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Abstract—The issue of transferring facial performance from one person’s face to another’s has been an area of interest for the movie
industry and the computer graphics community for quite some time. In recent years, deformable face models, such as the Active
Appearance Model (AAM), have made it possible to track and synthesise faces in real-time. Not surprisingly, deformable face model
based approaches for facial performance transfer have gained tremendous interest in the computer vision and graphics community. In
this paper, we focus on the problem of real-time facial performance transfer using the AAM framework. We propose a novel approach
of learning the mapping between the parameters of two completely independent AAMs, using them to facilitate the facial performance
transfer in a more realistic manner than previous approaches. The main advantage of modelling this parametric correspondence is that
it allows a “meaningful” transfer of both the non-rigid shape and texture across faces irrespective of the speakers’ gender, shape and
size of the faces, and illumination conditions. We explore linear and non-linear methods for modelling the parametric correspondence
between the AAMs and show that the sparse linear regression method performs the best. Moreover, we show the utility of the proposed
framework for a cross-language facial performance transfer that is an area of interest for the movie dubbing industry.

Index Terms—Active Appearance Models, Facial Performance Transfer, Face Modelling and Animation.
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1 INTRODUCTION

M OTION capture and the transfer of facial performance
from an actor to a CGI-generated character have long

been a focus of much research in the movie industry and
computer graphics community. The aim is to copy the source’s
facial movements as truly as possible, while presenting them
in a realistic manner on the animated target character. This is
extremely difficult as humans are extremely sensitive to any
unnatural occurrence on the face and can easily spot even the
minutest misalignment or texture irregularity on the face.

While a fully-automatic solution capable of producing real-
istic looking facial performance transfer has not been realised
yet, recent technological advances in the last decade have
enabled markerless solutions for face modelling and tracking
resulting in a wide selection of possibilities for semi-automatic
and semi-supervised solution to this problem. Therefore, rather
than expecting an animator to generate realistic looking facial
animation on frame by frame basis from scratch in a painstak-
ing and tedious manual manner, these methods have provided
them with a tool to manipulate the facial features and obtain
close to realistic looking results in a semi-automatic setting,
enabling them to spend more quality time on improving the
results and post-processing to achieve excellent results.

Recently, various approaches such as [1], [2], [3], [4], [5],
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[6] have been proposed for facial performance transfer/cloning.
A method for creating photorealistic 3D facial models from
pictures of human subjects was proposed in [1]. They employ
manual facial pose marking and use a 3D shape morphing
algorithm among the face models, but the computational cost
is high due to expensive 3D calculations. Others have used an
expression ratio image (ERI) [3], the limitation of which is in
dealing with illumination changes. A 3D morphable model
(3DMM) based approach [4] has been used for animating
novel faces by transferring mouth movements and expressions.
It achieves good accuracy for both pose and illumination,
but at the expense of higher computational complexity. In
a different approach to transfer just the lip movements [5],
a multidimensional morphable model [7], trained on a large
dataset of a speaker, is adapted to animate the lips of another
speaker that requires only a small dataset for training.

A different application of facial performance transfer has
also been used to improve the facial attractiveness of a target
face based on a nearest matching example face [8]. In ex-
pression cloning [2], the vertex motion vectors are transferred
from the source face to the target model. In this, the dense
correspondences among the source and target models are
created based on an initial manual selection of corresponding
vertices. Then, the 3D motion vectors of the source model are
used to create similar animations on the target model. Vlasic
et al. [9] used a 3D multilinear framework but their models
did not include a texture component or movement of the eyes,
teeth, tongue, chin or cheeks, which we model in our method.

In recent years, statistical approaches, such as the Active
Appearance Model (AAM) [10] and 3D Morphable Model
(3DMM) [4], have been widely and successfully used for
building non-rigid deformable models. Their power lies in
the combination of a compact parametric representation and
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an efficient alignment method. Recently, Theobald et al. [6]
proposed to compute a linear mapping between the basis
vectors of the shape and texture of two AAMs and used this
mapping for facial performance transfer.

Here, we approach the task of facial performance transfer
by directly modelling the parametric correspondence between
shape and texture of two completely independent AAMs.
• We propose a novel regression based approach to model

the relationship between the shape and texture parameters
of two completely independent face models, enabling
“meaningful transfer” of the variation in both shape and
texture. “Meaningful” here means taking the personal
characteristics into account. For example, if the source
subject exhibits large facial movements while the target
subject normally shows little, it would look unrealistic if
the source’s large movements were transferred verbatim
to the target face. Our approach facilitates realistic facial
performance transfer between two subjects, irrespective
of their gender, shape of their face or their skin tone.

• We explore several regression strategies to find the most
effective way of modelling the relationship between the
shape and texture parameters of the two face models. To
evaluate the proposed approach, we perform experiments
on the subjects of the AVOZES data corpus [11].

• We demonstrate the utility of the approach for Cross-
Language Facial Performance Transfer by transferring
the facial performance from a female Indian subject
speaking Hindi (national language of India) to a male
Australian subject present in the AVOZES data corpus.

2 MOTIVATION AND APPROACH

In this paper, some familiarity with Active Appearance Models
(AAM) [10] is assumed. Refer to the supplementary material3

for an overview of the AAM framework.
The central problem we address in this paper is that of

automatically transferring subtle changes in facial features,
such as those induced by speech or affect, from one person to
another, irrespective of gender, shape of face and skin tone.
At the same time, we aim to preserve person-specific qualities
(e.g. the amount and manner in which the subject opens and
closes the lips while speaking) in order to transfer the facial
performance with a high degree of realism.

The advantages of using deformable face models (such as
AAMs) to approach this problem are
• Deformable face models provide a compact framework

to model and manipulate both shape and texture together
and, hence, are well suited for the task of synthesising
realistic looking results.

• Person-specific deformable face models, if trained on
a sufficient number of images, can generalise well to
unseen expressions and can also capture person-specific
mannerisms in great detail.

For the experiments, we used the Simultaneous Inverse Com-
positional (SIC) fitting method due to its robustness in a
person-specific scenario [12]. The central problem can, there-
fore, be modified as follows: Given two completely inde-
pendent, person-specific AAMs of two subjects, say M1 and

Fig. 1. Overview (Points in Red - Upper Face shape, Points in
Green - Lower Face shape, Points in Blue - Shared by both.)

M2, how can we convincingly transfer the facial performance
observed in the face of the first subject onto the model of the
second subject?

One intuitive way is to use model M1 to track the facial
performance of the first subject, extract shape and texture
parameters, and transfer these parameters to the model M2.
However, the transfer of these parameters from M1 to M2

is non-trivial [6]. If the relationship between the shape and
texture parameters of M1 and M2 was one-to-one, then
we could directly apply the parameters from M1 to M2.
However, in reality, it is highly unlikely that two independent
AAMs, trained on completely different sets of images, will
have a direct one-to-one parametric correspondence. This
is due to the application of PCA to different, independent
image sets in the model building phase. For example, the
first and second shape parameters of M1 might control the
landmark points representing the mouth region, whereas the
same region in M2 might be controlled by the 3rd, 4th and
5th shape parameters. We propose to model this parametric
correspondence between the shape and texture parameters of
M1 and M2 in a data driven regression framework.

Our approach is illustrated in Figure 1. Since a major focus
of this work is on the transfer of accurate lip movements
induced by speech, we consider two separate shape models;
one for the upper part of the face (u represents the shape
parameter vector) and one for the lower part of the face (l
represents the shape parameter vector). This process is based
on the hypothesis that the majority of movement induced by
speech is limited to the lower part of the face, while changes
in the upper part of the face are more subtle and can be
treated independently. On the other hand, we consider the
entire texture of the face as a whole and, hence, use a single
texture model (t texture parameters). Both M1 and M2 can
have any number of shape and texture parameters, depending
on their training sets. The main goal here is to find a mapping
function between these sets of shape and texture parameters
and to use it to approach the central problem. Given a set of
correspondence images, we pose this problem in a data-driven
regression framework and compute the mapping functions
between the upper-face shape parameters (Wu), the lower-face
shape parameters (Wl) and the texture parameters (Wt). Using
these learnt regressors, we can then directly transfer the facial
performance from M1 to M2.

3 FACIAL PERFORMANCE TRANSFER METHOD
Let M1 and M2 be two completely independent AAMs. Let
u1 represent the upper-face shape parameter vector (length a1)
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of M1; u2 represent the upper-face shape parameter vector
(length a2) ofM2; l1 represent the lower-face shape parameter
vector (length b1) of M1; l2 represent the lower-face shape
parameter vector (length b2) of M2; t1 represent the texture
parameter vector (length c1) of M1; and t2 represent the
texture parameter vector (length c2) of M2.

Given a small set of correspondence images of both sub-
jects, the goal here is to learn the mapping between their shape
and texture parameters. We compute the mapping functions
Wu : u1 → u2, Wl : l1 → l2 and Wt : t1 → t2 (Figure 1).

Let M be the number of correspondence images, p be the
parameter vector of length a (shape or texture) of the source
subject and p′ be the parameter vector of length b (shape or
texture) of the target subject. In the following subsections,
we briefly discuss different regression strategies of finding
the mapping function W : p→ p′ explored in this paper.

Standard Linear Regression Method: Considering it as a
baseline method, we solve the problem by assuming p′ to be
a linear function of p

YL =WLXL + νL (1)

XL = [p1 . . . pM ] and YL = [p′1 . . . p′M ]

WL is the unknown mapping function that we wish to find
and νL is the noise term. Hence, this becomes a standard L2-
regularised least squares problem, which we solve for WL by

minimizing
{
‖YL −WLXL‖22 + λL‖WL‖22

}
(2)

where ‖g‖2 = (
∑

i g
2
i )1/2 is the L2-norm of g and λL > 0 is

a regularisation factor used to avoid over-fitting. Solving Eq.
2 for WL, we get

WL = YLX
T
L(XLX

T
L + λLI)

−1 . (3)

Hence, the mapping function WL is a matrix of size b× a.

Sparse Linear Regression Method: Assuming p′ to be a
linear function of p, the mapping function W is computed by
solving a L2-regularised least squares problem (Eq. 2). This
gives a very dense solution for WL (Eq. 3), i.e. typically all
the elements of matrix WL are non-zero [13]. The goal here
is to obtain a sparse solution for W , i.e. a very few number
elements of matrix W should be non-zero.

In [14], it has been shown that if there exists an optimal
sparse solution, it can be efficiently computed by convex
optimisation. Hence, we recast the problem as a L1-regularised
least squares problem, which can be reformulated as a convex
quadratic program and then solved efficiently to give a sparse
solution WS . With the mapping function WS ∈ Ra×b

XS = [pT
1 ; ....;pT

M ] and YS =
[
p′

T
1 ; ....;p′

T
M

]
Consider the linear model

yi = XSwi + νSi i = 1, . . . , b (4)

where vectors yi and wi are the ith columns of matrices YS

and WS , respectively, and νS is the noise term. We determine
wi by solving a L1-regularised least squares problem

min ‖XSwi − yi‖22 + λS‖wi‖1 (5)

where ‖g‖1 =
∑

j |gj | is the L1-norm of a and λS > 0 is a
regularisation factor. Eq. 5 can be reformulated as a convex
quadratic program [13] with linear inequality constraints:

min ‖XSwi − yi‖22 + λS

a∑
j=1

uj (6)

subject to −uj ≤ wj ≤ uj , where j = 1, . . . , a and u ∈ Ra.

For the experiments presented in this paper, we solve this
convex quadratic program (Eq. 6) by a specialised interior-
point method [13] that uses the preconditioned conjugate
gradients algorithm to compute the search direction.
This results in a sparse solution for wi. Hence, the mapping
functionWS = [w1 w2 . . .wb] is a sparse matrix of size a×b.

Non-Linear Regression Method: Assuming p′ to be a non-
linear function of p, the goal is to compute the mapping
function W so that it allows more accurate prediction, better
handling of noisy data and improves overall generalisability.
To this end, we pose the problem in a multivariate input-output
regression framework.

XN = [p1 . . . pM ] and YN = [p′1 . . . p′M ]

where XN ∈ Ra×M , YN ∈ Rb×M , xj is the jth column of
matrix XN and yi,j is the (i, j)th element of matrix YN . Let
the training set

Ti = {(xj , yi,j)}Mj=1 i = 1, . . . , b (7)

where x ∈ XN (the set of multivariate inputs) and y ∈ YN
(the set of outputs/targets). Here, a simple approach is to
learn a non-linear mapping function wi : XN → YN ,
where i = 1, . . . , b, that results in the mapping function
WN = [w1 w2 . . . wb].

We use Gaussian Process Regression (GPR) [15] to compute
WN . However, it should be noted here that this approach,
also known as multi-kriging [15], works on the assumption
of an independent model for each output dimension and,
hence, cannot capture the relationship between the outputs.
In order to avoid this loss of information, [16], [17] extended
the GPR framework to Multiple-Output Gaussian Process Re-
gression (MGPR) that uses the latent function framework and
convolution process to model the dependencies between the
output dimensions. Therefore, we use the MGPR framework
to compute WN in this paper.

3.1 Managing Global Shape Parameter

In the previous section, we addressed the problem of optimally
transferring the local shape parameters, i.e. the parameters that
represent observed non-rigid shape variations. We now address
the problem of determining the global shape parameters (scale,
rotation and position) for aligning the synthesised face with the
rest of the head in the target scene. This must be robust enough
to avoid visual oddities even in continuous video sequences,
which is difficult due to the human sensitivity to the smallest
inconsistencies in the positioning of key features, such as
the eyes, and even the slightest change in face scale not in
proportion with the rest of the head.
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We start by extracting the global shape parameters of the
upper and lower face shape models for the target head (Figure
4) separately. Using these, we align the synthesised upper
face shape model with the target head and, then, we align
the synthesised lower face shape model with the synthesised
upper face shape model aligned previously.

To align the synthesised upper face shape model with the
upper part of the target head, we directly apply the global
shape parameters of the target head, extracted from the upper
face shape model, to the synthesised upper shape. This is
mainly due to the negligible scaling effect that we encounter
in the upper face.1 Note that the boundary of the upper face
consists of the landmark points that are mostly rigid, unlike
the landmark points on the eyebrows and eyelids that may rise
and fall quite independently of any overall head motion.

Once the upper face has been aligned, we focus our attention
on the alignment of the lower part of the face, which is a
difficult task because of the lack of landmark points in the
lower face that have correlation with the rigid motions of the
head. Moreover, ignoring the scaling factor can result in visual
oddities because, unlike the upper face, the contour of the
lower face consists of the landmark points on the cheek and
the jaw line that may rise and fall due to the lip and jaw
movements, thereby inducing a scaling effect to the lower face
shape model. To deal with the scaling issue, we extract the
scaling factors from the global shape parameters of the lower
face shape model, computed while tracking the sequence of
the source subject that we wish to synthesise. We apply this
scaling factor1 directly to the synthesised lower face shape
and generate the final synthesised lower face shape that we
can align with the previously aligned upper face. The upper
and lower face shape models have three common landmark
points just below the nose, marked in blue in Figure 1. To align
the final synthesised lower shape with the previously aligned
upper face, we use these three correspondence points and apply
a similarity transformation [18] to the final synthesised lower
shape, keeping the unit scaling factor and applying only the
rotation and translation factors.

4 LOCATING CORRESPONDENCE IMAGES

In this section, we turn to finding a set of correspondence
images across the source and target subjects (i.e. the facial
expression of the source and target subjects should be sim-
ilar), so that the mapping functions between them can be
learnt efficiently. Methods such as [19] allow establishing
the correspondence between the meshes of any two arbitrary
objects. However, our problem of finding the corresponding
face images is a lot simpler owing to the structural similarity
between faces and the constrained nature of the face models.
Methods, such as [2], [5], [9], can be used for this purpose
with some manual intervention. We propose to use a Structural
SIMilarity (SSIM) [20] based method [21], [22].

An Expression Image (EI) [21], the basis for our method,
is extracted from the mouth and eye region, since they are

1. It is important to note that, as a part of pre-processing, all frames from
the videos were similarity normalised in order to eliminate the scaling effect
induced by the head movement.

(a) Overview: Locating the correspondence images

(b) Distance vector (c) Selected reference images

(d) Image and Extracted EI (e) Image and Extracted EI

Fig. 2. (d),(e) Left: Sample image. Right: Extracted EI.

the main regions of interest. The EI is a visual descriptor
and represents a distance vector d = {d1, . . . , dn}, where
n = 6, in a normalised frame (Figure 2(b)). The overview
of the proposed approach is given in Figure 2(a). We begin
by selecting a pair of reference images for source and target
subject manually (Section 4.1). EIs are automatically extracted
from each frame of the training sequences (Section 4.2) and
are used to find a set of candidate correspondence images
using a SSIM based distance measure automatically (Section
4.3). This candidate set is then used for manually selecting a
final set of correspondence images (Section 4.4).

4.1 Selecting Reference Images
We manually select reference images, exhibiting the same
expression, for the region of interest of the source and target
speakers (Figure 2(c)). We used the reference images that ex-
hibit an open mouth expression with the tongue and teeth vis-
ible. These reference images are similarity normalised before
generating the reference distance vector, dR = {dR1 , . . . , dRn }.

4.2 Extracting EIs from Training Sequences
As a pre-processing step, shapes of all the frames are aligned
into a common coordinate frame w.r.t. the reference images via
similarity normalisation. We extract the normalised distance
vector, d̄, from each of these frames

d̄m =
[
dm1
dR1

; . . . ;
dmn
dRn

]T
=
[
d̄m1 ; . . . ; d̄mn

]T
,m = 1 . . .M (8)

where M is the total number of frames extracted from the
training sequences. Then, the EI is generated from each of the
normalised distance vectors. For example, ESource

p represents
the EI for the pth source frame (Figure 2(d)) and ETarget

q

represents the EI for the qth target frame (Figure 2(e)).
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4.3 Finding Candidate Correspondence Images

Once we have computed the EIs for the entire training se-
quence, we compare each of the source subject’s EIs with
all the EIs of the target subject based on the SSIM distance
metric. The SSIM [20] similarity distance metric performs
three different similarity measurements of luminance, contrast
and structure, and thereafter combines them to obtain a single
number. The SSIM metric between two windows w1 and w2

of the same size N ×N is given by

SSIM(w1, w2) =
(2µw1µw2 + c1)(2σw1w2 + c2)

(µw1
2 + µw2

2 + c1)(σw1
2 + σw2

2 + c2)
(9)

where µw1
and µw2

are the average of w1 and w2, respectively.
σ2
w1

and σ2
w2

are the variance of w1 and w2, respectively.
σw1w2 is the covariance between w1 and w2. c1 = (k1L)2

and c2 = (k2L)2 are regularisation variables to stabilise the
division with weak denominator. L is the dynamic range of
the pixel-values. For details on the derivation of SSIM please
refer to [20]

The SSIM distance between the pth source frame and the
qth target frame is represented by SDpq where

SDpq = SSIM(ESource
p , ETarget

q ) (10)

The target frame with maximum SD is the best correspon-
dence image for the source frame in consideration. Hence, for
every source frame, we select target frames with an SSIM
distance greater then the threshold value (δ), i.e. the SD ≥ δ,
as the candidate correspondence images (Figure 3).

4.4 Selection from Candidate Set

The EIs used for selecting the candidate correspondence
images were generated from the shape of the face, whereas the
texture information was completely ignored. Computing the
SSIM score based on the texture is a difficult problem because,
for example, different people have different amounts of oral
cavity and teeth/tongue visible, while otherwise exhibiting
similar expressions. Therefore, we manually select the visually
best looking correspondence image from the candidate set.

5 EXPERIMENTS AND DISCUSSION

In this section, we evaluate various regression strategies (see
Section 3) to model the parametric correspondence between
AAMs and use them for facial performance transfer of unseen
sequences. We compare the proposed approach with the work
of Theobald et al. [6]. Note that, similar to the method used
for generating the result videos for the proposed method, the
global shape parameters were transferred from the source to
the target subject and the pre-processing steps2 were used to
generate the result videos for Theobald et al. method. We
also demonstrate the utility of the system for Cross-Language
Facial Performance Transfer.

We conducted experiments on the AVOZES data corpus
[11] as it is a rich source for audio-video speaking-face data.
To demonstrate the proposed Facial Performance Transfer
approach, we transfer the performance from source subject
A1 to two separate target subjects A2 and A3 present in

Fig. 3. Sample Results: Column 1 show source images
(A1). Column 2-6 show top 5 correspondence images
for target (A2). Selected correspondence image : Marked
with green circle.

Fig. 4. A1, A2, A3 used in Sec. 5.1; B1, A1 used in Sec. 5.2.

AVOZES (Figure 4). To demonstrate our Cross-Language Fa-
cial Performance Transfer framework, we separately recorded
a video of a female subject of Indian origin (see supplemen-
tary material3) repeating the sequences present in AVOZES
along with some more complex (and new) sequences in both
English and Hindi (national language of India). Using this, we
show that the proposed framework can effectively transfer the
facial performance from the source subject B1 to the target
subject A1 (Figure 4), so that the target subject appears to be
speaking Hindi, although the face model was only trained on
the sequences spoken entirely in English. This approach has
significant potential for the movie and TV dubbing industry.

5.1 Performance Evaluation

In this set of experiments, we used the sequences from
AVOZES Module 6 - Application Sequences - Continuous
Speech for training and validation purposes. We used se-
quences from AVOZES Module 5 - Application Sequences -
Digits for testing. AVOZES Module 6 contains three 4s videos
(30fps) of continuous speech sequences
• “Joe took father’s green shoe bench out.”
• “Thin hair of azure colour is pointless.”
• “Yesterday morning on my tour, I heard wolves here.”

These sequences were designed to contain almost all
phonemes and visemes of Australian English [11] and, hence,
are suitable for the training and validation purposes here. In
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addition, AVOZES Module 5 contains one 2s video (30fps) per
digit (0-9) enclosed in the carrier phrase “You grab /DIGIT/
beer” and is suitable for testing the facial performance transfer
for unseen sequences.

In the first experiment, we transferred the facial performance
from the source subject A1 to the target subject A2. We
trained AAMs (see Section 3) for A1 and A2 independently,
so that each AAM captures the person-specific mannerisms
and expressiveness. For this, each model was trained on 100
images from AVOZES Module 6. 95% of the variation of
shape and texture were retained. Once the models were trained,
we extracted 100 correspondence images (Section 4) for A1
and A2 from AVOZES Module 6 and computed the mapping
functions Wu : u1 → u2, Wl : l1 → l2 and Wt : t1 → t2 via
different regression strategies (Section 3).

To verify whether the parametric correspondence was suc-
cessfully learnt by the mapping functions, we synthesised the
entire AVOZES Module 6 sequences by transferring the facial
performance from A1 to A2 (see supplementary material2,3).
To further experimentally evaluate the performance of different
regression strategies, a leave-one-out cross-validation scheme
was adopted to synthesise all the correspondence images, i.e.
the mapping functions were learnt from 99 correspondence
images and the remaining single image A1 was used to
synthesise the correspondence image A2. Then, we computed
the error, using an RMS error measure, between the shape and
texture of the synthetic and original correspondence images
of A2. We repeat the same set of experiments for the facial
performance transfer from source subject A1 to target subject
A3. Figures 5(a) and 5(b) show these error distributions.

The AAM texture vector in our experiments is a large vector
of length 50000-55000, which has been trained to capture a
sufficient amount of variation in texture, so that it can produce
realistic looking results. This yielded texture parameter vectors
t1 and t2 (Section 3) of dimensions in the range of 60-
70. MGPR [16], used in the Non-Linear Regression Method,
uses a convolution processes (CP) framework to model the
relationship between all the output dimensions that demands
significant computational and storage capabilities [17]. Hence,
dealing with high-dimensional texture parameters is a complex
and expensive problem. For this reason, we excluded the
Non-Linear Regression Method from modelling the mapping
functions between the texture parameters. On the other hand,
the shape parameter vectors u1, u2, l1 and l2 (Section 3) have
dimensions in the range of 5-9, which is a much simpler and
more inexpensive problem that suits MGPR framework well.

From the experimental results in Figure 5, we can infer
that the proposed approach using the Sparse Linear Regression
Method and the Non-Linear Regression Method outperformed
[6] significantly for both shape and texture. Also, the proposed
approach using the Standard Linear Regression Method out-
performed [6] for shape, but lacked for the texture. For the
latter, the problem lies in the complex nature of the texture
parameter vector. Given limited training data for the texture

2. After the synthetic face has been generated by our system, Gaussian
blurring of an alpha-mask was employed to smooth the boundaries of the
synthesised face with that of the target frame in order to generate the final
synthesised video results.

(a) Shape RMSE (b) Texture RMSE

Fig. 5. RMSE between the original and synthetic images.

vectors, a standard linear framework is too restrictive and
cannot model the complex mapping function accurately.

The Sparse Linear Regression Method, which uses a sparse
representation framework to model the mapping function,
shows significant improvement in the performance for both
shape and texture. Here, the L1-regularised least squares
problem (Eq. 5) will always have a solution (which may not be
unique) that can be efficiently solved as a convex optimisation
program and yields a sparse solution [14], i.e. the regression
coefficients for irrelevant input features are set to 0. This
reduces the model complexity and, hence, avoids over-fitting.

Moreover, in the Sparse Linear Regression Method, we
used a specialised interior-point method [13] to solve the
convex quadratic program (Eq. 6), which has been shown
capable of solving large scale and complex sparse problems
efficiently. Hence, it is well suited for the task of modelling
the mapping functions between the texture parameter vectors.
Furthermore, the Non-Linear Regression Method shows more
empirical improvements in the accuracy of modelling the
mapping function for the shape parameter vectors by virtue
of the MGPR framework [16], [17] that not only provides a
more flexible non-linear regression framework by the use of
GPR [15], but also by the use of the CP framework to model
the relationship between all the output dimensions.

The quality of the generated synthetic images has an aes-
thetic, subjective element to it. While transferring the facial
performance from one model to another for a sequence of
images, it is important to transfer the changes occurring
in the shape and texture. Maintaining the consistency and
correlation between frames is equally important for generating
realistic looking results. Although the Non-Linear Regression
Method outperforms the Sparse Linear Regression Method
experimentally in modelling the mapping function between
the shape parameter vectors, the visual quality of the Sparse
Linear Regression Method is superior. For example, notice
the noise (wave effect) present in the synthetic output videos
(see supplementary material3) for the Non-Linear Regression
Method, especially in the upper part of the face.

The reason for the superior visual quality of the Sparse
Linear Regression Method is the simplicity of the linear regres-
sion framework whose predictive domain is much simpler than
that of the non-linear regressor. This observation is consistent
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Fig. 6. Results A1 to A2 and A3; (i) Sparse Linear
Regression; (ii) Non-Linear Regression; (iii) Theobald et
al. Method.

with Occam’s Razor, which states that the simplest model,
which explains the data, is often the correct model. Non-linear
regressors can potentially provide more accurate predictions,
but their training procedure is generally more complicated. In
practice, with limited training data at hand, the simpler linear
models can be expected to extrapolate (i.e. to predict unseen
data) better and show more consistent results [23]. Therefore,
the Sparse Linear Regression Method is well suited for the
task of modelling the mapping function and transferring the
facial performance from one model to another.

In order to visualise the learnt parametric correspondence
via Sparse Linear Regression Method, the average of 100
mapping functions (WS and WT ) learnt for cross-validation
between subject A1 and A2 that produced the RMS errors in
Figure 5 are shown in Figure 7(a) and 7(b). In Figure 7(a), the
parametric correspondence between the source shape model
(represented by 6 shape parameters along Y-axis) and the
target shape model (represented by 7 shape parameters along
X-axis) shows that the proposed method can easily learn the
mapping functions between two independent models, irrespec-
tive of the number of parameters. Similarly in Figure 7(b), the
parametric correspondence between the source texture model
(represented by 46 texture parameters along Y-axis) and the
target texture model (represented by 52 texture parameters
along X-axis) can be visualised. Notice the pattern of sparsity
(represented in yellow) in the mapping function. Moreover,
Figure 7(c) visualises the accuracy of WS to transfer the
shape parameters using the source subject shape parameters
(first row). Notice the similar pattern between the ground-truth
target subject shape parameters (second row) and the predicted
target subject shape parameters (last row).

To test the generalisation capability of the proposed ap-
proach, we synthesised the entire AVOZES Module 5 se-
quences, which is a set of unseen talking sequences, by

(a) Shape Mapping Function (b) Texture Mapping Function

(c) Predicting the shape parameters using WS . Note that all the values have
been scaled for the ease of visualisation.

Fig. 7. Visualisation of the learnt parametric correspon-
dence via Sparse Linear Regression Method.

transferring facial performance from A1 to A2 and A3. See
supplementary material3 for detailed test result videos. Figure
6 shows some sample facial performance transfer results.

5.2 Cross-Language Facial Performance Transfer

In this experiment, we explore the utility of the proposed
approach for a Cross-Language Facial Performance Transfer,
which is both a challenging and exciting application with
many potential application areas, for example in the movie
dubbing industry. The goal here is to show whether we
can transfer the facial performance and lip movements from
one person to another, irrespective of their gender, ethnic
background and language. To demonstrate this, we transfer
the facial performance from a female subject B1 of Indian
origin speaking complex sentences in Hindi to a male subject
A1 of Australian origin present in AVOZES, using the training
data extracted from sequences spoken completely in English.

We repeat the same procedure as in Section 5.1 to train the
AAM for B1. We extracted 125 correspondence images (see
Section 4) for B1 and A1 from Module 6 and computed the
mapping functions via the Sparse-Linear Regression Method
(see Section 3). Note that the mapping functions are learnt on
the sequences spoken completely in English. These mapping
functions are then used to transfer the facial performance for
the complex sequences spoken by B1 in Hindi to A1. Figure
8(a) show sample results. Figure 8(b) show temporal dynamics

3. Videos:http://users.rsise.anu.edu.au/∼aasthana/TVCG11/Supplement.tar
Document:http://users.cecs.anu.edu.au/∼aasthana/TVCG11/ReadMe.pdf

http://users.rsise.anu.edu.au/~aasthana/TVCG11/Supplement.tar
http://users.cecs.anu.edu.au/~aasthana/TVCG11/ReadMe.pdf
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(a)

Left Eye Movement

Right Eye Movement

Mouth Opening

Chin Movement

(b)

Fig. 8. (a) Facial Performance Transfer from B1 to A1
via Sparse Linear Regression Method. (b) Comparison
of temporal dynamics (X-axis: Frame numbers, Y-axis:
Facial feature location).

for the selected sample facial features i.e. the distance between
the upper and lower eyelid of the eyes signifying the temporal
dynamics of the eye movement, the distance between the upper
and lower lip signifying the temporal dynamics of the mouth,
the distance between the chin and the tip of the nose (stable
reference point) signifying the temporal dynamics of the
chin movement, respectively. Notice the correlation between
the temporal dynamics of the source and target subject that
shows the utility of the proposed approach for the Cross-
Language Facial Performance Transfer application. See the
supplementary material3 for detailed test result videos.

5.3 Empirical Experiments
Judging the quality of a facial performance transfer is ulti-
mately always subjective and has an aesthetic element to it.
Hence, we evaluate it by conducting two separate empirical

First empirical experiment: Question 1
Rating Excellent Good Fair Poor

Method
Theobald et al. 7.8% 33.4% 52.9% 5.9%
Sparse Linear Regression 29.4% 56.9% 13.7% 0.0%
Non-Linear Regression 15.7% 47.0% 35.3% 2.0%

First empirical experiment: Question 2
Method Theobald et al. Sparse Linear Reg. Non-Linear Reg.
Participants 11.0% 62.5% 26.5%

Second empirical experiment
Rating Excellent Good Fair Poor
Participants 20.00% 53.33% 23.33% 3.33%

Fig. 9. Results from the Empirical Experiments

experiments. Please note that all the participants, involved in
both the experiments, were unaware of the sources of the
result videos and have never seen the result videos before.
In the first experiment, the original and synthetic AVOZES
Module 5 sequences (i.e. the digit sequences) transferring
the facial performance from the subject A1 to A2 and A3
were shown to 50 participants and were asked to answer two
questions. The first question asked each participant to rate the
quality of synthesis (“Compared to the original digit sequence,
how realistic does the facial performance transfer look?”)
produced by the three methods (Theobald et al., Sparse linear
regression and Non-linear regression methods) on a scale of
“Excellent”, “Good”, “Fair” or “Poor”. The second question
asked each participant to choose the method that they felt
produced the best synthesis (“Choose the method that produces
the most realistic facial performance transfer?”). In the second
empirical experiment, the cross-language facial performance
transfer result from the subject B1 to A1 was shown to 30
participants of Indian origin who were fluent in Hindi and
were asked to rate the quality of synthesis (“How realistic
does the cross language facial performance transfer look?”)
on a scale of “Excellent”, “Good”, “Fair” or “Poor”. Since the
second empirical experiment is not comparative in nature, the
result should be treated as a qualitative indication.

The first empirical experiment’s results (Figure 9) show that
86.3% of participants rated the synthesis via the Sparse Linear
Regression Method to be either good or excellent, clearly
exceeding 41.2% for the Theobald et al. Method and 62.7% for
the Non-Linear Regression Method. A one-way ANOVA found
the results to be statistically significant at the p < 0.000005
level. Moreover, 62.5% of the participants rated the synthesis
via the Sparse Linear Regression Method to be the best. For
the second empirical experiment, 73.33% of the participants
rated the cross-language facial performance transfer to be
either good or excellent, while 23.33% gave it a fair rating.

6 CONCLUSION AND FUTURE WORK
We propose an approach to learn the mapping between the
parameters of two completely independent deformable face
models and use them to facilitate the facial performance trans-
fer. The proposed approach facilitates “meaningful transfer” of
facial performance by transferring the changes induced both
in the shape and texture of the face while preserving person
specific qualities and mannerisms. It also shows good generali-
sation capability and works irrespective of the subject’s gender,
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ethnic background and language. Moreover, it requires only a
small video corpus (we used three 4s videos) for modelling
the parametric correspondence. Overall, the Sparse Linear
Regression Method is best suited for the task of learning the
parametric correspondence. The results and the rating provided
by the human participants are very encouraging.

One limitation, as with any model-based approach, is that
the quality of the synthesised sequence is directly related to
the accuracy of the model used to extract the parameters. If
the model encounters any unseen expression that cannot be
optimally represented by the model, the synthesised face can
show some visual oddities. Therefore, our method requires
a good quality 2D deformable model for source and target
subject. However, some of the visual oddities resulting from
common problem areas, such as the lip contact line, teeth
and the oral cavity, can be eliminated by augmenting the
system with post-processing steps such as [2], [4]. Moreover,
the SSIM-based method used for finding the correspondence
images is semi-automatic and methods such as [19], [24] are
being explored to make it completely automatic.
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