 
have [(x + 1)/2x] ex-' > 1 for x > 1 because the left side is an increasing function 
of x. Thus, by (5.33), p < A,. Note that (x + 1)(1 - y')"' is a decreasing function 
of x because, by (2.1), 

dh,(x) - (1 - y2)"2(1 - x - y')  < 
2e - - dx 1 - x + xy2 (8.9) 

Since ( i )  the sums in (8.7) and (8.8) are increasing functions of A,  
(ii) p < A, 5 A2,  and (iii) h, (x )  is a decreasing function of x, it suffices to do the 
following: 

a. Prove (8.7) and (8.8) for A, when k 5 eon. 
b. Prove (8.7) and (8.8) when A, is computed using x = 1 + e0. 

By (5.22), A, < e- l - ' l k in  . By (8.9), A,(x) < A'(1) = l / e  and so A , ( l  + q,) = e-'-' 
for some 7 > 0. 

For (8.7) we note that tc(t,  t - 1) = tt-' and that t !  - ( t / e ) ' m .  It follows that 

= 0(1) 2 t'(eA)' 
t2H 

H 

= O(l)(r  -&)i(q 1 - Z  z = e h  

= O(H'(eA)H(l - e, iPi- ' ) ,  (8.10) 

where the constant implied in the last big-oh depends on i. 
We can bound H'(1- eh)-'-' by a polynomial in n .  For case a, 

(eh,) H 5 exp(- C1C3k1") 5 exp(-2C4n'") . 

Case b is similar and so (8.7) follows. 

tc(t, t )  = O(t'+'12) [14, Theorem 21. This completes the proof of the lemma. 
For (8.8), the arguments are like those in the preceding paragraph except that 

rn 

We now turn to (4.6b). Assume that C 2 1, k 2 n2I9 and )6(v, K ) I  5 C K ' " ~ /  
v for all (v, K )  < ( n ,  k )  with K 2 vl". We start by considering those parts of 
the summations on t for which t? H and showing that they can be absorbed by 
the big-ohs. As a result, we will be able to truncate all the sums to t < H .  

We begin with the part of the summation for S - ,  with t 2 H .  Since k 2 n2/9, 
certainly k 2 (n  - t ) ' I 5  , and so the above bound holds for 6(n - t ,  k )  with H < t 5 
n - 1. Since C Z  1, we may replace 1 + 6(n - t ,  k )  by O(Ck1'16). Use (5.21) with 
s = -1 ,  and then (8.7) to find 

9/50  
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Al tc(t ,  t - 1) 

e ~ p ( - C , n ' / ~ ) )  = O(Cexp(-C,,nl'Y)). (8.11) = O(Ck-3/16n-l/2 

We may convert (4.5) to an infinite sum on t by replacing PT'  and P2T" with 
r 

tc(r, t - 1) 
P' . fly') = c ( t ) ;  

1 - 1  t ! (8.12) 

Let Q H ( x )  be the result of making this replacement and letting the sum range 
over H 5 t < 30. By (1.16) and the bounds in Lemmas 3.1 and 3.2 

tc(t, t - 1) 
t ! 

tc(r, t - 1 )  
t ! P ' .  (8.13) - p' + O( 1) 2 t2  

r=-H 
Q,W = O(x) c t 

' 2 H  

By (8.7) and (8.13), Q H ( x )  = O(k-3'2n-1'2) .  Estimate the tails of T and (1 / 
xn)PT' similarly. Combining these results with (8.11), we see that it suffices to 
prove (4.6b) where all sums over t are truncated to run over t < H .  

We limit our attention to t < H for the rest of this section. Expressions coming 
from sums of t < H will be indicated with a subscript L as in S - l , L .  We will use 
Lemma 5.2 to estimate S - l , L .  

We have 

xn - x t  x t -  t t ( X  - 1) q - t =  + - = x + -  
n - t  n - t  n - t  n - t  ' 

and so by Taylor's theorem 

t (x  - 1) .( "') = q ( x )  + - n - t  n - t  
c 

where 5, is between q / n  and ( q  - t ) / ( n  - t ) ,  so that, by (3.6), 

qf"( t3)  = O(n2/k2)  . 

Likewise 

t (x  - 1) + ~ 

n - t  

and, by (3.4) and (3.14), 

( x  - 1)2ar'( t4) = O( 1) . 
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Substituting (n  - t)cp(( q - t ) / ( n  - t ) )  into the expression for @-l , r  and setting 
l / ( n  - t )  = l / n  + O ( t / n 2 ) ,  we find, using (x - 1) = k f n ,  (3.3), (2.6), (3.10), 
(3.13), and t < H ,  that 

= -tcp(x) + t(x - l)cp’(x) + ( l /n)[  y ( X  - l)’cp”(x) + t ( X  - l)a’(x)] 

+ t 3 0 ( k / n 3 )  + t’O( 1 In’) 

= -tcp(x) + t (x  - l)q’(x) + O(1). (8.14) 

Observing that x - 1 = k / n  and that g,(x) and gz(x) both contain ( x  - 1) as a 
factor, we see that the quantity in [ ] on the right side of (5.2) is -2xt + O(1). 
We may combine (5.2) and (8.14) and expand the exponential to obtain 

*-l,r exp(@-,,,) = (2x exp[-2x - q ( x )  + (x - l)cp‘(x)]}‘[l + A  + O(A’)J, 

(8.15) 

where 

By (1.16), (3.3), (2.6), (3.10), and (3.13), A2 plus the big-ohs in (8.16) is 

O(t3x3k/n3)  + O(t’/n2) + O(t4k2/n4) .  

If we multiply (8.15) by ( l / x ) t c ( t ,  t - l ) t !  and sum over t < H ,  we obtain 

3 (3) 3 p2TW p 4 ~ ( 4 ) k 2  
= - X 1 T ,  + 1 Q L ( x )  + O( n3 “ ) + 0 ( ~ ) + 0 (  n4 ) .  (8.17) 

We claim that the big-ohs in (8.17) are O ( k - 3 / 2 n - 1 / 2 ) .  If k s  E o n ,  use (8.5) to 
prove it. Suppose now that k > Eon, We easily have T(’) = O(1). The desired 
bounds now follow from (5.34). It follows by this and the induction hypothesis in 
Lemma 4.1 that, to prove (4.6b), it suffices to show that 

(8.18) 

is equal to the right side of (4.6b). Since all the terms in the sum are positive, the 
absolute values are not needed. We write 

1 - 1 
(n  - 9 9 / 5 0  - 
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and proceed as in the previous paragraph. Corresponding to (8.17), we have 

Ck”l6 1 1 9 1  
(8.18) = 9150 [ x TL + ; Q ( x )  + - - PT’ n. 50 xn 

By choosing C, < C, sufficiently small that 1 /C, accounts for all constants implied 
by big-ohs in the preceding, we conclude that (4.6b) holds. 

9. PROOF OF (4.6b) FOR x 5 6 log n 

The arguments in this section are .very similar to those in the previous section. 
Since k 2 n2/9,  k - 1 2 ( n  - t)”’ and so the induction hypothesis in Lemma 4.1 
can be applied to b(n - t ,  k - 1). Using (5.21) with s = 0 and then (8.8), we find, 
in place of (8.12), 

= O( Ck9”6n-3/2(  :) e~p( -C ,n”~) )  

As in the previous section, we see that it suffices to prove (4.6~)  with all sums 
truncated to t < H. 

We limit our attention to t < H for the rest of this section. From ( q  - t - 1) / 
(n  - t )  = x + [t(x - 1) - 11 l ( n  - t )  we have the two Taylor expansions 

) t ’Y 55 1 .( n - t  )=.(X)+ n - - t  m + z (  n - t  
q - t - 1  t(n - 1) - 1 1 t ( x - 1 ) - 1  

and 

q - t - 1  t(x - 1) - 1 
a ‘ ( 5 6 >  3 n - t  a( ) = a(x)  + n - t  

and then, as in (8.14), 

(9.3) 

ao,f = -tcp(x) + t(x - l)cp’(x) - .’(x) 

+ O(t2kln2)  + 0 ( 1  / k )  + O ( t / n )  

= -t&) + t(x - l )p’(x)  - cp’(x) + O(1) . 



162 BENDER, CANFIELD, AND McKAY 

Using (5.2) with the exponentiated quantity in [ ] shortened to -2xt + O(t2kx/ 
n2) ,  combining with (9.3), expanding the exponential, and noting that the 
quantity ( q  - t )  l (N - B - q + 1)  appearing in (5.2) equals (2xln)[ l+ O(tx/n)J ,  
we have 

%,t exp(@o,J = ( 2 x y / n ) W  exP[-2x - P ( X )  + ( x  - l ) P " ( X ) ] y  

x [ 1 +  O( 1 / k )  + O(tx/n) + O(t2kx/n2)] (9.4) 

for t 5 H .  

summing over t < H ,  and using (8.6) estimates, we obtain 
Using (9.4) in place of (8.15), we obtain, in place of (8.17), ( l /x) tc( t ,  t ) / t ! ,  

Thus it suffices to show that (4 .6~)  is valid when the left side is replaced by 

Bounding b(n - t ,  k - 1 )  with Ck"'6/n9/50[1 + O(t /n)] ,  expanding the product, 
and proceeding as in (9.5), we find that 

which gives (4 .6~) .  

10. PROOF OF (4.6d) FOR x 5 6 log n 

We need the following estimate later. 

Lemma 10.1. 
each occurrence. When x = O(1og n)  and so > n415, 

Let p(n)  stand for a polynomial in n, not necessarily the same at 

Proof. 
replaced by ( y ) .  Let t = (ns /k ) ( l  + 6 ) .  Note that 

It suffices to prove the lemma with q replaced by q + 1 and ( qyl) 

n f 2  > nslk > nso/q > n314 . 

We will replace ( 7 ) by the exponential parts of Stirling's formula and the three 
binomial coefficients of the form ( t )  with M = ( 7 )  by 
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For the three binomial coefficients, we have b3/m4 = o(l), b / m  = x + o(l), and 
b2/m2 = x2  + o(1) when 6 is small. Putting this all together, using Stirling’s 
formula for b! and doing some rearranging, we obtain 

n(k - s ) l k  - n ( k - s - s s ) / k  

Moving all 6’s to the exponent by using the Taylor series for log(1 + u )  and then 
rearranging, we obtain 

for small 6. Introducing the approximation for ( t )  mentioned above and using 
the €act that so 5 s < k12, we see that 

(10.2) 

for small enough 6. Summing on t and then on s, we see that (10.2) contributes at 
most O(p(n))2-”O. For larger values of (81, the contribution to the sum is 
negligible. (One can prove this by using the ratio of the s, r term to the s, t + 1 
term to show monotonicity when 16) is not small.) 

Proof of (4.6d) for  Small k. Assume that C 2 1, that n2’9 I k I eon, and that 
Ib(u, K ) I  I CK l u  for all (u, K )  < ( n ,  k )  with K Z u”’. 

In the definition (4.3) of S, replace c(n - t ,  q - t - s - 1) by its equivalent 
form from (1.19). By restricting the range of s, we may omit the factor 1 .  We find 
the following upper bound: 

1/16 9 / 5 0  
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ic(t, t + s) 
S 5 -  q,,f exp(@,,,)[l + b(n - t ,  k - s - l ) ]  . 

x I c  I s s S ( k - 1 ) / 2  t !  
1 s r s r r  - 1 (10.3) 

For those values of t and s in the double summation for which k - s  - 12 
(n  - t ) l i5 ,  we know that Ib(n - t ,  k - s - 1)1 I C ( k  - s - l)""l(n - t )91s",  which 
in turn is 0 ( C k 1 / l 6 ) .  For those values of s and t in the double summation for 
which k - s - 1 5  ( n  - t)"' , we know, by Lemma 3.5, that Ib(n - t ,  k - s - 1)1= 
0 ( 1  / ( k  - s -- 1)) = O(1). (We could say O ( 1 l k )  for the last, since s < k l 2 ,  but 
this is not necessary.) Thus, since C 2 1, 

(10.4) 
I s r s n -  I 

Invoking (5 .22)  in Lemma 5.4, 

tc( i ,  t + s) . I  C , k  2xy s + l  

S 5 O(Ck' / ' ' )  c e (I-<-)(-) n . 
1 5 , s ( k - l ) i Z  r !  

According to the second inequality of [14, ( 2 . 5 ) ] ,  c(t ,  t + s ) / t !  is at most b, times 
the coefficient of u' in [l -- T ( u ) ] -  3s, where b, is a sequence of numbers defined by 
[14, (3.1)-(3.4)], and we note that Wright's O(u)  is equal to our 1 - T(u). It 
follows by differentiation, (2.3), and setting u equal to ( l l e ) ( l  - C , k / n ) ,  that 

fl- 1 - trft. t + . T >  ./ C.k\' 
5 3sb, 

Since 1 - T((1 - C , k / n ) / e )  2 c k %  by (8.4), we have 

( k - 1 ) / 2  ( 3 s  + 2 )  12 s i  1 

Sc O(Ck"") sb,7(L) (?) . 
s y l  Clk 

It was shown in [14] that sb,$ = ( 3 / 2 ) " s ! 0 ( 1 ) .  Thus 

(10.6) 

If we use (sle)'O(./s)  for s! in the previous summation, we see that the sth term 
will be O ( a )  times the sth power of the quantity 

3sn ' 12xy le( C, k ) 3  ' * 

If we bound s l k  by 112, then the latter is seen to be bounded away from 1, 
precisely by the condition (6.4). Hence the summation in (10.6) is O(the first 
term), which is O ( l / k ) ,  and this gives us the desired relation (4.6d) in the case of 
small k .  
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Proof of (4.6d) for Large k. Assume now that C 2 1, that con 5 k 1 6 n  log n ,  
and that Ib(v, K ) I  I CK / u  for all ( K ,  v )<(n ,  k) with K L v1l5. In the 
definition (4.3) of S ,  we eliminate the factor of 1/2 as in (10.3) and partition the 
sum into low s and high s, writing 

1/16  9 /50  

where 

so = [ C , n / x ]  , (10.7) 

C5 being a sufficiently small constant whose exact value will be specified shortly. 
We will bound Slow in very much the same way that the entire sum S was 

bounded in the first part of this section. Equation (10.4) remains valid provided S 
is replaced by Slow and the range of s in the summation is restricted to 1 I s 5 so. 
Since sx = o(n2) in this range, we can rewrite (5.21) as 

This gives 

where A = [1+ o(l)]Al and A, = v1- y2(x + 1)/2e. Since x 2 1 + e0 and dA,/ 
dy<O by (8.9), it follows that A is bounded away from l / e .  Thus T(A) is 
bounded away from 1. We apply Wright’s bound in (10.8), i.e., we use (10.5) 
with L 1 ( l  - Clk/n) replaced by A, and find 

Slow = O(Ck1’16xyT(A)/n) 2 sbS(2xy/n)”[l - T(A)]-3s  . (10.9) 
15s5so 

As was done in obtaining (10.6), we bound sb, by O(l)s! (312)’. Much as 
before, we find that the sum in (10.9) is big-oh of the first term, provided only 
that for some fixed C, < 1 and all s I so 

-[l- 2XY T(A)]-3 - 3s < C, . 
n 2e (10.10) 

As already noted, [ l -  T(A)]-’ = O(1). Thus (10.10) follows from (10.7) pro- 
vided that C, is sufficiently small. Thus 

1 / 1 6  2 2 1 /16  712 2 3 / 2  1 / 2  Slow= O(Ck x y T(A) /n’ )=  O(Ck x y T(A) /q  n ) .  

Since A = O(x(1 - y)lj2) and T(A) = O(A), it follows from (3.8) that x”~T(A) is 
bounded. This proves that 

Slow = 0 ( ~ , p / ~ ~ / k 3 / ~ ~ ~ ’ ~ )  . 
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We now turn to  Shigh. By (3.29) for c( t ,  t + s) and the induction hypothesis 
cK1/16 9 / 5 0  I b h  .>I - lv with v = n - t a n d  K = k - s - 1 ,  

where 

t + s  
= a ( q  - n - t  * - - ) + 1.( 7) + (n  - I).(  - n - - f  - - I )  - ncp( ;) . 

Since a is a bounded function and cp is a concave increasing function, we have 

Combining this with (2.5) and ( l O . l l ) ,  we find 

By Lemma 10.1 and (10.7), we see that Shigh = O(Cn-")  for all fixed u .  

z = q / n  

exp(a(z)) as a function of I 
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cz (n ,  q )  as a function of x for various n 

APPENDIX: WHERE SYMBOLS ARE DEFINED 

after (4.5) 
(1.5) 
(4.3) 
(4.7) (6.4) 
Lemma 4.1 

Lemma 4.1 
(6.1-4) 

(7.1) 
(8.3) 

(1.7) 

(8.1) 
(1.1) 

(1.1) 

(10.7) 

(1.16) 

(1.36) 

Lemma 4.1 

(4.4) 
(4.5) 
(4.3) 
(4.3) 
(4.3) 
T ( P )  (2.9) 
(1.6) 
(1.1) 
(1.2) (2.5) 
(1.13) 
Remark 2 in Section 1 

Remark 2 in Section 1 
(5.22) (6.1-4) 

(1.12) 
(2.8) 
(4.la) 
(4.lb) 0 
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