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Abstract—This paper proposes a framework for joint blind
timing and carrier offset estimation and data detection using a
Sequential Importance Sampling (SIS) particle filter in Additive
White Gaussian Noise (AWGN) channels. We assume baud
rate sampling and model the intractable posterior probability
distribution functions for sampling timing and carrier offset
particles using beta distributions. To enable the SIS approach
to estimate static synchronization parameters, we propose new
resampling guidelines for dealing with the degeneracy problem
and fine tuning the estimated values. We derive the Weighted
Bayesian Cramér Rao Bound (WBCRB) for joint timing and
carrier offset estimation, which takes into account the prior
distribution of the estimation parameters and is an accurate
lower bound for all considered Signal to Noise Ratio (SNR)
values. Simulation results are presented to corroborate that
the Mean Square Error (MSE) performance of the proposed
algorithm is close to optimal at higher SNR values (above 20
dB). In addition, the bit error rate performance approaches that
of the perfectly synchronized case for small unknown carrier
offsets and any unknown timing offset. The advantage of our
particle filter algorithm, compared to existing techniques, is that
it can work for the full range acquisition of carrier offsets.

Index Terms—Synchronization, timing offsets, carrier offsets,
particle filter, Cramér-Rao bounds.

I. INTRODUCTION

SYNCHRONIZATION is a fundamental requirement for
any digital communication receiver to work properly. The

receiver needs to determine the correct instants of time at
which to sample the incoming signal (timing synchronization).
In addition, for bandpass communications, the receiver needs
to adapt the frequency of its local carrier oscillator with those
of the received signal (carrier or frequency offset synchroniza-
tion). The synchronization techniques in the literature can be
divided into two main groups: (i) data aided schemes which
use training or pilot symbols which are known to both the
transmitter and the receiver [1] and (ii) blind schemes which
do not require any initial training [2].

Particle filters are a very popular class of numerical methods
for blindly estimating the value of an observed variable that
evolves in time [3]–[5]. The core principle of particle filters
is to build a recursive Bayesian filter in order to estimate the
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posterior probability density function of the unknown parame-
ters. In the last decade, there has been an increasing interest in
the use of particle filtering (also known as Sequential Monte
Carlo algorithms) to solve estimation problems in wireless
communication systems in real-time. Traditional applications
of particle filters has been in mobility tracking [6]–[8] and
channel estimation [9], [10] or equalization [11], [12] for wire-
less communications systems. Recently, particle filters have
been proposed for estimating either timing or carrier offsets
in different wireless communication systems [13]–[15]. The
seminal work in [13] proposed a particle filtering algorithm for
estimating time-varying timing offset in a single user single
antenna system. Particle filters are used for variable carrier
offset estimation in [14], [15], but the proposed solutions
rely on the specific structure of MIMO-OFDM systems and
are therefore limited to such systems. A major limitation
of the above works is that they model the synchronization
parameters as time-varying to make it easy to fit into standard
sequential Bayesian filtering algorithms. However, in practice,
the variation of the synchronization parameters is negligible
over short time intervals and synchronization parameters are
assumed to be constant for the duration of a transmission
frame [16], [17]. For static parameters, it is well known that
the lack of dynamics in the parameters causes the particle
filters to lose their ability to explore the sample space after a
few iterations (particle degeneracy phenomenon) [18], [19].

The estimation of static parameters using particle filters
is a long standing open problem in the literature [18], [19].
Although various modifications to particle filter methods have
been proposed to deal with the degeneracy problem, none
is entirely satisfactory for the synchronization problem at
hand. Markov Chain Monte Carlo (MCMC) based methods
add diversity among the particles to deal with the degeneracy
problem but it is well known that there is an accumulation
of errors over time and the algorithm can diverge [20]. The
artificial dynamics approach in [21] adds a small noise term
to the static parameter. However this changes the original
problem and is also known to suffer from error accumulation
over time. Storvik’s method [22] proposes to marginalize the
static parameters out of the posterior distribution. However this
method assumes that the concerned parameters depend on suf-
ficient statistics which does not apply in our case. Convolution
particle filters (CPF) combine regularization with convolution
kernels to deal with static parameters but the evaluation of
the CPF density function is a very computationally inten-
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sive process for accurate estimation of the synchronization
parameters [23]. A modified particle filter is combined with
gradient algorithm in [24], but the approach is very sensitive to
the initialization of different parameters. A Rao-Blackwellized
Particle Filter (RBPF), cross coupled with a Kalman filter,
is proposed in [25] to deal with static parameter estimation.
This method has the merit that linear part of the system
model is estimated by a Kalman filter and the non-linear
part is estimated by a particle filter. However, in our case,
static parameters cannot be factored out to formulate a linear
Gaussian state space model. The design of particle filters for
estimating static synchronization parameters is, therefore, a
challenging research problem.

It must be mentioned that non-particle filter based blind
solutions for the joint synchronization problem exist in lit-
erature. Constant Modulus Algorithm (CMA) based solutions
exist separately for timing and carrier offset estimation in [26]
and [27], respectively. These can be combined for joint estima-
tion but the carrier offset estimation range is very small, typ-
ically limited to (−0.0001, 0.0001) cycles/sample [27]. Joint
timing and carrier offset estimation has also been achieved in
OFDM based systems [28], [29], but the solution exploits the
cyclic prefix, i.e., specific for OFDM systems, and frequency
acquisition range is limited by a factor depending on the
number of sub carriers used. Recently, a complete solution for
joint timing and carrier offset estimation in AWGN channels
has been proposed in [2]. The solution relies on the kurtosis
of the received signal, but the carrier offset estimation capa-
bility is confined to the range of (−0.05, 0.05) cycles/sample.
Moreover, their solution requires oversampling of the received
signal. To the best of our knowledge, no complete solution
exists for joint blind timing and carrier offset estimation with
full acquisition range.

For benchmarking the performance of any proposed esti-
mators, bounds on the achievable synchronization accuracy of
timing and carrier offsets have been derived in the literature
under a variety of assumptions. Traditionally, the Cramér Rao
Bound (CRB) is used as the performance benchmark for
any unbiased static parameter estimator. Associated CRB’s
have been derived for individual timing and carrier offset
estimation, and joint estimation of timing and carrier offset
estimation with different assumptions [30], [31]. However, the
CRB does not take prior information about the static parameter
into account. The most common bound that considers the
prior information is the Bayesian CRB (BCRB). However as
demonstrated in [31], BCRB does not exist for parameters with
uniform distribution and thus cannot be used in our case. The
Posterior Cramér Rao Bound (PCRB) is also not applicable in
our case since it is the appropriate bound for time-varying pa-
rameter estimator [19]. For static parameters with a given finite
range and uniform distribution, the Weighted Bayesian Cramér
Rao Bound (WBCRB) was introduced in [31] and derived for
the case of joint timing and channel estimation in [32]. It was
shown to be a more accurate bound, compared to CRB for
data aided scenarios. The derivation of the WBCRB for joint
timing and carrier offset estimation is addressed in this work.
The WBCRB is adopted as a lower bound for the performance
of the proposed particle filter algorithm [33].

A. Approach and Contribution

In this paper, we are concerned with the design of a particle
filtering based algorithm for non-data aided, joint estimation
of transmitted symbols and static timing and carrier offsets
in Additive White Gaussian Noise (AWGN) channels for a
single user single antenna system. We adopt the Sequential
Importance Sampling (SIS) approach and address the follow-
ing practical design questions: How can we deal with the
degeneracy issue when a SIS particle filter is used for estimat-
ing static parameters? Can we achieve full-range acquisition
of normalized timing and carrier offsets with particle filter
estimation, without any need for oversampling the received
signal? The main contributions of this paper are summarized
as follows:

• We use a Sequential Importance Sampling (SIS) particle
filter for static timing and carrier offset estimation and we
propose three new resampling guidelines for (i) dealing
with the degeneracy problem (ii) resolving carrier offset
estimation ambiguity at the edges of the frequency range
and (iii) resolving similar amplitude ambiguity of timing
offset estimates. These resampling steps are in addition
to the standard resampling operation which is an integral
part of the SIS approach. We verify experimentally that,
in the context of the synchronization problem considered
in this paper, these resampling guidelines successfully
solve the degeneracy and ambiguity problems, add negli-
gible complexity to the overall algorithm and enable full
range acquisition of timing and carrier offsets.

• We derive the WBCRB for the general case of timing
and carrier offsets uniformly distributed in the range
(−r/2, r/2) for r ∈ (0, 1). We show that at high Signal
to Noise Ratio (SNR) the WBCRB converges to the CRB,
while at low SNR the WBCRB goes flat and converges to
the variance of the uniform distribution distribution of the
timing and carrier offsets. In addition, the SNR value, at
which the WBCRB converges to the CRB depends on the
range of the estimation parameters. Thus, the WBCRB is
an accurate and useful lower bound for all SNR values.

• Simulation results indicate that our proposed algorithm,
with the new resampling guidelines, converges very fast
to desirable accuracy within 15−20 symbols. It provides
excellent performance that is close to the WBCRB bound
at high SNR in terms of Mean Square Error (MSE)
performance even with relatively small number of parti-
cles. Furthermore, the Bit Error Rate (BER) performance
approaches that of the perfectly synchronized case for
small unknown carrier offsets and any unknown timing
offset. The advantage of our solution, compared to exist-
ing techniques, is that it can also work for the full range
acquisition of carrier offsets.

This paper is organised as follows. The signal model is
provided in Section II and the particle filter formulation is
given in Section III. The proposed particle filtering algorithm
is explained in Section IV with the new resampling guidelines
discussed in Section V. The WBCRB is derived in Section VI.
The simulation results are presented in Section VII. Finally,
conclusions are drawn in Section VIII.
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The following notation is used in the paper. Bold capital
letters denote matrices and bold lower case letters denote
vectors. (·)H denotes hermitian (conjugate transpose) operator.
(·)T denotes transpose. diag(·) denotes a diagonal matrix.
E(·) denotes expectation. {·} are used to indicate sequences
of symbols or vectors while [·] are used to indicate vectors
or matrices, and “ ∗ ” is the convolution operator. Finally,
x ∼ CN (0, σ2) indicates that x follows a complex Gaussian
distribution with 0 mean and variance σ2.

II. SYSTEM MODEL

We consider a digital communication system where the
transmitter sends the data symbols, chosen from a discrete
alphabet of size M , over an Additive White Gaussian Noise
(AWGN) channel. The noisy signal at the output of the
receiver matched filter can be written as

z(t) = ej2πFt
D−1∑
d=0

xd h(t− dT + τT ) + v(t), (1)

where xd is the transmitted symbol at frame index d, D is
the frame size, h(t) represents the overall pulse shaping filter
response for the transmitter and the receiver, T is the symbol
period, τ is the normalized fractional unknown timing offset
between the transmitter and receiver (|τ | ≤ 1

2 ), F is the carrier
offset between the transmitter and receiver oscillators in Hz,
v(t) = w(t) ∗ hR(t) is the filtered noise, hR(t) is the receiver
pulse shaping filter response, and w(t) ∼ CN (0, σ2

w) is the
zero-mean complex baseband AWGN with variance σ2

w. The
equivalent discrete-time system model after sampling is given
by

zk = ej2πfk
D−1∑
d=0

xd h(kTs − dT + τT ) + vk, (2)

where k = 0, 1, . . . , DQ − 1, zk = z(kTs), vk = v(kTs),
Ts = T/Q is the sampling period, Q is the number of
samples per symbol and f = F/Fs is the digital frequency
offset in cycles/sample. The carrier offset, f , has the range
(−B/(2Fs), B/(2Fs)) for the baseband signal model lying
between −B/2 and B/2 Hz, where B is the pass-band signal
bandwidth.

Assuming h(t) to be a causal filter with finite span [0, LT ],
the sampled received signal is given by

zk = ej2πfk
LQ∑
d=0

x′
k−LQ+d h(LT − dTs + τT ) + vk, (3)

where x′
p is the upsampled version of the transmitted symbols

stream with Q − 1 zeros padded in between the transmitted
symbols xd, i.e., x′

p = xd for p = Qd and x′
p = 0 otherwise.

In this paper, we assume perfect frame synchronization
which can be achieved in blind systems by exploiting higher
order statistics of the received signal [2]. We sample the
received signal at the baud rate and demonstrate excellent
results for the proposed algorithm without oversampling, i.e.,
we use Q = 1. This implies Fs = B, and thus we can achieve
synchronization for the full range of carrier offset (−0.5, 0.5)

and the timing offset (|τ | ≤ 1
2 ) respectively. Thus (3) can be

written as

zk = ej2πfk
L∑

d=0

xk−L+d h(LT − dT + τT ) + vk, (4)

where the sampled noise vk is white with the same statistical
properties as wk for Q = 1, i.e., vk ∼ CN (0, σ2

v) and σ2
v =

σ2
w. The above equation can be written in vector form as

zk = xT
k h(τ) e

j2πfk + vk, (5)

where the superscript (·)T denotes the transpose oper-
ator, xk = [xk−L, . . . , xk]

T and h(τ) =
[
h(LT +

τT ), . . . , h(τT )
]T

are (L+1)× 1 vectors. (5) can be written
in the matrix form as

z = D(f)Xh(τ) + v, (6)

where z = [z0, z1, . . . , zD−1]
T , v = [v0, v1, . . . , vD−1]

T ,
X = [x0,x1, . . . ,xD−1]

T and the diagonal matrix D =
diag(ej2πf(0), ej2πf(1), . . . , ej2πf(D−1)).

A. Estimation Objective

The synchronization problem, in the above context, is
to estimate the sequence of data symbols {x0, . . . , xD−1},
static carrier offset f and static timing offset τ , from the
available sequence of observations {z0, . . . , zD−1} only. From
a Bayesian perspective, all the necessary information for the
estimation of unknown parameters (xk, f, τ) at time k, is
contained in the joint posterior probability distribution func-
tion p(x0:k, f, τ |z0:k). Since this distribution is analytically
intractable, we use a particle filter to represent the posterior
PDF by means of a discrete probability measure with random
support. Note that z0:k = {z0, z1, . . . , zk} denotes the ob-
served sequence at the receiver while x0:k = {x0,x1, . . . ,xk}
denotes a sequence of data vectors from time step 0 to k
respectively.

B. State Space Representation

The application of particle filtering technique necessitates
the state space modeling of the problem. Taking into account
the structure of the transmitted symbols, this can be given as

xk = Sxk−1 + dk, state equation, (7)

zk = xT
k h(τ) e

j2πfk + vk, observation equation,

where

S =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎦

is an (L + 1) × (L + 1) shifting matrix, f and τ are static
unknown parameters and dk = [0, . . . , 0, xk]

T is the (L+1)×
1 perturbation vector that contains the new symbol xk.



1410 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 60, NO. 5, MAY 2012

III. PARTICLE FILTER FORMULATION

In this section, we present the particle filter formulation for
the solution of the estimation objective in Section II-A. The
particle filtering approach approximates the posterior pdf of
unknown variables, p(x0:k, f, τ |z0:k), by a set of N particles,(
(x0:k, f0:k, τ0:k)

(i)
)N
i=1

, with associated weights
(
w

(i)
k

)N

i=1
,

i.e.,

p(x0:k, f, τ |z0:k) =
N∑
i=1

w
(i)
k δ

(
(x0:k, fk, τk)

(i) − (x0:k, f, τ)
)
,

(8)

where δ(·) denotes Dirac’s delta function. Note that f and τ
denote the static unknown carrier and timing offset respec-
tively while f

(i)
0:k and τ

(i)
0:k denote the particles. The subscripts

0 : k with the particles distinguish among the particles at each
time step since new particles are generated for every received
symbol depending on the weight distribution of previous
particles.

In this work, we employ the Sequential Importance Sam-
pling (SIS) particle filter algorithm [34] to determine the
weights. The basic principle of the SIS algorithm is to build a
recursive empirical approximation of a desired pdf by drawing
samples from a different distribution called the importance
function π(·) and assigning appropriate normalised weights to
these samples. The choice of the importance function affects
the variance of the estimates. The condition on the choice
of the importance function is that it must be strictly positive
and have the same domain as the desired pdf which is to
be estimated [13]. The SIS algorithm has the following main
steps:

1) Initialization: The algorithm is initialized using the prior
distribution of the unknown variables.

2) Importance sampling: The particles are drawn according
to the chosen importance function.

3) Weight update: The resulting particles are assigned
weights of the form [13]

w
(i)
k =

p
(
x
(i)
0:k, f

(i)
0:k, τ

(i)
0:k|z0:k

)
π
(
x
(i)
0:k, f

(i)
0:k, τ

(i)
0:k|z0:k

) . (9)

4) Resampling: Resampling of the particles is required to
deal with the degeneracy phenomenon, i.e., after sev-
eral recursions only a few particles have non-negligible
weight. Resampling redistributes the particles such that
there are higher concentrations in the region where the
original particles have higher weights.

5) Estimation: Using (8) and (9), the maximum a posteriori
(MAP) estimates of unknown variables are calculated.

Since the posterior pdf of unknown variables is
p(x0:k, f0:k, τ0:k|z0:k), an importance function of the
form π(x0:k, f0:k, τ0:k|z0:k) is required. We choose an
importance function that admits a factorization containing the

three posterior pdf’s of the variables to be estimated, i.e.,

π
(
x
(i)
0:k, f

(i)
0:k, τ

(i)
0:k|z0:k

)
= π

(
x
(i)
k , f

(i)
k , τ

(i)
k |x(i)

0:k−1, f
(i)
0:k−1, τ

(i)
0:k−1, z0:k

)
× π

(
x
(i)
0:k−1, f

(i)
0:k−1, τ

(i)
0:k−1|z0:k−1

)
= p

(
x
(i)
k |x(i)

0:k−1, f
(i)
0:k, τ

(i)
0:k, z0:k

)
× p

(
f
(i)
k |f (i)

0:k−1, τ
(i)
0:k−1,x

(i)
0:k−1, z0:k−1

)
× p

(
τ
(i)
k |τ (i)0:k−1, f

(i)
0:k−1,x

(i)
0:k−1, z0:k−1

)
× π

(
x
(i)
0:k−1, f

(i)
0:k−1, τ

(i)
0:k−1|z0:k−1

)
. (10)

Using Bayes theorem, the posterior pdf of unknown vari-
ables p(x0:k, f0:k, τ0:k|z0:k) can be written as

p
(
x
(i)
0:k, f

(i)
0:k, τ

(i)
0:k|z0:k

)
=

p
(
x
(i)
0:k, f

(i)
0:k, τ

(i)
0:k, z0:k

)
p
(
z0:k

)
=

p
(
x
(i)
0:k, f

(i)
0:k, τ

(i)
0:k, zk, z0:k−1

)
p
(
zk, z0:k−1

)
=

p
(
x
(i)
0:k, f

(i)
0:k, τ

(i)
0:k, zk|z0:k−1

)
p
(
z0:k−1

)
p
(
zk|z0:k−1

)
p
(
z0:k−1

)
= Ck × p

(
x
(i)
0:k, f

(i)
0:k, τ

(i)
0:k, zk|z0:k−1

)
, (11)

where Ck = p
(
zk|z0:k−1

)−1
is a normalising constant. Fol-

lowing the derivation in Appendix A, (11) can be further
expanded to obtain a form which contains three of the pdfs in
(10) as

p
(
x
(i)
0:k, f

(i)
0:k, τ

(i)
0:k|z0:k

)
= Ck × p

(
x
(i)
k |x(i)

0:k−1, f
(i)
0:k, τ

(i)
0:k, z0:k

)
× p

(
zk|x(i)

k−1, f
(i)
k , τ

(i)
k

)
× p

(
x
(i)
0:k−1, f

(i)
0:k−1, τ

(i)
0:k−1|z0:k−1

)
× p

(
f
(i)
k |f (i)

0:k−1, τ
(i)
0:k−1,x

(i)
0:k−1, z0:k−1

)
× p

(
τ
(i)
k |τ (i)0:k−1, f

(i)
0:k−1,x

(i)
0:k−1, z0:k−1

)
. (12)

Substituting (12) and (10) in (9) and simplifying, we obtain

w
(i)
k = Ck w

(i)
k−1 p

(
zk|x(i)

k−1, f
(i)
k , τ

(i)
k

)
. (13)

We can see that three pdfs in (10) need to be evaluated to
accomplish importance sampling and a fourth pdf in (13)
needs to be evaluated for weight update. The techniques
for evaluation of these pdfs and the detailed implementation
steps of the proposed SIS algorithm are explained in the next
section.

IV. PROPOSED SIS ALGORITHM

In this section, we describe the proposed SIS algorithm
for joint data detection and frequency and timing offset
estimation. The detailed implementation steps of the algorithm
are as follows:

A. Initialization

For initialization, we need to determine the prior distribution
of the transmitted symbol and frequency and timing offset,
i.e., p(x−1, f−1, τ−1). We assume that the transmitted symbol,
frequency offset and timing offset are all independent of each
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other, i.e., p(x−1, f−1, τ−1) = p(x−1) p(f−1) p(τ−1). Using
the fact that modulation symbols are equally likely, we have
p(x−1) = 1/M . Similarly p(f−1) = p(τ−1) = 1 since the
frequency offset and the timing offset are considered to be
uniformly distributed in the range (−0.5, 0.5). In addition, we
assume that the first symbol, x−1, is known. This assumption
helps us to avoid the M -fold ambiguity of the constellation
and to acquire the full-range acquisition of the frequency
offset. Note that we can avoid this assumption if we use
differential modulation. However, the use of a single pilot
symbol to resolve the ambiguities inherent in blind estimation
is a common approach [35], [36]. Thus, we initialize the
algorithm at time k = −1 as x(i)

−1 = x−1, f (i)
−1 ∼ U(−0.5, 0.5)

and τ
(i)
−1 ∼ U(−0.5, 0.5), i = 1, 2, . . . , N , where U(a, b)

denotes the Uniform distribution from a to b. We initialize
the weights of all the particles to be equal, i.e., w(i)

−1 = 1/N .

B. Importance Sampling

The sampling from the importance function in (10)
is accomplished in two steps. First, we need to
obtain the frequency offset sample at kth time
step from p

(
f
(i)
k |f (i)

0:k−1, τ
(i)
0:k−1,x

(i)
0:k−1, z0:k−1

)
and

the timing offset sample at kth time step from
p
(
τ
(i)
k |τ (i)0:k−1, f

(i)
0:k−1,x

(i)
0:k−1, z0:k−1

)
. Since these densities

cannot be exactly determined, we must approximate
them using a suitable density. Following the approach
in [37], we approximate these distributions by a beta
distribution. Since beta distribution has a range [0, 1],
we draw the frequency and timing offset sample
from the beta distribution as fk ∼ β(fk;Uk, Vk) and
ζk ∼ β(ζk;Yk, Zk), where f = f + 0.5 and ζ = τ + 0.5,
β(y, a, b) =

∫ 1

0
ya−1(1 − y)b−1dy is the beta function

and beta distribution parameters Uk, Vk , Yk and Zk, are
obtained by [37], such as Uk = f̄k

(
(̄fk(1− f̄k)/σ

2
fk
)−1

)
, Vk =

(1− f̄k)
(
(̄fk(1− f̄k)/σ

2
fk
)−1

)
, Yk = ζ̄k

(
(ζ̄k(1− ζ̄k)/σ

2
ζk
)−1

)
and Zk = (1 − ζ̄k)

(
(ζ̄k(1 − ζ̄k)/σ

2
ζk
) − 1

)
with

f̄k =
∑N

i=1 w
(i)
k−1f

(i)
k−1, σ2

fk
=

∑N
i=1 w

(i)
k−1

(
f
(i)
k−1 − f̄k

)2
,

ζ̄k =
∑N

i=1 w
(i)
k−1ζ

(i)
k−1 and σ2

ζk
=

∑N
i=1 w

(i)
k−1

(
ζ
(i)
k−1 − ζ̄k

)2
.

Next, we need to draw a sample of the transmitted sym-
bols from the distribution p

(
x
(i)
k |x(i)

0:k−1, f
(i)
0:k, τ

(i)
0:k, z0:k

)
. Since

the transmitted symbols are independent and identically dis-
tributed (i.i.d.) discrete uniform random variables, we can
ignore the dependency on all of the previous time states and
draw the new data symbol using the distribution

p
(
x
(i)
k |x(i)

0:k−1, f
(i)
0:k, τ

(i)
0:k, z0:k

)
= p

(
x
(i)
k |x(i)

k−1, f
(i)
k , τ

(i)
k , zk

)
= p

(
x
(i)
k = Xm|x(i)

k−1, f
(i)
k , τ

(i)
k , zk

)
∝ p

(
zk|x(i)

k = Xm,x
(i)
k−1, f

(i)
k , τ

(i)
k

)
= N (

μ
(i)
k (Xm), σ2

v

)
,

(14)

where N (μ, σ2) denotes the Gaussian distribution with mean
μ and variance σ2, Xm is one of the possible transmitted
symbols of the modulation alphabet, X = {X1, X2, . . . , XM}
and μ

(i)
k (Xm) = x

(i)T
k h(τ

(i)
k ) ej2πf

(i)
k k, where x

(i)
k =

[x
(i)
k−L, . . . , x

(i)
k−1, x

(i)
k = Xm]T , f (i)

k = f
(i)
k − 0.5 and τ

(i)
k =

ζ
(i)
k − 0.5. Note that, given x

(i)
k−1, we only need to draw the

new symbol, x(i)
k = Xm, in order to build x

(i)
k . Using (14),

we can write the probability mass function for each symbol
of X as

ρ(i)(xk = Xm) =
N (

μ
(i)
k (Xm), σ2

v

)
∑

X∈X N (
μ
(i)
k (X), σ2

v

) , (15)

where i = 1, 2, . . . , N . Hence, we draw the transmitted
symbol according to x

(i)
k ∼ ρ(i)(xk) and build x

(i)
k =

[x
(i)
k−L, . . . , x

(i)
k ].

C. Weight update

After obtaining the new particles, we update their corre-
sponding importance weights. Since all the possible transmit-
ted symbols are equiprobable and independent of each other,
i.e., p

(
xk|x(i)

k−1

)
= p(xk), we can rewrite the weight update

expression in (13) by ignoring the constant factor Ck as

w̃
(i)
k ∝ w

(i)
k−1

∑
X∈X

p
(
zk|xk = X,x

(i)
k−1, f

(i)
k , τ

(i)
k

)
= w

(i)
k−1

∑
X∈X

N (
μ
(i)
k (X), σ2

v

)
, (16)

where w̃
(i)
k is the non-normalized importance weight for

the particle i. Note that for non-equiprobable transmission,
weight updates can be obtained from the modified expression
w

(i)
k−1

∑
X∈X N (

μ
(i)
k (X), σ2

v

)
p(xk = X), where p(xk = X)

refers to the probability of transmitted symbol being xk = X .

Finally, we normalize the weights as w
(i)
k = w̃

(i)
k /

N∑
n=1

w̃
(n)
k .

D. Resampling

A well known problem in the practical implementation
of the Sequential Importance Sampling algorithm is that the
discrete measure of the particles (xk, fk, τk)

(i) degenerates
quickly, i.e., after a few time steps, most of the importance
weights have negligible values (w(i)

k � 0). The solution to this
problem is to resample the particles [34]. The basic resampling
operation involves generation of N new particles by sampling
the discrete set ((xk, fk, τk)

(i))Ni=1 with probabilities w(i)
k and

then resetting the importance weights to equal values 1/N .
Note that resampling at every time step is not needed. In our
algorithm, resampling is carried out whenever the effective

sample size of the particle filter Neff = 1/
∑N

i=1

(
w

(i)
k

)2

goes below a threshold value of N/2 [38]. In addition to
the standard resampling as described above, we propose new
resampling guidelines which are detailed in Section V.

E. Estimation

The importance weights and the drawn samples for the
frequency and timing offset are used to compute the Minimum
Mean Square Error (MMSE) estimate of the true carrier and
timing offset as

f̂k =

N∑
i=1

f
(i)
k w

(i)
k , (17)

τ̂k =

N∑
i=1

τ
(i)
k w

(i)
k , (18)
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TABLE I
PROPOSED SEQUENTIAL IMPORTANCE SAMPLING (SIS) PARTICLE FILTER

ALGORITHM.

PROPOSED MAIN ALGORITHM

Draw f
(i)
−1 ∼ U(0, 1) & ζ

(i)
−1 ∼ U(0, 1) for i = 1, 2, . . . , N

(total number of particles)
Set w(i)

−1 = 1/N
For k = 0 to D − 1 (total number of symbols)

Compute f̄k, σ2
fk

, ζ̄k & σ2
ζk

as defined in Sec. IV-B
Compute Uk, Vk, Yk & Zk as defined in Sec. IV-B
For i = 1 to N (total number of particles)

Draw fk ∼ β(fk;Uk, Vk) & ζk ∼ β(ζk;Yk, Zk)

Draw x
(i)
k ∼ ρ(i)(xk) ∝ N (μ

(i)
k (xk), σ

2
v)

Update weights w̃
(i)
k = w

(i)
k−1

∑
X∈X N (μ

(i)
k (X), σ2

v)
end
Sub-Algorithm-I (cf. Table II)

(Resampling for similar amplitude ambiguity)
Sub-Algorithm-II (cf. Table III)

(Resampling for fine tuning of estimates)
Normalize weights w

(i)
k = (

∑N
n=1 w̃

(n)
k )−1w̃

(i)
k

Resample if Neff =
1

∑N
i=1(w

(i)
k )2

≤ N/2

Sub-Algorithm-III (cf. Table IV)
(Resampling to resolve edge ambiguities)

Offset Estimation and Symbol Detection
f̂k =

(∑N
i=1 f

(i)
k w

(i)
k

)
− 0.5

τ̂k =
(∑N

i=1 ζ
(i)
k w

(i)
k

)
− 0.5

x̂k = arg max
X∈X

{∑N
i=1 δ(x

(i)
k −X)w

(i)
k

}
end

where f̂k and τ̂k are MMSE estimates of true frequency and
timing offsets at kth time step, respectively.

Finally, we compute the Maximum A Posteriori (MAP)
estimates of the transmitted symbol k as

x̂k = argmax
X∈X

( N∑
i=1

w
(i)
k δ

(
x
(i)
k −X

))
. (19)

The proposed algorithm is summarized in Table I.

V. NEW RESAMPLING GUIDELINES

In this section, we propose new resampling guidelines for
(i) dealing with the degeneracy problem, (ii) resolving carrier
offset estimation ambiguity at the edges of the frequency
range and (iii) resolving similar amplitude ambiguity of timing
offset estimates. In addition, we experimentally verify that the
additional computational complexity introduced as a result of
these new resampling guidelines is negligible.

A. Resampling for resolving similar amplitude ambiguity of
timing offset estimates

The SIS algorithm with the standard resampling operation
alone may not lead to meaningful results for the timing offsets
if measures to combat the similar amplitude ambiguity of
timing offset estimates are not taken. Since we assume perfect
frame synchronization and {x−L, x−L+1, . . . , x−1} = 0, the
pulse shaping function (raised cosine) has the same amplitude

TABLE II
SUB-ALGORITHM FOR RESOLVING SIMILAR AMPLITUDE AMBIGUITY OF

TIMING OFFSET ESTIMATES

Proposed Sub-Algorithm-I
if (k ∈ {2, 3, . . . , L}&max{w̃(i)

k } < 10−11)
τ1

(i)
k = rand(−0.5, 0)

Calculate w̃
(i)
k , (say w̃1

(i)
k )

τ2
(i)
k = rand(0, 0.5)

Calculate w̃
(i)
k , (say w̃2

(i)
k )

if ( sum(w̃1
(i)
k ) > sum(w̃2

(i)
k ) )

w̃
(i)
k = w̃1

(i)
k , τ (i)k = τ1

(i)
k

else
w̃

(i)
k = w̃2

(i)
k , τ (i)k = τ2

(i)
k

end
end
Note: i = 1, 2, . . . , N , rand function generates random
numbers in the range given in parenthesis and sum
operator is a vector sum ∀ i.

values for both positive and negative values of the timing
offset [37]. Thus, the timing offsets τ

(i)
−1 and −τ

(i)
−1 will result

in the same importance weights. Thus there is a 50% chance
that the the timing offset pdf will evolve in wrong region after
the first symbol.

To resolve this similar amplitude ambiguity in the timing
offset, we use the fact that as more data symbols come and the
sequence {xk−L, xk−L+1, . . . , xk−1} start taking reasonable
values, the convolution of the causal pulse shaping filter
with the input symbols will help to differentiate between the
corresponding positive and negative timing offset particles.
Thus from second till L + 1 symbols, where L denotes
the length of pulse shaping filter, we generate timing offset
particles first on one side (−0.5, 0) and then on the other
side (0, 0.5) of the estimation range and check the non-
normalized weights for both cases. Finally, we resample on the
basis of the particles of that region which result in a greater
value for the sum of non-normalized weights. This helps
the particles to evolve in the correct region from the second
symbol onwards. This resampling guideline is invoked only if
degeneracy phenomenon is detected, i.e., the maximum weight
falls below a threshold value of 10−11. This threshold value is
chosen as a tradeoff to avoid incorrect symbol detection due to
wrong convergence (more probable for lesser thresholds) and
unnecessary premature call for the resampling guideline that
can also lead to the evolution of the pdf towards the wrong
region (more probable for higher thresholds). The proposed
sub-algorithm-I is summarised in Table II.

B. Resampling for dealing with the degeneracy problem

To deal with the degeneracy problem arising from fixed
parameter estimation with SIS particle filters, we propose a
resampling guideline on the weights for both the timing and
the carrier offset. In this paper, we consider the full timing and
carrier offset acquisition range (−0.5, 0.5) as a cyclic range.
If the weights fall below a selected threshold, we regenerate
the particles in the range ±0.01 of the most recurring particle
and update the corresponding weights. That is, we explore
the particle space in the vicinity of the converged value to
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TABLE III
SUB-ALGORITHM FOR FINE TUNING OF TIMING AND FREQUENCY OFFSET

ESTIMATES

Proposed Sub-Algorithm-II
let x0(i)k = x

(i)
k , f0(i)k = f

(i)
k , τ0(i)k = τ

(i)
k & w̃0

(i)
k = w̃

(i)
k

∀ i = 1, 2, . . . , N

if (k < D/2 & max{w̃(i)
k } < 10−11)

f
(i)
k = f

(i)
k + rand(−0.01, 0.01)

Resample and Calculate w̃
(i)
k

if ( sum(w̃
(i)
k )/sum(w̃0

(i)
k ) < 103 )

w̃
(i)
k = w̃0

(i)
k , f (i)

k = f0
(i)
k , x(i)

k = x0
(i)
k

end
end
let x0(i)k = x

(i)
k , & w̃0

(i)
k = w̃

(i)
k ∀ i = 1, 2, . . . , N

if (k < D/2 & max{w̃(i)
k } < 10−11)

τ
(i)
k = τ

(i)
k + rand(−0.01, 0.01)

Resample and Calculate w̃
(i)
k

if ( sum(w̃
(i)
k )/sum(w̃0

(i)
k ) < 103 )

w̃
(i)
k = w̃0

(i)
k , τ (i)k = τ0

(i)
k , x(i)

k = x0
(i)
k

end
end
Note: i = 1, 2, . . . , N .

enable the algorithm to fine tune in the convergence region.
We do this space exploration for carrier offset particles first
since even a very small residual error in carrier offset esti-
mation can accumulate with time and lead to failure in data
detection. Then we recheck the weights and if they again fall
below the selected threshold, we repeat the proposed space
exploration for timing particles. The proposed sub-algorithm-
II is summarized in Table III.

C. Resampling for resolving edge ambiguities of carrier offset
estimates

The edges of the carrier offset range, (−0.5,−0.45) and
(0.45, 0.5), are very sensitive to error since even a small
amount of noise can perturb the received signal and lead to
the posterior density of carrier offset to evolve in the wrong
estimation region. We mitigate this problem by putting a check
on the first symbol (k = 0) after resampling, i.e., if more than
90% particles are populated towards edge regions, we gather
all the particles towards that end of the estimation range, which
is more heavily occupied with the particles. The proposed sub-
algorithm-III is summarized in Table IV.

D. Complexity Analysis

In this subsection, we experimentally verify that the pro-
posed resampling guidelines are only invoked under certain
special conditions and they do not increase the overall compu-
tational complexity of the main algorithm in Table I. The sub-
algorithm-III is only invoked for the first symbol in a frame
and only when more than 90% of the particles are populated
towards the edge regions. The sub-algorithm-I and II are
executed when particle filter degenerates. We use simulations
to test the average number of times Sub-Algorithm-I and II
are executed in a frame of 100 symbols. The results are
summarized in Table V after averaging over 600 randomly

TABLE IV
SUB-ALGORITHM FOR RESOLVING EDGE AMBIGUITIES OF CARRIER

OFFSET ESTIMATES

Proposed Sub-Algorithm-III
let ε = be most recurring frequency particle, f (i)

k , among
all i = 1, 2, . . . , N . let f (i)

k (x, y) be the frequency particles
that lie in the range (x, y) and n(x, y) be the number of
those particles.
if ( n(−0.5,−0.4) + n(0.4, 0.5) > 0.9N )

if ( n(−0.5,−0.4) > n(0.4, 0.5) )
f
(i)
k (0.4, 0.5) = ε+ rand(−0.015, 0.015)

else
f
(i)
k (−0.5,−0.4) = ε+ rand(−0.015, 0.015)

end
if ( f (i)

k > 0.5||f (i)
k < 0.5 )

f
(i)
k = ε

end
end
Note: i = 1, 2, . . . , N .

TABLE V
AVERAGE NUMBER OF TIMES SUB-ALGORITHMS I AND II ARE INVOKED

IN A FRAME OF 100 SYMBOLS.

No. of Particles
Average Number of Times

SNR=20 SNR=24 SNR=28
N = 100 0.098 0.48 0.88
N = 200 0.023 0.053 0.50
N = 300 0 0.01 0.29

generated frames and random timing and frequency offsets
for N = 100, 200 and 300 particles at SNR = 20, 24 and 28
dB, respectively. The results in Table V show that overall the
sub-algorithms-I and II are not called more than once in a
frame, thus adding negligible complexity to the main particle
filter algorithm.

VI. WEIGHTED BAYESIAN CRAMÉR RAO BOUNDS

In this section, we derive the estimation performance
bounds. Since the derivation of CRB provides the theoretical
foundation for the derivation of WBCRB, we first derive the
CRB for joint timing and carrier offset estimation without
assuming any prior information. This is then used to derive
the WBCRB which incorporates the prior information on
the range of the timing and the carrier offsets, respectively.
In the WBCRB derivation, we consider the general case of
timing and carrier offsets uniformly distributed in the range
(−r/2, r/2) for r ∈ (0, 1). Note that non-data aided bounds,
treating transmitted data symbols as unknown vector, are
beyond the scope of this paper.

A. Joint CRB

We start from the signal model given in (6) as z =
DXh + v. Let θ � [τ, f ]T and denote μ = DXh. Since,
the covariance matrix Cz does not depend on θ, the Fisher
Information matrix (FIM) J of θ is given by [39]

J(θ) = 2	
(∂μH

∂θ
C−1

z

∂μ

∂θT

)
, (20)
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where ∂
∂a (·) denotes the partial derivative with respect to a, the

inverse covariance matrix, C−1
z = 1

σ2
v
ID for the signal model

in (6) and ID is identity matrix of D ×D size. Substituting
in (20), we get

J(θ) =
2

σ2
v

	
(∂μH

∂θ

∂μ

∂θT

)

=
2

σ2
v

	
([

∂μH

∂τ
∂μ
∂τ

∂μH

∂τ
∂μ
∂f

∂μH

∂τ
∂μ
∂τ

∂μH

∂τ
∂μ
∂f

])
. (21)

Substituting the value of μ in (21), we get (22) as shown at
the bottom of this page, where T = 2πj × diag(0, 1, . . . , D−
1), j is the imaginary number defined as j =

√−1 and h
′
=

∂h
∂τ .

Using the fact that DHD = ID and TH = −T as T is
purely an imaginary matrix, (22) simplifies to

J(θ) =
2

σ2
v

[ 	(h′HXHXh
′
) 	(h′HXHTXh)

	(hHXHTHXh
′
) 	(−hHXHT2Xh)

]
.

(23)
Let us write (23) as

J(θ) =
2

σ2
v

[
A11 A12

A21 A22

]
, (24)

where Aij are all scalars, such that A11 = 	(h′HXHXh
′
),

A12 = 	(h′HXHTXh), A21 = 	(hHXHTHXh
′
) and

A22 = 	(−hHXHT2TXh). Substituting these scalar factors
in (24), we get (25) as shown at the bottom of this page.

Finally, the CRB can be found by taking inverse of FIM and
is defined in (25). The CRB of timing and frequency offset
can thus be written as

CRB(τ) = σ2
v

2 (A11 −A12A
−1
22 A21)

−1, (26)

CRB(f) = σ2
v

2 (A22 −A21A
−1
11 A12)

−1. (27)

The validity of these results is discussed in Sec. VII.

B. Weighted Bayesian CRB

The WBCRB for vector parameters is defined as [31]

WBCRB(θ)

= Eθ(Q(θ)) [Eθ(Jw(θ)) + Eθ(Pw(θ))]
−1

Eθ(Q(θ)),
(28)

where Jw(θ) is the weighted FIM for the timing and frequency
offset estimation, Pw(θ) is the weighted Prior Information
Matrix (PIM) and Q is a matrix representing the weighting
functions. Following [31], these terms are defined in our case
as

[Jw(θ)]ij = q(θi)q(θj)Ez|θ

(
∂ ln p(z|θ)

∂θi

∂ ln p(z|θ)
∂θj

)
, (29)

[Pw(θ)]ij = q(θi)q(θj)
∂ ln [p(θ)q(θi)]

∂θi

∂ ln [p(θ)q(θj)]

∂θj
,

(30)
Q(θ) � diag(q(θi), q(θj)), (31)

where i, j = {1, 2}, θ1 ∈ (−r/2, r/2) and θ2 ∈ (−r/2, r/2)
correspond to timing and carrier offsets respectively in our
case, p(θ) = 1

r is the prior distribution of timing and carrier

offsets, q(θn) =
(
1
r

)2c
φc
n(r − φn)

c for 0 < φn < r, φn =
θn+

r
2 , n = {1, 2} and c is the weighting index. The value of

c can be chosen to adjust the tightness of the WBCRB. Note
that if the weighting index, c = 0, the WBCRB in (28) has
the following relationship with the CRB in (25) [31]

WBCRB(θ)|c=0 =
(
Eθ{CRB−1(θ)})−1

. (32)

The calculation of the WBCRB in (28) requires the compu-
tation of three expectations, which are detailed in the following
subsections.

1) Calculation of Eθ(Q(θ)): Given the signal model in (6)
and the weighing function in (31), the expectation Eθ(Q(θ))
can be obtained by extending the derivation in [31] and leads
to the following result

Eθ(Q(θ)) = β(c+ 1, c+ 1) I2, (33)

where β(a, b) =
∫ 1

0 ya−1(1 − y)b−1dy denotes the beta
function and I2 is a 2× 2 identity matrix.

2) Calculation of Eθ(Pw(θ)): Given the signal model
in (6) and the weighting function in (31), the expectation of
the weighted PIM Eθ(Pw(θ)) is given by [31]

[Eθ(Pw(θ))]ij =

{(
1
r

)2
c β(2c+ 1, 2c− 1), i = j

0, i �= j,
(34)

where c is the weighting index and β(·) is beta function.
3) Calculation of Eθ(Jw(θ)): Exploiting the fundamental

properties of the weighted FIM, we can rewrite (29) as [39]

[Jw(θ)]ij = q(θi)q(θj) [J(θ)]ij , (35)

where [J(θ)]ij = Ez|θ
(∂ ln p(z|θ)

∂θi

∂ ln p(z|θ)
∂θj

)
is the FIM and is

given by (24) in our case.
Using (24) and (35), we have a closed form expression

for Jw(θ). Note that since this expression depends on the
pulse shaping filter h(t), it is not possible to obtain a closed
form analytical solution for Eθ(Jw(θ)). However it can easily
be obtained numerically. Finally, using the results in Subsec-
tions VI-B1, VI-B2 and VI-B3, the WBCRB in (28) can be
found numerically. Moreover, WBCRB(τ ) = [WBCRB(θ)]11
and WBCRB(f) = [WBCRB(θ)]22. The WBCRB is com-
pared with the simulation results in the next section.

J(θ) =
2

σ2
v

[ 	{h′HXHDHDXh
′} 	{h′HXHDHTDXh}

	{hHXHDHTHDXh
′} 	{hHXHDHTHTDXh}

]
. (22)

CRB(θ) = [J(θ)]−1
=

σ2
v

2

[
(A11 −A12A

−1
22 A21)

−1 −(A11 −A12A
−1
22 A21)

−1A12A
−1
22

−(A22 −A21A
−1
11 A12)

−1A21A
−1
11 (A22 −A21A

−1
11 A12)

−1

]
. (25)
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Fig. 1. CRB and WBCRB for joint timing and carrier offset estimation
and MSE of timing and carrier offset estimation using optimal data-aided
maximum likelihood (DA ML) estimator.
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Fig. 2. Estimate of the (a) frequency offset f̂k and (b) timing offset τ̂k at
different time instants for SNR = 12 dB, frequency offset f = 0.4, timing
offset τ = 0.4 and number of particles N = 100, 200 and 300, respectively.

C. Validation of WBCRB

In this subsection, we show that the WBCRB provides
useful additional information compared to the CRB and is
an accurate lower bound for all SNR values. Fig. 1 plots
the WBCRB in (28) for two different estimation ranges,
(−0.5, 0.5) and (−0.05, 0.05), as a function of SNR. In cal-
culating the WBCRB, the value of weighting index c is set to
1 to get tightest bound [32]. Also, as discussed in Sec. VI-B3,
the weighted FIM, Eθ{Jw(θ)}, is computed numerically by
averaging the results of Jw(θ) in (35) for 10, 000 simulations
with randomly generated timing and carrier offsets. The CRB
in (26) and (27) is the same for both estimation ranges since
it does not incorporate the prior information on the range of
the timing and carrier offsets.

Fig. 1 shows that at high SNR the WBCRB converges
to the CRB since the estimate from the data dominates the
prior information, while at low SNR the WBCRB for timing
offset goes flat and converges to the variance levels 1

12 (1)
2 =

0.083 and 1
12 (0.1)

2 = 8.3 × 10−4 for the estimation ranges
(−0.5, 0.5) and (−0.05, 0.05) respectively. For frequency off-
set estimation, a similar value will be reached but this requires
extremely low SNR in AWGN channels. The SNR where
WBCRB converges to the CRB depends on the parameter
estimation range. For the full range of timing offset estimation,
the WBCRB converges to the CRB at very low SNR (≈ −6
dB). However if timing offsets are uniformly distributed over
a smaller range, the WBCRB converges to the CRB at mid to
high SNR, e.g., at 10 dB for the range (−0.05, 0.05). Further,
to illustrate the advantage of the WBCRB over the CRB, we
also simulate the MSE of the timing and frequency offset
estimation for the two estimation ranges using an optimal data-
aided maximum likelihood (DA ML) estimator which assumes
the knowledge of the transmitted data vector at the receiver.
Fig. 1 shows that at low SNR, MSE of timing offset estimation
is below the conventional CRB and it matches well with the
WBCRB at high SNR. Thus the WBCRB is an accurate and
useful lower bound for all SNR values.

VII. SIMULATION RESULTS

In this section, we present simulation results to assess the
performance of the proposed SIS particle filter algorithm.
For simplicity, we use Binary Phase Shift Keying (BPSK)
modulation and an AWGN channel. The oversampling factor
is Q = 1. The root raised cosine causal filters are truncated
to [0, 2T ] for transmitter pulse shaping and receiver matched
filtering, with roll-off factor 0.22 and filter lag L = 2. The tim-
ing offset is uniformly distributed in the full acquisition range
(−0.5, 0.5), while the carrier offset is uniformly distributed
in the approximately full acquisition range (−0.48, 0.48) for
every simulation. We use N = 100, 200, 300 and 1000
particles to estimate the data symbols and timing and carrier
offsets jointly. All results are averaged over R = 1000
Monte Carlo simulations, with each simulation consisting
of a block of D = 100 transmitted bits. The figures of
merit used are the MSE of timing and carrier offsets and
the mean BER. The MSE of timing offset is calculated
as, MSE = (1/R)

∑R
�=1(τ() − τ̂D−1())

2, where τ̂D−1()
is the estimate of timing offset at (D − 1)th symbol and
th simulation. Similarly, the MSE of the carrier offset is
calculated as, MSE = (1/R)

∑R
�=1(f()− f̂D−1())

2, where
f̂D−1() is the estimate of carrier offset at (D − 1)th symbol
and th simulation. The mean BER is obtained by averaging
the BER for each simulation run without discarding any initial
bits.

A. Performance of Proposed Particle Filter Algorithm

Fig. 2(a) and 2(b) illustrate the convergence behaviour of
the timing and carrier offset estimates respectively. The figures
show the estimates of the timing and the carrier offsets at
different time instants for a SNR of 12 dB for one particular
realization of the particle filter. The true timing and carrier
offset in this case is τ = f = 0.4, which represents a worst
case scenario. We can see from Fig. 2(a) that the estimated
timing offset τ̂k converges to the true value after about 25−30
time instants, e.g., for N = 100 particles, the value is τ̂k =
0.3588 after k = 25 time instants which is very close to the
true value. From Fig. 2(b), we can see that the estimated carrier
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Fig. 3. MSE of timing offset estimation as a function of SNR (dB), for
different number of particles N = 100, 200, 300 and 1000.
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Fig. 4. MSE of carrier offset estimation as a function of SNR (dB), for
different number of particles N = 100, 200, 300 and 1000.

offset f̂k converges to the true value after just 15 − 20 time
instants, e.g., for N = 100 particles, the value is f̂k = 0.3991
after k = 20 time instants which is very close to the true
value. In addition, as we increase the number of particles, the
estimate converges more rapidly in both cases. The results in
Fig. 2 exemplify the fast convergence behavior of the proposed
algorithm.

Figs. 3 and 4 show the Mean Square Error (MSE) of the
timing offset and the carrier offset as a function of SNR for
different number of particles respectively. The WBCRB in (28)
for timing and carrier offsets is also plotted as a reference. We
can see that, in general, the MSE of the timing and carrier
offsets decreases by increasing the SNR or increasing the
number of particles. For the particle filter with new resampling
guidelines, the MSE of the carrier offset estimation decreases
considerably after 15 dB SNR and approaches the WBCRB
for N = 300 and 1000 particles. Similarly the MSE of the
timing offset estimation approaches the WBCRB at high SNR
for large number of particles. Comparing the curves in Figs. 3
and 4 for the cases with and without the new resampling
guidelines, we can see that the new resampling guidelines
proposed in Sec. V result in considerable performance im-
provement for both timing and carrier offset estimation and
help in achieving the MSE performance close to the WBCRB
at mid-to-high SNR values. Thus, this experimentally verifies
that, in the context of the synchronization problem considered
in this paper, these resampling guidelines successfully solve
the degeneracy and ambiguity problems without adversely
affecting the convergence of the SIS algorithm. In addition,
we quantify the performance improvement resulting from the
use of new resampling guidelines. Fig. 3 shows that for timing
offset estimation, the proposed resampling guidelines attain 10
dB performance improvement for MSE of 10−3 with N = 200
particles. Similarly, for carrier offset estimation in Fig. 4, the
use of proposed resampling guidelines achieves almost 9 dB
performance gain for MSE of 10−6 with N = 300 parti-
cles. Note that as demonstrated in Sec. V, this performance
improvement comes at the expense of negligible additional
complexity.

Fig. 5 shows the mean BER of the proposed particle filter

algorithm, as a function of SNR. We can see that the BER
improves with increasing the number of particles and using
the proposed resampling guidelines. In addition, the slope of
the BER curves for N = 200 and 300 particles approaches
that of the theoretical BPSK BER curve (plotted for perfect
synchronization case), which confirms the correct working of
the proposed algorithm. Note that the BER results in Fig. 5
correspond to the worst case scenario with timing and carrier
offsets uniformly distributed in the full acquisition range.

B. Comparison with Existing Non-Particle Filter Based Solu-
tion

The simulation results for the non-particle filter based
solution in [2] achieve the theoretical BER curve for AWGN
channel after SNR = 6 dB approximately. Our result for
N = 300 particles, as shown in Fig. 5, is 10 dB from the the-
oretical BER curve. The reason behind this performance gap
is the limited range of carrier offset acquisition, (−0.05, 0.05)
and oversampling, as exploited in [2]. As shown in Fig. 6,
the BER of our particle filter based solution achieves the
theoretical lower bound at SNR = 10 dB, given oversampling
is used, (Q = 4) and the carrier offset is uniformly distributed
in the range (−0.05, 0.05). With oversampling, the particle
filtering algorithm is run on each sample of the oversampled
signal before matched filtering. The probability mass function
for each particle is accumulated for Q adjacent samples and
then new symbol is drawn after every Q samples from the
accumulated probability mass function. The advantage of our
particle filter based solution, compared to [2], is that it can
work for full range acquisition of carrier offset estimation as
shown in Fig. 5.

VIII. CONCLUSIONS

In this paper, we have studied the problem of jointly
estimating the timing and carrier offset and transmitted data in
AWGN channels using particle filters based on the sequential
importance sampling methodology. We have proposed novel
resampling guidelines to deal with the degeneracy problem
and fine tuning the estimated values. While the resampling
guidelines in Sub-Algorithm-I and III are specific for our
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Fig. 5. BER of the particle filter receiver as a function of SNR (dB), for
different number of particles N = 100, 200 and 300 with no oversampling
and full range acquisition for timing and carrier offsets.

0 2 4 6 8 10 12

10
−4

10
−3

10
−2

10
−1

10
0

SNR

B
E

R

Theory (Perfect Synchronization)
N = 100 ( oversamp and f = [−0.05,0.05] )
N = 200 ( oversamp and f = [−0.05,0.05] )
N = 300 ( oversamp and f = [−0.05,0.05] )

Fig. 6. BER of the particle filter receiver as a function of SNR (dB), for
different number of particles N = 100, 200 and 300 with oversampling
factor Q = 4 and carrier offset acquisition range (−0.05, 0.05).

estimation problem, Sub-Algorithm-II can, in principle, be
applied to deal with the degeneracy issue in static parameter
estimation using particle filters in any other problem. Further,
we have derived the WBCRB, which is an accurate lower
bound for joint estimation of timing and carrier offsets. The
performance of the proposed blind receiver is studied using
computer simulations. Our simulation results illustrate that
the performance of the proposed receiver, incorporating the
new resampling guidelines, is close to optimal at mid-to-high
SNR values, both in terms of MSE of timing and frequency
offsets and BER. The advantage of our particle filter algorithm,
compared to existing techniques, is that it can work for the
full range acquisition of both timing and carrier offsets.

APPENDIX A
DERIVATION OF (12)

Applying Bayes theorem and laws of conditional probabil-
ity, we can further simplify (11) as

p
(
x
(i)
0:k, f

(i)
0:k, τ

(i)
0:k|z0:k

)
= Ck × p

(
x
(i)
0:k, f

(i)
0:k, τ

(i)
0:k, zk|z0:k−1

)
= Ck × p

(
x
(i)
k ,x

(i)
0:k−1, f

(i)
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(i)
0:k, zk|z0:k−1

)
(a)
= Ck × p
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x
(i)
k |x(i)
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(i)
0:k, τ
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(
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(i)
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(i)
k |x(i)
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(i)
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)︸ ︷︷ ︸
1st term in (12)

× p
(
x
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0:k−1, f

(i)
0:k, τ

(i)
0:k, zk|z0:k−1

)︸ ︷︷ ︸
Term A

, (36)

where (a) is obtained using p(A,B|C) = p(A|B,C)p(B|C).

Decomposing Term A in (36), we have

p
(
x
(i)
0:k−1, f

(i)
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(i)
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= p
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. (37)

Since the current observation in the particle filter de-
pends only on the current state and independent of
the previous states given the current state, we have
p
(
zk|x(i)

0:k−1, f
(i)
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(i)
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)
= p

(
zk|x(i)
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k , τ
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k
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2nd term in (12)

. De-

composing Term B in (37), we have
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Finally since f
(i)
k and τ

(i)
k are independent variables, given zk

is not observed, we can decompose Term C in (38) as
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. (39)

Thus we arrive at the result in (12).
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