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Abstract

Image labeling tasks are usually formulated within the framework of discrete Markov Ran-
dom Fields where the optimal labels are recovered by extremising a discrete energy function.
In this paper, we present an alternative continuous relaxation approach to image labeling which
makes use of a quadratic cost function over the class labels. The cost function to minimise is
convex and its discrete version is equivalent up to a constant additive factor to the target func-
tion used in discrete Markov Random Field approaches. Moreover, its corresponding Hessian
matrix is given by the graph Laplacian of the adjacency matrix. Therefore, the optimisation
of the cost function is governed by the pairwise interactions between pixels in the local neigh-
bourhood. This leads to a sparse Hessian matrix for which the global minimum of the contin-
uous relaxation problem can be efficiently found by solving a system of linear equations using
Cholesky factorisation. We elaborate on the links between the method and other techniques
elsewhere in the literature and provide results on synthetic and real-world imagery. We also

provide comparison to competing approaches.

1 Introduction

Many classical problems in computer vision, such as image segmentation and denoising can be

recast as image labelling ones. The purpose of image labeling is to assign each image element
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(pixels, patches, features, etc.) to one of the classes under consideration so as to optimise a target
function. This is based upon an optimality criterion which takes into account the affinity of the
image elements to the assigned class and the consistency of the class membership with respect tot
he neighbouring elements.

Approaches such as the relaxation labeling [10] try to solve the problem by enforcing hard
constraints on the consistency term of the target function, which is governed by the pairwise re-
lationships between pixels. They do this by searching for a labeling scheme so as to minimize a
cost function subject to constraints. A related approach is that based upon Markov Random Fields
(MRFs) [8]. MRFs are a statistical framework underlying many image processing and low level
vision applications. The MRF model is a powerful one, which encodes statistical dependencies be-
tween neighbouring image elements by viewing them as nodes in a graphical model. The weight
of each node is given by the cost of assignment based on unitary relationships. The edges between
adjacent nodes in the graph represent the costs of concurrent assignments of neighbouring pixels.

The extremisation of the discrete energy function arising from MRFs is often achieved through
continuous relaxation schemes which aim at transforming the original combinatorial optimisation
problem into a continuous one that can be solved by mathematical programming techniques such
as Iterative Conditional Means (ICM), gradient based optimisation and simulated annealing [15].
These methods have their respective drawbacks. ICM and gradient based optimisation, although
being efficient, are known to be sensitive to initialisation and are easily trapped in local minima.
Simulated annealing, on the other hand, has a very high computational complexity and convergence
to global optimality is only guarrantteed in theory by taking infinitesimal annealing steps [?]. This
limits its application to image labeling problems with hundreds of thousands of pixel-labels to
recover.

Current methods for inference over MRFs can be roughly divided into two categories based on
the representation they employ for the label-sets. The first category comprises those approaches
which represent labels in their original discrete form and tries to recover them directly. Maybe
the two most popular representatives of this group are graph cuts [1, 3, 13] and belief propagation
[7]. The second category of methods encodes labels as continuous variables and minimises a con-
tinuous cost function for which the final labeling scheme is obtained by discretising the solution
of the continuous problem. A number of computational methods have been used to formulate the
problem in a continuous domain. These mathematical programming methods include Quadratic

Programming (QP) [17], Semi-definite Programming (SDP) [12, 11, 21], Second Order Cone Pro-
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gramming (SOCP) [14] and Spectral Relaxation [5].

Both, the discrete and the continuous relaxation methods have their own merits and limitations
for solving the MRF-based labelling problems. For MRFs with binary labels, graph cuts are very
efficient and can achieve global minimum of the cost function [3] in so far that the term in the
energy function containing the pairwise potential satisfies submodular conditions [13]. Graph
cuts based on quadratic pseudo boolean optimisation [19] can handle energy functions with non-
submodular pairwise terms. Unfortunately, quadratic pseudo boolean optimisation is less powerful
than submodular graph cuts in terms of efficiency and there is no guarantee for global optimality.

In the other hand, continuous relaxation methods can encode arbitrary pairwise costs. Their
main drawback relates to their computational cost, which makes them much slower than their
discrete counterparts. Moreover, the approximation from the recovered continuous solution to the
discrete labeling is quite obvious. This approximation is indispensable for continuous methods
since, otherwise, the integer programming problem, which is NP hard, would have to be solved. A
less obvious approximation is in the minimisation of the continuous function. Despite the promise
of low computational cost, as we discuss later, the continuous function yielded by directly relaxing
the discrete variables of the function of pairwise MRFs is not necessarily a convex one. Hence, a
global minimum of the cost function is not guaranteed.

The remainder of this paper is as follows. Section 2 briefly outlines the contribution of this
paper. Section 3 provides the background on MRF models for image labeling used throughout the
paper. Section 4 details our approach to the labeling problem. Since our method hinges in the use
of continuous relaxation, we elaborate on the discrete label recovery and provide the algorithm
description in Section 5. In Section 6, we provide further discussion on the approach presented
here, its relation to random walks, diffusion processes and the choice of optimisation procedure.

Experimental results are provided in Section 7. Conclusions are given in Section 8.

2 Contribution

Here we aim at overcoming these drawbacks, i.e. namely the complexity and the non-convex
nature of the relaxed continuous cost function. To this end, we propose an alternative approach to
solving the MRF inference problem which hinges in the minimisation of a continuous cost function
making use of a graph regularisation scheme over a manifold [22]. By ignoring the constraints

on the label field, we note the equivalence, up to an additive factor, of the graph regularisation



cost function presented here and that corresponding to the MRF target function when discrete
labels are considered. Constraints can then be absorbed into the cost function so as to develop
a constrained graph regularisation framework for image labeling. The optimal labels are, hence,
given by minimising the cost function and discretising the obtained solutions into binary values.
Further, the cost function is convex and, thus, it is not susceptible to local minima. We show that
our approach can be reduced to a linear system of equations, where the Hessian is a sparse positive-
semidefinte matrix determined by the pairwise costs between neighbouring pixels. Hence, we can
make use of a direct algorithm for solving the linear system efficiently making use of Cholesky
factorisation [6].

The method presented here is quite general in nature. Indeed, our approach can be applied to
binary and multiclass image labeling problems alike. Moreover, the algorithm is not restricted
to colour-pixel values. The image elements to be labelled can either be pixels or patches, both
of which are represented by nodes and connections between them in the graph. Further, due to
the probabilistic nature of the obtained label vectors, we can naturally generalise the framework
to handle labeling problems with continuous label values, such as those found in image matting

problems.

3 MREF for Image Labeling

As mentioned earlier, Markov Random Field (MRF) models are a probabilistic framework for
solving labeling problems over structured fields. In this section, we provide the notation and
basic theoretical foundations used throughout the paper. To commence, we require some formal-
ism. Let G(V,£) denote a graph with node-set V = {V;,...,Vy} and edge-set £ = {E, ;|V; ~
V;and V;,V; € V} where ~ denotes the neighbourhood relationship. Each V; € V is associated
with a label X; which takes a set of discrete values in {1, ..., K'}, where K is the number of label

classes. The joint probability distribution of the label field X represented by the MRF is given by

1 1
p(X|0) = mP(X) =700 1_[‘S Vi (Xi, X;516:5) qfﬁz‘(XiWi) (1
Z(Q):/XP(X’Q)dX :/X H iﬂi,j(Xi,Xj’@i,j)H@(Xiwz')dX
ijee iV

where ¢;(X;|0;) and v; ;(X;, X;|6; ;) are unitary and binary potential functions which determine

the likelihood of the assignment of nodes in the graph to the label classes, and 6§ = {6,,6; ;} is
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the set of parameters that specifies the unary and binary potential functions. Z(#) is the partition
function, i.e. the normalisation factor to make p(.X) a proper probability distribution function with
[ p(X)dX = 1. Z(0) is a function of the parameter-set 6 and indpendent of X, as it is obtained
by marginalising P(X), the product of potential functions, with respect to X. The inference of the
above MRF model can therefore be recast as an maximum a posteriori (MAP) estimation problem
so as to maximise P(.X) over all possible assignments of X = {X;|i = {1,..., K}.

For the sake of convenience, the following negative log-likelihood function is usually considered

instead of the joint distribution function in Equation 1.

¢(X) = —log P(X) = Z G(X) +> vi(Xi, X;) 2)

i=1 inj
where ¢;(X;) = —log ¢ X;|0;, v ;(X;, X;) = —log; j(X;, X;|0; ;) are the negative logarithm
of the corresponding potential functions. To solve the above problem, we introduce label vector
[%i1,...,x; k| to represent the label of node i. Specifically, a 0 — 1 encoding scheme is adopted
where z; ; = 1 if and only if the ith node is assigned label j and z; ; = 0 otherwise. Hereafter,
we will use the shorthand X; to represent the label vector introduced. This should not be confused
with the discrete label values X; used in Equation 1. Their distinction should be clear from the
context.

With the above ingredients, Equation 2 can be rewritten as

¢(X)=—log P(X) = Z Z ci(a)x;q + Z Z Z v;5(a, )z 4 p 3)

i=1 a=1 i~j a=1 b=1

z;iq, €{0,1} and Zi’fi,a =1

where 4, j are node indices, and a,b are label indices. c¢;(a) = —log¢;(a) and v, (a,b) =
—log v j(a,b) are the same as those defined in Equation 2. The constraints guarranttee that one
and only one of ;. in label vector X; can have value of 1 for each ¢. It can be easily seen that
the problem defined in Equation 3 is equivalent to the problem in Equation 2. Hence minimising
the above cost function is also equivalent to solving the original MAP-MREF inference problem,
as defined in Equation 1. However, the problem is NP hard due to the binary constraints over the
label variables x; ,. To make the optimisation problem tractable, we can relax the discrete variables
¥;, in the above equation by replacing the binary constraints x;, € {0, 1} with the bound con-
straints x; , € [0, 1]. The cost function of this relaxed optimisation problem is in quadratic form

and, hence, it is natural to apply quadratic programming techniques to solve it [17]. However, the
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Hessian of Equation 3 is determined by the coefficients of the second order term w; ;(a, b) and is
in general not necessarily positive semidefinite. Consequently, the cost function is not guaranteed
to be convex and there is no optimality guarantee even for the relaxed problem.

A number of techniques have been proposed to deal with the discrete labeling problem and con-
vert the MRF cost function into more tractable usually convex formulations. Along these lines,
some examples of this are semidefinite programming (SDP) [12, 11, 21], second-order cone pro-
gramming (SOCP) [14], and spectral relaxation [5]. Furthermore, these methods are computa-
tionally quite expensive and their applications are often restricted to small X-sizes. This limits
their applicability to image labeling problems, where even moderate image sizes yield hundreds of
thousands of pixel labels to resolve. To remedy this, in practice, a pre-segmentation step is effected
so as to reduce the size of the problem to be handled by the numerical programming algorithm.
[12, 11].

The pre-segmentation step as described above implies a cost in segmentation quality, as there
is no way to recover from those errors made in the pre-segmentation stage. An alternative to pre-
processing is that of a simplified cost function. Along these lines, the random walker segmentation
algorithm [9] makes use of a simplified data term and a convex quadratic term for purposes of
enforcing smoothness. As we show later, the random walker algorithm is a special case of the

approach proposed in this paper.

4 Labeling via Graph Regularisation

4.1 Problem Formulation

As an alternative to a continuous relaxation corresponding to the cost function in Equation 3, here
we present an alternative functional which is closely related to the MRF formulation. Note that the
first term on the right-hand-side of Equation 3 measures the compatibility between the label and the
unary node potential. The second term relates to the compatibility between labels of neighbouring
nodes given by the pairwise potential w; ;(a,b). This term can be viewed as a correlation one
between pixel-label values.

By thinking of correlation as a measure of similarity and viewing it an inverse distance, we can
transform the maximisation problem at hand into a minimisation one. To this end, we employ the

Lo norm. This is a natural choice which leads to an efficient solution for the label values. The



corresponding cost function is hence defined as follows

min f(X) =Y > 7%(X) + DD ) wijla, b)(@ia — z50)° 4)

i=1 a=1 invj a=1 b=1
Ya(Xi) = Z ¢i(k) (i — 1)* + ¢i(a)a?, )
k#a
w; j(a,b) = Z Z v (a0 (6)
a'#a b Ab

Tia €[0,1] and Y i, =1

The above reformulation of the cost function has a number of advantages. Firstly, it is closely
related to the MRF model in terms of its physical meaning. Like the MRF, our cost function
accommodates two complementary terms, i.e. a term which measures the compatibility between
the pixel data and its assigned label and a smoothness term which enforces consistency between
labels for neighbouring nodes. The main difference between the cost function above and that
in Equation 3 is the replacement of the inner product with a squared distance. We can further
show that the cost function in Equation 4 shares the same optimal binary value solution as that in
Equation 3. The proof is given in Appendix A.

As a consequence, the optimal solution obtained in the compact domain [0, 1] making use of the
reformulated MRF energy function, as given in Equation 4, is a binary vector. Here, we note that,
the largest continuous label-value has a clear margin over those corresponding to other classes,
we use a majority voting scheme by assigning the largest value in each X; to 1 and the remaining
to 0. If there is ambiguity regarding the labeling, i.e. the rank-difference between label-values is
small, we adopt a strategy based on the structure of the label-field as a postprocessing step. We will
elaborate on this label assignment procedure later in the paper. For now, we continue our analysis
of the alternative cost function above.

It is straightforward to note that the reformulated cost function in Equation 4 is a convex
quadratic program with a sparse Hessian matrix. The convexity immediately follows from tri-
angular inequality. This is as a result of the squared distance term on the right-hand-side of the
equation. The consequences of the cost function convexity are twofold. Firstly, we can always
attain globally optimal solutions for the relaxed problem on the continuous label variables. Sec-
ondly, we can drop the inequality constraints regarding the non-negativity of the variable X; as

the solution to the unconstrained function naturally satisfies the non-negativity constraints. To see



this, we note that the solution of Equation 4, as determined by the data term alone is given by

Xi= [0~ a(l), ., G K] )

where C; = Zle ¢i(a) and Z is the normalisation factor that makes X; a probability measure
over the label field. Thus, the recovered X, is a non-negative vector with unit sum.

As we will discuss in Section 6, the pairwise weight w; ;(a, b) is also non-negative. This binary
term is equivalent to a diffusion process over the graph, which propagates label values between
neighbouring pixels so as to minimise the overall energy function. Nonetheless the sum-to-one
constraints pertaining the binary term have to be taken into account, these can be absorbed into
the cost function. Lastly, since an image is usually represented by a lattice-like graph, where each
pixel is only connected to its neighbours on a grid, the corresponding graphical model leads to a
sparse Hessian matrix. Thus, the problem can be reduced to that of solving a sparse linear system
of equations with positive semidefinite Hessian. As we show later in the paper, a sparse variant of

the Cholesky transform [6] can be used to solve this linear system efficiently.

4.2 Solution

To extremise the cost function in Equation 4, we commence by considering the sum-to-one con-
straints on the variable X;. We note that these can be absorbed into the cost function turning the
task in hand into an unconstrained quadratic program. To simplify the notation, we first rewrite the
cost function as follows
min f(X) =Y 1% = Xlle + >0 > wis(a,b)(wia — w50)° (3)
i=1 i~nj a b

where C'is a diagonal matrix whose diagonal elements are the variables C; and X, are the as given
in Equation 7 and ||d||% = d"Cd is a quadratic term.

Let vec(X) and vec(X) denote the vectorial forms of the matrices C' and X of order N x K.
These vectors are conformed by the column-wise concatenation over the matrices. With these
ingredients, we can rewrite Equation 4 in compact form as follows

min f(vec(X)) = %Hvec(f() — vec(X)
s.t. ATvec(X) =b

||20 + %VGC(X)TLVGC(X) 9)

where C' = Ik k®C,L=D— TV is the Laplacian of the graph and A = lk1®Iyand b= 1n;,

where 1 ; 1s a vector of all 1’s and [y the identity matrix whose dimensionalities are denoted by
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their respective subscripts. In the equation above, W denotes the NK x NK adjacency matrix
collapsed from the 4-tensor field W, whose [i + N(a — 1),j + N(b — 1)]th entry is given by
W (i,a,j,b) and D = diag(W1ly,) is the degree matrix of 7. Recall that D is a diagonal matrix
whose elements are determined by the row sum of W.

At this point, it is worth noting that L is positive semidefinite [4] and so is the Hessian of the
quadratic cost function. Moreover, the matrix constraint in the above equation permits subsuming
the sum-to-one constraints for each X; and absorbing the sum-to-one constraint into the cost func-
tion. To do this, we define a set of variables X = [X 1,...,X k—1] making use of the first X — 1
columns of the label matrix X and vec(X), i.e. the vectorial form of X. Since the the Kth column

of X is given by

Xk = lyi—> X;=1yi— Evee(X) (10)
J
E = Ligk1®Iyn

we can represent vec(X) in terms of vec(X) in the following manner

vec(X _
vec(X) = (%) | =u— Fvec(X) (11)
In1 — Evec(X)
_ Onge-va || Inge-n vee()
Ina E

By substituting Equation 11 into Equation 9 we obtain the unconstrained cost function as defined

with respect to vec(X ), which is given by

min f(vec(X)) = [[vec(X) — u + Fvec(X)||% + (u — Fvec(X))" L(u — Fvee(X)) (12)
—=vec(X)TFT(L + C)Fvec(X) + 2(vee(X)'C — uTC — u” L) Fvec(X)
+ [Jvec(X) — ull% + v Lu

Thus, we can extremise the cost function directly by taking the gradient of Equation 12 with

respect to vec(X') and equating it to zero. This yields

Hvee(X) = d (13)
H = F'(L+C)F

d = u'CF+u"LF —vec(X)'CF



where I and [ are sparse matrices. Although the node-set can be very large, this is expected,
since, each node in the graph is only connected to its local neighbourhood. Therefore the adjacency
matrix W/W is sparse and so is the graph Laplacian L. The sparsity of the graph Laplacian also
implies a sparse Hessian matrix whose number of elements is determined by O(K|W|), where
|W| = N|m]| is the total number of edge links. The quantity N|m/| is governed by the data size N
and the average number of neighbours for each node |m/|.

The importance of the manipulation above resides in the fact that it allows us to transform the
original problem into a linear system of equations. Due to the positive-semidefiniteness of the
Hessian f{, we can make use of the sparse Cholesky transform proposed in [6] to solve this linear
system, whose complexity grows linearly with respect to the number of non-zero entries in the
matrix H. The idea is to first factorise H into the product of an upper-triangular matrix (), and
its transpose Q7. The linear system of equations can then be solved making use of an algebraic
manipulation of the upper and lower-triangular matrices. This treatment yields a computationally
efficient means for the optimisation of the cost function which compares favourably to traditional
iterative equation solvers such as Gauss-Newton methods and the preconditioned conjugate gra-
dient method. This is particularly important for large linear systems such as those arising from

image labeling tasks.

4.3 Labeling with Side Information

At this point, its worth noting that, for many real-world applications we encounter ground truth
data whose labels are known beforehand. One such example is interactive image segmentation,
where region labels are provided in the form of user scribbles are given [1]. Furthermore, in many
scopes of application, a portion of the image labels can still be determined using simple heuristics
based on partial optimality. Thus, while doing inference on the label fields, it is desired to keep
these predefined labels unchanged. The graph regularisation framework we have discussed so far
does not explicitly enforce this constraint. To this end, in this section we develop an extension of
the method presented earlier incorporating side information for label inference.

Let I denote the set of labeled graph nodes with fixed label vectors {yi,...,ymn}. The set of
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unlabelled nodes is then given by /. In this manner, we can write the cost function

f(X)= Z Z Ci(Tia — Tia)” + Z wi j(a,b)(Ti0 — 250)° + 29(X) (14)

ield a i~j

i,JeEU

g(X)= > wijla,b)(wia—y;»)
il jer

In the functional above, the first two terms on the right-hand-side are the same ones as in Equa-
tion 4. The only difference with respect to Equation 4 is in the parabolic term g(.X). It is obvious
that g(X) is convex and, hence, the cost function above is still convex. This is since the sum of
convex functions is convex. As a result, we can minimise the new cost function in a similar fashion
to that employed previously.

We commence by recovering the partial derivative of g(X') with respect to z; ,, which is given

by

6g(X)
51’2‘7,1

=2 Z wi j(a, 0)(Tia — Yjp) (15)

i~j

In the sake of simplicity, we omit hereafter the conditions © € U and ; € I' in the equation
above. To take our analysis further, we define the N-dimensional vector V(@) whose ith element
is given by >, >, wij(a,b). We also employ the shorthand Z (@) whose ith element is given by
> inj 2 Wij(a, b)y;p. Let vec(V) and vec(Z) be two large vectors formed by the concatenation of
V(@ and Z(%), respectively. We can then represent g as a function of vec(X ) and, as a consequence,

the gradient of g(vec(X)) can be written in compact form as follows
Vg(vec(X)) = 2diag(vec(V))(vec(X) — vec(Z)) (16)

By combining Equation 16 with Equation 13, we obtain the linear system of equations for the

cost function defined in Equation 14. This is

Hvec(X)=d (17)
H=F"(L+ C)F + 2diag(vec(V))

d=u"CF 4+ u"LF — vec(X)TCF + 2diag(vec(V))vec(Z)

Again, this is a sparse linear system and can be solved efficiently via Cholesky factorisation.
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5 Discrete Label Recovery

In this section we discuss the problem of recovering discrete label assignments from continuous la-
bel values obtained from the solution of the optimisation problem in 4 and provide a step sequence
for our algorithm. A straightforward way of recovering discrete label assignments is majority
voting. This approach often yields satisfactory results. Unfortunately, the main drawback of ma-
jority voting resides in the fact that many pixels may have no clear “tendency” with respect to
their continuous label vectors. This can be interpreted as the case in which there is no element
in the continuous label vector with a large margin over the hypotheses for the preferred label as
yielded by the continuous optimisation results. In this case, the choice of labeling tends to a ran-
dom process. On the other hand, since the energy function is smooth, we can give a high degree
of confidence to those labels with large margins over the alternatives. Hence we can fix the labels
for those pixels as side information and recover the labels of the pixels that remain making use of
a local inference process.

By considering the fact that we are working on lattice-like graphs defined on the images under
study with pairwise neighbourhood relations between pixels, we can make use of the following
partial optimality criterion for any unlabeled pixel ¢ in the graph

1 a=argmin,ci(a) + ;. >, vijla,b)zjp
Tig = (18)

0 otherwise

We can apply the above partial optimality rule to each unlabeled pixel in any permutation order
until all pixels are labeled. Note that different permutations of unlabeled pixels lead to different
local minima obtained. Thus, we start from those unlabeled pixels adjacent to the labeled pixels
and iterate outwards until all labels are resolved. An example of the results yielded by this pro-
cess is shown in Figure 1. The initial label map obtained by assigning labels to clear “winners”,
i.e. those pixels whose continuous label-vector element has a clear margin over the others. The
intermediate and final results for the discrete labels recovered by employing partial optimality are
displayed in the middle and right-hand panels, respectively. In the figure, black and white regions
depict background and foreground labellings, whereas the shade of gray depict unlabeled regions.

We now turn our attention to the step sequence for our algorithm. With the theoretical ingredi-
ents in previous sections, we summarise our algorithm in Figure 2.

Notice that the initial estimate for the pixel label values C;(a), which are abstracted as node
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attributes, and the edge weights W; ;(a, b) is application dependent. For denoising, C;(a) is simply
the observed discrete pixel value. For segmentation, C;(a) is the posterior probability of pixel i
being assigned to class a, which can be computed, assuming equal priors, via the following Bayes

rule
p(i|Ca)p(Ca) p(i|Cy)

~ Y pC)P(C) X, p(ilCa)

where p(i|C,) is the conditional probability of pixel 7 in class a. This conditional probability can

Cia (19)

be estimated from features (for example, histograms) of pixels selected as class a exemplars. Here,
for purposes of segmentation, unless otherwise stated, we adopt the Potts MRF model. The weights

are determined by

. . 2 . . 2
)\eXp(—d(%J) _3(7/72.]) ) If’LNj
Wi, j) = oo o (20)

0 otherwise

where the parameter A\ controls the relative importance of the data term and the smoothness term
and d(1, j) and s(i, j) denote the feature and spatial distances between those pixels indexed i and
J, respectively. In the equation above, o,, and o, are two bandwidth parameters, where o is taken
to be the average contrast between neighbouring pixels in the image. Also, note that the weight
scheme, as defined above, takes into account both the spatial and feature consistencies of the label

field and is known to preserve contrast information in segmentation applications [1].

6 Discussion

In this section, we provide further interpretation of our labelling approach. We do this since our
method is closely related to graph regularisation and diffusion processes. As a result, the discussion
presented here provides a link between MRFs, diffusion processes and their associated graphical

models and regularisation schemes.

6.1 Graph Regularisation and Diffusion Processes

Recall that the standard interpretation of a discrete MRF is from a probabilistic point of view. The
aim is to recover the configuration that maximises the posterior probability of the labeling, where
the unitary term ¢ (X;) in Equation 1 is related to the probability P(X;|Y;) of label assignment

conditional on the data, whereas, the pairwise term t(X;, X;) is related to the prior probability

13



P(X;|X;). A graphical illustration of the probabilistic view is shown in the left column of Figure
3.
On the other hand, the MAP problem is converted to the energy minimisation one by applying
a negative logarithm and relaxation the label hard limit. Let us have a closer look at the energy
function of our formulation in Equation 4. For the sake of simplicity, we restrict ourselves to the
binary labeling case. It is worth noting in passing that this is done without any loss of generality
since the conclusions drawn here also apply to multiclass settings. For the binary case, we consider
a scalar label field {X; : i = 1,..., N} where each X; € {0, 1} is a state variable. Let v;; be the
penalty for assigning different labels to a pixel pair ¢ and j and v; ; be the penalty for assigning the
pair an equivalent label, i.e. both pixels correspond to the same class. With this notation, we can
further simplify the energy function as follows
min Y " vf(w - 2,)? + Y v(wi o — 1)+ Cilw — £:)° 21)
in~j i~j i

C;

The gradient of the cost function in Equation 21 with respect to x; is given by

where C; = ¢;(0) + ¢;(1) and Z; =

j -

J
where the summation is taken over the labels of pixel-neighbours over the index i. By setting the
gradient to 0, and after some simple algebra, we obtain z;

A + —
Cizi + Zj Vi T+ Zj Ui,j(]' )
+ —
Ci+ 225 vy + 22505

We can think of Equation as a process, where the label of each pixel is determined by diffusion

6.1z, = (23)

in two directions. An illustration of the diffusion process is shown in the right-hand panel of Figure
3, where the circular nodes represent the label variables X, and the square nodes correspond to
the observations at different pixel locations. Note that diffusion takes place externally and inde-
pendently at each pixel location, as indicated by the vertical links from the square nodes to the
associated circular nodes in the figure. This corresponds to the Z; term in Equation 6.1. More
importantly, diffusion also happens internally between each pair of neighbouring pixels, as indi-
cated by links between circular nodes in the figure. Each circular node propagates its label value to
the neighbouring nodes. There are, however, two different types of propagation schemes applied

simultaneously. These correspond to the terms with v;f ; and v:r] as given in Equation 6.1. The first
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of these terms propagates positive information to the neighbouring pixels, enforcing smoothness
in the labeling process. The second term propagates negative information in the local neighbour-
hood, encouraging adjacent pixels to have dissimilar label values as compared to their own. The
final labeling result is achieved when the equilibrium of the diffusion process is reached as a result

of the compromise between the terms in the cost function.

6.2 Graph Regularisation and the Random Walker Algorithm

At this point, we also note that our formulation is reminiscent of the random walker segmentation
algorithm proposed by Grady [9]. In fact, the random walker algorithm is a special case of our
approach. Note that there are two major differences between our approach and the random walker
algorithm. Firstly, the random walker algorithm does not make use of the data term and relies
solely on the diffusion over labels between neighbouring pixels. We can view a random walker as
a graphical structure without vertical links in the right-hand column of Figure 3. Label information
must be available for some pixels to guide the label propagation process. This is since, otherwise,
equilibrium would be equivalent to a uniform distribution over the pixel-label values, i.e. all the
pixel label-values become the same. Hence, the random walker can only be applied to the super-
vised learning scenario. Our approach, on the other hand, incorporates the data term in the cost
function and can be applied to unsupervised cases, as long as the data and binary potentials can be
effectively computed. Secondly, the random walker algorithm only propagates positive informa-
tion at each pixel location and, hence, limits itself to enforcing smoothness between neighbouring
pixels. Although this is adequate for many applications such as image denoising and segmenta-
tion, it is still preferable to have a more general framework which enables us to accommodate other
types of pairwise constraints. Further, strictly speaking, the random walker is not a relaxation over
the discrete MRF in general, but rather a relaxation of the Potts MRF model, which is a special
type of MRF subject to smoothness constraints.

In passing, we also note that, in machine learning research, similar techniques based on graphs
have been proposed for solving semi-supervised learning problems [23, 22]. Indeed, the label-
ing problem in vision and the semi-supervised learning problem in machine learning can both
be thought as the generic problem of inference over structured data linked through the general
framework of MRF. Like the random walker algorithm, the work in [23, 22] also considers label

smoothness and can be viewed as variants of Potts MRF model relations.
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6.3 L vs. L1 Optimisation

Along the discussion above, it is important to note that the choice of norm in Equation 4 is not
unique. By utilising the L-1 norm instead of the L-2 Euclidean norm employed before, we can

obtain a different cost function given by

min f(X ZZlcz — Tial (24)

i=1 a=1
K K
+ 3 wija,0)|wia — x5
i~j a=1 b=1
By introducing auxiliary slack variables ¢; , for each node indexed ¢ with label a and binary rela-
tions v; , ;5 for the node pair 7, j and with labels a and b, we can reformulate Equation 24 in terms

of the following linear program

min f(X,T,V) = th+szb (25)
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\

Compared to the quadratic programming (QP) formulation presented in previous sections, the
above LP relaxation has a higher computational complexity. This is particularly evident for graphs
with large number of nodes. Also note that, in the case of the L; norm, the constraints must be ex-
plicitly taken into account. Moreover, recent work in continuous relaxation-based MRF inference
[14, 17] suggests second order relaxation methods provide a margin of improvement in perfor-
mance over linear programming relaxation. Consequently in the sake of efficiency and accuracy,

in our experiments we focus in the use of our convex quadratic formulation.

7 Experimental Results

In this section, we demonstrate the utility of our method for purposes of image labeling. To this
end, we commence by showing segmentation results of the proposed method on synthetic images

with various levels of Gaussian noises. We then turn our attention to real-world colour imagery.
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For the real-world image data, we provide results for both, the binary, i.e. foreground-background
segmentation, and the multiclass settings. Finally, we show results of our algorithm on multispec-
tral image labeling as applied to remote sensing material classification.

In our experiments, for segmentation of real images, we adopted the optimal parameter setting
for graph cuts based segmentation as reported in [20]. For segmentation of the noisy synthetic data,
we only make use of the spatial term in Equation 20 with o, = 2. This implies that, in our exper-
iments on noisy synthetic data, the results are devoid of the parameters A, and 0. As mentioned
earlier, the parameter A controls the relative importance of the data term and the smoothness term,
which we have set to 10 empirically for experiments on synthetic data and 50 for experiments on
real data. For the parameter o, we have used a value of 10 for real data segmentation so as to

remove small and isolated areas with high contrast.

7.1 Synthetic Images

We performed two experiments on synthetic imagery. For the first experiment, we generated two
images, the first one is comprised by pixels arranged columnwise whose intensities are 0.2, 0.4
and 0.6. The second image depicts a 2 x 2 checkerboard with intensities ranging from 0.1 to 0.7
in 0.2 intervals, starting from the top-left square in clockwise order. Random gaussian noise with
standard deviation of 0.2, equal to the difference of intensity values for neighbouring patches, has
been applied to both images, yielding the noise corrupted imagery shown in the leftmost columns
of Figure 4. The purpose here is to recover the image labels given the noise statistics, where each
label corresponds to an intensity level.

Results recovered by the proposed labeling approach are shown in the right-hand column of
Figure 4. In the middle column, we show the results yielded by Maximum Likelihood Estimation
(MLE). For the alternative, we have used a Gaussian prior corresponding to the added noise. We
have also used the intensities of the patches in clean images to estimate the conditional likelihood.
As can be seen from Figure 4, our regularisation approach clearly outperforms MLE, even in cases
when the prior and the conditional likelihood are accurate as respect to the noise corruption and
image labels.

Next, we continue with our analysis making use of an image with more sophisticated patterns.
This image depicts a circle whose normalised intensity is of 0.2 in the middle of three larger, darker

squares whose intensities vary from 0.4 to 0.8 in increments of 0.2. As before, we have applied
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increasing degrees of Gaussian noise of zero-mean and standard deviation 0.1, 0.2, 0.3, 0.4 to our
test image. For this set of experiments, we have labeled a few pixels from each class and used them
as side information to govern the segmentation process. The noisy images, with their respective
“brush” labelings, are shown in the top row of Figure 5. For the brush labelings, we have used
a mask for the sake of consistency and, in the panels, each colour corresponds to one of the four
different classes in the image. The results yielded by our method are shown in the bottom row of
Figure 5. The middle row shows the results delivered by MLE. As shown in the figure, our method
1s quite robust to noise corruption. Even with a standard deviation of 0.4, which is twice as much
as the shade of gray difference between regions in clean images.

Moreover, despite large amounts of noise corruption, our method can still yield plausible seg-
mentation results. This is confirmed by the quantitative analysis of the results obtained by both,
MLE and our approach. To this end, we generate 10 different noisy images by adding random noise
with zero-mean and increasing values of variance. With the images at hand, we apply MLE and our
graph regularisation approach to the noisy imagery. The resulting label maps are then compared
with the ground truth. The error plots corresponding to the percentage of wrongly labelled pixels
as a function of noise variance are shown in the in Figure 6. From the figure, we can conclude
that our method performs significantly better than MLE, for which the performance downgrades

asymptotically to random guess with increasing levels of noise variance.

7.2 Interactive Segmentation of Real-world Images

We now turn our attention to the interactive segmentation of real-world colour images. To do this,
we have employed selected images from the Berkeley Image Database [16]. For each image, a few
pixels were selected by the user so as to define the foreground and background side-information
regions. The purpose is to assign the unlabelled pixels into predefined regions determined by the
labeled pixels. Notice that the user interface of interactive image segmentation can be provided
by other means rather than user specified scribble brushes. The GrabCut system [18] provides a
different user interface by making use of rectangular shaped bounding boxes to circumscribe the
foreground object of interest. This is particularly suited for the case when the foreground occupies
a small bounded region in the image. Despite the difference in the user interface, the GrabCut
system still used graph cuts to solve the labeling problem that arises from the underlying MRF

model as in [1].
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For binary foreground-background segmentation, we compared our results with the graph-cut
algorithm in [1] as well as the random walker algorithm in [9]. Again, for the sake of consistency,
we use the same labeling mask and bandwidth parameters for both, our method and the alternatives.
In our experiments, we have used the maximum flow code in [2] for solving the graph cuts and
the sparse Cholesky factorisation method in [6] for solving linear equations involved in our QP
optimisation.

Sample results on background-foreground, i.e. binary, segmentation are shown in Figure 7. In
the sake of clarity of presentation, the original images in the figure have been superimposed with
user-provided labels. The results of our algorithm, and those yielded by graph cuts and the random
walker are displayed in the left, middle and right-hand columns, respectively. From the segmen-
tation results, we notice that, in a binary labelling setting, our algorithm achieves much better
performance than the random walker and is comparable with graph cuts. In our experiments, it is
somewhat surprising that the random walker results tend to overflow if the brush labeled pixels are
very close to the boundary. Nonetheless, this can be explained by the fact that the random walker
algorithm is, as mentioned earlier, a relation on a Potts MRF model with smoothness constraints.

Note that neither our algorithm nor the graph cuts presents such overflow problems. This is due
to the control exerted by the color model in the data terms of the cost functions employed by both
methods. Our algorithm preserves the structure of the object better than the graph cuts, specially
for elongated objects. This is evident in the case of the scissors and the sheep legs on the images
in the second and third rows in Figure 7. For these images, graph cuts produce “shortcut” effects
in segmentation even with refined labeling as indicated by white dots in the images. Our method,
on the other hand, does not have such problems. For the other images we have tested, our method
produces quite consistent results as compared to the results yielded by graph cuts. We did not find
a single instance for which graph cuts can achieve significantly better segmentation quality than
ours. In regards to efficiency, our method has a low computational cost. For an image with spatial
resolution 6402480, our method takes 3 seconds on average for labeling.

Also, note that our method can accommodate arbitrary pairwise terms and is not restricted to
submodular potential functions [13]. This is since it operates on the label-set like other continuous
relaxation methods. Thus, in our method, submodularity is not a condition for optimality. Our
method can also handle multi-class segmentation in a straightforward manner. To illustrate this,
we also show results on multi-class image segmentation in Figure 8. From the figures, we can

conclude that the method is capable of recovering segmentation results that capture the structure of
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the regions labeled using the brush. As in Figure 7, our method enforces within-region smoothness

while preserving the the fine detail of the segmented objects.

7.3 Multispectral Image Labeling

Our labeling approach can also be applied to a broader area of applications on different feature
sets. To illustrate this, we show an example of our method applied to multispectral imagery. More
specifically, we aim at performing material classification via labeling pixels on a hyperspectral
image captured through remote sensing. In a multispectral image, each pixel is associated with
a spectral signal, which facilitates the discrimination of different materials based on their distinct
spectral features. As a result, we can pose the material identification problem as a classification
one with predefined number of classes. For each class, a few pixels have been randomly selected
as initial seeds. As an alternative to our method, we have applied Linear Discriminant Analysis
(LDA) as a preprocessing step to reduce the dimensionality of raw spectra and build an Gaussian
classifier upon the extracted LDA features. For the sake of consistency, we have used the seeds
employed by our algorithm as the labeled training samples for the LDA.

For our method, the initial estimate of label values can be computed via Equation 19, Note that,
for the alternative, we can view the posterior p(i|C,) in Equation 19 as the output of individual
Gaussian classifiers. Thus, whereas the alternative can be viewed as a MAP estimation process,
whereas our approach is a regularisation one over the initial posterior values. The labeling results
of both, our approach and the alternative, are shown in Figure 9. In the figure, we also show the
pseudocolour image, i.e. the image for which the red-green-blue channels are given by three bands
in the input image, and the ground truth map. We can see that our regularisation-based labeling
approach not only achieves a much higher accuracy rate of 93.23% as compared to the alternative,
which yields 79.02% accuracy, but also produces a more visually desirable result as compared to

the ground truth.

8 Conclusions

In this paper, we have presented an image labelling approach based upon graph regularisation. The
multiclass image labeling method we have presented here is closely related to the Markov Random

Field model. We have recast inference of labels into a continuous optimisation setting over the label
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fields. The method is based upon the extremisation of a convex cost function which arises from a
relaxation process on a MRF. Moreover, the cost function is a quadratic one with sparse Hessian
matrix. Hence the minimisation can be efficiently done by solving a sparse linear system. We have
also discussed the links of our method to diffusion processes and elaborated further on the choice
of minimisation strategy. We have illustrated the utility of our labeling algorithm for purposes
of segmentation of synthetic and real-world imagery and material identification on multispectral

images.

A Proof of Extrema Equivalence Between the MRF Negative
Log-likelihood and our Cost Function

In this Appendix, we provide a proof for the equivalence between the negative log-likelihood
function for the MRF model as presented in Equation 3 and our alternative energy functional
introduced in Equation 4. More specifically, we aim at showing that

Ya(Xe) + DD wij(a,b)(wi0 — 55)°

N

fx) = >

]~

i=1 a=1 i~j a=1 b=1
N K K K
= —logP(X) = Z Ci<a)$i,a + Z Z Z Ui,j(a7 b)ﬂﬁz‘,a%‘,b +C
i=1 a=1 i~j a=1 b=1
= ¢X)+C (26)

where C' is a constant independent of the label values and the variables v, (X;), w; ;(a,b), ¢;(a) and
v; ;(a, b) are as given in Sections 3 and 4. In other words, we aim at showing that both functionals
above are equivalent up to an additive constant, which is independent of the optimisation variables.

To this end, we proceed in a two-step fashion. Firstly, we consider the unitary terms in both
equations. Consider an arbitrary node indexed ¢ with label X; = a, where x;;, = 1 for K = a and

x;, = 0 otherwise. Hence, we have

f(Xi) = Z”Yk(Xi)

= (k=1)) cilk)+ci(a) = q(X) + > ai(k) (27)

k=1 k=1

where ), ¢;(k) is a constant independent of the variable z; .
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Secondly, we take a similar approach regarding the binary terms in Equations 3 and 4. Con-
sider two neighbouring nodes indexed ¢ and j whose labels are given by X; = a and X; = b,

respectively. Thus, by setting v(X;) = 0 and ¢;(k) = 0 for all 7 and k, we have

FX0 X)) = Y03 wi(k W) (wig — 2, k) =Y wrjla k) + ) w(k,b)

k=1 k'=1 kb k+#a

S 5 5 SIRCAIED 3) 3p LA’

k#b a'#a b'£k k£a a'£k b'#b
K K K K
= Z Z Vi, j (CL/, b/) + Vy,j (CL, b) = q(Xi, XJ) + Z Z Ui,j<(ll, b/> (28)
a'=1b=1 a'=1b=1
were, again, the term ) , >, v; ;(a’, V') is a constant independent of z; .
As a result the extrema of both, f(X) and ¢(X) are equivalent. This is due to the fact that,
f(X) = q(X) + C, where the constant additive factor C'is given by
N K K K
C = (k) + )0 v W) (29)
k=1

i=1 k= i~j a/=1b=1
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Figure 1: Illustration of Discrete Label Recovery. Left Column: initial label map yielded by the

hard limit of the continuous output; Middle Column: intermediate result; Right Column: final

result yielded by using partial optimality.
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1 Compute the likelihood values C;(a) for individual nodes and determine initial weights be-

tween neighbouring nodes and labels W, j(a, b).

2 Construct H and d via Equation 13. Note that, for labeling with hard constraints, Equation
17 should be used.

3 Solve the linear system Hvec(X ) = d via sparse Cholesky factorisation.

4 Recover the continuous label estimates by reshaping vec(X) and abutting the last column

following the sum-to-one constraint.

5 Recover the discrete labels from the continuous estimates using the criteria provided in this

section.

Figure 2: Graph Regularisation based Labeling Algorithm

Figure 3: Two graphical interpretations of Pairwise Discrete Markov Random Fields. Left-hand
panel: the probabilistic modeling view; Right-hand panel: The model corresponding to the diffu-

sion viewpoint.
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Figure 4: Synthetic image labeling results. The columns show, from left-to-right, the input noisy

images, results obtained making use of MLE and those yielded by our approach.
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Figure 5: Top row: input images with increasing levels of Gaussian noise. Middle row: Maximum

Likelihood Estimation (MLE) Results. Bottom row: Results of our regularisation approach.
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Figure 6: Performance of our method and MLE as a function of noise standard deviation for the

noisy synthetic imagery in Figure 5.
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Figure 7: Examples of binary foreground/background segmentation. From left-to-right: Input
images with brush labelings, results yielded by our algorithm, result yielded by graph cuts [1],

labelling delivered by the random walker algorithm[9].
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Figure 8: Examples of multi-class image segmentation. Top row: Input images with brush label-

ings; Bottom row: Results recovered by our approach

Figure 9: Results of multispectral image labeling. The images, from left-to-right, correspond to
the pseudo color image, growth truth label map, LDA classifier results (with an accuracy rate of

79.02%) and our result (with an accuracy rate of 93.23%).
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