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Abstract—The development of low-complexity blind techniques
for equalization, timing and carrier offset recovery is of enormous
importance in the design of high data rate wireless systems. In
this paper, we propose a practical solution for blind equalization,
timing recovery and small carrier offset correction in slowly-
fading frequency selective wireless communication channels. We
extend the Modi ed Constant Modulus Algorithm (MCMA) to
handle the timing offset parameter. We propose a single objective
function to achieve equalization, timing and carrier recovery
without the need of any training sequences. Our algorithm
achieves 5-10 times faster convergence, compared to previous
research, for the Mean Square Error (MSE) at the equalizer
output due to the nely tuned step sizes and updating the
equalizer taps and timing offset jointly to minimize the mean
dispersion and inter symbol interference. Our results show that
the proposed technique can successfully handle synchronization
and combat the frequency selectivity of the wireless channel.

I. INTRODUCTION

Adaptive equalization techniques are a topic of immense
theoretical and practical value with growing applications in
areas of digital and wireless communications [1]. The use
of initial training sequences in adaptive equalization gives
rise to signi�cant overhead with data rate reduction and
sometimes may become unrealistic or impractical. For in-
stance, no training signal may be available to receivers in
military communication scenarios and defence applications. In
a multicast or broadcast system, it is highly undesirable for the
transmitter to engage in a training session for a single user by
temporarily suspending its normal transmission to a number
of other users. Consequently, there is a strong and practical
need for blind equalization without training [1].
There are two main approaches to blind equalization. The

�rst category is stochastic gradient algorithms which process
one data sample or a small block of data at a time and
iteratively minimize a chosen cost function [2]. The second
category is statistical methods which use suf�cient stationary
statistics collected over a large block of received data [2].
A limitation of statistical methods is that they require the
channel to be constant over the block of received data. This
requirement is generally not ful�lled by real-world wireless
channels which cannot be guaranteed to be static over long
time intervals. Hence stochastic gradient algorithms can be
used to adapt in slowly fading wireless channels while working
on a symbol by symbol basis. The issue of slow convergence
in stochastic gradient algorithms is well known and has been
addressed by many authors recently to make it faster and
practical in various scenarios [3]–[7].

Due to its simplicity, Constant Modulus Algorithm (CMA)
is the most commonly used stochastic gradient algorithm
from practical implementation point of view [8]. In CMA,
a separate loop is required for tracking the channel and the
carrier phase offset respectively, which can be avoided using
Modi�ed CMA (MCMA) cost function [9]. The convergence
speed of MCMA is, however, slower than CMA. This can be
improved in a number of ways, e.g. by using a combination
of MCMA and Super Exponential algorithm [4], by joining
MCMA and Decision Directed (DD) tracking with variable
step size adjustment [3], [6], by using decision feedback
equalizer [7] and also by appending DD-Least Mean Square
algorithm with CMA [5]. All of these algorithms assume
perfect timing recovery at the receiver, which is never possible
in realistic communication systems.
To the best of our knowledge, the important problem of

joint equalization, carrier and timing recovery for wireless
communications has only been targeted by a few authors [10],
[11]. In [10], an algorithm is presented for joint equalization,
carrier and timing recovery which is suited for cable modem
transmission and cannot be directly applied to wireless com-
munication scenarios. In [11], the task is accomplished by
using digital phase-locked loop (PLL). However the acquisi-
tion speed of a PLL is very slow, which makes it impractical
for time varying wireless channels. Most of the previous work
in [2]–[9] focuses on the subset of these problems, either joint
equalization and carrier recovery or blind equalization alone.
Hence there is a need for the development of practical, low-
complexity, blind techniques for equalization, timing recovery
and carrier offset correction.
In this paper, we propose a technique for blind timing re-

covery, equalization and carrier offset recovery jointly without
any aid of training, which is applicable for slowly-fading,
frequency selective wireless channels. We modify MCMA
algorithm of Oh et al. [9] to handle timing offset parameter.
We propose a modi�ed single objective function to achieve
equalization, carrier and timing recovery. Our simulation re-
sults show very fast convergence compared to the results
of all the above mentioned papers, i.e., [3]–[5]. The major
contributions of this paper, in comparison to previous research,
are as follows:-
• We propose an algorithm, based on joint minimisation of

a single objective function, to accomplish equalization,
timing recovery and small carrier offset recovery without
the need of any training sequences and phase locked loop.
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Fig. 1. Baseband Communication System for Blind Synchronization and Equalization.

• We show that the proposed algorithm has 5 − 10 times
faster convergence of Mean Square Error compared to the
previous research, while providing additional capability
of handling synchronization. This is due to the �nely
tuned step sizes and updating the equalizer taps and
timing offset jointly to minimize the mean dispersion and
inter symbol interference.

Finally, we outline the algorithm in a step-wise manner for
an ease of practical implementation.

II. SYSTEM MODEL

The baseband model of the proposed system for a single
source and a single destination is shown in Fig. 1. At the
transmitter, the sequence of information bits bk is applied to
constellation mapper, which converts bk into a complex valued
sequence ak of data symbols, taken from two dimensional
constellation and the two components (in-phase and quadra-
ture) are transmitted by amplitude modulating two quadrature
carrier waves. Such a modulation scheme can be treated
in a concise manner by combining in-phase and quadrature
components into complex valued symbols. The data symbols
enter the transmit �lter with the impulse response gT (t) and
the resulting transmit signal s(t) is given by

s(t) =
∞∑

k=−∞
akgT (t− kT ) (1)

where 1/T is the symbol rate, i.e., the rate at which the data
symbols are applied to the transmit �lter, gT is the baseband
pulse at the transmitter which is matched to the receiver �lter
gR, i.e., gT (t) = gR(−t). The signal at the output of the
receive �lter is given by

r(t, τ) =
∞∑

k=−∞
akh(t− τT − kT )ejφ(t) + v(t), (2)

where h(t) = gT (t) ∗ c(t) ∗ gR(t) represents the overall
baseband impulse response, c(t) is the baseband multipath
channel impulse response which introduces attenuation and
phase distortion in the signal, φ(t) = (�ω)t represents

the frequency offset between the transmitter and receiver
oscillators, which can be visualized as the time varying phase
offset and results in continuous spinning of constellation with
time and ‘∗’ represents the convolution operator. The constant
phase offset between the transmitter and receiver carriers can
be merged with the channel induced phase offset φo which
rotates the transmitted constellation, τ , normalized by the
symbol duration T , is the fractional unknown timing offset
(|τ | ≤ 1

2 ) between the transmitter and receiver �lters and v(t)
is the complex �ltered noise v(t) = gR(t)∗w(t) with variance
σ2

v , where w(t) is the zero mean stationary, white, and complex
Gaussian process.
After pulse shaping, the signal is sampled with some timing

offset since the receiver does not know the exact sampling
point corresponding to maximum Signal to Noise Ratio (SNR).
The receive �lter output is oversampled by the factor Q such
that the oversampling period Ts = T/Q, so (2) becomes

r(nTs, τ) =
∞∑

k=−∞
akh(nTs − τT − kT )ejφ(nTs) + v(nTs),

(3)
where n is the sampling index, φ(nTs) = 2π(�f)nTs =
2π(�f/Fs)n, �f is the frequency offset in Hz and �f/Fs

is the digital frequency offset in cycles/sample [12]. The noise
samples v(nTs) are assumed to be statistically independent of
the input symbols ak. Sampling the received signal at wrong
instant (not at the maximum eye opening) or any jitter in the
sampler introduces Inter Symbol Interference (ISI) and results
in the reduction of noise margin. Zero ISI can be achieved
only by sampling at exact instant kT , for kth symbol applied
to the transmit �lter.
The problem of joint synchronization, equalization and

small carrier offset recovery using blind algorithms is to:

1) Estimate the timing offset τ .
2) Estimate the equalizer taps to equalize the multipath

channel c(t).
3) Mitigate of constant channel induced phase offset φo.
4) Mitigate small time varying phase offset φ(k).

The proposed solution is presented in the next section.
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III. PROPOSED RECEIVER

In this section, we present the receiver design, which is
dedicated to compensate for all the distortions (timing offset,
frequency and phase offset and multipath channel distortion)
jointly without any aid or known preamble.

A. Interpolator

Simple linear interpolation is used, which works on esti-
mated timing offset τ̂ provided by the Blind Equalization and
Timing Adjustment block of Fig. 1. Instead of linear inter-
polators, Lagrange or higher degree polynomial interpolators
can also be used [13]. However the resulting performance
improvement over linear interpolators is very minute and
comes at a cost of greater computational complexity. Hence
we use linear interpolators as a good compromise between
performance and complexity. Linear interpolator has a delay
of Q− 1 samples which can be stored in its delay line before
preforming interpolation. Depending on τ̂ and Q, the linear
interpolation [13] between two appropriate samples is given
by

u(nTs, τ̂) = r(nTs, τ) + μ[r((n + 1)Ts, τ)− r(nTs, τ)], (4)

where μ = τ̂ × Q. The sampling rate after interpolation is
reduced to 1/T for baud spaced equalization, i.e., interpolation
is performed on interleaved samples.

B. Blind Equalization and Timing Adjustment

For multipath channels c(t), each received signal sample
r(nTs, τ) depends on multiple transmitted symbols ak and the
resulting ISI is mitigated through multitap equalizer W . Let
us denote the equalizer output y(kT, τ̂) as yτ̂ (k) as shown
in Fig. 1. The carrier offset recovery and estimate of the
parameters τ̂ (the timing offset) and W (the equalizer tap
weight vector) are obtained by minimizing the mean dispersion
of the sampler output and using the modi�cation in CMA cost
function [14]. Introducing new parameter, τ̂ , to cost function
of Oh and Chin [9], the modi�ed objective function can be
written as

Jk(τ̂ , W ) = JR,k(τ̂ , W ) + JI,k(τ̂ , W ) (5)

where JR,k(τ̂ , W ) and JI,k(τ̂ , W ) are the cost functions
for the real part �{yτ̂ (k)} = yR,τ̂ (k) and imaginary part
�{yτ̂ (k)} = yI,τ̂ (k) of the equalizer output respectively, and
are de�ned as

JR,k(τ̂ , W ) = E{(|yR,τ̂ (k)|2 − γR)2} (6)

JI,k(τ̂ , W ) = E{(|yI,τ̂ (k)|2 − γI)2}, (7)

where |·| is the modulus operator, E{·} represents the expected
or mean value and γR and γI are constants for the real
�{ak} = aR,k and imaginary �{ak} = aI,k parts of the
input data sequence respectively. These constant factors are

proportional to the kurtosis of the input sequence and are
determined as [8]

γR =
E{|aR,k|4}
E{|aR,k|2} (8)

γI =
E{|aI,k|4}
E{|aI,k|2} (9)

where input data sequence ak is assumed to be stationary and
non gaussian process and ak = aR,k + jaI,k, with i.i.d. real
and imaginary parts [2].

(8) and (9) are determined subject to the constraint that
the average gradient of the cost function (5) with respect to
the tap weight vector W is zero when the channel is perfectly
equalized. The objective cost function given by (5) is obtained
by using p = 2 (dispersion order) in the generalized Con-
stant Modulus Godard’s cost function E[(|yτ̂ (k)|p− γp)2] for
γp = E{|ak|2p}/E{|ak|p} [8]. The value of p = 2 is chosen
because the practical digital implementation with �nite length
arithmetic (�xed point implementation) suffers from precision
or over�ow problems for large p [8]. Godard also demonstrated
that the cost function can be applied to non-constant modulus
signals such as rectangular QAM constellation [8].
Let W (k) = {w0, w1, . . . , wN−1}t be the adjustable tap

weights for N tap equalizer where superscript (·)t denotes the
transpose of a vector. If X(k) = {uτ̂ (k), uτ̂ (k−1), . . . , uτ̂ (k−
N+1)}t are interpolated samples in the delay line of equalizer
then equalizer output is

yτ̂ (k) = Xt(k)W (k) (10)

The estimated equalizer weight vector W (k) is fed to the
equalizer by Blind Equalization and Timing Adjustment block
which uses the steepest descent type method of stochastic
gradient algorithm and optimizes the cost function (5) to adapt
the tap weight vector and timing offset [2]. In this case, the
modi�ed steepest descent update equations are

W (k + 1) = W (k)− μw �w Jk(τ̂ , W ) (11)

τ̂(k + 1) = τ̂(k)− μτ̂ �τ̂ Jk(τ̂ , W ), (12)

where μw and μτ̂ are small positive step sizes which con-
trol the convergence of parameter update equations and
�wJk(τ̂ , W ) and �τ̂Jk(τ̂ , W ) are the gradients of the cost
function (5) with respect to equalizer tap weights and timing
offset respectively. Solving these gradients and then substitut-
ing in (11) and (12) results in

W (k + 1) = W (k)− μwew(k)XH(k), (13)

τ̂(k + 1) = τ̂(k)− μτ̂ (|yτ̂ (k)|2 − γ)
∂|yτ̂ (k)|2

∂τ̂
, (14)

where the superscript (·)H represents the conjugate transpose
(Hermitian) operator and the error signal for weight update
ew(k) = ew,R(k) + jew,I(k) is given as

ew,R(k) = (|yR,τ̂ (k)|2 − γR) yR,τ̂ (k) (15)

ew,I(k) = (|yI,τ̂ (k)|2 − γI) yI,τ̂ (k) (16)
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Fig. 2. Results for QPSK with multipath channel, fractional timing phase
offset (τ) = −0.4, frequency offset (�f/Fs) = 10−4 and SNR = 25 dB.
(a) Channel output constellation. (b) Equalized output constellation. (c) MSE
between equalizer output and transmitted symbols. (d) Timing offset recovery.
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Fig. 3. Results for 16-QAM with multipath channel, fractional timing phase
offset (τ) = −0.4, frequency offset (�f/Fs) = 10−4 and SNR = 25 dB.
(a) Channel output constellation. (b) Equalized output constellation. (c) MSE
between equalizer output and transmitted symbols. (d) Timing offset recovery.

The derivative of |yτ̂ (k)|2 in (12) is computed using Euler’s
approximation by evaluating yτ̂ (k) at τ̂ + δ where δ is very
small increment and then using the following equation

∂|yτ̂ (k)|2
∂τ̂

� |yτ̂+δ(k)|2 − |yτ̂ (k)|2
δ

(17)

where δ is 0.0001 in our case.
Intuitively, the algorithm tries to move the the real part of

the equalizer output to reside on the points of value +
√

γR or
−√γR on the real axis instead of a circle. Similarly, imaginary
part of the equalizer output is moved to lie on the points
of value +

√
γI or −√γI on imaginary axis. Since, the cost

function employs both modulus and phase of the equalizer
output, channel induced phase offset φo and small carrier
phase offset φ(k) are corrected along with blind equalization
without the need of separate decision directed phase tracking
loop [9]. Finally, the slicer makes a hard decision on equalizer
output generating âk which are demodulated and decoded to
produce the output bits b̂k.

C. Algorithm

The whole blind setup can be summarized in the form of
the following algorithm.

Proposed Algorithm

Initialization:
Initialize equalizer tap weight vector

W with zeros and substitute 1 for the
central tap. Initialize estimated timing
offset τ̂ = 0 and vector X and Xd of
equalizer length with zeros. Let u be the
resulting interpolated sample.
Loop Processing:

1) Use (4) for linear interpolation on
the received symbols.
IF 0 ≤ τ̂ ≤ 0.5
u = interpolation between current and
the next sample.

ELSE IF −0.5 ≤ τ̂ ≤ 0
u = interpolation between current and
the previous sample
END

2) Update X by right shifting by one
sample and replacing the first sample
by u.

3) Repeat steps 1 & 2 for Xd using τ̂ + δ
in place of τ̂.

4) Calculate yτ̂ = XtW and yτ̂+δ = Xt
dW.

5) Evaluate (17).
6) Update W and τ̂ using (13) and (14)

respectively.

The processing is done on every received symbol to handle
small carrier offset and track the revolving constellation. The
complexity of the algorithm can be reduced in case of static
multipath channels with no carrier offset by stopping the
parameter updates, after the convergence has been achieved.

IV. SIMULATION RESULTS

The simulations are carried out in MATLAB. We have
shown the results for static frequency selective wireless chan-
nel but they can be extended easily for slow fading channel
due to the symbol by symbol processing and adaptive nature
of algorithm. We consider QPSK and 16-QAM modulations,
which are widely-considered constellations. Simulation results
are evaluated at 25 dB SNR under two different multipath
channels to validate the robustness of the algorithm. The
oversampling factor Q is set to 2 for implementing linear
interpolation. Root raised cosine �lters are used for transmitter
pulse shaping and receiver matched �ltering with roll off
factor set to 0.25. The carrier frequency offset (�f/Fs)
is set to 10−4 [9]. We have modeled the timing offset τ
produced by the sampler by �ltering the channel output with
offset exhibiting matched �lter samples. Mean Square Error
(MSE) or average instantaneous squared error between the
equalizer output and the reference transmitted symbol over
60 realizations is calculated as the performance metric. The
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Fig. 4. Results for QPSK with multipath channel, fractional timing phase
offset (τ) = 0.4, frequency offset (�f/Fs) = 10−4 and SNR = 25 dB.
(a) Channel output constellation. (b) Equalized output constellation. (c) MSE
between equalizer output and transmitted symbols. (d) Timing offset recovery.
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Fig. 5. Results for 16-QAM with multipath channel, fractional timing phase
offset (τ) = 0.4, frequency offset (�f/Fs) = 10−4 and SNR = 25 dB.
(a) Channel output constellation. (b) Equalized output constellation. (c) MSE
between equalizer output and transmitted symbols. (d) Timing offset recovery.

values of the step sizes are selected by hit and trial method
and are shown in Table I

TABLE I
UPDATE STEP SIZES

Modulation
Chan-1 Chan-2

μτ̂ μw μτ̂ μw

QPSK 1e− 2 5e− 2 1e− 2 5e− 2
16-QAM 5e− 3 5e− 2 5e− 3 5e− 2

A. Results for Channel 1

The �rst channel (Chan-1) is taken from [4] and [15], which
de�ne the multipath channel impulse response as

C(z) = (0.4−0.6z−1+1.1z−2−0.5z−3+0.1z−4)ejπ/4/1.41
(18)

The results for Chan-1 are shown in Fig. 2 and 3 for QPSK
an 16-QAM, respectively. The timing phase offset τ is set to
−0.4 to introduce ISI. The equalizer is selected as a 7 tap
�lter with central tap initialized to 1. The values for step sizes
μτ̂ and μw are shown in Table I.
Fig. 2(a) and Fig. 3(a) shows the channel output. We can

see that amplitude distortion and ISI due to multipath channel
and timing offset has deteriorated the transmitted symbols.
The circular appearance of the constellation is due to carrier
frequency offset. Fig. 2(b) and Fig. 3(b) shows the equalized
output. MSE performance and estimated timing offset τ̂ are
shown in Fig. 2(c), 2(d) and Fig. 3(c), 3(d) respectively. τ̂
converges to +0.25 and +0.3 approx. for QPSK and 16-QAM
respectively to mitigate the introduced negative offset. Since
there is also an ISI due to the multipath channel, the estimated
offset converges to a different value instead of 0.4 to mitigate
the resultant channel dispersion. The MSE converges to the
desirable level of −50 dB for QPSK and −30 dB for 16-
QAM, in just 500 iterations which is a great improvement on
the results shown by Zhang et al. [4], where the convergence
is achieved after 5000 iterations under same channel with no
joint timing recovery. This is accomplished due to the �nely
tuned step sizes and updating equalizer taps and timing offset
jointly to minimize the mean dispersion and ISI.

B. Results for Channel 2

The second channel (Chan-2) is taken from [3], which is
a multipath channel, de�ned in Signal Processing information
database SPIB(#2) [16]. The results are shown in Fig. 4 and. 5
for QPSK an 16-QAM modulations respectively. The timing
phase offset τ is set to +0.4 to introduce ISI. The equalizer
is selected as a 16 tap �lter with central tap initialized to 1.
The values for step sizes μτ̂ and μw are shown in Table I.
Sub-�gures (a)-(d) demonstrate the same graphs as described
for Chan-1. τ̂ converges to −0.3 and −0.35 approximately.
for QPSK and 16-QAM respectively to mitigate the resultant
channel dispersion. The MSE converges to an acceptable level
of −35 dB for QPSK and −30 dB for 16-QAM, in just
650 iterations which is a considerable improvement on the
results shown by Ashmawy et al. [3], where the convergence
is achieved after 3000 iterations under same channel with no
joint timing recovery. This is accomplished due to the �nely
tuned step sizes and updating equalizer taps and timing offset
jointly to minimize the mean dispersion and ISI.

V. CONCLUSION

We have accomplished blind timing recovery, equalization
and small carrier offset recovery jointly without any training
sequence. We have modi�ed CMA and extended the objective
function to handle another parameter of timing phase offset.
We have validated the robustness of algorithm by showing
simulation results under two different multipath channels.
We have shown the fast convergence for MSE between the
equalizer output and the expected value. Our simulation results
show approximately 5 to 10 times improvement in MSE
performance compared to the previous research papers, while
using their channel and handling synchronization in addition.
Moreover, we have summarized the algorithm for an ease
of implementation. In future, the results can be extended
for wireless block fading channel and handling larger carrier
frequency offsets by data reuse.
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