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AUTOMORPHISMS OF RANDOM GRAPHS
WITH SPECIFIED VERTICES
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Conditions are found under which the expected number of automorphisms of a large random
labelled graph with a given degree sequence is close to 1. These conditions involve the probability
that such a graph has a given subgraph. One implication is that the probability that a random unla-
belled k-regular simple graph on » vertices has only the trivial group of automorphisms is asymptotic
to1las n—ec with 3=k=0(n'/?2-%). In combination with previously known results, this produces
an asymptotic formula for the number of unlabelled k-regular simple graphs on » vertices, as well as
various asymptotic results on the probable connectivity and girth of such graphs. Corresponding
results for graphs with more arbitrary degree sequences are obtained. The main results apply equally
well to graphs in which multiple edges and loops are permitted, and also to bicoloured graphs.

1. Imntroduction

One of our main aims is to show that the proportion of unlabelled k-regular
graphs on n vertices which have no symmetries is 1+O0(n™2) as n—~o with k=3
fixed. For k=3 and n=40, this trend is supported by the data given by Robinson
and Wormald [12]. Equivalent statements of this property are that the expected num-
ber of automorphisms of a random k-regular labelled graph is 1 +O(n~Y), or that the
number of labelled k-regular graphs is asymptotic to ! times the number of unlabel-
led k-regular graphs as n—< with k=3 fixed. Amongst other things, this establish-
es an asymptotic formula for the number of unlabelled k-regular graphs. Most of
our results are actually derived in a setting which is much more general than this, and
apply just as well to graphs or coloured graphs in which the minimum degree is 3 and
the maximum degree does not increase too qulckly with n (for example with bounded
maximum degree).

In the next Section we prove the central result, setting forth sufficient condi-
tions for the expected number of automorphisms of a random labelled graph from an
arbitrary class of graphs to be 1+ 0(1). In order to apply this result, it is necessary to
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have a suitable upper bound on the probability that one of the labelled graphs in the
class under consideration contains a given set of edges. This is done in Section 3.
One of the more interesting applications is the establishment of an asymptotic for-
mula for the probability that a random unlabelled k-regular simple graph has a given
connectivity and/or girth, with k fixed.

2. The main result

The definitions given here apply throughout this paper. A graph can have
loops or multiple edges, but a simple graph cannot. The edges of a graph include its
loops, if any. Multiple edges, which are usually treated as sets of parellel single edges,
will instead be treated as single edges with a nonnegative integral multiplicity.
A subgraph H of G has the same vertex set as G and each edge of H has at
most the multiplicity of the corresponding edge in G. A full subgraph H of G is a
subgraph such that each edge of non-zero multiplicity in H has exactly the same mul-
tiplicity as the corresponding edge of G. If G is labelled, its vertices are labelled with
1, ..., n, in which case »; denotes the vertex labelled i. Thus we regard all labelled
n-vertex graphs as having the same vertex set. The degree sequence of G is then (ky, ...,

, k,) where k; is the degree of v;, each loop contributing 2 to the degree of its inci-
dent vertex. By an automorphism of G we mean a permutation of {v;, vs, ..., ¥,}
which preserves G (so that edge multiplicities are preserved). Let be a set of labelled
graphs and denote by &, the set of n-vertex graphs in &% We require that all elements
of &, have the same degree sequence, denoted by (k,,;, ..., k,,,)- The theorem in this
section will deal with the expected number, denoted by T'(n), of non-trivial automor-
phisms of a graph chosen at random from &%,. For this purpose, &, is regarded as a
probability space in which the probabilities of different graphs occurring need not be
the same; the following theorem holds for any probabihty distributions.

We denote by 6=4(n) the minimum of k, ; for j=1,...,n, and by 4=4(n)
the maximum, and put B=B(mn)=1/(34+24). We only con31der classes & for-which
d(n)=1 and A(n) is always finite. The number of k, ; which equal i is denoted by

n;=n;(n).

On various occasions we use the following implication of Stirling’s formula for
factorials: i
@Glo)y =it = (io(1)).
We also use the following elementary results.
Lemma 2.1. The number of ways of arranging x indistinguishable pigeons in y dis-
tinctly numbered pigeonholes, each of unlimited capacity, is [x+§_ 1], which is mono-
tonically non-decreasing in both x and y for x, y=0. ||

Our pigeons will be edges and our pigeonholes will be pairs of vertices.

Lemma 2.2. For non-negative integers x,y,a and b,

(E)3)= (%)
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Lemma 2.3. Let a=0 and x=1 be integers, and t=0. Then, for 0=b=x,

1(a+b) _ o [_a_ l]x
t"[ b J:e +[0 xT7))

Proof. For non-triviality take 5=0. Observe that

l(a+b] <i[a+b]"<[0(a+b)]"
U b )=0tU e ) =0 b )

. a+b), .. . .. . .
Since ( c ] /® is unimodal or monotonic increasing in b, the maximum for 0=b=x

occurs at b=x or at the greatest b for which (¢+b)/tb=>1. The first case gives the
bound (O(a+x)/tx)*. In the second, (@+b)/b=t+(1/b) and so we have the bound
O(1)*=exp (O(x)), as x=b. |}

An acceptable function for & is a function f(n) such that for alln, M=1 and
for every labelled graph H with n vertices and M edges, the probability that H is a
full subgraph of a random member of %, is at most (f(n)/n)™. Here, and elsewhere,
each edge is counted according to its multiplicity.

In the following theorem, o() and O() refer to the passage of n to infinity,
where n only takes values for which |¥%,|>0. The constant implicit in O() depends
only on the function f(n), and not otherwise on the k; ; or &.

Theorem 2.4. Suppose that f(n)=>1 for all n and that f(n) is acceptable for <.

6) If 6=6 and f(n):=o0(n'~2%), or if 3=06=5 and f(n)3+'%F =0 (n2+%6-4/%),
then T(n)=(0(1)f(n))®/n®~2.

(i) If f(W¥+2=0(n’), and n,f(n)#+12=0@mP +13) for ic{l,2}, then T(n)=
=z(n) where z(n)=0(1) is a function which depends only on f(n) and not otherwise on
& or the k; ;.

Proof. Clearly, T'(n) is the sum over all permutations ¢ of the probability that a
random member G of &, has ¢ as an automorphism. This probability can be obtained
by summing, over all graphs H, the probability that H is the subgraph of G con-
taining just those edges moved by o, and that ¢ is an automorphism of H.

Let U and R be-disjoint subsets of {v,, ..., »,} with |U|=2u, |R|=r, and
and 2u+r=0. We first seek an upper bound on the expected number, B(U, R),
of automorphisms ¢ of a graph G chosen randomly from ,, such that U is the sup-
port of the 2-cycles of ¢ and R is the support of the cycles of length at least 3. Sum-
ming over all U and R and all ¥ and r, with U and R not both empty, will give a
bound on T'(n). ‘

Let G(U, R) denote the full subgraph of G with edge set consisting of precisely
those edges of which at least one end is moved by o. Clearly

B(U, R) = 3 3 Prob(G(U, R) = H),
o H

where the first sum is over all feasible ¢ and the second is over all graphs H with
vertex set ¥ and fixed by o such that at least one end of every edge of H is moved by o.
Obviously we only need to consider graphs-H whose vertex degrees agree with G on
UUR.
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Let k(U) and k(R) denote the mean degree of vertices in U and R, respectively
(i.e. k(U) is the mean of k, ; for all i such that »,€U). Since all k,,; are at least 1,
so are k(U) and k(R). Put k(@)=1 for consistency. A diagonal of a 2j-cycle of o is
a non-loop edge of H which has both ends in that 2-cycle and has its ends interchang-
ed by /. We define the following parameters for ¢ and H: ¢ has

l 3-cycles,
s 4-cycles,
h 6-cycles,

and H, given o, has

w diagonals of 2-cycles,

2t  diagonals of 4-cycles,

3d  diagonals of 6-cycles,

2x  edges with both ends in U other than diagonals of 2-cycles,

y edges between U and R,

3m  edges with both ends in 3-cycles,

a edges with both ends in R other than the 2¢+ 3d+ 3m already counted.

By counting edge-ends we have:

2.1) 2w+dx+y = 2uk(U),
2.2 4t+6d+6m+2a+y = rk(R),
and clearly

(2.3) 3l+4s+6h =r.

The number of possibilities for a permutation o of the type under considera-
tion, given /, s and A, is at most

QCuw)!r!
ul 243114551 6* h!

and hence at most
1rl
2.4) Qu)!r!

ulll

We next estimate the number of possible arrangements of the edges of H within
RUU, given o, by bounding the number of possible arrangements of the edges in
each of the edge sets whose cardinalities are specified above. Since each such edge set
is fixed by o, each is determined by choosing which of the possible edge-orbits are
present, and with what multiplicities. If / edge-orbits (counting multiplicities) are
present in H amongst a set of j distinct possible edge-orbits (not counting multiplici-

ties), then the number of possible arrangements of these edge-orbits of H is (] +;— 1]

by Lemma 2.1 As a result we obtain the following bounds on the number of arrange-
ments of the edges specified. In each case we note i and j. By Lemma 2.1, any overesti-
mate of i or j yields a valid upper bound on the number of arrangements.

For the w diagonals in u 2-cycles, i=w and j=u and the bound is

@.5) [““L:v”_l].
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For the 2¢ diagonals in s 4-cycles, i=t and j=s and the bound is

2.6) [”ﬁ“l].
For the 3d diagonals in % 6-cycles, i=d and j=h and the bound is
h+d—1
@7 [ 4 ] .

For the 2x non-diagonals with both ends in U, each edge-orbit contains 2

edges and the number of distinct possible edge-orbits is 2(12‘]+u, so i=x and
Jj=u* and the bound is

@.8) ["2 tx- 1] :

For the y edges between R and U, all edge-orbits have cardinality at least 4
and there are just 2ur distinct possible edges joining R and U, so i=y/4 and j=ur/2

and the bound is
lur/2]+|y/4]—1
29) (M)

- For the 3m edges with both ends in 3-cycles, there are (;l]+31 distinct pos-
sible edges in orbits of 3 each, so i=m and j=1(314+1)/2 and the bound is

(l(3l+1)/2+m—1].

(2.10) n

For the a other edges with both ends in R, there are (5) + r distinct possible
edges in orbits of cardinality at least 4, so i=a/4 and j=r(r+1)/8 and the bound is

(2.11) [l’(r+ l){g} :ﬁ la/4]— 1] .

The choices of the edges of H within UUR determine the ends in U of the
edges between UUR and V\(UUR), for any graph whose degrees in UUR are
specified. To complete a choice of H, we therefore only have to decide for each re-
maining orbit of edges, which vertex fixed by o is at the other end. Our bound on the
number of possibilities for this vertex is n in each case. This yields the following bound
on the numbers of arrangements of the specified edges.

For the 2uk(U)—2w—4x—y edges between U and V\(UUR), the orbits
are of cardinality 2 and the bound is

(2,12) nek () —w—2x—y/2

For the rk(R)—4t—6d—6m—2a—y edges between R and V\(UUR), in
orbits of cardinality at least 3, the bound is

(2.13) n(rk(R) —4¢ —2a—y)/3—2d —2m_
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The total number of edges in H is
M = 2uk(U)+rk(R)—w—2t—3d—2x—y—3m—a,
so that the probability that G(U, R) is H is at most
(2.19) (f(n)/m)™,

by the hypotheses of the theorem.
The product of (2.12)—(2.14) is, using (2.2), at most

(2 1 5) f(n)zuk(v) +rk(R) —w —2t —3d —2x —y —3m —a n —uk(U) —-rk(R)/2. .

We can now obtain an upper bound on B(U, R) by summing the product of
(2.4)—(2.11) and (2.15) over all I, s, h, w, t,d, x, y, m and a satisfying (2.1)—(2.3).
We obtain a bound on the general term and multiply by the number of terms after-
wards. v

Firstly consider all factors involving s, 4, w, ¢t and d. Those in (2.15) can be
ignored since f(n)>1. The product of (2.5—(2.7) is at most

st+t+u+w+d+h
[ f+w+td ], by Lemma 2.2,

= Js+t+utwhd+h

Since 4s+6h=r by (2.3), 4t+6d=rk(R) by (2.2),and 2w=2uk(U) by (2.1), this is
(2.16) £Ok(R) +uk(V))

The factors involving x and y are

(u2+x—1] ([ur/2]+[y/4]—l] f(n)_Z,_R[u2+lur/2l+x+ly/4JJ(f( J2)—x-L

x Ly/4] x+[y/4
using Lemma 2.2 and f(n)>1. Since x+{y/41=uk(U)/2 by (2.1), this is at most
uk(U)/2
2.17) exp (O(Duk(U)) + %(f(’n—;’)]

by Lemma 2.3, as k(U)=l.
The factors involving m,a and [ are

1 (1r(r+1)/8]+|ajd|—1) ( 131+ 1)/2+m—1 s
Tz[ laja] - ][ m )f(") =

_ L (lr+1)/8+1(31+1)/2+m+|a/4| ot
—ﬁ[ m+|a/4] ](f(")3 e

Put a=k(R)B=k(R)/(34+24). We consider two cases.
Case 1. /=ar. K ‘ :
Since 6m+2a=rk(R) by (2.2) and 3m=3l4/2=3ar4/2, we have
m+a/4 = r(k(R)+ad)/8 = r(k(R)/6—a).
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So by Lemma 2.3, the above factor is at most

2 1 ]r(k(k)/s—a)
kR6—a] 17 (1)? +f(n)“’] =
O(I‘ +u) rk(R)/6—a)

@ )

(2.18)  exp(O(1)rk(R))+ (0(1)[

= exp(0O(1)rk(R)+
as a=k(R)/8.

Case 2. [=ar.
Here we use m+ [a/4]<rk(R)/6 so that by Lemma 2.3 the contribution in this
case is, for r=0, at most
1 [ o) ]rk(n)/e

exp(0(1)rk (R)) @ f(n)3

which is also at most (2.18).

Since each of the variables /, s, &, w, ¢, d, x, y, m and a has at most rk(R)+
+2uk(U) possible values, the number of possible sets of values is exp (O (rk(R)+
+uk(U))). Multiplying this by the factors remaining in (2.4) and (2.15), together
with (2.16), (2.17) and (2.18), we now obtain

2.19) B(U, R) =

_ @0 f(ny* ""‘”’*”“R”Z[ O(u+r) )M ][ O (u+r) ) “®=2 ]
—(u+r)“[ n ] ( f(n)2_] +1 [ f(n)3 ] +1].
Here we have used 1/u!=exp (O(u+r))/(u+r)*.

To prove (i), we proceed by observing that the number of choices of the sets U

’

and R given u and r is [:,1] [nz_ur]én'““/ (r'(2u)!). The expected number of auto-

morphisms of G with u 2-cycles and r vertices in longer cycles, with r+2u=0, is at
most this times (2.19), which is

(2.20) (AU) . BUCVY) (JrE(RI/S 4. Bre(R)/S)

where
AU — 0(1)(u+r)l/z—l/k(U)f(n)/nl —2/k(U,

By = O (1) f(n)*fn =¥,
Ag = O (1) (utr) = f (n) +158 3 =0IK(E),
Br = O (1) f(n)*n*=*1®,

and k(U) and k(R) each have whatever values, between 6 and 4 inclusive, maximise
(2.20). Since n*/(u+r)=1 for n=1, we have

2/k(U)(u+r) Yk(U) < n¥8 (y+r)=103,
so that AU is maximised for k(U)=4. Clearly, the same holds for By, Ag and Bg.
Thus, putting C=f(n)*/n*~%%, we have By=0(1)C, and Br=0(1)C3 Since

u+r=n we also have A,,=0(1)C1/2 Also, putting D=f(n)3+188/n2+68-815 e
have Ax=0()D as u+r=n.
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Since C32+9%/D=p1-890-6//2 and B<1/24, C=0(l) implies D=o(1)
for 6=6 and D=o(l) implies C=o0(1) for 3=6=5. By the hypotheses of (i),
therefore, C and D are both o(1) in either case, and so Ay, By, Ag and By are all
o(1). Hence (2.20) attains its maximum possible value for » large by putting k(U)=
=k(R)=4. Thus T(n) is at most the sum, over all ¥ and r such that 2=2u+r=n
with r=1 and r=2, of (A4¥+ B¥)(A%/®+ BY/®). Since Ay, Ag, By and By are all
0(1), this sum is O(1) times the sum of its two “‘worst” terms; i.e. the term with u=1
and r=0, and that with =0 and r=3. Here and henceforth, O(1) depends on
the functions represented by o(-) in the statement of the theorem. We now have from
(2.20) that

T(n) = Ay+By+ AR+ By

where

Ay = (0O ) f ()2,

By = (0(1) f (n))**[n°=2,

A = (O (1) f(m)Por2+ 583 n36=201,
and

By = (0(1) f ) [n¥e-r2,

Clearly Ay=0(1)B;, and Ax=0(1)Bi as 98=3/11 for 4=6=3. Also, Bx=
=By (O(1)C)*2. As we have already seen, C=o(l) and thus Bp=o0(1)By. It
follows that T(n)=0O(1)By, and (i) is established. Naturally, this argument is simpler
in the special case of k-regular graphs, for which k(U)=k(R)=k.

To prove (ii) we first let #; and r; denote the numbers of vertices of degree i in
U and R respectively. Then the number of choices of U and R with |U|=2u and

[R|=r is at most [] [ ][n,] , where the product here and in what follows is for

i=1, ..., 4. Also, 2uk(U)=J/iu; and rk(R)=Jir;. Hence, by (2.19), T(n) is at
most the sum over all v and r such that 1=u+4r=n and r=3, of

c2n  earwtn 317 (§) b+ s 11 (1) canr my),

where >* denotes the sum over all u; and r; such that u;+...+u,=2u and r+...
..+r,=r, and this time

Ay = (u+r)"1O0 Q) f(n)2n 12,
B=01)f(m)n"13
R= (u+r)l/s—ﬁo(1)f(n)3ﬂ+1/2n—1/2 = 0(1)f(n)3p+1/2n_1/3-p.
To obtain (2.21) we also used APV 4 gk < TT(AL + By,
Since r']][ ] [r ]]]n and(2u)']][ ] [ul,... ]]]n (2.21)

is at most

.22) @+ (é; (A + BY) (é ni(Al + BYY.

and

15 2574
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We have from the hypotheses of (i) that f(n)**+1/2 is o(n®), so certainly nB*=o(1),
as B=1/9. Thus the sum of n; B’ from i=3 to 4 is o(1). Also, for i=1 and 2,

n; B‘ is
O 1) (e P33 £ =91~

ahd the two factors here are both o(1) by the hypotheses of (ii). For i=3,
n AL (u+r)~12 is at most

ni(u+r)(i-z)/40(l)if(n)i/2n—i/2 = (0 (l)f(n)l/z)i/ni/4—1/2 = (0 (l)f(n)l/zn_l/lz)".

Since f(n)®=o(n), it follows that the sum of mAi(u+r)~V% from i=3 to 4 is
o(1). For i=1 and 2, (u+r)~2n;A,=n;B'=0(1) as we have seen. Finally, n,4%
is o(1) for i=1 and 2 by the second hypothesis of (ii), and its sum from i=3 to 4
is o(1) by the first hypothesis. It follows that the sum of (2.22) or (2.21) over u and r
such that 1=u+r=n is 0(1), and thus T(n)=o0(1). |

From the proof of Theorem 2.4 it is possible to obtain a bound on T'(n) in
part (ii) as is done in part (i), if so desired. Also, (2.22) can be used to take account
of n; for i=3 to obtain a slightly stronger but more complicated variant of (ii).

3. Applications

To apply Theorem 2.4, we need an acceptable function f(n). All our applica-
tions will be to classes & in which all the graphs in &%, have equal probabilities.

Estimates of such an f(n) have been previously found (explicitly or implicitly)
for many classes of graphs (see [2], [3], [6], [7], [8], [9] and [13] for examplk). In all of
these except [7], [8] and [9], the maximum degree must be constant or very slowly
increasing.

Here we will find an acceptable function f(n) for a very general class of graphs
which includes all those considered in the papers mentioned above. The proof techni-
que is a generalization of that used in [7]. By “switching” the edges of a subgraph
with other edges of the graph in almost all possible ways, we obtain a reasonable
bound on the probability of that subgraph occurring in a random graph.

For each integer n, choose a partition # of V={v,,,,...,v,}, integers
m;=0 and my=1, and a non-negative integer sequence g,, g, ..., &, (not all zero).
The set &,=%,(my, my, 7, gy, 82, ...» &) i defined to be the class of all graphs G
with vertex set ¥ such that
(i) the degree of v; is g; (1=i=n), and
(i) the multiplicity of an edge (possibly loop) »w of G is at most m, if » and w
are in the same cell of # and at most m, otherwise.

For example, if m,=0, my,=1 and = is discrete (n cells) we obtain the class of
simple graphs with degree sequence g, 8, ..., g&,- If m;=0, my=1 and = has two
cells, we obtain simple bipartite graphs.

If &%,0 (which we assume henceforth), &, is made into a probablhty space
by giving each graph equal probability.

Let L and H be graphs with vertex set ¥ and degrees /,, /;, ..., [,and A, , A, ...,

.., h,, respectively, where h;=/;=g; for 1=i=n. Write HC L if H is a subset of
L.For HC L, ¥,(L, H) is defined to be the set of all graphs G€&, such that, for
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each edge »w of non-zero multiplicity in L, the mult1p11c1ty of vwin G i is the same as
the multiplicity of »w in H. ;
For v, weV, define H+wvw to be the graph formed from H by i 1ncreas1ng the

multiplicity of the edge w»w by one. Define M;=1/2 Z’ gi» ML=1/22’I,~,
_ i=1 =1
My=1/2 3 h;, A=max, <;<,8, and m=max {m,, m,}.
i=1

Lemma 3.1. Let H+vv;SL, where i#j. Then
(Mg —Mp)/m—84%) |, (L, H+vv)| = (g:—h) (g;—h) 1% (L, H)|-

Proof. Let K be the number of pairs (G,, G,), where Gley(L H+vv)), G2
€%,(L, H) and G, can be obtained from G,, via one of the operations shown in
Figure 1 (for some x,y).

In Figure 1, the numbers on edges indicate their multiplicities, and edges not
drawn as loops are not loops. Given G, it is'clear that x and y can be chosen in at
least (MG —My)/m—84* ways, no matter what 7 is. (Essentially, we can choose any
edge xy in G\ H unless it is either too close to »; or v;, or if the operation will
violate m. The number eliminated by the latter restnctlons is at most 842.) Conver-
sely, given G,, x and y can be chosen in at most (g;—#;)(g;—h;) ways. Therefore

K = (Mg—My)/m—84%) | (L, H+vv)),

K = (gi—h)(g;—hy|%(L, H)|,
which imply the required inequality. |

and

Lemma 3.2. Suppose that H has only loops, and let H+v,v;S L. Then
((MG—MH)/m —842) | (L, H+v;0)| = (g;—h) (g:— hi— 1) |F(L, H)|.

Proof. Let K be the number of pairs (G,, Gz), where G,€%,(L, H+v;v ,), Gy €
€%,(L, H) and G, can be obtained from G, via one of the operations shown in Fig-
ure 2 (for some x and y).

x fi-1
x Ay I y a)
by o« y ] .
I
X
0, 0 —_— b) —_——
v o Y y -1
Gy - G2 G G

Fig. 1 ' - " Fig. 2
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As in the previous Figure, edges not drawn as loops are not loops. Given G,
there are at least (M;— My)/m—842 ways of choosing x and y. Conversely, given
G, there are at most (g;—h;)(g;—h;—1) ways of choosing x and y. Therefore

K = (Mg—Mp)/m—84%)|%,(L, H+v;v))|,
and
K= (gi—h)(g—h—D|% (L, H)|,

which imply the required inequality. |
Theorem 3.3. Suppose that M;—M;=8mA® Then

LDl _ mMe ig\gEm
% T (Mg-84Pm)Mul

where xUl=x(x—1).--(x—y+1).

Proof. Repeated application of Lemmas 3.1 and 3.2 show that the expression on the
right is an upper bound on |¥%,(L, L)|/|%,(L, 8)|, where @ denotes the graph with
no edges. This in turn is clearly an upper bound on |%,(L, L)//|%]. 1

Corollary 3.4. Let A*m=o0(Mg) as n-—c. Then
e(1+o0(1)) mna?
Mg
is an acceptable function for %.

Proof. A simple application of Stirling’s formula is that xP1=(x/e)*, if xz=y=0.
The probability that L is a full subgraph of a random graph in %, is
| % (L, L)|/| %]
Suppose firstly that Mg;—M;=8mA42 Then, by Theorem 3.3,

P L)| _  mMAMe [ med® ]“L _ (mA2e(1+o(1))]ML
I'y;ll = (MG—SAzm)[ML] = MG'—SAzm - MG ’
Suppose, on the other hand, that M;— M, <8md2 Then, by changing the

the multiplicities of one or more of the edges of L to zero, we obtain a subgraph L’
of L such that L’ has at most M;—84%m and at least M —(84%+1)m edges. Then

(L, L) _ |FE, L) _ (mAze(1+o(1)) )MG_(sd’-f'l)m ~
CA N M,

_ (mAze(1+o(1))]M°S (mA2e(1+0(1)) Me 1
Mg - Mg .

The function f(n) in Corollary 3.4 can be substituted into Theorem 2.4 to
obtain a quite general bound on T'(n). Particularly interesting special cases are for
regular graphs and for graphs with 4 bounded, so we examine the resulting bound on
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T(n) for these types of graphs in particular. We emphasise that since Corollary 3.4
is independent of =, the following four corollaries have equally valid formulations for
simple graphs, general graphs, bicoloured graphs, or for graphs with any colour
partitions, so long as m is uniformly bounded. It is likely that even the latter restric-
tion can be weakened, but we have not done so. .

Corollary 3.5. Suppose k(n) is any integer function satisfying 3=k(n)=0[n'%~%),
for e=0. If &, consists of the set of labelled k(n)-regular simple graphs on n vertices,
then T(n)=o0(1).

Proof. By Corollary 3.4 we can use f(n)=0(k(n)). The claim now follows from
Theorem 2.4(i)). J]

Corollary 3.5 has been indépendently discovered by Bollob4s [5] for constant
k(n).
Corollary 3.6. If &is such that m and A are bounded above and 6=3, then T(n)=
=0(n9).

Proof. In this case f(n)=0(4? is bounded. |j

Corollary 3.7. If & is such that m and A are bounded and n;=o(n?*+3) for ic{1, 2},
then T(n)=o(1).

Proof. This is from part (ii) of Theorem 2.4. |}

Note that since the bounds in Theorem 2.4 are uniform over all appropriate
degree sequences, the last three corollaries and all similar results also apply to classes
& containing all graphs with any number of degree sequences. The following extends
Corollary 3.6 in this way.

Corollary 3.8. The expected number of non-trivial automorphisms of a labelled simple
graph with a given degree sequence k,, ..., k, in which each k; is at least 6=3 and at
most 4, is O(n*~%) where O() denotes a bound depending only on 4. |}

In order to study the probability of a random unlabelled graph having just
the identity automorphism group we use the following simple result. For any graph
G let a(G) denote the order of the automorphism group of G. Let % be a.set of unla-
belled graphs on n vertices and let ¥ =% (%) be the set of labelled versions of graphs
in %. Let ¢ =¢,() be the proportion of elements Ge# with a(G)=>1, and let
g=|ZL|1 Gé (a(G)-1).

Lemma 3.9. & =2¢,/(1+¢y)=2¢,.

Proof. —e)n! | U|+en!|U|2= (1 —(e,/2))n! ||
Also

0= 121 3 Heya@)-1=niigl-1

The lemma follows. [}

The partition of an unlabelled graph is the unordered multiset of degrees of
its vertices. As usual, é denotes the minimum degree and 4 the maximum.
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Corollary 3.10. Consider a partition P of n degrees in which 6=3. The proportion of
unlabelled simple graphs on n vertices with partition P which have at least one non-iden-
tity automorphism is O(n2~%), where O() denotes a bound depending only on A.

Proof. The result of Corollary 3.8 can be summed over all degree sequences obtainable
by ordering the partition P. Lemma 3.9 now completes the proof, with % being the
set of unlabelled graphs with partition P. |]

One can alternatively obtain a result more general than Corollary 3.10 by using
the full power of Theorem 2.4 and Corollary 3.4, instead of Corollary 3.8. But one
of our main objects is the establishment of asymptotic formulae for the numbers
of various types of unlabelled graphs, based on existing formulae for numbers of
labelled graphs. In the latter formulae, 4 is usually bounded or increasing very slowly.

Lemma 3.11. With %, % and ¢, as in Lemma 3.9, if &=o0(1) then |%|=|Z|(1+
+o(1))/n!.
Proof. n!|%|=|%|=n![%|(1—¢).

Corollary 3.10 and Lemma 3.11 can be used with the known asymptotic
formula for the number of labelled simple graphs with given degree sequence (see
Bender and Canfield [3]) to obtain the following asymptotic formula for the number
of unlabelled graphs with a given partition. One merely has to divide the formula for
labelled graphs by n! and multiply by the appropriate multinomial to account for the
number of ordered degree sequences corresponding to an unordered partition. Similar
formulae are obtainable in the same way for multigraphs from [3] for pseudo-
graphs from [14] and for bipartite graphs with or without multiple edges from Békéssy
et al. [1].

Corollary 3.12. The number of unlabelled simple graphs with precisely d(i) points of
degree i for i=3,...,4 is
@2m)te~"-?(140(1))

m12m ﬁ (dG)! (i)®)

as n—co where m=1/2 sz(z) is an integer, n= Z'd(t) y= Z i@—1)d(@)/4m,

and o(1) denotes a functton depending on the d(i) but whose convergence to O as
n—oco is uniform over all partitions as long as A is bounded. |

Amongst other things, this gives an asymptotic formula for the numbers of
unlabelled r-regular simple graphs, with r fixed, agreeing with [5]. The same formula
is in fact valid r=o0(n"/?), as is proved by the application of Corollary 3.5 to the
labelled enumeration in [9]. A similar enumeration of unlabelled regular bipartite
graphs with degree o(n'/®) follows from [8].

Our final observation is the well-known trivial connection which translates
many of the known properties of random labelled graphs to properties of random
unlabelled graphs. Firstly, if % is a class of unlabelled graphs, let %, denote the sub-
class of n-vertex graphs in %.

Lemma 3.13. Suppose U’ % and define P(n)=|L(U)|/| L (%,)|. Suppose further
that &(%,)=0(1)P(n) as n-c. Then |U,|/\%,|=Pm)(1+0(1)) as n-e. |

6
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Thus, for instance, if % is the set of k-regular simple graphs (for k=3 fixed)
and 4’ is the subset of k-connected k-regular graphs, then we know by the results of
[15] that P(n)=1+40(1) in Lemma 3.13. Thus Corollary 3.8 and Lemma 3.9 imply
that the proportion of unlabelled k-regular simple graphs on n vertices which are
k-connected is asymptotic to 1 as n—+co (k=3). Similarly, the proportions of unla-
belled k-regular simple graphs with given cyclic connectivity are obtained from [15],
and with given girth from[14]. The k-connectivity and girth results also extend to graphs
with arbitrary degree sequence s, as long as the degrees are in the range 3, ..., 4 with
4 fixed.
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