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Abstract

Consider a graph G with distinguished vertices s and t. Each edge
has a positive length and may be directed or undirected. We wish to
locate a minimum number of "gas-stations” on the vertices or edges of G
such that a car with a range of R may start at s with no gas and drive
to t along any simple path. We investigate the theoretical complexity
of the problem, and describe an 0(|E| min {R, |v|}) algorithm for the
case when G is a series-parallel graph.

0. Introduction

Consider a network of cities and highways. Each highway joins two
cities and doesn't intersect any other highways except at the ends (but
over-passes are allowed). Some of the highways may be declared "one-way"
in some direction. We wish to drive from one fixed city s (the source)
along the highways to a second fixed city t (the sink), and feel free to
use any simple path. However, our car is almost out of gas and, even
with a full tank, cannot go more than R miles without running out. So,
in order to make our journey possible, we need gas-stations. Clearly,
we need one at s but (since we don't mind arriving with an empty tank)
we don't need one at t. The problem is this: What is the smallest
number of gas-stations, positioned anywhere on the cities or along the
highways, so that we can successfully drive from s to t along any simple
path?

An example with 5 cities and 6 highways is shown in Figure 0.1. The
numbers on the highways represent their lengths (always positive), and

the value of the range R is 200.
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Figure 0.1

By considering each of the 5 simple paths from s to t we see that at
least 5 gas-stations are needed. One possible configuration of these is

indicated by the crosses in Figure 0.2.

Figure 0.2

Before proceeding with our analysis, we need some more terminology.
Given a network G (including edge-lengths), a range R, and a configuration
of gas-stations, a simple path P from s to t is reliable if we can drive
from s to t along P without running out of gas. More formally, P is reliable
if there is a gas-station at s, one on P at most R miles from t, and if any
two consecutive gas-stations on P are at most R miles apart. All distances
here are measured along P. The configuration itself is religble if every
simple path from s to t is reliable. BAn optimum reliable configuration is
one for which the number of gas-stations is minimum.

At first glance, there appears to be difficulty in devising even a
crude exhaustive search for an optimum reliable configuration, since there

is an infinity of legal positions for the gas-stations. This difficulty will

be solved in the next section, at least when the cdge-lengths and R are
integers. We will then examine the theoretical complexity of the problem.
n section 2 we will describe a polynomial time algorithm for series-
1&:‘.:.11L-l graphs.

As we have begun to do already, highways will sometimes be referred to

Also, note that an undirected edge is not equivalent to two

oppositely directed edges, since a gas-station on an undirected edge can

service traffic moving in either direction.

1. Complexity results

We begin by showing that a solution by exhaustive search is possible
when all the edge-lengths and R are positive integers. An intager poin:
is a point (i. e., a position) on an edge whose distance from either end
of the edge is an integer. A Aalf-integer point is one whose distance
from either end of the edge is half an odd integer. Note that cities are
integer points if the edges have integer lengths. The proof of the

following theorem is partly due to Hang Tong Lau.

Theorem 1.1 Swppose that all edge-lemgths aend R are positive integers.
Then there ig an optimm reliable configuration for which all gas-stations

lie on inteser points or half-integer points.
Proof. Let C be an optimum reliable configuration. We can convert € into
another optimum reliable configuration C'satisfying the required property
thus: take each gas-station of C which does not lie on an integer point
or half-integer point and move it to the closest integer point. We only
need to show that T'is reliable.

Take any simple path P from s to t and consider two consecutive gas-

stations, g.and Gy on P in C. Let z_.+2. and z_+€_ be the distances

% [ ¢ 272
and = respectively, where 5 and z, are integers and

1
along P from s to g

Oégl, %fl' Since Clis reliable,
2.2+f_2 = (zl+£l) <R.
In C', these same gas-stations have distances zl+€i and zzieé along
P from s, respectively, where 0 = Eirté < 1. We need to show that
22+s§ ( =z +ai J<R. There are nine cases to consider, depending on whether

O<g, <%, €. = % or 5<ff< 1 for 1i=1, 2. We will do just two of these and
1 1

leave the rest to the reader.
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By (1), :42- :'.1 R+ 1785 R+Y,. Hut :t], cnd R oare integers, so 22 = ;415: R.
In C' we have 1 ¥ ; = 0, s0 the distance along P from 9, to 9, i's still
at most R.

Case 2: O<,1<% and K<,2<l.

By (1), 22—2f_R+elmrj.R. But zl, yz and R are integers, so Zz—szR-l. Thus

the distance along P from qltx>g2 in €' is again at most R.
An identical argument successfully handles the portion of P from the
last gas-station to t. g
The example drawn in Figure 1.1 shows that it is not always sufficient

to consider only integer points. However, there is an important case where

Figure 1.1

ve can. Call a network easentiully one-

if, for each edge e, all the

simple paths from s to t using e traverse e in the same direction. This is
crivially true if only one-way highways exist, but it is also true in other
important cases, for example, if the network is series-parallel (see Section 2).
theorem 1.2 Swppose that an essentiully one-way network has only integer
:dge-lengths and R is an integer. Then there is an ortimum reliable confi-
wration for which all gas-stations lie on integer points.

'roof. Let C be an optimum reliable configuration. We can convert C into an
)ptimum reliable configuration C'using only integer points thus: take each
jas-station g of C which does not lie on an integer point and move it to

‘he closest integer point which precedes g on some simple path from s to t.

2" is well-defined because C is essentially one way. Note that there is at
east one simple path through s, g, and t, or else g can be removed altogether,
ontradicting the optimality of C. It is now a simple exercise to see that

-

2" is reliable. O

226

We turn now to theoretic compexity questions and consider two decision
problems.
problem 1
Instance: A configuration C , consisting of a network with positive
integral edge-lengths, specified cities s and t, & set of
gas-stations on integer or half-integer points, and a positive
integral range R.
Question: 1Is C unreliable?
Problem 2
Instance: A network with positive integral edge-lengths, specified
cities s and t, a positive integral range R, and an integer
K=0.

Question: Is there a reliable configuration using K or fewer gas-stations?

Problem 1 is in NP obviously. To see that it is NP-complete, take the
case where all edge-lengths are 1, R=n-2 (where n is the total number of
cities) and the only gas-station is at s. The question is then "is there a
hamiltonian path from s to t?", which is well-known to be NP-complete. This
is true whether the edges are restricted to be all undirected, all directed,
or not so restricted.

On the other hand, if R is taken to be a fixed integer and all edges are
undirected we can find a polynomial-time algorithm. Take each gas-station g
in turn and generate all the simple paths of length R which start at g.
There are at most ARof these, where A is the maximum degree. Let P be one
of these paths, with end-points g and h (neither of which must be a city).
If P contains a gas-station other than g we discard it; otherwise we use a
network-flow algorithm to determine whether there are vertex-disjoint simple
paths P' and P", each vertex-disjoint from P, from s to g and from h to t.
If such paths exist, the concatenation P'PP" is unreliable. Conversely,
any unreliable path will be found by this means. If directed edges are
allowed, Problem 1 is NP-complete even when all edges have unit length, R=1,
and all gas-stations are in cities. To see that, recall from [1] that
the problem of determining whether there are two vertex-disjoint paths
between two pairs of vertices in a directed graph is NP-complete. The
last problem is clearly equivalent to that of finding whether there is a

simple path from s to t which uses a specified vertex v. This problem in
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turn can be reduced Lo an instance of Prubicm 1 restricted as we ayreed,
1f the network is acyclic, planar or chordal, Problem | again becomes
polynomial for fixed R, even for directed edges. Sce |1].

Now consider Problem 2. Our results on Problem 1 raise doubts as to
whether Problem 2 is even in NP. Another potential difficulty is that
the number of gas-stations in an optimum reliable configuration may be
exponential in the size of the input (to Problem 2). This can be
circumvented by noting that all we really need to know about the gas-
stations on each edge is their number and the positions of the first and
last of them. Those in between can be assumed to be evenly spaced without
losing reliability. With this compact representation in mind, we see that
Problem 2 becomes polynomial if there are no directed edges and both R and g
are fixed. This follows from Theorem 1.1 and the fact that Problem 1 has
a polynomial time solution if there are no directed edges and R is fixed.

If either R or K or both are allowed to vary, most versions of Problem 2
become NP-hard. For example, the case K=1 is co-NP-complete cven if all
edges have length 1. Another interesting subcase comes from disallowing
directed edges, giving all edges length 1, and having R=3. This is Np-
complete as can be seen by reduction from the vertex-cover problaem:

"Civen a graph G and integer K20, is there a set of K or fewer vertices
which cover the edges of G?". Take an arbitrary instance (G, K) of the
vertex-cover problem, and from it construct an instance (G', K') of

(the restricted version of) Problem 2: VI(G') = V(G) U {s, t}, E(G') =

E(G) u {svlve V(G)} u {tVIveV(G)}, K' = K+l. For this special instance

of Problem 2, it is easy to see that there is at least one optimum reliable
configuration for which all gas-stations lie on cities. The NP-completeness
follows immediately.

2. Series-Parallel graphs

By the notation G = (V, E, s, t) we mean that G is a network with
cities V, edges E, source s € V and sink t. As before, edges have positive
lengths and may be either directed or undirected.

Given two networks G = (Vl, E., s t.) and G_ = (V_, E S,e t,)

1’ 71 2 2 2" T2

we can define two composite networks as follows. Assume that %_n V2 =g

The series conmnection of G, and G2 is the network Ser(Gl, Gz) formed from

1

Gl u G2 by identifying t1 and S, then taking Sl as the source and t_as
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the sink. The parallel connection of G] and G, is the network Parihj. t
formed from “l u GE by identifying sl and 52 (with the resulting single
city becoming the new source) and identifying tl and t2 (making the new

sink). These are shown in Figure 2.1.

Ser(G,, G_):

SE R S

?ar(Gl, G,):

Figure 2.1

The class of series-parallel networks is defined recursively as follows:
(i) A network consisting of a single undirected edge joining s to t
is a series-parallel network.

Ha)y I Gl = (Vl, El' Sys tl) and G2 = (V2, E2, S, tz) are series-

parallel networks, then so are Ser{Gl, Gz) and Par(Gl, Gz).

Before we can present our algorithm for series-parallel networks, we
need to generalize the concept of reliability. Consider a configuration ©

of gas-stations on a network and let P be simple path from s to t which

contains m gas-stations ql. g Wi qm. Define go = s and g =t.

m+l
(0<i<m). For notationa

ot
Then ii(P) is the distance along P from gi to g. P41

We say that P is r-reliable if

convenience define Rm(P) = Em(P}.

RO(P}SI and ii(P)SR (i21). The configuration ¢ itself is r-reliable if
every simple path from s to t is r-reliable. Clearly reliability in our
previous sense is the same as O-reliability.

Let G = (V, E, s, t) be a network and let 0<r<R. For an r-reliable
configuration ¢ on G define slop(C) = min {{R—Rm(P)!PEPl} u {I—Em(P)inPZ
where Pl is the set of simple paths from s to t which contain at least one
gas-station, and P2 is the set of simple paths from s to t which don't.
Essentially, slop( C) is a measure of how much gas we can be sure of havin

left on arriving at t. Now define
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orT(G, R, r) = minimum number of gas-stations in an
r-reliable configuration on G, and

EXC(G, R, r) = maximum slop( C ) for any r-reliable
configuration on G with exactly
OPT(G, R, r) gas-stations

A few elementary properties of OPT and EXC are listed in the
following lemma.
Lemma 2.1 Let USr1<r2<R. Then:
{1 0ZEXC (G, R, r'})'iR.
(ii) OPT(G, R, r]) - 1 £ OPT(G, R, rZJSOPT(G, R, rl}.
(iii) If OPTI(G, R, rl) = OPT(G, R, rz), then EXC(G, R, Il) < EXC(G, R, rg]_
(iv) If OPTI(G, R, rl) > OPT (G, R, r2), then EXC(G, R, rl) 2 EXC(G, R, r2)_
Proof. The only parts which are not immediate consequences of the defini-
tions are (iv) and the left inequality of (ii). These follow easily on
noticing that an rzfreliable configuration can be made rl—reliable by
inserting an extra gas-station at s, if there isn't one there already. [J
We beain our determination of OPT and EXC with the network consisting
of a single edge.
Theorem 2.2 Let G be a network consisting of a single undirected sdge of

lLength © from s to t. Let 0<r<R. Then

=

B 1 and

(i} OPT(G, R, r)

(ii) EXC(G, R, ) = r="1+ RLJ%;LJ.
Proof. Both claims follow easily from the definitions. The optimum

configuration has gas-stations at distances r, r+R, r+2R, . . . from s.

We will next investigate the effect of the operations Ser and Par
on OPT and EXC.

A = (V. ,
Theorem 2.3 Let Gl ( 1

networks with 8 N,

(i) OPT(H, R, )

E s + S

1t L P St
@. Let H = Ser(Gl, G2) and 0<r<R. Then

tl) and G, = (v2, E t2) be

OPT(G,, R, r) + OPT(G,, R, EXC(G, R, ¥)), and
(ii) EXC(H, R, x) = EXC{GZ, R, EXC(Gl, R, r)).
Proof. An r-reliable configuration on H with the required parameters can

1
then one on G2 realizing 0PT(G2, R, r') and EXC(GZ' R, r'), where

be constructed from one on G, realizing OPT(Gl, R, r) and EXC(Gl, R, ),

r' = EXC(Gl, R, r). We only need to demonstrate that it is impossible

to do better.
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Let € be an 1-reliable configuration on H realizing OPT(H, R, r) and
EXC{, R, r), and define Cl and C_ to be the restrictions of C to Gl
and G_, respectively. Any gas-stations on SZ:tl belongs in C2 but not

in cy Define e = slop|( C}L

Since Clis an r-reliable configuration on Gl, ICll = OPT(Gl, R, r)
Also, scg[ = OPT(G,, R, e) by the minimality of |c!. If IC1l =
ovT(Gl, R, r), then e <yr' so ;62! zCPT(Gz, R, r'). If |C1[)OPT(G}, R, T
then |C21 = OPT(GE, R, r')-1, by Lemma 2.1 (ii). In either case el =
OPT(Gl, R, r) + OPT(Gz, R, r'), which establishes (i}.

To prove (ii), note that slep( C:) = EXC(Gz, R, ©) by the maximality
of slopl(C)-. If slop( C2> > EXC(G2, R, r') then, by Lemma 2.1, either
OPT(GQ, R, e) = OFT(GZ, R, r') and e>r', or OPT(GZ, R, e) =
OPT(G,, R, r') + 1. Each case is clearly impossible by part (i). B}
Theor;m 2.4 Let Gy = (Vl, Ejv Sye Ll) and 02 = tvz, E2, S, t2) be networs
with vion v, = 0.

Let H = Par(Gl, G?), 0€ r<R and de;tne

N1 = DF‘T(LSI, R, r) + Ol“T(G?. R )i

N2 = OPT(G], R, 0) + OPT(Gz, R, 0) - 1,

My min { EXC(Gy, B, ¥), EXC(G,, R, r)}, and

M, = min{ EXC(3,, R, 0), EXC(G,. R, 0)}.

Then
(i) OPT(H, R, x) = rnin{Nl, N, b and
(ii) JMI, Nl< N2,
EXC(H, R, r) = max{M,, Mz}, Ny =Ny
th, N1> NZ.

Proof. Let C be an r-reliable configuration for H realizing OPT{(H, R, r)
and EXC(H, R, r). Define C1 and C_ to be the restrictions of C to G1

2
and GZ' respectively. Any gas-station in C at 51=52 appears both in Cl

and C2 are r-reliable and slop(C) =

and C2. Obviously, <
min{slop( Cl), slop ( CE)}' We now consider four separate cases.

(a) Suppose OPT(GI, R, r) = GPT{Gl, R, 0) and OPT(Gz, R, r) = OPT(GZ, R, [
Then N_ < Nl' Obviously, C must have a gas-station at sy = S, and so

lcl = M, and slop(C) = M.
(b) Suppose OPT(GI, Rl, r) < OPT(GI, R, 0) and OPT(GZ' R, r) < OPT(GZ, R, 0)
Then Nl <N2. Obviously, ¢ must have had a gas-station at Sl = 52, and

so lo |= N1 and slop(c ) = Ml.
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() Suppose OI"l'(i'Il, R, r) = (}l”l‘((Q}, k, 0) and (':}"l‘((],), R, r)<oirr(c, , R, 0)

By Lemma 2.1 (ii), OPT(GZ, R, r) = OpT (G?, R, 0)-1, so N_ = N?' TE &2
lc! M_. This is

has a gas-station at s.=s_, then 1 C = Nj and slop{ C )
i

1

clearly realizable. 1If C does not have a gas-station at Sl = 52, then

leEl = Nl and, if | C| :Nl, then slop(C) < M]. We must only sliow that

if M1> M? we can realize Nl and M_. By Lemma 2.1, EXC(GI, R, r):EXC(Gl, R, 0)

2
and EXC(GZ, R, 1) SEXC[GZ, R, 0) so MoZM = EXC(GI, R, r) > ExC(Gl, R, 0).
Thus, the r-reliable configuration on Gl which realizes OPT(GI, R, r) and

EXC(Gl, R, r) does not have a gas-station at s This, together with

1
an optimal r-reliable configquration on G2, realizes Nl and Ml.
(d) The remaining case is equivalent to case (c). i

It is now a simple matter to devise an algorithm for determining
OPT(G, R, 0), where G = (V, E, s, t) 15 a series-parallel network. From
the definition of the class of series-parallel networks we see that G
can be represented by the root of a rooted tree which has one leaf for
each edge. Internal nodes of the tree are classified as type S or F.
A type S node represents the series-connection of its children. Formally,
if the children of v represent Gl' GS,"" Gm, left to right, then v
represents Ser{Gl, Ser(Gz, ey Ser(Gnrl, Gm)) ). A type P vertex
represents the parallel-connection of its children. If we stipulate that
no two internal nodes of the same type are adjacent, the tree is unique
up to the ordering of the children of type P vertices. An example is

shown in Figure 2.2.

ey eg

Figure 2.2
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1t is known (141, 131) that the tree reptescentation of G can be tound
from 5 in O(/E|) time. Once we have the trece rcepresentation, we can
apply Theorems 2.2-2.4 recursively to find OPT(G, R, 0O).

Theorem 2.5 Let G = (V, E, s, t) be a serics-parallel network. Then
OPT(G, R, 0) can be found in O(|V]|E]) time i all arithmetic operations

count as one unit.
Proof. The algorithm is as we have described: Find the tree represen-
tation in O(]E|) time, then apply Theorems 2.2-2.4 recursively.

Let G(v) be the subgraph of G represented by ncde v of the tree,
and let N (v) be the number of times OPT(G‘v), K, r) and EXC(G(Vv), R, 1)
need to be computed for some r. The total time required is clearly
0(§N(V)). If the ancestor w of v has type &, then N(V)2N(w) by Theorem
2.3. If w has type P, then N(v)sN(w) + 1 by Theorem 2.4. Thus N(V)
is bounded by the number of ancestors of v (including v itself) which
have type P, except that N(root) = 1l always. Therefore, N(v)=|vl]
always, which implies the Theorem as stated. [

If R and all edge-lengths are integers, and R = o(|V|), the time
bound above can be reduced to O(R|E|). This is done by storing all
computed values OPT(G(v), R, r) and EXC(G(v), R, r) for each v and r,
then not ever computing them again. Since series-parallel networks
are essentially one-way [ 2] we can place all gas-stations on integer
points, by Theorem 1.2. This implies that only integer values of r
are ever encountered, so at most R different values are possible for
each v.

A combination of the two methods produces an algorithm of time
complexity O(min{R, |VI}|E[). It is not difficult to obtain the actual
positions of gas-stations in an optimal configuration at the same time,
3. Problems
(1) What is the complexity of Problem 2 for acyclic digraphs?

(2) Is there a finite algorithm for solving the original problem for

a general network when R and the edge-lenuths are arbitrary positive

real numbers (using exact arithmetic)?

233



Acknowledgement
We are indebted to Hang Tong Lau, who introduced us to the problem

and contributed many useful ideas.

References

1 Y. Perl and Y. Shiloach, Finding two disjoint paths between two pairs
of vertices in a graph, J. Assoc. Comp. Mach. 25(1978) 1-9.

2 J. Riordan and C. Shannon, The number of two-terminal series-parallel
networks, J. Math. Phys. Mass. Inst. Tech. 21(1942) 83-93.

3 J. Valdes, Parsing flowcharts and series-parallel graphs, Tech.
Report STAN-CS-78-682, Computer Science Dept., Stanford University,
1978.

4 J. Valdes, R. E. Tarjan and E. L. Lawler, The recognition of series-
parallel digraphs, Proc. 1lth Annual ACM Symp. on Theory of

Computing, Atlanta 1979, 1-12.

EMBEDDING MAXIMAL PACKINGS OF TRIPLES T

Eric Mendelsohn and Alexander Rosa

1. Introduction.

A Steiner triple system of order v (STS(v)) is a pair (V,B)
where V 1is a v-set, and B 1is a collecticn of 3-subsets of V
(called triples) such that each 2-subset of V is contained in
exactly one triple. It is well known [2] that an STS(v) exists if

and only if v =1 or 3 (mod 6).

An  STS(u) (U,A) 1is said to be embeddeZ in an STS(v)
(v,B) if UcV and A < B (writtem (U,A) = (V,B)). Doyen
and Wilson proved in 1973 [1] that any STS(u) can be (properly)
embedded in an STS(v) if and only if v = 2u+l. (Recently, a new

simplified proof was given by Stern and Lenz [10].)

When v £ 1,3 (mod 6), one has the following analogue of STSs.
A maximal packing of triples of order v (MPT(v)) is a pair (V,B)
where V 1is a v-set, and B 1is a collection of 3-subsets of V
(called triples) such that (i) each 2-subset of V 1is contained in
at most one triple, (ii) no triple can be adjoined to B without
violating (i), and (iii) if C 1is any collection of 3-subsets
satisfying (i), (ii) then |B| = [C].

If (v,B) 1is an MPT(v), let C(V,B) be the graph induced
by the "uncovered" pairs (i.e. pairs not occurring in any triple of

B). 1t is well known [8,9] that C(V,B) is as follows.
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