
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 2, FEBRUARY 2012 793

Timing and Carrier Synchronization With Channel
Estimation in Multi-Relay Cooperative Networks

Ali A. Nasir, Student Member, IEEE, Hani Mehrpouyan, Member, IEEE, Steven D. Blostein, Senior Member, IEEE,
Salman Durrani, Senior Member, IEEE, and Rodney A. Kennedy, Fellow, IEEE

Abstract—Multiple distributed nodes in cooperative networks
generally are subject tomultiple carrier frequency offsets (MCFOs)
and multiple timing offsets (MTOs), which result in time varying
channels and erroneous decoding. This paper seeks to develop esti-
mation and detection algorithms that enable cooperative commu-
nications for both decode-and-forward (DF) and amplify-and-for-
ward (AF) relaying networks in the presence of MCFOs, MTOs,
and unknown channel gains. A novel transceiver structure at the
relays for achieving synchronization in AF-relaying networks is
proposed. New exact closed-form expressions for the Cramér–Rao
lower bounds (CRLBs) for themulti-parameter estimation problem
are derived. Next, two iterative algorithms based on the expecta-
tion conditional maximization (ECM) and space-alternating gener-
alized expectation-maximization (SAGE) algorithms are proposed
for jointly estimatingMCFOs,MTOs, and channel gains at the des-
tination. Though the global convergence of the proposed ECM and
SAGE estimators cannot be shown analytically, numerical sim-
ulations indicate that through appropriate initialization the pro-
posed algorithms can estimate channel and synchronization im-
pairments in a few iterations. Finally, a maximum likelihood (ML)
decoder is devised for decoding the received signal at the desti-
nation in the presence of MCFOs and MTOs. Simulation results
show that through the application of the proposed estimation and
decoding methods, cooperative systems result in significant perfor-
mance gains even in presence of impairments.

Index Terms—Cooperative communications, Cramér–Rao
lower bounds (CRLB), expectation conditional maximization
(ECM), space-alternating generalized expectation-maximization
(SAGE), timing and carrier synchronization.

I. INTRODUCTION

C OOPERATIVE communications is an attractive low-cost
solution to combat fading in wireless communications,

where multiple single antenna relay terminals receive and coop-
eratively transmit the source information to the destination. In
ideal settings, it has been shown that the same spatial coopera-
tive diversity as that ofmultiple-input–multiple-output (MIMO)
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systems can be achieved in cooperative networks without the
need for multiple antennas at each node [1]–[5]. In conven-
tional MIMO systems, the antenna elements are collocated on a
single device, which results in a single timing and carrier offset.
However, in cooperative networks, multiple distributed nodes,
each with its own local oscillator, gives rise to multiple carrier
frequency offsets (MCFOs) and multiple timing offsets (MTOs)
[6]–[8].
Most of the existing work in the literature focuses on

estimating either MCFOs while assuming perfect timing syn-
chronization [8]–[13] or MTOs while assuming perfect carrier
synchronization [6], [7], [14], [15]. Cramér–Rao lower bounds
(CRLBs) and different techniques for estimating MCFOs
in MIMO systems are addressed in [9]–[12]. However, the
algorithms in [9]–[12] are not applicable to the case of am-
plify-and-forward (AF)-relaying cooperative networks and are
based on the assumption of perfect timing synchronization.
Novel CRLBs and maximum likelihood (ML) estimators to
obtain MTOs for detect-and-forward, decode-and-forward
(DF), and AF systems are derived in [14], [15], and [6], [7],
respectively. Similarly, in [8], [13], [16] the estimation of
multiple channel gains and MCFOs in DF and AF cooperative
systems are analyzed. However, the analyses in [6]–[16] are
focused on estimating one set of system parameters while
assuming that the remaining parameters are perfectly estimated
and compensated. Admittedly, such assumptions do not hold in
actual cooperative communication systems, where the channel
gains, MCFOs, and MTOs need to be jointly estimated at the
destination terminal.
Recently, a limited number of papers have investigated joint

estimation of impairments. In [17], a new joint ML estimator
for determining MCFOs, MTOs, and channel gains in DF co-
operative networks is devised. Nevertheless, the ML estimator
in [17] requires exhaustive search and is computationally very
complex. In order to reduce the complexity of ML estimation,
in [18] new iterative estimation schemes are proposed. How-
ever, the outcomes in [17], [18] are limited to DF coopera-
tive networks, provide no specific initialization guidelines for
the proposed estimators, and do not propose any means of de-
coding the received signals from multiple relays at the desti-
nation. Novel joint channel estimation and time-frequency syn-
chronization for uplink orthogonal frequency-division multiple-
access (OFDMA) systems are proposed in [19]–[22] that exploit
the cyclic prefix. However, depending on the number of subcar-
riers used, the frequency acquisition range of the algorithms in
[19]–[22] is very limited.
Estimating MCFOs, MTOs, and unknown channel gains is

the first step to achieving synchronization. In fact, in order to
achieve synchronousandcoherent communication inmulti-relay
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cooperative networks, the estimated MCFOs, MTOs, and un-
known channel gains need to be applied to successfully equalize
the received signal at the destination node. Recent literature
has addressed either MCFO compensation [23]–[25] or MTO
compensation [6], [15]. In [23], a new class of distributed linear
convolutional space–time codes are proposed to compensate
the effect of MCFOs. However, the application of the codes
in [23] reduce overall cooperative network throughput since
their effective rate is less than one. In [24], [25], various novel
algorithms for compensating and detecting the received signal at
the destination in the presence of MCFOs are proposed. Never-
theless, the algorithms in [24], [25] can only detect the received
signal at the destination over a narrow range of CFO values,
e.g., in [25]. More importantly, the analyses in
[23]–[25] focus on compensating one set of parameters and
cannot equalize the received signal in the presence of both
MCFOs and MTOs. Under the assumption of perfect frequency
synchronization, a novel resynchronization filter is proposed
in [6] and [15] to compensate the effect of MTOs in DF and AF
cooperative systems, respectively. However, as anticipated and
confirmed in this paper, in the presence of MCFOs, the resyn-
chronization filter in [6] and [15] cannot compensate the effect
of MTOs and results in erroneous decoding at the destination.
In [26], a novel algorithm for compensating MCFOs and MTOs
in time-division multiple-access (TDMA) distributed MIMO
systems is proposed that exploits spatial diversity at themulti-an-
tenna receiver. However, the method in [26] cannot be applied
to the case of multi-relay single-input–single-output (SISO)
cooperative networks, where multiple single antenna relays
communicatewith a single antenna destination. To the best of the
authors’ knowledge, an estimation and equalization scheme for
cooperative networks in the presence ofMCFOs,MTOs, and un-
known channels has not been proposed in the existing literature.
In this paper, joint estimation of MCFOs, MTOs, and fre-

quency flat-fading channel gains in both DF and AF multi-relay
cooperative networks is addressed. A novel transceiver struc-
ture at the relays for achieving synchronization in AF-relaying
networks is proposed and the signal model at the relays and
destination in the presence of unknown channel gains, timing
offsets, and frequency offsets is derived in detail. Next, the es-
timation problem is parameterized and the closed-form CRLBs
for the multiple parameter estimation problem for both DF and
AF cooperative networks are derived. A least squares (LS)
estimator for joint estimation of MCFOs, MTOs, and channel
gains in AF cooperative networks is proposed. In order to reduce
the computational complexity associated with the estimation of
synchronization parameters and channel gains, new iterative es-
timators based on expectation conditional maximization (ECM),
and space-alternating generalized expectation-maximization
(SAGE) are derived for both DF and AF cooperative networks.
Finally, a new ML decoder for detecting the source signal at the
destination in the presence ofMCFOsandMTOs for bothDFand
AF cooperative systems is derived. Simulation results show that
through the application of the proposed estimators and ML de-
coder, the performance gains promised by cooperative networks
are reachable even in non-ideal settings. The contributions and
organization of this paper can be summarized as follows.
• In Section II, a novel training and data transmission
method for AF cooperative networks in the presence of

Fig. 1. The system model for the cooperative network.

MCFOs, MTOs, and multiple unknown channel gains is
proposed.

• In Section III, new closed-form CRLBs for the multiple
parameter estimation problem for both AF and DF coop-
erative networks are derived and used to assess the perfor-
mance of the proposed estimators.

• In Section IV, an LS estimator for estimation of multiple
system parameters in AF cooperative networks is derived.
Simulation results show that the performance of the pro-
posed LS algorithm and the ML estimator in [17] are
close to the CRLB at mid-to-high SNR values. In order to
achieve significantly reduced computational complexity,
ECM and SAGE algorithms for estimation of multiple
system parameters for both AF and DF cooperative sys-
tems are derived. Finally, the computational complexity
of the proposed estimators is analyzed.

• In Section V, a new ML detector is derived that allows for
the signal received from multiple relays to be successfully
decoded in the presence of MCFOs and MTOs.

• In Section VI, numerical and simulation results are pre-
sented, where it is shown that the mean-square-error
(MSE) performance of ML, and the proposed LS estima-
tors for wide range of signal-to-noise-ratio (SNR) values
are close to the derived CRLBs. Moreover, the MSE
performance of the proposed ECM and SAGE estimators
are evaluated. Finally, the effect of initialization on the
performance of the proposed estimators is numerically
investigated and specific guidelines that ensure the con-
vergence of these estimators are outlined.

Notation: Superscripts and denote the con-
jugate, the conjugate transpose and the transpose operators, re-
spectively. Bold face small letters, e.g., , are used for vectors,
bold face capital alphabets, e.g., , are used for matrix repre-
sentation. stands for Schur (element-wise) product, is the
modulus operator and represents the norm of a vector
. denotes the expected value of its argument. and

take the real and imaginary parts of a complex quantity.
is used to denote the diagonal elements of the matrix

finds the remainder of division of by , and
indicates the floor function.

II. SYSTEM MODEL

We consider a half-duplex space-division multiple-access
(SDMA) SISO cooperative communication system with one
source node, , relays, , and a single destina-
tion node, , as shown in Fig. 1. Quasi-static and frequency
flat-fading channels are considered, which is motivated by prior
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Fig. 2. Scheduling diagram for training and data transmission period.

Fig. 3. Block diagram for AF th Relay Transceiver.

Fig. 4. Block diagram for AF destination receiver.

research in this field in [6]–[12], [15]. It is assumed that unit
amplitude symbols are transmitted from source and relays. The
channel gains from to to , and - - are denoted
by , and , respectively, for . In Fig. 1,
and are used to denote timing offsets and CFOs, where

superscripts and denote offsets from
to to , and to , respectively. As shown in Fig. 2,
transmission of signals from source to relays to destination
consists of a training period (TP) as well as a data transmission
period (DTP). Without loss of generality, it is assumed that
during the TP, unit-amplitude phase-shift keying (PSK) training
signals (TSs) are transmitted to .

A. AF-Relaying Cooperative Network

The block diagram for the AF transceiver at and AF re-
ceiver at are depicted in Figs. 3 and 4, respectively. The pro-
posed training and data transmission methods for the TP and
DTP are outlined in the following two subsections.
1) Training Period: The received signal at is down con-

verted by oscillator frequency, , and then over sampled by
the factor . The sampled received signal at the input of the
timing estimation block, is given by1

(1)

where is the carrier frequency offset, normalized by the
symbol duration , between and denotes the unknown
channel gain from to that is assumed to not change over a
frame but to be distributed as from frame to frame,

1For clarity, we reserve the index for -spaced samples
and index for -spaced samples.

is the normalized2 fractional unknown timing offset of the
sampler at is the sampling time period such that

is the transmitter pulse shaping function, is the
length of the source training signal (TS), , and is
the zero-mean complex baseband additive white Gaussian noise
(AWGN) at with variance , i.e., .
Without loss of generality, it is assumed that the noise at all
relays have the same variance, i.e., .
In order to ensure synchronous transmission and successful

cooperation for AF networks, a timing detector at the th relay
estimates the corresponding timing offset, , using schemes
available for point-to-point SISO systems as outlined in [27].
The timing offset estimate is used as an input to the multi-
plier to ensure that the th relay’s unit amplitude training signal,

, is multiplied by the received signal at the appro-
priate time. The training signal used for AF relaying here
is given by for , where

is in between and denotes the phase of the th
symbol of the th relay’s training signal, where ,
for . The output of the analog multiplier, , as shown
in Fig. 3, is given by

(2)

where is the timing estimation error between
and and is the analog frequency offset

between and . The received signal at for AF relaying,
, is affected by the timing offset from the th relay to the

destination, , for . Thus, the sampled received
signal is given by

(3)

where
• denotes the complex unknown channel gain from
to that is assumed to be distributed as from
frame to frame;

• satisfies the th relay’s power con-
straint;

• is the sum of CFOs from - -
is the normalized CFO from to 3;

• ,

2Throughout this section both the carrier frequency and timing offsets are
normalized by .

3The constant phase offset due to the timing offset is
incorporated in the baseband channel .
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• is the AWGN at ; and
• has been used in place of since

denotes the AWGN and its statistics are not affected
by the sampling time.

Equation (3) can be written in vector form as shown in (4) at the
bottom of the page, where
• and

;
• is the received signal
vector at ;

•
;

• ;
• ,
• is a matrix;
• ;
• ; and
• , and

.
Note that has the same statistical properties as , for

, due to the assumption of unit-amplitude
training signals.
Remark 1: Unlike [6], the proposed processing structure at

the relays in Fig. 3 is not based on the assumption of perfect
timing and frequency offset estimation and matched filtering at
the relays [28]. In fact, [28] shows that the signal model in [6]
does not resemble that of AF relaying. More importantly, in a
follow-up paper, the authors of [6] confirm that further research
is needed to enable perfect timing synchronization in practical
AF-relaying cooperative networks [29]. In order to address this
issue, we have proposed a novel relaying structure that does not
require perfect timing offset estimation and matched-filtering at
the relays. In addition, in our proposed model, the relays do not
perform frequency offset and channel estimation during the TP.
2) Data Transmission Period: Modulated data symbol

vector is transmitted from
to the relays. As shown in Fig. 3, after performing timing

correction using timing offset estimates obtained in the TP,
forwards the received signal to . The received signal at in
the DTP can be written as4

(5)

where . Fig. 4 summarizes the
proposed transceiver structure at for AF relaying.

B. DF-Relaying Cooperative Network

The block diagram for the DF transceiver at is shown
in Fig. 5. The receiver structure at is similar to that of AF

4The matrix takes into account the timing offset estimation error from
to and the timing offset from to .

Fig. 5. Block diagram for DF transceiver at the th relay.

relaying in Fig. 4 with the exception that the received signal is
represented by instead of .
1) Training Period: Similar to AF, the sampled received

signal at , is given by (1). However, in the case of DF
relaying the received signal at needs to be decoded. There-
fore, during the TP, , , and are jointly estimated and
compensated using conventional schemes for SISO point-to-
point systems [27]. Subsequently, forwards its known dis-
tinct TS, to . The received
signal at , , is given by

(6)

where , is the normalized fractional
unknown timing offset between and is defined below
(4), and is a matrix.
Note that the notation, is used instead of to distinguish
between the TSs for DF and AF relaying.
2) Data Transmission Period: For DF relaying, it is assumed

that cyclic redundancy checks (CRC) are applied at the relays to
ensure that the relays only forward correctly decoded signals to
. Subsequently, the received signal at in the DTP is given by

(7)

The receiver structure at is given by Fig. 4 with the exception
that , and are replaced by , and , for

, respectively.

III. CRAMER–RAO LOWER BOUND

In this section, new exact closed-form CRLBs for joint
estimation of multiple channel gains, MCFOs, and MTOs for
AF-relaying cooperative networks are derived. For the case
of DF relaying, we extend the results in [17] and present
closed-form CRLBs for this multiple parameter estimation
problem.

A. CRLB for AF Relaying

Throughout this section, it is assumed that the forwarded
AWGN from the relays, and and , respectively,

, and the AWGN at , are mutually independent.
Accordingly, the received signal vector at in (4), is a

(4)
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circularly symmetric complex Gaussian random variable, i.e.,
, with mean and covariance matrix

, where is the identity
matrix of size ( is derived in Appendix A). As
discussed in [8] and [16], in the case of AF relaying, only the
overall channel gains, , need to be estimated. As a result, the
parameter vector of interest for AF relaying, , is given by

(8)

where and and for nota-
tional simplicity, and are used to denote and for
AF relaying, respectively.
Proposition 1: Based on the proposed training method, the

Fisher’s information matrix (FIM) for the estimation of is
given by (9) shown at the bottom of the page, where
• ;
•

;
• ;
• ; and
• .
Proof: See Appendix A.

Let us rewrite (9) as

(10)

where and are the upper left and lower right
submatrices of , respectively, and is the upper right

submatrix of . Using partitioned matrix inverse [8], [30],
the closed-formCRLB for the estimation of can be determined

as shown in (11) at the bottom of the page. Similarly, and
are found as

(12)

and (13) shown at the bottom of the page.
The CRLB for the estimation of MCFOs and MTOs is given

by diagonal elements of the matrix, in (11), and can be written
in closed-form as

(14)

where the second equality in (14) follows from the matrix in-
verse identity

for invertible matrices and in [30].
In this case, , and in (14) correspond to , and
, respectively. Similarly, the CRLB for the estimation of com-

bined real and imaginary parts of is derived as

(15a)

(15b)

where is used to obtain the CRLB of ac-
cording to [31].

(9)

(11)

(13)
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B. CRLB for DF Relaying

Similar to the case of AF relaying, the received signal vector
in (6), , with mean and covariance
matrix . The parameter vector of interest for DF
relaying, , is given by

(16)

where and and for
notational simplicity, and are used to denote and

, respectively. The FIM for the estimation of [17]
is given by (17) shown at the bottom of the page, where

,
and . Let us rewrite (17) as

where and denote the upper left and lower right
submatrices of , respectively, and is the upper right

submatrix of . Using similar steps as that of AF
relaying, the closed-form CRLB for the estimation of can be
determined as

(18)

where . Moreover, and are
given by replacing and with and in (12)
and (13), respectively. Using (18) the closed-form CRLBs for
the estimation of , and can be determined as

(19a)

(19b)

The following remarks are in order:
Remark 2: Equations (9) and (11) for AF relaying, and (17)

and (18) for DF-relaying cooperative networks demonstrate that
for both choices of protocols, the FIM and the CRLB for estima-
tion of MCFOs, MTOs, and channel gains are not block diag-
onal. Thus, there exists coupling between the estimation errors
of MCFOs, MTOs, and channel gains. This shows the impor-
tance of jointly estimating MCFOs, MTOs, and channel gains
in multi-relay cooperative networks. More importantly, this re-
sult indicates that the previously proposed methods that assume
perfect frequency or timing synchronization while estimating

MCFOs and MTOs in [6] and [8], respectively, cannot be ap-
plied to estimate MCFOs, MTOs, and multiple channel gains in
distributed AF and DF cooperative networks.
Remark 3: The CRLBs for the estimation of and for

AF relaying in (14) and (15b) depend on source-relay-destina-
tion carrier frequency offsets, , timing offsets, ,
and channel gains, , through the matrices and in
(10). As anticipated, the CRLBs in (14) and (15b) are also de-
pendent on the TS length and the choice of the TSs broadcasted
from both and the relays. Based on the CRLBs in (19a) and
(19b), similar dependencies can be also deduced for the case of
DF relaying. Therefore, we can conclude that the choice of TS
and its length are important design parameters that significantly
impact the performance of MCFO, MTO, and channel estima-
tors in distributedmulti-relay cooperative networks. Optimal TS
design for estimation of MCFOs or MTOs is addressed in [9]
and [7], respectively. However, to the best of authors’ knowl-
edge the design of TSs for joint MCFO and MTO estimation is
still an open area of research.

IV. JOINT PARAMETER ESTIMATION

In this section, in order to reduce the computational com-
plexity associated with the estimation of MCFOs, MTOs, and
multiple channel gains for DF-and AF-relaying networks, two
iterative estimators are proposed based on the ECM and SAGE
algorithms and their computational complexity is analyzed.

A. Estimation Algorithms for DF Cooperative Networks

We first outline the ML estimator due to its desirable asymp-
totic properties [31]. The ML estimator presented here is also
required to initialize the proposed ECM and SAGE algorithms.
1) MLEstimator for DFRelaying: Based on the signalmodel

in (6), the ML estimates of , and are given by [17]

(20)

Alternating projection (AP) is used to reduce the dimensionality
of the maximization problem in (20) into a series of one-dimen-
sional searches [32]. Even though AP is not guaranteed to con-
verge to the true estimates, the results in [32, Section IV.A],
demonstrate that AP always converges to a local maximum and
through proper initialization, AP results in global convergence.
Following the ML-based approach in [22], and are ini-
tialized to in our simulations. In addition, the numerical
simulations in Fig. 6 indicate that using the above initialization,
AP converges to the true timing and frequency offset estimates
in two cycles only.

(17)
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2) ECM Estimator for DF Relaying: The entries in the
vector in (16) can be rearranged into the new parameter
vector , where , for

. In the expectation-maximization (EM) ter-
minology, the received training signal in (6) represents the
incomplete data set [33]. Following [34], we define the hidden
or complete data set as , with

(21)

where with and
is the hidden variable. In (21), is obtained by decom-
posing the total noise vector into components such that

where may be chosen such that
[35]. Based on (21), the relationship between the com-

plete and incomplete data sets is given by .
In order to indicate the iterative processing let us define

as the estimated value of at

the th iteration, where . Note that
rough initial estimates, , may be obtained using
alternating projection via (20) using a coarse step size. The
-Step and -Step of the proposed ECM algorithms at the
th iteration are derived next.
a) -Step: Using the received signal and the current es-

timates, , we compute the expectation of the log-likelihood
function (LLF) of the complete data space given the parameter

. That is

(22)

where the probability density function of given is deter-
mined as

(23)
Substituting (23) into (22), we obtain

(24)

where is a constant that is in-
dependent of . Since , it can be concluded that
and are jointly Gaussian distributed, . Therefore, in

(24) is given by

(25)

where and .

b) -Step: The estimate of at the th iteration,

, is determined as

(26)

From (26) it can be observed that the process of updating can
be decoupled into the processes of updating each of the , for

. As a result, the update-equation for calcu-

lating can be determined as

(27)

In order to further reduce the complexity associated with the
-step of the EM algorithm, the ECM scheme [36] is applied

in this section, where the cost function in (27) is minimized with
respect to to one of the parameters of interest while keeping the
remaining parameters at their most recently updated values [35],
[36]. In the first step using the ECM approach, can be
determined as

(28)

where is the th element of for
and can be found using

(29)

where is the selected pulse shaping filter lag in the TP. In
order to handle the nonlinearity of (28), we can approximate
the term using Taylor series expansion to the second-
order term as

(30)

Using (30), (28) can be rewritten as in (31)

(31)
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Differentiating in (31) w.r.t. and equating the result to zero,
the estimate of at the th iteration is obtained as

(32)

In the second step, by setting to its latest updated value,
, the updated value of at the th iteration,
, can be determined as

(33)

Taylor series expansion is again applied to linearize the maxi-
mization in (33), where the Taylor series expansion of , in
(29), can be calculated as

(34)

In (34), and are the first and second order deriva-
tives of the function w.r.t. and are given by

(35a)

(35b)

where and are the
first- and second-order derivatives of transmitted pulse shaping
function, , evaluated at . Using forward difference
approximation of derivatives given in [37], and can
be determined, respectively, as

(36)

as . Using (34), (33) can be rewritten as in (37).

(37)

By taking the derivative of (37) w.r.t. and equating the result
to zero, the estimate of at the th iteration is given by

(38)

Finally, in the third step, by setting and to and
, respectively, the estimate of , at the th iteration

is calculated as

(39)

By taking the derivative of (39) w.r.t. and setting the result
to zero, can be determined as

(40)

The proposed ECM estimator for DF relaying is summarized in
Table I. By reapplying the above algorithm, for ,
estimates of MCFOs, MTOs, and multiple channel gains for
all the relays can be obtained at . The iterations stop when
the difference between LLFs of two iterations is smaller than a
threshold , i.e.

(41)

3) SAGE Estimator for DF Relaying: As shown in [38], the
SAGE algorithm can be applied to improve the convergence rate
of the ECM approach. Using SAGE, the parameter is divided
into groups denoted by , for . During the
estimation process each group is updated while keeping the re-
maining groups fixed at their latest updated values. In addition,
for each group a hidden data set is selected [38]. In this case,
the hidden data set denoted by for is given by

(42)
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TABLE I
PROPOSED ECM ALGORITHM FOR DF COOPERATIVE SYSTEMS

The updating process for at the th iteration in the proposed
SAGE estimator consists of E- and M-Steps, which are derived
using the steps outlined for the proposed ECM algorithm.

a) -Step: While setting , the expec-
tation of the LLF of the hidden data set for the parameter

, is determined as

(43)

where

(44)

Substituting (44) into (43), we obtain

where

TABLE II
PROPOSED SAGE ALGORITHM FOR DF COOPERATIVE SYSTEMS

(45)

and is a constant independent of .
b) -Step: In this step, the estimate of in the th

iteration, , is determined as

(46)

Using similar steps as the -step of the ECM algorithm in
Section IV-A2b, the computational complexity associated with

the estimation of can be further reduced. Subsequently,
for the proposed SAGE estimator, by replacing with

, (32), (38), and (40) can be applied to estimate
, and , respectively. Table II summarizes the pro-

posed SAGE estimator for DF relaying.
Remark 4: Even though it cannot be analytically shown that

the proposed ECM and SAGE algorithms converge to a global
maximum in [36, p. 1] and [38, p. 4], it is established that, in
general, ECM and SAGE algorithmsmonotonically increase the
LLF at every iteration and converge to a local maximum. More-
over, if the algorithms are initialized in a region suitably close
to the global maximum, then sequence of estimates converge
monotonically to the global maximum [38, p. 4]. In our simula-
tions, initial rough estimates, , are obtained using
alternating projection via (20) while using a coarse step size,
e.g., . Finally, simulation results in Section VI investigate
the performance of the proposed ECM and SAGE algorithms
for different initialization step size values and illustrate that the
proposed algorithms converge to the true estimates with the ini-
tialization step size of .

B. Estimation Algorithms for AF Cooperative Networks

In this section the LS, ECM, and SAGE algorithms for joint
estimation of MCFOs, MTOs, and multiple channel gains in AF
cooperative networks are derived.
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1) LS Estimator for AF Model: Based on the training signal
model at for AF relaying in (4), the LS estimate of the pa-
rameters , and can be determined by minimizing the cost
function

(47)

Given and , the LS estimate of can be straightforwardly
shown to be

(48)

By substituting (48) into (47), estimates of MCFOs and MTOs,
, respectively, are obtained via

(49)

The maximization in (49) needs to be carried out using a mul-
tidimensional exhaustive search over the set of possible timing
and frequency offsets. Thus, in order to reduce the computa-
tional complexity associated with obtaining these estimates the
maximization in (49) is carried out using AP, where the AP al-
gorithm is initialized using a similar approach as that of DF re-
laying in Section IV-A1. In addition, the numerical investigation
in Section VI indicates that the MCFOs and MTOs estimates
obtained using (48) and (49) are close to the true estimates at
mid-to-high SNR. Finally, the LS estimates of the channel gains
can be obtained by substituting and into (48).
2) ECM Estimator for AF Relaying: The entries of the

vector, in (8) can be rearranged to obtain a new pa-
rameter vector of interest , where

is a vector of three parameters corre-
sponding to . Since the observed signal, , in (4) is the
incomplete data set in the case of AF relaying, we define the
complete or hidden data set as , where

(50)

In (50), ( is defined below (21)) is
obtained by decomposing the overall noise vector, ,
into components, such that . Based on the
derivation in Appendix A, the covariance matrix for is

. Given that
where is the fading channel gain with variance ,
the covariance matrix for can be modified to be ,
where . Thus, the relationship
between the complete and incomplete data sets is given by

. For further iterative processing, let us denote

as the estimated value of

at the th iteration, where . Note

that for AF relaying, the rough initial estimates, ,
are obtained by applying AP on the proposed LS estimator in
(48), and (49) with a coarse step size. The -and M-steps of
the proposed ECM estimator at the th iteration are derived in
the following subsections.

a) -Step: Using the received signal, , and the current

estimate , the expectation of the complete LLF given the

parameter , is computed as

(51)

where probability density function of as a function of is
given by

(52)

where refers to in Section IV-B. Substituting (52)
into (51), we obtain

(53)

where is a constant independent
of . Given that and are jointly Gaussian distributed, ,
we have

(54)

where and .

b) -Step: The updated value of , is determined
as

(55)

From (55) it can be straightforwardly observed that the updating
process of can be decoupled into updating processes of
for . Thus, the update equation to determine

is given by

(56)

Similar to DF relaying, the proposed ECM estimator for AF
relaying minimizes (56) in three steps. Following the same
steps as in Section IV-A2b, the updated value of ,
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is obtained as shown in (57) at the bottom of the page, where
.

Similarly, the updated value of , is shown by (58)
at the bottom of the page, where and can be
obtained using (35), by replacing the sequence with .
Finally, the updated value of is given by

(59)

The tabular form of the proposed ECM estimator for AF re-
laying can be obtained by modifying the initialization in Table I
using (48) and (49) and by replacing , and

in Table I by their counterparts, ,
and , given in (54), (57), (58), and (59), respectively. By
reapplying the above process, for , estimates
of the system parameters for all relays can be determined at
. Similar to the DF case, the iterative process is terminated
when the difference between the LLF of two iterations is smaller
than .
3) SAGE Estimator for AF Relaying: The parameter is

divided into groups of and the hidden data set, , for
is defined as

(60)

a) -Step: While setting , the expecta-

tion of the LLF of , given , is determined as

(61)

where

(62)

Substituting (62) into (61), we obtain

(63)

where

(64)

and is a constant independent of .
b) -Step: The estimate of in the th iteration,

, is determined as

(65)

For the proposed SAGE algorithm, by replacing with
, (57), (58), and (59) can be used to estimate
, and , respectively. The tabular form of the pro-

posed SAGE estimator for AF relaying can be obtained by mod-
ifying the initialization in Table II, using (48) and (49), and by
replacing , and by their counter-

parts, , and , given in (64), (57),
(58), and (59), respectively.5

C. Complexity Analysis of Proposed Estimators

Throughout this paper computational complexity is defined
as the number of additions plus multiplications. In this subsec-
tion the computational complexity of ML estimation in [17] and
the proposed ECM and SAGE algorithms for DF relaying are
analyzed. In order to avoid repetition, the case of AF relaying
has been omitted, since in the AF scenario the computational
complexity of the proposed estimators can be determined by
using the number of iterations required by each algorithm and by

5Note that Remark 4 also holds for AF relaying.

(57)

(58)
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adding the additional multiplications required due to the factor
in (57), (58), and (59). The computational complexity of

the ML algorithm, denoted by is calculated as

(66)

where denotes the number of alternating projection cycles
used [22], and denotes the step size in the ML search in (20).
The computational complexity of the proposed ECM algorithm,
denoted by is calculated as

(67)

where is the computational cost associated with determining
the initial rough estimates given by is the
coarse step size used to calculate the initial estimates for the pro-
posed ECM algorithm, and denotes the average total number
of iterations required. The value of for the ECM and SAGE al-
gorithms have been determined through numerical simulations
in Section VI as illustrated in Fig. 10, e.g., in the case of DF
relaying and for ECM and SAGE algorithms, respec-
tively, with and relays. Similarly, the compu-
tational complexity of the proposed SAGE algorithm, denoted
by , is calculated as

(68)

Based on (66), (67) and (68), the following remarks are in order.
Remark 5: In order to reach the CRLB for the estimation

of MCFOs, MTOs, and channel gains (see Figs. 6 and 7 in

TABLE III
CPU PROCESSING TIME FOR ML, ECM AND SAGE WITH 4 RELAYS DF

SYSTEM AT SNR dB USING INTEL CORE 2 QUAD 2.66 GHz PROCESSOR

Section VI), the step size, for the ML in [17] and the pro-
posed LS estimator needs to be very small, e.g., . This,
in turn, significantly increases the computational complexity of
these estimators given that the maximizations in (20) and (49)
for DF and AF relaying, respectively, need to be carried out over
a significantly larger set of possible values. However, a step size
of say, , suffices to obtain rough initial estimates for
the proposed ECM and SAGE algorithms.
Remark 6: In order to quantitatively compare the compu-

tational complexity of the ML in [17] and the proposed ECM
and SAGE estimators for DF relaying, we have evaluated

, and in (66), (67) and (68), respectively, for
relays at an SNRof 20 dB. It is observed that even by con-

sidering the complexity associated to the initialization step of the
proposedECMandSAGEestimators, these schemes are 772 and
946 times more computationally efficient than theML estimator
in [17] carried out using AP, respectively. The computational
complexity of the proposed algorithms is also evaluated using
CPU execution time [39]. For the case of DF relaying networks,
Table III depicts the execution times for the ML estimator in
[17], and for the proposed ECM and SAGE estimators with
SNR dB and relays when an Intel Core 2Quad 2.66
GHz processor processor with 4 GB byte of RAM is used. It can
be observed from Table III that compared to the ML estimator
in [17] the proposed ECM and SAGE estimators are capable of
estimating the overall network’s synchronization parameters and
channel gains approximately 666 and 924 times more quickly.
Remark 7: The proposed ECM and SAGE algorithms need

to apply theML and LS estimators for initialization only once at
system start-up. Afterwards, the estimates of previously trans-
mitted frames may be used to update the new estimates since
timing and carrier frequency offsets do not rapidly change from
frame to frame. This is due to the fact that oscillator proper-
ties are mainly affected by temperature and other physical phe-
nomena that do not rapidly fluctuate with time [40].

V. ML DECODING

In order to decode the received signal at in the presence
of multiple impairments, an ML decoder for both DF and AF
multi-relay cooperative systems is proposed.

A. Decoding in DF-Relaying Networks

During the DTP, the decoder at evaluates the metric, ,
according to6

(69)

6Subscript refers to the th permutation, for .
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TABLE IV
THE PROPOSED ML DECODER FOR DF RELAYING

where
is a

vector and is a constant pulse shaping filter lag during the
DTP. Note that is a
vector of the th permutation of the symbols within the

constellation. Next, the error between the metric, , and the
received signal, at is determined as

(70)

Thereafter, the summation of the errors, , in (70) that cor-
respond to the th symbol, , is given by

(71)

The permutation that results in the smallest error is denoted by
, and is selected as

(72)

Finally, using the th received symbol is decoded as
, where is the zeroth element of the vector

corresponding to . The proposed ML decoder for DF re-
laying is summarized in Table IV.

B. Decoding in AF-Relaying Networks

Similar to the DF case, the estimates and are used to
decode the received signal. The decoder at in the AF system
evaluates the metric

(73)

Using the metric in (73) and the same steps as outlined in
Section V-A, the th source symbol, , can be decoded. The
tabular form of the ML decoder for AF relaying is given by
replacing with in Table IV.
Remark 8: The ML decoder outlined above is derived to

showcase that the estimates obtained during the TP using the
proposed estimators can be applied to effectively decode the
received signal in multi-relay cooperative networks. Since, it
is a well-known that the complexity of ML decoding increases
exponentially with constellation size, the design of more com-

putationally efficient decoders for cooperative networks in the
presence of MCFOs, MTOs, and unknown channel gains could
be investigated in future work7.

VI. SIMULATION RESULTS

In this section, we present simulation results to evaluate the
performance of our estimators. We use quadrature phase-shift
keying (QPSK) modulation. Without loss of generality, we as-
sume . The propagation loss is modeled
as , where is the distance between transmitter and
receiver, is the reference distance, and is the path loss ex-
ponent [27]. The following simulations are based on TS length,

, km, and , which cor-
responds to urban area cellular networks. The timing offsets at

are assumed to be uniformly distributed over the range
. Based on the methodology in [6], [31], the timing

offset estimation errors from , is assumed to follow a
Gaussian distribution, i.e., , where is set to
the lower bound on the variance of timing offset estimation error
in point-to-point systems [27, p. 328]. Carrier frequency offsets
for DF relaying at , are uniformly distributed in the full
acquisition range . For AF relaying, since carrier fre-
quency offsets from source to relays, , are carried over to
the destination, and have the range in
order to limit the total frequency offset from source to destina-
tion to the range , i.e., full acquisition. Distinct
phase shift keying training sequences are generated at and all
relays similar to [15]. and are used to denote the -
and - distances, respectively. Finally, the mean-square error
(MSE) performance of various estimators and the bit error rate
(BER) performance of the overall multi-relay cooperative net-
work is detailed in the following subsections.

A. Estimator Performance

Specific channels are used for the following simulations, i.e.,

and
similar to [7]–[9]. Unless otherwise spec-

ified, relays, in the TP, and
km are used. The remaining parameters are set as

and for DF and AF re-
laying, respectively, , and . Finally, the MSE
for the estimation of a parameter say, frequency offset, , is
defined as the average MSE over all the simulations runs, i.e.,

.
Figs. 6–7(a), (b), and (c) show the CRLB and MSE for the

estimation of MTOs, MCFOs, and channel gains for DF and
AF relaying, respectively. It is shown that the MSEs of the ML
and proposed LS estimators for both DF and AF relaying are
close to their CRLBs at mid-to-high SNRs. In comparison, the
proposed ECM and SAGE estimators are close to the CRLB at
mid-SNR values but exhibit some small performance degrada-
tion w.r.t. to the CRLB when estimating MCFOs, MTOs, and
channel gains at high SNR. In addition, Figs. 6(a) and 7(a) in-
dicate that while estimating MTOs at high SNR, the MSEs of

7In order to reduce complexity, the knowledge of channel gains, frequency
offsets, and timing offsets can be used with a zero-forcing equalizer to decode
the received signal at the destination.
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Fig. 6. MSE and CRLBs of (a) MTOs, (b)MCFOs, and (c) channel coefficients
estimation as a function of SNR (in decibels) for DF relaying.

the proposed ECM and SAGE estimators exhibit an error floor.
This error floor is caused by the Taylor series approximations
in (30) and (34) as well as the approximation in (36), which

Fig. 7. MSE and CRLBs of (a) MTOs, (b)MCFOs, and (c) channel coefficients
estimation as a function of SNR (in decibels) for AF system.

are used to linearize the LLF under consideration. However, as
shown in Section IV-C, compared to the ML and proposed LS
schemes, the proposed ECM and SAGE estimators significantly
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Fig. 8. MSE of frequency offset estimation versus initialization of SAGE algo-
rithm with different values of coarse step size, , in DF cooperative networks.

reduce the computational complexity associated with estimating
impairments in cooperative networks. Moreover, at low SNR
for AF relaying, the proposed LS, ECM, and SAGE estimators
demonstrate poor performance due to the considerable timing
offset estimation error from source to relays and the noise at
the relays which is amplified and forwarded to the destination.
Finally, Figs. 6 and 7 show that the proposed SAGE estimator
outperforms the ECM algorithm for all SNR values.
Fig. 8 presents the impact of the initialization of the SAGE

algorithm on the estimator’s performance for different step size
values, . It is shown that decreasing the step size from

results in diminishing returns in frequency offset estima-
tion accuracy since the MSE of the proposed SAGE estimator
for is already close to the CRLB. Thus, it can be
concluded that for the proposed SAGE estimator is
initialized in the region of a local maximum, which turns out
to be the global maximum and converges to the true estimates.
Consequently, in all the simulations in this section the step size,

, is used to initialize the proposed ECM and SAGE es-
timators8. Note that similar results to that of Fig. 8 are observed
in the case of AF relaying cooperative networks and are omitted
from the paper to avoid repetition.
Fig. 9 compares frequency offset estimation MSE of the

proposed SAGE estimator against the MSE of the initial es-
timates. This result further shows that obtaining frequency
offsets using the proposed SAGE algorithm significantly im-
proves estimation accuracy. In addition, unlike the ML and
LS estimators, this improvement in estimation accuracy is
achieved without performing an exhaustive search over a large
set of possible frequency offset values with small step size
values, e.g., .
Fig. 10 shows the average number of iterations required by

the proposed ECM and SAGE algorithms to converge in DF-re-
laying networks. It can be observed that at an SNR of 20 dB, the
average number of iterations required by the SAGE estimator is
2 and 3.4 times fewer than that of ECM algorithm for networks
with 2 and 4 relays, respectively. Note that similar results are
obtained for the case of AF relaying.

8Note that the ML estimator in [17] requires an exhaustive search with very
small step size values, e.g., , to reach the CRLB as explained in Remark 5.

Fig. 9. MSE of frequency offset estimation with coarse initialization
and fine estimation using SAGE algorithm in DF cooperative networks.

Fig. 10. Average number of iterations for ECM and SAGE in DF cooperative
networks for and relays.

Fig. 11 shows the CRLB for frequency and timing offset es-
timation for AF relaying when relays are located at different
physical locations: estimation performance slightly improves
by moving the relays closer to , i.e., km and

km, due to lesser propagation loss from relays to .
However, the performance degrades bymoving the relays closer
to , i.e., km and km, due to larger prop-
agation loss from the relays to . Note that the improvement in
the estimation performance is lesser, while moving the relays
closer to , due to the additional amplification of noise at .

B. Cooperative Performance

The channel gains from source to relays and from relays
to destination are modeled as independent and identically
distributed (i.i.d) complex Gaussian random variables with

. We use for the DTP and in (69) and
(73) for the proposed ML decoder. Cooperative communication
networks with two relays are considered, where the relays are
distributed throughout the network. Fixed gain relaying is
applied for AF relaying as shown in Section II-A1. We assume
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Fig. 11. CRLB for MCFOs and MTOs with AF relays at different locations.

Fig. 12. (a) BER performance for a DF cooperative system with . (b)
BER performance for an AF cooperative system with .

a training sequence length of 80 symbols and a frame length of
symbols.

Fig. 12(a) and (b) show the BER performance with two re-
lays for an uncoded DF and AF cooperative networks for binary
phase-shift keying (BPSK) and QPSK, respectively. The results

show that the BER performance of a DF relaying cooperative
network using QPSK is within 2 dB of the ideal case of per-
fect impairment estimation when using the ML and SAGE esti-
mator in combination with the proposed ML decoder. However,
at high SNR the BER plot corresponding to the SAGE estimator
deviates from that of the ML estimator due to the error floor of
the proposed SAGE estimator as also depicted in Fig. 6.
Similar results are obtained for the case of AF relaying, where

the gap between the cases of imperfect and perfect impairment
estimation for BPSK and QPSK is in the range from 2 to 2.5 dB
for both the proposed LS and SAGE estimators at low-to-mid
SNRs9. This gap increases at high SNR for the proposed SAGE
estimator due to the error floor of this estimator at high SNR as
illustrated in Fig. 7. In Fig. 12(a), we also plot the BER results
for a cooperative system that first employs the resynchronization
filter in [15] to compensate MTOs and then attempts to remove
MCFOs by employing the algorithm in [25]. This plot, which is
denoted by “ [15] and [24]” shows that such an approach fails to
decode the received signal at since the re-synchronizationfilter
in [15] fails to compensate MTOs in the presence of MCFOs.
Subsequently, the algorithm in [25] fails to nullifyMCFOs, since
the input signal is corrupted by MTOs. This corroborates our
claim that previously proposed algorithms cannot decode the re-
ceived signal in the presence of bothMCFOs andMTOs. Finally,
we note that in the case of BPSK the application of the proposed
SAGE estimators and ML decoders results in an overall coop-
erative network BER of below for SNRs greater than 16
and 24 dB for the DF and AF systems, respectively.

VII. CONCLUSION

In this paper, training and data transmission methods for
both DF-and AF-relaying multi-relay cooperative networks
affected by MCFOs, MTOs, and unknown channel gains are
presented. New closed-form FIM and CRLB expressions for
the multiple parameter estimation problem are derived. The
derived FIM shows that there exists coupling between the
estimation errors of MCFOs, MTOs, and channel gains, which
establishes that these parameters must be jointly estimated at
the destination. In order to reduce overhead and complexity,
two iterative estimators based on the ECM and SAGE algo-
rithms are derived and their performance is compared against
the CRLBs. Though global convergence of the proposed ECM
and SAGE algorithm cannot be shown analytically, numerical
simulations indicate that through proper initialization using
an LS estimator the proposed estimators can obtain MCFOs,
MTOs, and unknown channel gains jointly at the destination.
In addition, it is established through computational complexity
analyses that at SNR of 20 dB for a four-relay cooperative
network, the proposed ECM and SAGE estimators are each
over two orders of magnitude more computationally efficient
than the previously proposed ML estimator in [17]. Next, an
ML approach is proposed to decode the received signal at the
destination for both DF and AF systems. Simulation results
show that the combination of proposed estimators and ML
decoder result in BER performance that is within 2–2.5 dB of
that of a perfectly synchronized cooperative system. In spite
of their advantages, the proposed estimators and ML decoder
are sensitive to the initialization procedure and incur high com-
putational complexity, respectively. Therefore, more research

9Similar results are obtained for the proposed ECM estimator.
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is needed to devise noniterative and computationally more
efficient estimation and detection algorithms for achieving
synchronization in cooperative networks.

APPENDIX A
DERIVATION OF

The th element of FIM is given by [31]

(A.1)

where and

(A.2a)

(A.2b)

where (A.2b) follows from (A.2a) due to the assumptions of unit
amplitude PSK TSs and mutual independence of the noise at the
relays and destination. Accordingly the derivatives in (A.1) can
be derived as

(A.3)

(A.4)

where and . Since, is not
a function of MCFOs, MTOs, and channel gains , we have

(A.5)

After substituting the derivatives in (A.3), (A.4), and (A.5) into
(A.1) and carrying out straightforward algebraic manipulations,
the upper triangular elements of FIM, for ,
can be obtained as

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

Note that the lower triangular elements of can be easily
obtained by simple manipulation of (A.6)–(A.15) and are not
included here for brevity.
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