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Abstract

Multiple-instance learning (MIL) is a paradigm in supervised learning that deals with the classi-

fication of collections of instances called bags. Each bag contains a number of instances from which

features are extracted. The complexity of MIL is largely dependent on the number of instances in the

training data set. Since we are usually confronted with a large instance space even for moderately

sized real-world data sets applications, it is important to design efficient instance selection techniques

to speed up the training process without compromising the performance. In this paper, we address

the issue of instance selection in MIL. We propose MILIS, a novel MIL algorithm based on adaptive

instance selection. We do this in an alternating optimisation framework by intertwining the steps of

instance selection and classifier learning in an iterative manner which is guaranteed to converge. Initial

instance selection is achieved by a simple yet effective kernel density estimator on the negative instances.

Experimental results demonstrate the utility and efficiency of the proposed approach as compared to the

state-of-the-art.

I. INTRODUCTION

Multiple-instance learning (MIL) is a paradigm in supervised learning proposed by Dietterich

et. al. [1]. It provides a framework for the classification of collections of instances called bags

instead of individual instances. In a typical binary MIL problem, the training data are presented

in the form of bags and their associated binary labels. The key assumption in MIL is that a

negative bag only consists of negative instances, whereas a positive bag comprises both positive

and negative instances, although the size of the bags can vary. Mathematically, this can be

interpreted as taking the maximum over the labels of all instances in the bag given 1 as the label

for the positive class and -1 as the label for the negative class. The hidden nature of the instance

labels poses great challenges for MIL. In many cases, negative instances may even dominate in

a positive bag. As a result, applying conventional supervised classification methods directly to

MIL problems often leads to a downgraded performance [2]. Hence, special-purpose methods

have to be designed to handle the MIL problems making use of the structure of MIL.

Many problems in computer vision and machine learning can be naturally cast in an MIL

setting. For instance, in contents-based image retrieval (CBIR) [3], each image contains many

regions, but only those that carry category specific information are of interest (ROI) for purposes

of recognition. A ROI can either be a target object in the scene or a region describing the context

of the object, provided that it is relevant in the determination of the desired image class. Other
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regions may be shared across different categories and, therefore, possess no discriminative power.

From this viewpoint, an image is a bag and the image regions are instances of the CBIR problem.

MIL techniques can also be used for image-level image labelling where a feature vector can be

extracted at each pixel and a label is assigned to the whole image aggregating the information

gathered from pixel level.

One potential problem that hinders the efficiency of MIL is the possible large number of

instances encountered in real-world applications. For ROI based image retrieval and object

recognition, the training data set may consist of a large number of images, and each image

may also contain many ROIs corresponding to the instances, thus the total number of instances

involved during the training stage could be prohibitively large. By the assumption of MIL, many

instances in the positive class are background instances from the negative class and hence do

not contribute much to discrimination. How to efficiently and effectively prune the large set of

instances and keep the useful ones still remains an challenging problem for MIL.

In this paper, we propose an MIL method with Instance Selection (MILIS). The proposed

algorithm is efficient in training and well suited for large scale MIL problems. The method

presented here has three major advantages. Firstly, it employs an efficient and robust method for

instance selection based on the distribution of negative instances. Secondly, it uses a single in-

stance representation for each bag similar to MILES [4] albeit with much reduced dimensionality.

This is mainly due to the use of a chosen subset of instances for bag-level feature computation in

contrast to the use of all training instances as in MILES [4]. The classifier is then optimised by

intertwining instance selection with classifier learning in an alternating optimisation framework

which is guaranteed to converge. Thirdly, due to the reduced complexity of the algorithm, for

the data sets under study, the resulting classifier achieves comparable classification accuracies

while being more efficient than alternative SVM-based classifiers for MIL.

The rest of the paper is organised as follows. In Section II, we review the relevant MIL

literature. We outline the important issues related to the topic and examine the limitations of

the existing approaches. In Section III, we formally define the notation for the proposed MILIS

algorithm. The details of the algorithm are then elaborated upon in Section IV by introducing the

key components of MILIS and showing their integration into an iterative framework. Extension

of the algorithm to multiclass settings and a computational complexity analysis are described in

Section V. To illustrate the efficiency and effectiveness of the the proposed approach, in Section
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VI, we report the experimental results on four synthetic and real-world data sets. Finally, we

draw conclusions in the last section of the paper and discuss future work on this topic.

II. RELATED WORK

Many methods have been proposed to solve MIL problems. These methods can be roughly

divided into two main categories - generative and discriminative approach. Generative approaches

dominate in early attempts to tackling MIL problems, which aim at locating a region of interest

in the instance feature space such that all positive instances lie in its vicinity and all negative

instances are far removed from it. This can usually be cast in a maximum likelihood setting.

Dietterich et.al. [1] used axis parallel hyper-rectangles to represent such regions with high positive

probability. Maron et.al. [5] proposed Diverse Density (DD), an elliptic target concept in feature

space closely related to the peak density of positive instances. In [6], Zhang et.al. proposed EM-

DD, an alternative to DD using the EM algorithm to locate the target concept in a more efficient

manner. This was further generalised to GEM-DD by Rahmani et.al. [7] that keeps multiple

hypothesis of the target concepts and hence can achieve improved robustness in locating them.

MIL problems can also be tackled in a discriminative manner aiming at adapting standard

supervised learning approaches. For instance, Citation K-nearest neighbour (KNN)[8] extends

the standard KNN classifier to MIL by employing the K-neighbours at both, the bag and instance

levels. Other variants hinge in the use of Support Vector Machine (SVM) classifiers [9], which

result in a plethora of SVM based methods for MIL, which include MI-kernel [10], MI-SVM

[11], mi-SVM [11], DD-SVM [3], MILES [4] and other instance level SVM formulations [12],

[13], [14]. Other classifiers, which generalise the single instance counterparts above can also be

adopted. These include MI-Boosting [15], MI-Winnow [16] and MI logistic regression [2], [17].

Alternatively, we can divide the existing approaches to MIL into top-down and bottom-up ones.

Top-down approaches try to infer the bag label directly. During the inference process, additional

cues can be gathered to infer the instance labels in a further inference step [4]. Bottom-up

approaches work by first inferring the instance labels and then resolving those corresponding to

the bags. Generative approaches to MIL are normally bottom up in nature, since the inference

process is often effected in the instance feature space. Discriminative approaches, on the other

hand, are mostly top down ones addressing bag-level predictions directly. An alternative to this

approach is the mi-SVM [11] and akin methods [12], [13] that perform instance inference directly
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through a generalisation of the maximum margin rationale used in SVMs.

The main argument leveled against the bottom-up generative approaches is the use of single or

limited number of prototypes to represent the target concepts for the positive class. Despite their

empirical success, DD-based approaches rely on a strong assumption that all positive instances

form a compact cluster in the feature space. This cluster is exclusive with respect to the collection

of negative instances. This is, however, not necessarily the case in real applications as the

distributions of positive instances can be arbitrary, and most likely, multi-modal. Hence, a single

target concept in the feature space may be insufficient for capturing the distribution of the positive

class. Methods such as DD-SVM [3] and GEM-DD [7] remedy this problem by employing

multiple prototypes obtained with different start values through iterative optimisation approaches.

This motivates our observation that multiple prototypes can be formed and updated iteratively.

This delivers robustness to perturbations in the instance feature space due to the aggregation of

instance level reasoning.

III. PRELIMINARIES AND ALGORITHM OVERVIEW

To describe MILIS, we need to introduce some notation. Denote X tr = {X1, . . . , Xn} as the

set of bags and Y tr = {y1, . . . , yn} as the labels associated with each bag. A bag Xi contains

mi instances denoted by xi,j for j = 1, . . . ,mi. Without ambiguity, xi,j also denotes the feature

vector for the instance depending on the context. Different bags can have different numbers of

instances, hence mi may vary for different bags. Each instance xi,j is also associated with a

label yi,j which is not directly observable. The assumption is that all instances in negative bags

are negative and at least one instance is positive in each positive bag. The purpose is, therefore,

to predict the label value for the novel test bag X = {x1, . . . ,xl}.

With the above ingredients, we can now describe the MILIS framework for MIL. We first

focus on the binary classification case where the label value yi ∈ {−1, 1} for each bag i, where

yi = 1 if the bag indexed i corresponds to the positive class and yi = −1 otherwise. By just

a few minor modifications, we will later generalise the framework to handle multiclass MIL

problems. The basic steps of the MILIS algorithm is illustrated in Figure 1, where each block

represents an object to operate on. Each arrow indicates an operation defined on the objects. In

the training phase, we first perform instance selection on the training instances. This is achieved

by modelling the distributions of negative instances and picking the least negative one from each
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Fig. 1. Block diagram for the proposed algorithm. Left-hand Column: Training Phase; Right-hand Column: Testing Phase

positive bag. After doing this, we obtain a set of Instance Prototypes (IPs), which we denote

by x
∗(t)
i . Each of these is chosen from the corresponding positive bag. We then convert the

MIL problem into a single instance problem via a similarity based feature mapping using the

selected IPs. A single feature vector is formed per bag. In the figure, zi denotes the computed

feature vector for the ith bag, and s(Bi, x
∗(t)
j ) denotes the jth feature element which captures

the similarity between bag Bi and instance x∗(t)j . The explicit form of s(Bi, x
∗(t)
j ) will be given

in the context that follows. This feature map is in accordance with the single instance feature

representation proposed by MILES [4]. Given the bag-level feature vectors, a standard linear

SVM classifier is trained on the bag features. Based on the classification results on the training

data, we update and reselect the IPs. This step-sequence is interleaved until convergence.

In the testing phase, we commence by extracting the feature vector for the test bag using the

feature mapping defined over the IPs obtained in the training phase. The trained SVM classifier

is then applied so as to obtain the classification result.

It is worth noting that instance selection has been addressed previously in a different context.

SVM based approaches to MIL such as MI-SVM and mi-SVM [11] perform instance selection
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to train a SVM classifier in the instance feature space. In contrast, the proposed MILIS algorithm

employs instance selection to form the instance feature representation at the bag level. In this

way, the original MIL problem is converted into a prototype selection one. Thus, the purpose

of instance selection in MILIS is to construct a more discriminative feature map for learning

bag-level classifiers, whereas MI-SVM and mi-SVM aim at selecting the true positive instances

for learning instance-level classifiers.

IV. INSTANCE SELECTION AND CLASSIFIER LEARNING

In this section, we present the foundations of MILIS. Like MILES [4], our method aims at

solving bag labels directly without resorting to instance level learning in the training process.

Note that MILES [4], directly constructs bag-level features based on bag-to-instance distances.

Each instance is used to form the bag-level feature mapping and treated as a potential target

concept carrying category information, which we term as IP in the context that follows. This

gives rise to a very high-dimensional feature vector, whose dimensionality is given by the total

number of instances. Feature selection on these vectors is done implicitly via a one-norm linear

SVM, which is known to produce sparse solutions for feature weights [18]. Although effective,

MILES has difficulty scaling up to large data sets due to the fact that the dimensionality of the

instance feature space is given by the sum of all instances across all bags and, hence, grows

linearly with respect to the number of training instances. This leads to high complexity for both

feature computation and one-norm SVM optimisation.

To achieve comparable performance to MILES with much less computational complexity,

explicit instance pruning and selection is necessary. Hence, a principled way is required to reduce

complexity devoid of clustering or quantisation procedures. This is an important observation since

clustering and quantisation do not consider bag-level structure nor discriminative information and

may discard small clusters in the feature space where informative features may be located. Hence

we adopt a similar feature representation as MILES which will be described below and at the

same time the importance of instance pruning for efficient MIL is highlighted. We then propose

a novel discriminant pruning scheme based on density estimation. Next the problems of feature

learning and instance updating are addressed. Finally, we summarise the algorithm and provide

some theoretical study on its property and computational complexity.
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A. Bag-Level Feature Representation

To effectively employ the similarity based feature mapping in Figure 1, a distance metric needs

to be defined first between bags and instances. The Hausdorff distance is a natural distance metric

for this purpose. Specifically, the distance between bag Bi and instance x is given by

d(Bi, x) = min
xi,j∈Bi

||xi,j − x||2 (1)

which is the distance between x and its nearest neighbour in Bi.

Given the distance metric above, we can then derive the following similarity measure using

an exponential function,

s(Bi, x) = exp (−λd(Bi,x)) = max
xi,j∈Bi

exp (−γ||xi,j − x||2) (2)

If instance x is a true positive instance, then a positive bag should have high similarity to instance

x. A negative bag, on the other hand, has a low similarity, since all instances in the negative

bag are far apart from x.

Recall that MILES uses all instances in the training set directly to construct the bag-level

feature vector. The resulting feature vector for bag i is an m-dimensional vector comprised by

the concatenated bag-to-instance similarities

zMILES
i = [s(Bi, x1,1), . . . , s(Bi, x1,m1), . . . , s(Bi, xn,1), . . . , s(Bi, xn,mn)] (3)

where m =
∑n

i=1mi is the total number of instances in the training data set. The subset of input

instances is then selected indirectly by solving a one-norm sparse linear SVM and eliminating

the feature dimensions corresponding to zero classifier weights.

Despite its flexibility and robustness, the above feature mapping scheme often leads to a

computationally expensive training process. The reasons are two-fold. First, the feature mapping

results in full-length features whose dimensionality is given by the total number of instances

in the training set. Even for moderately large data sets, this could still be a large number.

Furthermore, the feature matrix is not sparse. In order to calculate a single entry of the feature

matrix, a nearest neighbour search between features of the prototype instance and those in the

bag under study is required. This consumes not only many computational resources but a lot of

storage. Second, there is no efficient method to solve the one-norm SVM except from solving

its linear programming (LP) formulation. This becomes the bottleneck in the efficiency of the
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MILES. For some large-scale MIL data sets, even commercial LP solvers can be very slow

or even inapplicable. Thus, it would be desirable to design an alternative approach that can

reduce the computations in both feature mapping and classifier learning, while at the same time,

exploiting the single instance feature representation of MILES.

B. Initial Instance Selection

As discussed earlier, DD-based instance selection is computationally expensive, as it involves

solving an unconstrained optimisation problem for every instance in the training set in order to

recover all the prototypes corresponding to the DD extrema. Instead of using all training instances

to form the bag-level feature vector in Equation 3, DD-SVM chooses a set of prototypes to

construct the feature map. The prototypes are obtained by running EM-DD [6] from different

initial points.

In this section, we propose an efficient approach to instance selection for the construction of

bag-level feature map. We select existing instances in the training set to construct the similarity

based feature. This is equivalent to taking columns of the MILES feature representation in

Equation 3. To construct bag-level feature vectors, a single instance is selected from each training

bag to form the subset of instance prototypes (IP) for feature mapping. Intuitively, we want to

include true positive and negative instances in the subset to compute a discriminative feature map.

Note that, following the MIL assumption, everything in the negative bag is negative. Hence the

key problem here is to locate the true positive instances. While DD-based selection approaches

tries to consider true positive instances directly and attempting to locate regions in the feature

space with high positive density, it is much more effective to model the distribution of the

negative population. Since negative instances can have very general distributions, to model all

instances contained in the negative bags we use the following Gaussian kernel based Kernel

Density Estimator (KDE) [19]

f(x) =
1

Z
∑

imi

∑
yi=−1

mi∑
j=1

exp
(
−β||x− x−i,j||

)
(4)

where x−i,j denotes the jth instance from the ith negative bag, Z is a normalisation factor making

f(x) a proper density. It is constant over the instance space and is thus ignored in our calculation.

We have employed an isotropic Gaussian kernel with the scale parameter β controlling the range
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of influence for training instances. Notice the above equation defines a normalised probability

density function (PDF) for the negative population.

The major advantage in modelling the negative population in this manner resides in the fact

that, due to their large quantities, negative instances usually dominate the joint PDF in MIL

settings. Their distributions can then be modeled more accurately than true positives making

use of KDE. To achieve an efficient density estimation for each positive instance, we pick its

K-nearest negative instances and evaluate the probability of the positive instance being generated

from the negative population via Equation 4. The search process can be accelerated by using

the approximate KNN search method in [20]. We then pick the single instance with the lowest

likelihood value, i.e. the least negative instance, from each positive bag as the IP. For each

negative bag, on the other hand, we pick the single instance with the highest likelihood value,

i.e. the most negative instance, as the IP used in the feature mapping. The total number of IPs

obtained is equal to the number of bags. This compares quite favorably with the number of

prototypes used in MILES, which is equivalent to the set of all training instances. This results

in a much lower-dimensional feature space without much loss of discriminatory power, as each

bag is represented by a corresponding instance selected from the bag. Compared to DD based

selection, we also obtain improved IPs in a more computationally efficient manner. Furthermore,

since our instance selection method is governed by PDFs, it is more robust to noise corruption

and outliers in the data set. Finally, as we will see later, the above instance selection procedure

can be generalised to the multiclass MIL case. The complexity is solely determined by the

number of instances and is independent of the number of classes.

C. Classification

After initial instance selection, we have obtained a subset of instance prototypes {x1, . . . , xn},

where xi is the prototype selected from the ith bag in the training set. The bag-level feature is

then given by

zi = [s(Bi, x1), . . . , s(Bi, x2), . . . , s(Bi, xn)] (5)

where s(Bi, xj) is computed via Equation 2. We then train a classifier that can be applied to

the bag features. To this end, we use linear SVM which employs the L2 norm for both the

regularization term on feature weights w and the data term as follows
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f(w) =
1

2
||w||2 + C

∑
i

`(yi,w
Tzi) (6)

`(yi,w
Tzi) = (1− yiwTzi)

2
+

where yi ∈ {−1, 1} is the label value for bag i, C is the regularisation parameter that controls

the influence of the second term on the right-hand side of the above equation. The resulting

classifier is given by wTz, where w are the linear weights for the features. Here, we have also

absorbed the bias term into the weight vector w for the sake of simplicity. `(yi,wTzi) specifies

the loss function for classification, where (v)+ = max (0, v) is the Hinge loss normally adopted

for SVM classifiers.

The reason for the use of L2 linear SVM here responds to computational efficiency. Unlike

one norm SVMs, which are solved by standard linear programming optimisation routines and do

not scale up with training sample sizes, two norm SVMs have been well studied in the literature.

There are fast routines to solve the underlying quadratic program for two-norm SVMs [21], [22]

using linear and nonlinear kernels. Linear SVMs can be trained in an efficient manner using

various methods proposed in the literature [23], [24]. Note that we can also use a nonlinear

SVM classifier here. Nonetheless, there are several advantages for using linear SVMs aside

from efficiency alone. Firstly, linear SVMs can be used for implicit feature selection. We can

discard feature dimensions with small coefficients in the classifier weight w, thus, effectively

further reducing the number of instances used in constructing the feature mapping. SVMs with

nonlinear kernels such as the RBF one, do not have this property for feature selection. All feature

dimensions are treated equally in the computation of nonlinear kernels. Secondly, the feature

mapping defined in Equation 5 is itself nonlinear in nature due to the use of exponential operator

that maps distances to similarities. It defines a higher dimensional embedding in the original

feature space via this nonlinear mapping. Consequently, a linear classifier suffices to separate

features which are not linearly separable in the original feature space.

D. Instance Update

After obtaining the SVM classifier for bag-level features, we can validate the selected IPs and

update them accordingly. This can be cast as an optimisation problem over discrete variables

that can be efficiently solved using an approach akin to coordinate descent. To introduce the
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optimisation problem, we define a set of auxiliary variables φi, where i = 1, . . . , n for each bag

in the training set. Each φi can take values in {1, . . . ,mi} and φi = j implies the jth instance in

the ith positive bag is selected as the IP for the feature mapping. With these ingredients, we now

define the optimisation problem underlying the iterative framework in terms of the variables φi

and the classifier weights w as follows

min
w,φ

Q(w, φ) =
1

2
||w||2 + C

∑
i

`(yi,w
Tg(Bi, φ)) (7)

g(Bi, φ) = [s(Bi,x1,φ1), . . . , s(Bi,xn,φn)]

where `(yi, fi) is the same loss function as defined in Equation 6, and g(Bi, φ) specifies the bag-

level feature mapping for the ith bag Bi given the indices of the prototypes φ = {φ1, . . . , φn}.

Given the trained SVM classifier with weights w, we can further update the IP for each bag. This

is equivalent to minimising Q(w, φ) in Equation 7 with respect to φ. We adopt a reminiscent

procedure of coordinate descent so as to update φi for each bag as follows

φ
(t+1)
1 = arg

m1

min
j=1

∑
i

`(wTg(Bi, {j, . . . , φ(t)
n }), y1) (8)

. . .

φ
(t+1)
i = arg

mi

min
j=1

∑
i

`(wTg(Bi, {. . . , φ(t)
i−1, j, φ

(t)
i+1, . . .}), yi)

. . .

φ(t+1)
n = arg

mn

min
j=1

∑
i

`(wTg(Bi, {φ(t)
1 , . . . , j}), yn)

where φ(t)
i and φ(t+1)

i correspond to the old and updated index values for the ith bag respectively,

w is fixed to w(t) for the tth iteration. Since w is unchanged during the update of φ, only the

second term on the right-hand side of Equation 7, i.e. the data term of the SVM objective

function, is considered here. Each φi is updated while fixing all other φ’s. We can see that each

update of the IPs leads to a lower cost for the SVM data term and, hence, decreased upper

bound on the classification error. The order for which the IPs are updated is not fixed and can

be shuffled randomly. Here, we choose an ordering scheme such that IPs for misclassified bags

are updated first. In our experiments, this scheme has delivered good performance.
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Despite the simple procedure of the instance update algorithm, a naive implementation may

lead to a very time consuming computational process. This involves calculating the bag-to-

instance affinity between each bag in the training set and every training instance except those

currently chosen as the IPs. This has the same time complexity as computing the full MILES

feature embedding. Thus, following each such update, the bag-level feature values are changed.

This implies that the decision values need to be re-evaluated for each training example.

Fortunately, we can avoid the above computationally expensive steps by taking advantage of

the incremental nature of the instance update process. We make use of two important observations

here. Firstly, the update of each φi would result in the change of the ith feature element for the

bag-level feature mapping while all other feature dimensions are unaffected. Hence, instead of

re-calculating the classifier output for the new feature vector, we can update the classifier output

incrementally based on the change in the ith feature alone. Secondly, empirical observations

show that only a few training instances are discriminant for the MIL problems we are studying.

This is especially true for the case of positive bags with many instances, in which the majority

of the instances are false positives bearing little discriminant information. Hence, many training

instances, if chosen as prototypes, will contribute to a higher cost function value. Therefore we

can update the feature map and the classifier output simultaneously and stop the update process

early on if the new feature map yields solution that depart from the current optimum.

The pseudo-code of the instance update algorithm can be found in Figure 2, where B, Y ,

Z(t), φ(t) and w are the training data, training labels, current feature map, indices of prototypes

currently selected, and the classifier weights, respectively. The algorithm outputs the updated

feature map Z(t+1) and the new indices of prototypes φ(t+1). The basic flow of the algorithm

should be self-explanatory from the pseudo-code. The ”feature update” subroutine adopts the

above mentioned strategies within the for loop, where new classifier output `′i is updated from

the current output fi, and each iteration is stopped early if the cost function value v′ for the new

feature map (evaluated up to the current bag) is suboptimal with respect to the current value of

v.

E. Iterative Learning Framework

The two steps of classifier training and instance selection can be interleaved in an two-

step optimisation fashion. Once a classifier is trained, we can update the IPs. Then a new
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(Z(t+1), φ(t+1)) = instupdate(B, Y, Z(t), φ(t),w)

(Z(t+1), φ(t+1), v)⇐= (Z(t), φ(t), 0)

foreach Bag i = 1, . . . , n do
fi = wTZ

(t)
i

v = v + `(yi, fi)

end

foreach Bag i with `(yi, fi) > 0 do

foreach Instance j in bag i and j 6= φi do
(v′, p′, f ′) = feature update(xi,j , Z

(t)
.,i , w, f , v)

if v′ < v then
(Z

(t+1)
.,i , φ

(t+1)
i , v, f)⇐= (p′, j, v′, f ′)

end

end

end

(v′, p′, f ′) = feature update(x, Z.,j,w, f, v)

v′ = 0

foreach Bag i do
p′i = S(Bi, x) via Equation 2 f ′i = fi + wj(z

′
i,j − zi,j) v′ = v′ + `(yi, fi)

if v′ ≥ v then
quit with v′ = inf

end

end

Fig. 2. Pseudo-code for Instance Update
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classifier can be learned from the updated feature mapping. This can be viewed as minimising

the optimisation problem defined in Equation 7 over continuous and discrete variables. The initial

instance selection process discussed in Section IV-B corresponds to the initialisation of φ. While

SVM training corresponds to optimisation with respect to w while fixing φ, the instance update

process discussed in the previous section is equivalent to minimising φ while fixing w.

It is straightforward to see that each iteration decreases the value of the cost function in

Equation 7 according to the following relation

f(w(t), φ(t)) ≤ f(w(t+1), φ(t)) ≤ f(w(t+1), φ(t+1)) (9)

where w(t) and φ(t) refer to the old classifier weights and the indices of prototypes in each

bag, while w(t+1) and φ(t+1) correspond to new classifier weights and indices of IPs. The first

inequality holds due to the classifier updating step and the second inequality arises from instance

updating. Because of the monotonic decrease in energy, the iterative learning framework is

guaranteed to converge in a finite number of steps. Moreover, since φ can only take a finite set

of values due to the discrete nature of the φi variables, this updating process is guaranteed to

converge towards φ(t+1)
i = φ

(t)
i for every i. That is, at convergence, the IPs selected from two

adjacent iterations do not change.

The above procedure is reminiscent of the EM algorithm [25], which aims at recovering maxi-

mum likelihood solutions to problems involving missing or hidden data by iterating between two

computational steps. In the E (expectation) step we estimate the a posteriori probabilities of the

hidden data using maximum likelihood parameters recovered in the preceding M (maximisation)

step. The M-step in-turn aims to recover the parameters which maximise the expected value of

the log-likelihood function. Despite their similarity, the underlying nature of the method proposed

here and the EM algorithm are quite different. Firstly, from the statistical point of view, the EM

algorithm provides a means for maximum likelihood parameter estimation in the presence of

hidden variables. In contrast, the target function in Equation 7 for our method is tailored to the

setting of the MIL problem being considered and is not related to the likelihood function or

a particular expression of the a posteriori probabilities. Secondly, from the optimisation point

of view, the EM algorithm is well-known as a bound optimisation technique that maximises

a concave lower bound on the likelihood function at each iteration [26]. Our method, on the

contrary, is a minimiser of the target function without resorting to a lower bound.
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Input: the set of training bags (B+
1 , . . . , B

+
m+ , B

−
1 , . . . , B

−
m−)

• Initial instance selection by applying KDE in Equation 4 to instances in positive bags and

extracting IPs

• Train an SVM classifier (Equation 6) on bag-level features obtained from the mapping in

Equation 5 using the previously extracted prototypes

• Update IPs based on the learned SVM classifier via Equation 8

• Repeat the above two steps until convergence

• Remove instances with small feature weights and update the classifier.

Output: the set of chosen IPs indexed by φi’s and the SVM classifier f(z) = wTz with weight

w.

Fig. 3. Summary of the proposed iterative framework for instance selection and classifier learning

The step-sequence of the iterative framework for instance selection and classifier learning

is outlined in Figure 3. In the algorithm above, after the SVM classifier is trained in the last

iteration, we adopt a final feature pruning step by removing all features with small feature

weights. Since these features have a small contributions to the final output of the linear classifier,

the classification performance does not suffer from removing these redundant instance features.

Specifically, the jth feature is removed if the magnitude of its corresponding feature weight is

small, that is |wj| < r for some small r > 0. The threshold r can best be determined relative to

the scale of the feature weights by some simple statistics, such as the mean and the median of

the feature weights.

As we will see in the experimental section, the performance of the proposed method is not

sensitive to the choice of the value of r. Note that the strategy used here is similar to the recursive

feature selection technique for SVM [27], which also uses feature weights obtained from the

SVM classifier as indicators for their discriminabilities. Instead of removing a single instance

feature and retraining the SVM at each iteration, we make use of the threshold r and prune

multiple features in the space at every step of the algorithm. This final step results in further

instance pruning by removing the indiscriminate instance prototypes as indicated by the classifier

weights. Since each feature in the feature map corresponds to one selected prototype, after

removing those redundant prototypes, the feature map can be updated and the SVM classifier
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re-trained based on the updated instance feature matrix. In this way, we can improve on the

efficiency of testing without influencing the performance, since prediction time is monotonic to

the number of instances used to form the feature mapping.

The algorithm in Figure 3 can also be formulated in a one-norm SVM framework simply

by replacing the standard SVM classifier with the one-norm SVM classifier [18], in a similar

fashion as MILES [4] and the one norm extension of MI-SVM [14]. The training of SVM

classifier becomes a standard linear program and the instance update procedures can also be

modified accordingly. With the one-norm formulation, feature selection can be achieved in an

implicit manner since the L1 norm imposes sparsity on the learned feature weights. However,

two major disadvantages hinder our further consideration of this alternative. Firstly, it may still

be computationally expensive to solve the linear program arising from the one-norm formulation,

whose complexity scales with the number of bags in the training set. It may be costly to solve the

new one-norm SVM formulation if the MIL problem contains a large number of bags. However,

this is not a problem for SVMs with squared norms, where there exist efficient methods for

training on large data sets [21], [22]. Secondly and more importantly, one-norm SVM, despite

its ability for implicit variable selection, does not have any advantage in performance over

the standard SVM when incorporated into our MILIS framework. It is worth noting that in

our empirical evaluation of MILIS using both standard and one-norm SVMs on the benchmark

MUSK and COREL data sets, as mentioned in the experimental section, one-norm SVM delivers

inferior classification performances as compared to those produced by squared-norm SVMs.

Hence, we still focus our attention on the standard SVM formulation and resort to an additional

step of final feature pruning to maintain the sparsity of obtained IPs as discussed above.

In the testing stage, given a test bag B, we first form its bag-level feature vector z via Equation

5 using the learned IPs. Prediction is made by taking the sign of the decision value output the

linear SVM

z= [s(B, x1), . . . , s(B, x2), . . . , s(B, xn)]

f(B) = sgn (wTz) (10)

V. EXTENSION TO THE MULTICLASS SETTING

In this section, we show how the algorithm proposed in the previous sections for binary MIL

can be generalised to handle multiclass MIL tasks. Unlike traditional approaches that make
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use of various classifier fusion frameworks to decompose the multiclass problem into several

binary ones and combine the results from the binary classifiers for multiclass classification [28],

[29], we propose to solve the multiclass MIL problem using a direct formulation of the SVM

for multiclass classification problems [30]. For the binary MIL algorithm based on instance

selection discussed above, this can be effectively achieved by making some minor modifications

as described below.

A. Instance Selection

For multiclass MIL problems, each class is a positive one against the remaining classes. Hence

for each bag in any class, there exists at least one true positive instance carrying the discriminant

information for the class under consideration, where the remaining instances may be viewed as

“background” ones. For some applications, there might be a number of bags which contain

background instances alone, akin to the negative class in the binary case. Note that this change

in the problem formulation does not influence our instance selection framework. The reason for

this will soon be apparent.

We still use density estimation to evaluate the conditional probability for the distributions

of instances for each class. Yet, instead of treating them as the true positive distributions

for themselves, we use the class conditional distribution of each class to model the negative

distributions for other classes. Denote P (x|Ωk) the class conditional distribution of training

instances from the kth class. An estimate of P (x|Ωk) can be obtained from kernel density

estimation via Equation 4 over all instances extracted from the kth class. Again, in estimating

the conditional probabilities of novel instances for the jth class, we first perform a K-NN search

to find an appropriate neighbourhood in the jth class before applying Equation 4 for density

evaluation. With the class conditional probability values at hand, we then use the following

likelihood ratio value defined for the jth instance in the ith bag, xi,j , as an indicator for its

discriminability

r(xi,j) =
P (xi,j|Ωyi)

maxk 6=yi P (xi,j|Ωk)
(11)

where yi ∈ {1, . . . , c} is the label for bag i.

The instance with the largest likelihood ratio value in the above equation is selected as the

initial prototype for bag i. That is, φ(0)
i = arg maxj r(xi,j). This is similar to the binary case.
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The main difference is in the modelling of the negative distribution for each class. We take

the maximum over all other classes for two reasons. Firstly, this is more efficient than running

the density estimator over all instances from all other classes. As a result, we end up running

KDE for each class only once. Secondly, the maximum of the class conditional probability is a

robust indicator for the discriminability. If and only if all other classes have a low density and

the current class has a high density over the support region of the instance, can the instance

become a prototype that carries the discriminative information for the class it represents. Thus,

our multiclass selection strategy provides a seamless way to handle different classes. More

importantly, the feature map inferred from the selected IPs is common for all different classes,

which makes the following classifier learning and optimisation process more convenient.

B. Classification

Crammer and Singer [30] have proposed a multiclass SVM by solving the following single

optimisation problem

min f(w1, . . . ,wc) =
c∑
j=1

1

2
||wj||2 + C

∑
i

`(yi, fi) (12)

`(yi, fi) = (1− (fi,yi −max
j 6=yi

fi,j))
2
+

Here c linear classifiers are learned in parallel and fi = [fi,1, . . . , fi,c] are the decision values

returned by the c linear classifiers. The weight for the kth linear classifier is given by wk and

fi,k = wT
k xi is the decision value returned by the kth classifier. A testing example is assigned

label k if the decision value returned by the kth classifier is larger than those returned by other

classifiers.

In the above equation, `(yi, fi) represents the generalised squared Hinge loss for multiclass

output, which varnishes if and only if fi,yi − maxj 6=yi fi,j ≥ 1. The use of L+(.) encourages

large margins over wrong decisions for the training data. The second term on the right-hand-side

specifies an upper bound on the classification error, whereas the first term is the regularisation

term that penalises complicated decision boundaries.

C. Instance Update

The step sequence of the instance update algorithm remains the same as that presented in

Figure 2 except for two minor changes. Firstly, the binary hinge loss term L(fi, yi) is represented
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by its multiclass counterpart L(fi,1, . . . , fi,c, yi) as defined in Equation 12. Secondly, the two

equations for evaluating and updating classifier output values fi in the ”feature update” routine

are replaced by the following two equations

fi,k = wT
kZ

(t)
i

f ′i,k = Fi,k + wj,k(z
′
i,j − zi,j)

and an additional loop is added to evaluate fi,k and update f ′i,k for all k = 1, . . . , c.

For the final instance pruning after the iterative update of instance prototypes and classifiers,

pruning is effected if and only if the corresponding instance feature weights for all c classifiers

are small. Note that the testing stage shares the same first step as in the binary case. The bag-

level feature vector z is formed via Equation 5 using the learned IPs. The bag is then assigned

the label corresponding to the largest decision value output by the linear SVM

f(B) = arg
c

max
j=1

wT
j z (13)

where z = [s(B, x1), . . . , s(B, x2), . . . , s(B, xn)].

VI. EXPERIMENTAL RESULTS

We performed experiments on both synthetic data and real-world data sets to demonstrate

the utility of the proposed algorithm. We use synthetic data to show the effectiveness of the

MILIS algorithm in instance selection and compare it against EM-DD based selection criteria

[6], [3]. We then demonstrate the performance of MILIS for MIL classification on four real-

world data sets. To show the generality of the method, we use two binary classification tasks

namely drug activity detection and infested plant pathogen detection in hyperspectral imagery.

We also used two multiclass classification settings, region based image classification and object

class categorisation.

For all our experiments, we have fixed the number of iterations of MILIS to 5. The number

of iterations was set empirically as a trade-off between the convergence of optimisation and

performance improvement. The feature mapping parameter γ in Equation 2 as well as the SVM

regularisation parameter C was chosen via 5-fold cross validation on the training data using

grid search. The scale parameter β for KDE in Equation 4 was fixed to be equal to γ for

both binary and multiclass MIL problems. For drug activity detection and region based image
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retrieval, we compare the training time of MILIS with the alternative MILES algorithm. The

code has been implemented in Matlab with the key routines of instance selection/updating and

classifier training written in C++. For the KNN search involved in density estimation, we have

used ANN, a C++ library for approximate nearest neighbour searching 1 and empirically set the

number of neighbours k to 10. In practice, we find the results of instance selection are not very

sensitive to the choice of k provided k is on the order of 10.

The experiments were conducted on a PC with a 3.0GHz Intel Core 2 Duo CPU and 4GB of

memory. All algorithms (including MILIS, MI-SVM, mi-SVM, and MILES) were implemented

in house making use of the LIBSVM C++ package for training the 2-norm SVMs [24] 2. LIBSVM

solves the standard SVM using sequential minimal optimisation [21]. We apply LIBSVM only

in the first iteration of SVM training to provide an initial value for SVM weights. Subsequent

steps use stochastic gradient descent [31] to update the SVM weights in an incremental fashion.

For the MILES and MILISL1implementations, we have used the MOSEK optimisation package
3 so as to solve the LP arising from the one-norm SVMs. Note that, nonetheless the results in

[4] where obtained used the CPLEX software for solving the LP, the computation times will

ultimately be dependent on the size of the MIL problem at hand. Since complexity grows as a

function of the training instance data set, it may not be possible to consistently rely on the power

of a fast LP solver to tackle increasingly complex problems arising in the MILES setting [4].

It is worth noting here that we tested other LP packages at our disposal, including the linprog

routine in the Matlab optimisation toolbox, the GNU Linear Programming Kit (GLPK) and PCx
4. We found none of them could outperform the speed of MOSEK in our experiments.

A. Synthetic Data Results

We commence by illustrating the ability of instance selection via MILIS for the synthetic data

set shown in Figure 4. We have generated a data-set of 20 positive bags and 20 negative ones,

with 5 instances in each bag. The instances are represented by circles in Figure 4(a). There

is only a single positive instance in each positive bag. The positive instances are randomly

1The package can be downloaded at the address http://www.cs.umd.edu/~mount/ANN/
2The package can be downloaded at the address http://www.csie.ntu.edu.tw/~cjlin/libsvm/
3For more information visit http://www.mosek.com/
4For more information on PCx visit http://pages.cs.wisc.edu/~swright/PCx/
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(a) Raw data (b) EM-DD

(c) EM-DD close-up view (d) MILIS
Fig. 4. Example results of instance selection on synthetic data.

drawn from a mixture of Gaussians (MoG) with two components, as shown in broken magenta

curves in Figure 4(a). The negative instances are drawn from a different MoG distribution with

two Gaussian components shown in broken cyan curves. The solid triangles shows the center

locations of the respective Gaussian components. Figure 4(b) shows the IPs extracted by EM-

DD [6] in red plus signs. We can see that a large amount of IPs lie further away from the data

distribution. This is due to the non-convexity of the EM-DD cost function, which is likely to

generate outliers with high likelihood value. Figure 4(c) provides a close-up view of the IPs

yielded by EM-DD. Figure 4(d) shows the IPs selected by the nonparametric KDE approach in

MILIS. We can see that MILIS has successfully selected the single positive instance from each

positive bag as the initial IP. This is in contrast with the initial IPs selected by EM-DD are not

as discriminative as those of MILIS with many miss-hits. Moreover, MILIS takes less than 0.1

seconds for initial instance selection on this data set and is much more efficient than EM-DD,

which takes more than 15 seconds and, thus, can be impractical for large-scale applications.

We also examined the effect of initialisation on MILIS. In fact, we found it is not overly

sensitive to initialisation, which is illustrated on the same data set. We deliberately initialise all
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(a) Initial step (b) Iteration 1

(c) Iteration 3 (d) Iteration 5

(e) Final result (f) Cost (y-axis) vs. iteration number (x-axis)
Fig. 5. Behavior of IPs as a function of iteration number for poor algorithm initialisation.

IPs to the negative instances. After 5 iterations, the majority of the IPs are updated to the positive

instance with classification error dropping to 0. This process is shown in Figure 5, where the

top-left panel shows the plots for the initial IPs. Those in the last iteration and the cost function

value/error rate as a function of iteration number are shown on the bottom row. Intermediate IPs

for iterations 1, 3 and 5 are shown in the remaining panels.

B. Drug Activity Detection

In our second experiment, we test MILIS on the two musk data sets, MUSK1 and MUSK2 for

drug activity prediction. These are the standard benchmark data sets for testing MIL algorithms.
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Algorithm MUSK1 MUSK2

MILIS 88.6: [85.8, 91.5] 91.1: [89.4, 92.8]

MILISL1 85.6: [82.5, 88.7] 88.8 [87.2,90.4]

MILES [4] 86.3: [84.9, 87.7] 87.6: [86.2, 89.2]

MI-SVM [11] 83.8: [82.6, 84.9] 86.5: [85.0, 88.0]

mi-SVM [11] 88.0: [87.0, 88.0] 88.4: [87.0, 89.8]

DD-SVM [3] 85.8 91.3

APR [1] 92.4 89.2

DD [5] 88.9 82.5

EM-DD [6] 84.8 84.9

TABLE I

PERFORMANCE COMPARISON OF THE MILIS ALGORITHM AND THE ALTERNATIVES ON THE MUSK DATA SETS.

Algorithms MILIS MILISL1 MILES MI-SVM mi-SVM

MUSK1 0.2± 0.1 0.6± 0.2 2.6± 0.4 0.25± 0.05 0.3± 0.1

MUSK2 6.8± 2.0 12.8± 1.0 691.9± 292.3 8.3± 0.8 13.2± 1.8

TABLE II

COMPARISON OF TRAINING SPEED, IN SECONDS, FOR THE MUSK DATA SETS.

Both data sets are accessible from the UCI Machine Learning Repository 5. The data set MUSK1

contains 92 bags with 47 of them being positive and the remaining 45 being negative. The data

set has an average of 5.17 instances in each bag. The data set MUSK2 contains 102 bags where

39 of them are positive and the remaining ones are negative, with each bag having an average of

64.70 instances. Table I reports the classification results measured in terms of the mean prediction

accuracy of 10-fold cross validation as reported in [4]. Here, we have tested standard MILIS and

its variant using one-norm SVM as the classifier, termed MILISL1in the table. We have also

tested MILES, MI-SVM and mi-SVM and report, in square brackets, the mean cross validation

accuracy averaged over 15 different random runs and the 95% confidence interval. For the sake

of completeness, we also include results for other MIL methods in [4]. From Table I, we can

observe that MILIS delivers better performance in terms of higher classification accuracies as

compared with those yielded by MILES and other alternatives.

In Table II, we report the timing results for MILIS and the alternatives. The speedup of MILIS

5http://www.ics.uci.edu/~mlearn/MLRepository.html
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over MILES for the MUSK2 data set is more obvious due to the large number of instances.

As mentioned earlier, the main obstacle to the efficiency of MILES is in the training of the

one-norm SVM, which could be very costly for large number of instances and leads to the big

difference in training speed for the two methods under study. This is also corroborated by the

training speed of MILISL1, where the one-norm SVM classifier takes more time in training

than that used for the “standard” MILIS. MI-SVM and mi-SVM are faster than MILES but still

slower than MILIS when applied to the MUSK2 dataset. This is because they treat the SVM

classification problem at the instance level. At each iteration, mi-SVM learns an SVM in the

instance feature space using all input instances as the training set. MI-SVM trains a similar SVM

by using all negative instances and a single positive instance in each positive bag. Thus, their

computational cost increases greatly when the data set contains a large number of instances per

bag, which is the case for the MUSK2 data set.

Next, we examine the influence of different initialisation strategies on the performance of

MILIS. Besides the initialisation using KDE as discussed in Section IV-B, we can also initialise

MILIS in three different ways. In the first of these, the initial IPs are selected randomly from

the training bags (RANDOM). The second initialisation alternative uses DD values as a guide

for the true positivity of the instance (DD). Specifically, let x be an instance in a bag B from

the kth class. We can evaluate its DD value making use of the following equation∏
i,yi=k

s(Bi,x)
∏
i,yi 6=k

(1− s(Bi,x))

and select the instance achieving the highest DD value in the bag as the IP. The final strategy

for initialisation is to simply use all instances in the training bag to form the bag-level feature

map (ALL), which is the same as the MILES feature map. The only difference here is that

a two-norm SVM classifier is used instead of the one-norm SVM. The SVM can be solved

more efficiently in its dual formulation with complexity dependent on the number of bags in the

training set. Since all instances are used to form the initial feature mapping, there is no need

for instance update and iterative learning though. Table III compares the performances achieved

by the above-mentioned initialisation strategies for MILIS on the MUSK data sets.

From the table, we can see that KDE achieves the highest accuracy on average for the MUSK1

data set and is highly competitive with respect to DD initialisation for the MUSK2 data set.

Moreover, the alternative strategies achieve more or less comparable classification accuracies for
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Initialisation method MUSK1 MUSK2

KDE 88.58 : [85.71, 91.45] 91.09 : [89.42, 92.76]

RANDOM 86.76 : [82.22, 91.30] 90.19 : [89.01, 91.36]

DD 87.03 : [83.76, 90.30] 89.95 : [88.20, 91.70]

ALL 87.07 : [83.37, 90.76] 91.63 : [90.35, 92.92]

TABLE III

PERFORMANCE COMPARISON OF DIFFERENT INITIALISATION METHODS FOR MILIS ON THE MUSK DATA SETS.

both data sets. However, non of the alternatives produce a consistently better performance on

both data sets in comparison with the proposed KDE instance selection method for initialisation.

Finally, we examine the sensitivity of the final feature pruning to the cut-off threshold value

r with respect to the classification performance as well as the sparsity of the resulting feature

map. Figure 6 shows the classification accuracies in percentage and sparsity values of MILIS

against different cut-off values versus those of MILES. Here, the threshold r is a relative cut-off

value which has been set to multiples of the median of the feature weight absolute values. The

sparsity values are computed by the average percentage of final number of IPs corresponding to

nonzero weights within the total number of training instances over different training rounds. It

can be seen that in contrast to MILES, MILIS not only achieves higher classification accuracies,

but also generates sparser feature maps for sufficiently, but reasonably large cut-off values. This

leads to higher efficiency in the testing stage. This efficiency of prediction is largely dominated

by the time spent on computing the feature map, which is directly relevant to the number of

IPs kept after training. We also note that the performance of MILIS is quite insensitive to the

choice of cut-off values for a large range of r. Only when r > 2 the performance starts to

downgrade noticeably. Hence, in practice its quite easy to empirically select a cut-off value

which achieves a good trade-off between performance and efficiency. Here, we have set r = 1

for all our experiments.

C. Plant Pathogen Detection in Hyperspectral Imagery

Next, we turn our attention to the detection of plant pathogens via hyperspectral imagery. In

this application, we are interested in the use of hyperspectral imagery for crop disease detection

and mapping. We have taken 120 images of capsicum plants (CAPS) where 60 of them are

healthy. The rest of these have been infected with a virus whose visible symptoms are not yet
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(a) MUSK1 (b) MUSK2
Fig. 6. Influence of final feature pruning on classification performance and sparsity for MILIS on the MUSK data sets.

apparent. The left-hand column of Figure 8 shows sample pseudo-colour images for both healthy

and infected specimens. From the colour alone, there is no noticeable difference between the two.

Nevertheless, we can classify them based on their hyperspectral signatures. This is a typical MIL

problem, where an image is a bag and foreground pixels (i.e. pixels representing plant tissue) are

instances in the bag. Healthy plants are referred to as the negative class whereas infected ones

are deemed as positive. While healthy plants should have all healthy leaves, not all regions on

the infected plant leaves are ill. We use the normalised reflectance at each pixel as the instance

level feature vector. Sample foreground regions for the pseudo-colour images are shown in the

middle column of Figure 8. In Figure 7(a), we show the mean spectra of all pixels in the ROI

for each image, as well as the mean pixel spectra for positive (infected) and negative (healthy)

classes. Note that here we have offset the curves for the sake of clarity, otherwise they would all

overlap with each other in the figure. From the average statistics, there is no apparent existence

of patterns that distinguish the positive class from the negative one.

For our experiments, we have randomly divided the image data set into 6 disjoint subsets

with equal number of healthy and infected plants. The ROI of each training image contains

an average of 500 pixels, which is equal to the number of instances in each bag. Hence, the

dimension of the instance space is over 20000, making the MILES embedding overly complex

for the problem. Yet, MILIS can still be successfully applied. We applied it to the image data

set and measured the average 6-fold cross validation accuracy. The above test is repeated over

10 different random partitions. The mean classification accuracy and the standard deviation are
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(a) (b)
Fig. 7. (a) Mean Spectra for the instance in all bags (blue), positive bags (red) and negative bags (green); (b) Influence of

final feature pruning on classification performance and sparsity.

(a)

Accuracy

Infected Class 93.93 : [92.90, 94.96]

Healthy Class 91.24 : [90.09, 92.39]

Overall 92.87 : [92.27, 93.47]

(b)

Initialisation method Performance

KDE 92.87 : [92.27, 93.47]

Random 92.18 : [91.54, 92.82]

DD 91.59 : [90.69, 92.50]

All 92.67 : [91.82, 93.52]

TABLE IV

(A) CLASSIFICATION PERFORMANCE OF MILIS ON CAPS DATA SET; (B) PERFORMANCE COMPARISON OF DIFFERENT

INITIALISATION METHODS FOR MILIS ON THE CAPS DATA SET.

reported in Table IV(a). We can see that MILIS is quite effective in detection and achieves an

overall accuracy rate of 92.9%. It has a low false positive rate, and in average, over 9.1 out of

10 healthy samples are classified correctly. The detection rate for infested plants is higher, with

an average about 9.4 out of 10 infested plants will be identified by our approach. Considering

the challenging nature of this application, the results are quite encouraging. Note that this trend

is consistent with the previous application.

Table IV(b) reports the performance of different initialisation methods, as discussed in the

previous section, on the CAPS data set. All four initialisation strategies perform quite similarly

for this data set, with KDE achieving a margin of improvement on classification accuracy over the

alternatives, followed by initialisation using all instances and random selection of IPs. Instance
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Fig. 8. Example mapping results for the detection of infected regions in hyperspectral imagery from the CAPS data set.

Left-hand Column: pseudo-colour image; Middle Column: foreground regions; Right-hand Column: pathogen mapping results.

selection based on DD values does not perform as well as expected. Figure 7(b) shows the plots

for classification accuracy and sparsities versus the cut-off threshold. As before, that classification

performance is quite stable for a large range of cut-off values. Within this range, sparsity can

be maintained by increasing the cut-off value.

In the rightmost column of Figure 8, we show the image mapping results rendered by MILIS

for both healthy and infected plants. This is achieved by treating each pixel as a bag with singleton

instance and applying the learned classifiers at pixel level. The first three rows show the mapping

results over the ROIs of healthy plants, whereas the last three rows show the mapping results

for infected ones. The red pixels in the ROIs denote those that have been classified as infected.

May 11, 2010 DRAFT



30

Fig. 9. Example images from the COREL image database used for region based image categorisation.

It can be clearly seen that MILIS successfully detects infected plants without generating false

alarms on the healthy specimens.

D. Region based Image Categorisation

For purpose of region-based image categorisation, we have tested MILIS on the COREL

image data set and compared our results with those yielded by MILES. The data set contains

2000 images taken from 20 different categories, with 100 images in each class. Some examples

of the database images are shown in Figure 9, where images on the same row are from the

same category. This is a multiclass classification problem. Thus, we adopt the one-against-others

strategy to train 20 binary SVM classifiers. A test bag is assigned to the category with the largest

decision value given by the SVM classifiers. Each image is segmented into several regions and

features are extracted from each region. Hence, this is a typical MIL problem with images as

bags and region features as instances. Details of segmentation and feature extraction are beyond

the scope of this paper and interested readers are referred to [3], [4] for further information of

the database.

Two tests have been performed. The first test uses only the first 10 categories in the data set

May 11, 2010 DRAFT



31

Algorithm 1000-Image Data Set 2000-Image Data Set

MILIS 83.8 : [82.5, 85.1] 70.1 : [68.5, 71.8]

MILISL1 82.5 : [80.8, 84.2] 67.4 : [65.3, 69.4]

MILES [4] 82.3 : [81.4, 83.2] 68.7 : [67.3, 70.1]

DD-SVM [3] 81.5 : [78.5, 84.5] 67.5 : [66.1, 68.9]

MI-SVM [11] 75.1 : [73.2, 77.0] 55.1 : [53.6, 56.5]

mi-SVM [11] 76.4 : [75.3, 77.5] 53.7 : [52.2, 55.2]

TABLE V

IMAGE CATEGORISATION ACCURACY FOR THE MILIS ALGORITHM AND MILES.

Algorithms MILIS MILISL1 MILES MI-SVM mi-SVM

1000-Image Data Set 7.3± 0.5 31.3± 0.7 180.3± 10.6 9.9± 0.8 11.4± 0.6

2000-Image Data Set 30.6± 3.8 565.0± 28.0 960± 30.5 55.2± 1.4 63.3± 2.3

TABLE VI

COMPARISON OF TRAINING SPEED, IN SECONDS, FOR MILIS AND THE ALTERNATIVES APPLIED TO IMAGE

CATEGORISATION.

for training and testing, while the second one uses the complete data set with all 20 categories.

For both tests, we randomly split all images into 50% training and testing data. Training and

testing were repeated for 5 different random partitions. The results of classification accuracy

rates are outlined in Table V, including the results of DD-SVM as reported in [4].

From the table, we can see that the MILIS algorithm is very competitive for image categori-

sation tasks, with a margin of advantage in terms of the accuracy with respect to MILES and

MILISL1, its one-norm SVM variant, followed by MI-SVM and mi-SVM with a large margin

of advantage. This is quite encouraging, considering the fact that MILES is highly competitive

on the COREL image data set [4]. Also, from the training running time results in Table VI, we

can see that MILIS is much faster than MILES due to the efficient instance selection and fast

classifier learning, and still more efficient than MI-SVM and mi-SVM which do not perform

very well for classification. From this experiment, we can see that MILIS again outperforms its

one-norm SVM variant MILISL1in both performance and speed. Notice that the timing results

reported in Table VI are in seconds spent for the training over all the classes.

We now turn our attention to the influence of initialisation and final feature pruning on the

performance of MILIS. The results yielded making use of the previously mentioned methods for
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Strategy 1000-Image Data Set 2000-Image Data Set

KDE 83.78 : [82.51, 85.05] 70.12 : [68.45, 71.79]

Random 82.22 : [80.25, 84.19] 69.20 : [67.72, 70.67]

DD 81.89 : [80.10, 83.68] 69.14 : [67.67, 70.61]

All 81.51 : [79.68, 83.34] 68.57 : [67.04, 70.10]

TABLE VII

PERFORMANCE COMPARISON OF DIFFERENT INITIALISATION STRATEGIES FOR MILIS ON THE COREL DATA SETS.

(a) 1000-Image Data Set (b) 2000-Image Data Set
Fig. 10. Influence of final feature pruning on classification performance and sparsity for MILIS on the COREL data sets.

initialisation are shown in Table VII and Figure 10. Table VII shows a slightly different trend as

compared to that seen in previous experiments. This time, using all instances to initialise the bag-

level feature map does not produce as good classification results as those yielded by the other

three methods. Among them, KDE achieves the highest classification accuracy and performs

better than other initialisation schemes. Moreover, the DD-based selection scheme still does not

show any advantage over random selection. Figure 10 shows the plots for classification accuracy

as well as sparsity as a function of the cut-off threshold. Following the trend in our previous

experiments, it can be seen that classification performance is quite stable with a large range

of cut-off values. Within this range, more sparse feature maps can be achieved with increasing

cut-off values. Here, we can achieve a margin of improvement in classification performance over

MILES while maintaining similar level of sparsity with r = 1 for both COREL data sets.

Finally, we show some results of the instance selection by MILIS in Figure 11. For region-

based categorisation, each IP is a region with discriminant features pertaining its corresponding
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(a) building (b) dog (c) beach

(d) bus (e) dinosaur (f) flower

(g) horse (h) mountain (i) dish

Fig. 11. Sample COREL image data and IPs selected by MILIS.

class. In the figure, we show 9 pairs of images on 3 rows, where each pair consists of the

original colour image in the left-hand side and the segmentation map on the right-hand panel.

Each region in the segmentation map is represented by the same colour, whereas the highlighted

white-coloured regions indicate the regions for which the corresponding instances have been

selected as the IPs for classification by the MILIS algorithm. It can be seen that the highlighted

regions are indeed in good accordance with the intrinsic features of the class.

E. Object Class Categorisation

In our last experiment, we have applied MILIS to object class categorisation on the Caltech

101 image database [32]. The database contains a total of 8677 images from 101 classes. Each

class contains images from the same objects category. Some example images from the database

are shown in Figure 12. It can be clearly seen that even images for the same object category

exhibit large intra-class variance due to shape, pose and illumination variations. This presents a

challenging setting to the recognition task.

Here, we use the discriminative bag-of-words approaches [33], [34], [35] as the baseline. For

our experiments, these methods extract and quantise local feature descriptors so as to recover

a histogram of codeword occurrences from the quantised vocabulary as the image level feature.

One problem with these approaches is that local features are extracted over the full image and

thus inevitably include noisy background features. To tackle this problem, Bosch et.al. [36]

proposed a method for the automatic extraction of regions of interest (ROI) of the target objects
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Fig. 12. Example images from Caltech 101 image categorisation database.

in the images so as to use features within the ROI alone to build frequency histograms. Here, we

propose an alternative approach to object categorisation based on the MIL technique discussed

in this paper. We used multiple histograms of feature descriptors over different local regions

of the image to represent the training images. Each local region represented by the histogram

is a candidate ROI. If the image contains the target object, then at least one of the candidates

should have high likelihood of corresponding to the object under study. Otherwise, all candidate

histograms should have low similarity with respect to the specified target. This is a typical

multiclass MIL scenario.

For our categorisation experiments, we have used a subset of 3060 images from 102 classes

(including a class of background images), with 30 images in each class. The candidate ROI

locations are learned from the annotated ROIs for the training images. This is achieved by

clustering on the normalised x-y coordinates of the ground truth. A vocabulary of 50 ROI

vectors is formed after clustering, each specifying a candidate location of the ROI. For the

MILES approach, this leads to over 100, 000 instances and a dense feature matrix which, in

memory terms, occupies half a Gigabyte of space. On the other hand, MILIS is much more

economical memory-wise due to its instance selection step.
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Algorithms 15 images 20 images

MILIS 60.7 : [59.7, 61.7] 63.9 : [63.2, 64.6]

BOW 53.5 : [52.6, 54.4] 56.3 : [55.5, 57.1]

BOW+ROI 60.8 : [59.8, 61.8] 64.2 : [62.7, 65.7]

TABLE VIII

PERFORMANCE COMPARISON FOR THE ALGORITHMS UNDER STUDY.

We use a level-1 spatial histogram representation [34] as the instance level feature vector.

For the similarity computation, we used the χ2 distance, which has been empirically shown

to be more appropriate for comparing histograms [34], [35]. We tested our MILIS approach

with two alternative single-instance learning methods. These are the baseline bag-of-features

approach (BOW) where features are taken over the whole image, and bag-of-features with ROI

(BOW+ROI) where features are taken over ROIs only. Table VIII lists the classification accuracy

for MILIS and the alternatives averaged over 10 trials on different random partitioning of training

and testing sets using 15 and 20 training images for each class, respectively.

From the results in Table VIII, we can see that MIL outperforms the baseline single instance-

based BOW approach and achieves a comparable accuracy rate as BOW+ROI, which is highly

competitive for categorisation on the 101 image database using single type of features. Never-

theless, note that MILIS does not perform explicit ROI detection for training, nor does it use

any ROI information in the testing stage. The annotated ground truth is only used at the training

stage for learning candidate ROI regions, and does not need ROI information in the testing stage.

However, the IPs selected for the training images do implicitly convey the ROI information. The

IPs correspond to instances which carry the discriminant information for the class. Hence, they

are likely to be located at the ROIs. Examples of the implicitly selected ROIs corresponding

to the IPs are shown in Figure 13. The ROIs chosen by instance selection are depicted in red

rectangles. The ground truth ROIs are enclosed in blue rectangles.

Note that the MIL approach may also be combined with other techniques to further enhance

the classification performance. Such methods include, but are not limited to, multi-resolution

histogram representations, like the pyramid matching kernel [33] and the combination of multiple

features for categorisation [37].
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Fig. 13. Examples of implicit ROI selection. Blue rectangles indicate the annotated ground truth, while red rectangles indicate

ROIs automatically selected by the MIL algorithm.

VII. CONCLUSIONS

In this paper, we have presented MILIS, which is an efficient SVM-based multiple instance

learning approach to classification. The method is quite general in nature and hinges in combining

instance selection with classifier learning. In this paper, we have also developed an iterative two-

step optimisation framework to update the classifier. This optimisation strategy is guaranteed to

convergence. Here, initial instance selection is achieved via kernel density estimation. This is

more efficient and effective than traditional EM-based instance selection strategies. The proposed

approach has demonstrated a margin of improvement over the alternatives. Moreover, as men-

tioned in the paper, the approach can be applied to a number of classification settings. We have

provided results on object recognition and region-based image categorisation, where MILIS has

shown to be more efficient than the competing MIL baseline approach.

There are a number of directions for future research, especially on the topic of initial instance

selection. In the current formulation of MILIS, a single instance is selected from each bag to

form the subset of instance prototypes (IPs). This is not a condition of the algorithm since

any number of IPs can be chosen from each bag for feature mapping. Also, note that, for

negative bags, we have chosen the most negative instance as the intial IP. Since a negative bag

only contains negative instances, it would be interesting to explore alternative schemes for IP
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selection, where, for instance, the combination of highly and least likely negatives (near misses)

is used. Additionally to IP selection, possible extensions can also be made to classifier learning.
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