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ABSTRACT
In this paper we assume that a multihop wireless network
(also called a wireless ad hoc network) consists of nodes
whose transmitting powers are finitely adjustable. We con-
sider two fundamental problems related to power consump-
tion in this kind of network. One is the minimum-energy
broadcast tree problem, which broadcasts a message from a
source node to all the other nodes in the network such that
the summation of transmission powers at all nodes is min-
imized; and another is the minimum-energy multicast tree
problem, which multicasts a message from a source node
to the nodes in a given subset of nodes such that the sum-
mation of the transmission powers at all involved nodes is
minimized.

We first show the minimum-energy broadcast tree prob-
lem is NP-complete. We then present an approximate al-
gorithm for the problem in a general setting, which delivers
an approximate solution with a bounded performance guar-
antee. The algorithm takes O((k + 1)1/εn3/ε) time, where
n is the number of nodes in the wireless network, k is the
number of power levels at each node, and ε is constant with
0 < ε ≤ 1. For a special case of the problem where every
node is equipped with the same type of battery, we pro-
pose an approximate algorithm which has a better perfor-
mance ratio than that in the general case setting, and the
algorithm takes O(kn2 log n) time. We finally extend the
technique for the minimum-energy broadcast tree problem
to solve the minimum-energy multicast tree problem, which
leads to a similar result. The technique adopted in this pa-
per is to reduce the minimum-energy broadcast (multicast)
tree problem on a wireless ad hoc network to an optimiza-
tion problem on an auxiliary weighted graph, and solve the
optimization problem on the auxiliary graph which in turn
gives an approximate solution for the original problem.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MOBIHOC’02, June 9-11, 2002, EPFL Lausanne, Switzerland.
Copyright 2002 ACM 1-58113-501-7/02/0006 ...$5.00.

Architecture and Design; C.2.2 [Computer-Communication
Networks]: Network Protocols; F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algo-
rithms and Problems

General Terms
Algorithms, design, performance

Keywords
Wireless network, approximate algorithm, power awareness,
ad hoc networks, energy consumption optimization, broad-
cast and multicast algorithm.

1. INTRODUCTION
Mobile multihop radio networks, also termed peer-to-peer,

all wireless, or wireless ad hoc networks, are expected to
fulfill a critical role in applications in which wired backbone
networks are not available or not economical to build [3].
These span the commercial, public as well as tactical com-
munications sectors. The networks provide the only solution
in situations where instant infrastructure is needed and no
central system backbone and administration (like base sta-
tions and wired backbone in a cellular system) exist. Some
of the applications of the networks include mobile comput-
ing in areas where other infrastructure is unavailable, law
enforcement operations, disaster recovery situations, as well
as ad-hoc networks for large events such as sporting events
or congresses when it is not economical to build a fixed in-
frastructure for a short temporary usage. In tactical battle-
field communications the hostility of the environment pre-
vents the application of a fixed backbone network. Overall,
we here consider a peer-to-peer mobile network consisting
of a large number mobile nodes that create a network on
demand and may communicate with each other via inter-
mediate nodes in a multihop mode, i.e., every node can be
a router.

1.1 Related Work
In this paper we study the problems of broadcasting and

multicasting in wireless ad hoc networks. Most previous re-
search and development work on multicasting has centered
on tethered, point-to-point (typically high speed) networks.
By contrast we address infrastratureless (peer-to-peer) ap-
plications. We incorporate the broadcast properties of wire-
less communication media into our algorithms and perfor-
mance measure. Among the most crucial issues related to
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mobile wireless applications is that of operation in limited
energy environments. Our focus therefore is on the devel-
opment of algorithms for the formation of energy-efficient
trees for broadcast and multicast communications.

A crucial issue in wireless networks is to trade-off between
the “reach” of the wireless transmission and the resulting
interference by the transmission. We assume that the power
level of a transmission can be chosen within a given range
of values. Therefore, there is a trade-off between reaching
more nodes in a single hop by using higher power versus
reaching fewer nodes in that single hop by using lower power.
Another crucial issue is that of energy consumption, because
of the nonlinear attenuation properties of radio signals.

The problem of multicast scheduling in cellular mobile
networks was studied in [12], and a forwarding multicast pro-
tocol for noncellular networks was proposed in [6]. Although
a number of studies have addressed multicasting specifically
for wireless networks in the past [13, 9, 11, 14], most of these
researches focused on the robustness of routing protocols to
respond to dynamic change of network topology, without
taking the power consumption issue into account. The one
dealing with this issue can be found in [19]. Most of the
previous works on routing in wireless ad hoc networks deal
with the problem of finding and maintaining correct routes
to the destination during the mobility and changing topol-
ogy [1, 7, 9, 11]. In [13] the multicasting problem with a goal
toward reaching efficient and near-minimum-cost algorithms
for wireless networks was addressed, their approach was link-
based, and hence does not take into account the node-based
nature of wireless communications. In [1, 7] the authors
presented a simple algorithm which guarantees strong con-
nectivity and assumes limited node range. The problem of
minimum energy routing has also been addressed in [1, 7, 17,
2, 18]. The approach of these works was to minimize the con-
sumed energy to reach the destinations. Recently, theoreti-
cal modeling and minimizing energy consumption of wireless
ad hoc networks have further been expanded. For example,
Chlamtac and Farago [8, 3] introduced a new model and
methodological approach for dealing with the probabilistic
nature of mobile networks based on the theory of random
graphs. Khanna and Kumaran [10] applied the node col-
oring theory to the radio channel assignment of wireless
networks. Ramanathan and Rosales-Hain [15] studied the
assignment of different transmit powers to different nodes
to meet a global topological property (e.g. k-connectivity),
and proposed algorithms for minimizing the power consump-
tion in order to keep the network k-connectivity with k ≥ 1.
Singh et al [18] proposed several power-aware metrics based
on battery consumption and demonstrated how to use these
measures to determine routes for wireless ad hoc networks.

1.2 Contributions
In this paper we consider two fundamental problems re-

lated to power energy saving in a wireless ad hoc network.
One is the minimum-energy broadcast tree problem; and an-
other is the minimum-energy multicast tree problem. It is
easy to show that the minimum-energy multicast tree prob-
lem is NP-complete by reducing the Steiner tree problem
to it. Our major contributions in this paper are as follows.
We first show the minimum-energy broadcast tree problem
is NP-complete. We then present an approximate algorithm
for the problem in the general setting, which delivers an
approximate solution with a bounded performance guaran-

tee. For a special case of the problem where each node is
equipped with the same type of battery, we give an approx-
imate algorithm with a better performance ratio, compared
with its general counterpart. We finally extend the tech-
nique for the minimum-energy broadcast tree problem to
solve the minimum-energy multicast tree problem, which
delivers a similar result. In addition, we also show that the
performance ratio of a previously known algorithm BIP for
the minimum-energy broadcast tree problem [19] is Ω(n),
which means the performance of BIP is worse in some cases,
where n is the number of nodes in the network. The tech-
nique adopted in this paper is to reduce the minimum-energy
broadcast (multicast) tree problem on a wireless ad hoc net-
work to an optimization problem on an auxiliary weighted
graph, and solve the optimization problem on the auxiliary
graph which in turn gives an approximate solution for the
original problem.

The rest of the paper is organized as follows. In Section
2 we introduce the wireless communication model and the
problem definition. In Section 3 we show that the minimum-
energy broadcast tree problem is NP-complete, which means
that there is unlikely to be an exact solution for it in poly-
nomial time unless P = NP . In Section 4 we first propose
an approximate algorithm for the problem which delivers an
approximate solution with a bounded performance guaran-
tee, and then present an approximate algorithm for a special
case where each node is equipped with the same type of bat-
tery, which has a better performance ratio than that in the
general setting. In Section 5 we apply the technique for
the minimum-energy broadcast tree problem to solve the
minimum-energy multicast tree problem, which leads to a
similar result. In Section 6 we analyze the performance ra-
tio of a previously known algorithm BIP for the minimum-
energy broadcast tree problem. In Section 7 we conclude
the paper.

2. PRELIMINARIES
The wireless ad hoc networks studied here are quite differ-

ent from the cellular systems and wireless LANs that have
been developed in commercial markets. Cellular systems
have fixed base stations, which communicate among them-
selves using dedicated non-wireless lines, thus, the only mul-
ticast problems that are new in those systems involve track-
ing the mobile users. Otherwise, wireless communication is
limited to that between mobile users and base stations.

Unlike the wired networks in which the links and the ca-
pacities of the links are determined a priori, the wireless
network is built dynamically, depending on factors such as
the distances between nodes, transmitted powers of nodes,
error-control schemes, other user interference, and back-
ground noise. Thus, even the physical locations of the nodes
are fixed, many of the factors that affect network topology
are influenced by the actions of the network nodes. Further-
more, in such networks no distinction can be made between
uplink and downlink traffic, thus, greatly complicating the
interference environment. Therefore, the wireless network-
ing environment poses many challenges not encountered in
non-wireless or cellular networks, even the mobility is not
addressed. In this paper we assume that the node locations
in a wireless network are fixed, and the channel conditions
are unchanging. The wireless channel is distinguished by its
broadcast nature; when omnidirectional antennas are used,
every transmission by a node can be received by all nodes
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that lie within its communication range. Consequently, if
the multicast group membership including multiple nodes in
the immediate communication vicinity of the transmitting
node, a single transmission suffices for reaching all these
receivers. In addition to interference, another undesirable
impact of the use of high transmitter power is that it results
in increased energy usage, since the propagation loss varies
nonlinearly with distance. Therefore, the energy saving for
this type of network is of paramount importance.

2.1 Wireless communication model
In this subsection we model the wireless ad hoc network.

Conventionally, a wireless ad hoc network is represented by
a graph where two nodes have an edge if and only if the
two corresponding nodes can communicate with each other.
However, in this paper we consider source-initiated, circuit-
switched multicast sessions. We model the wireless network
as follows. A wireless ad hoc network is represented as
M = (N,L), where N is the set of nodes with |N | = n and
L �→ (Z+, Z+) is a set of coordinates denoting the locations
of nodes. The nodes are assumed to have the capability of
packet forwarding, i.e., relaying an incoming packet to its
neighboring nodes and the transmitting power level can be
adjusted to a level appropriate for successful reception if the
receiver is within the transmission range. Associated with
each node, there are several transceivers and can thus sup-
port several multicast sessions simultaneously. Multicast re-
quests and session durations are generated randomly at the
network nodes. Each multicast group consists of a source
node and multiple destination nodes. The set of nodes sup-
porting a multicast session is referred to as a multicast tree.

The reachability of a source node in a wireless network
is determined by the transmission powers at each node in
the network. In this paper we assume that the transmis-
sion powers at each node is adjustable finitely. Without
loss of generality, we assume that there are k adjustable
power levels at each node. Among the k power levels, one
is the minimum operational power pmin; and another is the
maximum operational power pmax. Given a node vi ∈ N ,
let wi,1, wi,2 . . . , wi,k be its k power levels. Assume that
wi,l1 ≤ wi,l2 if l1 < l2, 1 ≤ l1, l2 ≤ k.

The connectivity of the network depends on the transmis-
sion powers at the nodes in the network. We assume that
each node can choose its power level from level 1 (the min-
imum operational power) to level k (the maximum opera-
tional power). The nodes in any particular multicast tree do
not necessarily have to use the same power levels; moreover,
a node may use different power levels for various multicast
trees in which it participates.

The propagation function is represented as γ : L × L �→
Z+, where L is a set of location coordinates of nodes. γ(li, lj)
gives a loss in dB due to propagation at location lj ∈ L when
a message is originated from location li ∈ L. The propa-
gation function captures the environmental characteristics
determining the formation of a link. It could be measured
as described as in [16] or approximately modeled with a
function. The successful reception of a transmitted signal
depends, along with the propagation function on the trans-
mit power p, and the receiver sensitivity ϑ. The receiver
sensitivity is the threshold signal strength needed for recep-
tion and is assumed to be an apriori known constant, same
for all nodes. In particular, for successful reception,

p− γ(li, lj) ≥ ϑ. (1)

We assume that γ is a monotonically increasing function of
the geographical distance d(li, lj) between li and lj . This is
generally true for free space propagation or when environ-
mental clutter cause the same amount of signal degradation
in all directions [16]. In [19] it assume that the received
signal power varies as rα, where r is the range and α is a
parameter that typically takes on a value between 2 and
4, depending on the characteristics of the communication
medium. Based on this model the transmitted power re-
quired to support a link between two nodes separated by
range r is proportional to rα. For simplicity, in this paper
we say that a node Si is within the transmission range of a
node Sj while Sj uses the transmitting power p to broad-
cast (multicast) a message, which means that Si is able to
receive the signal from Sj when Sj sends its message using
power p.

2.2 The minimum-energy multicast tree prob-
lem

The minimum-energy multicast tree problem is defined as
follows. Given a wireless ad hoc network M = (N,L), a
source node, and a terminal set D (⊂ N), to broadcast a
message from the source node to the nodes in D such that
the sum of transmission powers consumed at all involved
nodes (some nodes are relay nodes) is minimized. Formally
speaking, the task is to construct a multicast tree rooted at
the source node including all the nodes in D such that the
sum of transmission powers at non-leaf nodes in the tree is
minimized, for every new multicast session. It involves the
choice of transmitting nodes as well the transmitter-power
level at every chosen transmitting node. Note that the leaf
nodes which do not transmit do not contribute to the energy
consumption.

2.3 The minimum-energy broadcast tree prob-
lem

Assume that s is a source node, the minimum-energy
broadcast tree problem is a special case of the minimum-
energy multicast tree problem where D = N − {s}, which
is defined as follows. Given a wireless ad hoc network M =
(N,L) and a source node s, to broadcast a message from s to
all the other nodes such that the sum of transmission pow-
ers at all nodes is minimized. Formally speaking, the task is
to construct a broadcast spanning tree rooted at the source
node and spans all the other network nodes such that the
sum of transmission powers at non-leaf nodes is minimized,
for every new broadcast session.

3. THE MINIMUM-ENERGY BROADCAST
TREE PROBLEM IS NP-COMPLETE

In this section we show that the minimum-energy broad-
cast tree problem is NP-complete by reducing the 3-conjunctive
normal form satisfiability (3-CNF SAT) problem to it.

Theorem 1. Given a wireless network M(N,L) with k
adjustable power levels at each node, a source node, and a
positive value W , to determine whether there is a broadcast
spanning tree rooted at the source node such that the sum
of transmission powers at the non-leaf nodes in the tree is
no greater than W is NP-Complete. This problem is also
referred to the minimum-energy broadcast tree problem.
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Proof. First, it is easy to verify the minimum-energy
broadcast tree problem is NP-hard. Given a directed tree
rooted at the source and each non-leaf node has been as-
signed a power level, the sum of transmission powers at the
non-leaf nodes can be computed and checked to see whether
it is no greater than W , which can be done in polynomial
time, where W is a given value in advance. Therefore, the
problem is NP-hard. For convenience, here we consider a
special case of the problem with k = 2, i.e., there are at
most two adjustable power levels at each node. In the fol-
lowing we show that the problem is NP-complete, even for
this special case. The problem for the general case, there-
fore, is NP-complete too.

Given an instance of a 3-CNF SAT problem, the objective
is to construct an instance of the minimum-energy broadcast
tree problem such that the 3-CNF SAT instance is satisfiable
if and only if there is a solution for the minimum-energy
broadcast tree instance.

Suppose that there is a 3-CNF SAT instance consisting of
n boolean variables x1,x2,. . ., xn, and m conjunctive normal
forms (CNFs) C1, C2, . . . , Cm, where Cj = yj,1 ∨ yj,2 ∨ yj,3

and the three literals yj,1, yj,2, yj,3 ∈ {x1, x̄1, x2, x̄2, . . . , xn, x̄n},
1 ≤ j ≤ m. The corresponding minimum-energy broadcast
tree instance M = (N,L) for this 3-CNF SAT instance is
constructed as follows:

(1) There is a source node S0,0 which has a power level
with value 1. (2) For each boolean variable xi, there are two
corresponding nodes Si,1 and Si,2, and each of the nodes
has two power levels with values 1 and 2. If xi is true, the
power value of Si,1 is 1; otherwise, the power value of Si,1

is 2. If x̄i is true, the power value of Si,2 is 1; otherwise,
the power value of Si,2 is 2. In addition, there is a node
Xi which will be used to determine whether either xi is
true or x̄i is true, and the transmission power of Xi is zero,
1 ≤ i ≤ n. (3) For each 3-CNF Cj = yj,1∨yj,2∨yj,3, there is
a corresponding node SCj with a transmission power 0, 1 ≤
j ≤ m. Therefore, the node set N = {S0,0}∪{Si,1, Si,2,Xi :
1 ≤ i ≤ n} ∪ {SCi : 1 ≤ i ≤ m}.

Now, given a node in N , we define which nodes are within
its transmission range of the node when it uses either one of
its two transmission power levels to broadcast messages, as
follows.

(i) Assume that node S0,0 is the source. For all i and
j, node Si,j is within the transmission range of S0,0 when
S0,0 uses power value 1 to broadcast messages, 1 ≤ j ≤ 2,
1 ≤ i ≤ n. (ii) Node Xi is always within the transmission
range of both Si,1 and Si,2, no matter which power level
with value 1 or 2 is used to broadcast messages by Si,1 or
Si,2. (iii) Let Cj = yj,1 ∨ yj,2 ∨ yj,3. If literal yj,l = xi, then
node SCj is within the transmission range of Si,1 when Si,1

uses either one of its two power levels to broadcast messages;
if literal yj,l = x̄i, then node SCj is within the transmission
range of Si,2 when Si,2 uses either one of its two power
levels to broadcast messages, 1 ≤ j ≤ m, and 1 ≤ i ≤
n. Accordingly, the wireless network M = (N,L) has been
built. Let W = n + 1. We claim that if there is a directed
broadcast spanning tree T in M(N, L) rooted at S0,0 such
that the sum of the transmission powers at non-leaf nodes
in T is no greater than W , then the 3-CNF SAT instance is
satisfiable. Clearly, T has the following properties.

(I) The edge 〈S0,0, Si,j〉 must be in T , because this is the
only incoming edge into the node Si,j , and every node in M
must be included in T , 1 ≤ i ≤ n and 1 ≤ j ≤ 2.

(II) The edge either 〈Si,1,Xi〉 or 〈Si,2,Xi〉 must be in T
but not both of them are in T , because there are the only
two incoming edges into node Xi, and one of the edges must
be in T in order to include Xi in T .

(III) Either node Si,1 or node Si,2 is a leaf node in T for
each i, 1 ≤ i ≤ n. From the above discussion, we know that
one of the two nodes must be a non-leaf node of T . Assume
that both of the nodes are non-leaf nodes in T , then there
are at least two outgoing edges in T from the two nodes,
which can be one of the following forms: (a) 〈Si,1,Xi〉 and
〈Si,2, Cj〉, where the corresponding boolean variable x̄i of
Si,2 is a literal in Cj ; (b) 〈Si,2,Xi〉 and 〈Si,1, Cj〉, where the
corresponding boolean variable xi of Si,1 is a literal in Cj .
We now show case (a) is impossible in T . Due to that both
Si,1 and Si,2 are the non-leaf nodes in T , then the sum of
the transmission powers at non-leaf nodes in T is at least
n + 2 (> W ), which is explained as follows. For every j
with j �= i, Xj is a leaf node and either Sj,1 or Sj,2 is the
parent of Xj in T , the sum of transmission powers of all
Sj,1 and Sj,2 is at least n − 1, 1 ≤ j ≤ n, while the sum of
transmission powers of both Si,1 and Si,2 is at least 2, and
the transmission power of source node is 1. As results, the
sum of transmission powers of non-leaf nodes in T is at least
n +2, which is greater than W . This contradicts our initial
assumption, so, either Si,1 or Si,2 must be a leaf node in T
for each i, 1 ≤ i ≤ n. Case (b) can be dealt similarly and
omitted.

(IV) For each SCj , there must be an incoming edge into
node SCj in T such that the transmission power of another
endpoint of the edge is 1 and the edge is either (a) 〈Si,1, Cj〉,
where the corresponding boolean variable xi of Si,1 is a lit-
eral in Cj ; or(b) 〈Si,2, Cj〉, where the corresponding boolean
variable x̄i of Si,2 is a literal in Cj . It is obvious that there
is such an edge in M incoming to SCj . We show that the
transmission power of another endpoint S of the edge in T
must be 1. Assume that this is not true. Then, the trans-
mission power of S in T is 2 by the definition of the wireless
network. The sum of transmission powers non-leaf nodes
is at least n + 2, because the transmission power at source
node is 1, the sum of transmission powers of all nodes Si,1

and Si,2 except node S (either S = Si′,1 or S = Si′,2) is at
least n− 1 due to the fact that Xi is a leaf node in T , while
the transmission power of S is 2 by the assumption. As re-
sults, the sum of transmission powers of non-leaf nodes in T
is at least 1 + (n − 1) + 2 = n + 2 > W , which contradicts
the initial assumption that the transmission powers in T is
no greater than W . Therefore, the transmission power of
another endpoint S of the edge in T must be 1.

Having the tree T , we can assign the boolean variables
with values such that the 3-CNF SAT instance is satisfi-
able. For each Xi, if Si,1 is not a leaf node in T , then xi is
true; otherwise, Si,2 is not a leaf node in T and x̄i is true.
Thus, every boolean variable of the n variables in the 3-CNF
SAT instance is assigned either “true” or “false”. For such
an assignment, we claim that every 3-CNF clause Cj must
be true, 1 ≤ j ≤ m. We prove this claim by contradic-
tion. Assume that there is a clause Cj0 which is false under
the assignment and 〈Si,1, Cj0〉 is an edge in T (if the edge
〈Si,2, Cj0〉 is in T , it can be dealt similarly and omitted),
where Si,1 is one of the corresponding nodes of the three
literals in Cj0 and must be a non-leaf node in T . Otherwise,
SCj0 cannot receive any message from any other nodes by
the construction of the wireless network. Then, the trans-
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mission power of Si,1 in T must be 2, otherwise, Si,1 would
not be chosen as the parent of Cj0 if any of the transmission
power of the other corresponding nodes of the other two lit-
erals in Cj0 is 1. Thus, the sum p(T ) of the transmission
powers in T , therefore, is

p(T ) ≥ 1 + (n− 1) + 2 = n + 2 > W, (2)

where in the right hand side of Inequality (2), the first term
is the source’s transmission power; the second term is the
minimum sum of the transmission powers of either Sj,1 or
Sj,2 for all j with j �= i, 1 ≤ j ≤ n because Xj is a leaf
node in T and can be received messages from Sj,1 or Sj,2

only; the third term is the transmission power of Si,1. This
contradicts the initial assumption that p(T ) ≤W . Thus, all
clauses Cj are true under the assignment, 1 ≤ j ≤ m.

Suppose that a given 3-CNF SAT instance is satisfiable,
we show there is a directed broadcast spanning tree T rooted
at the source such that the sum of transmission powers at
the non-leaf nodes in T is no greater than W , which is con-
structed as follows.

First, the source node S0,0 is chosen as the root and
its power is 1. There are directed edges 〈S0,0, Si,1〉 and
〈S0,0, Si,2〉 in T for all i, which means that Si,j is able to
receive messages sent by S0,0 when S0,0 uses power 1 to
broadcast messages, 1 ≤ j ≤ 2, 1 ≤ i ≤ n.

Then, for each boolean variable xi, if its value in the 3-
CNF SAT instance is true, then the power level at Si,1 is 1,
and 〈Si,1,Xi〉 is in T . Otherwise, the power level at Si,2 is
1, and 〈Si,2, Xi〉 is in T .

Finally, for a given 3-CNF Cj = yj,1 ∨ yj,2 ∨ yj,3, at least
one literal yj,l is true, because Cj is true under the assign-
ment, 1 ≤ l ≤ 3. If more than one literals in Cj are true,
one of them is chosen as the parent of SCj in T . Let yj,l be
true. If yj,l = xi, then the directed edge 〈Si,1, SCj〉 is in T ;
otherwise (yj,l = x̄i), the directed edge 〈Si,2, SCj〉 is in T ,
1 ≤ j ≤ m and 1 ≤ i ≤ n.

As a result, T is a directed, spanning tree rooted at S0,0,
and the sum p(T ) of the transmission powers at the non-leaf
nodes of T is

P (T ) ≤ 1 + n ≤W, (3)

where in the right hand side of Inequality (3), the first term
is the source’s transmission power; the second term is the
sum of the transmission powers of either Si,1 or Si,2 for all i,
1 ≤ i ≤ n. The construction of the minimum-energy broad-
cast tree instance from the 3-CNF SAT instance can be done
in polynomial time in terms of n and m. While it is well
known that the 3-CNF SAT problem is NP-complete, the
minimum-energy broadcast tree problem is NP-Complete
too.

4. APPROXIMATE ALGORITHMS FOR
MINIMUM-ENERGY BROADCAST TREE
PROBLEM

As shown the minimum-energy broadcast tree problem is
NP-complete, it is unlikely to solve it in polynomial time
unless P=NP. Instead, we focus on devising an approximate
algorithm for it. The idea is first to reduce the problem to
an optimization problem on an auxiliary graph. Then, solve
the optimization problem on the auxiliary graph. Finally,
the approximate solution for the auxiliary graph gives an
approximate solution for the original problem.

4.1 Broadcast tree with k adjustable power
levels at each node

Given the wireless network M(N,L) with k adjustable
power levels at each node, an auxiliary, weighted, directed
graph G = (V,E, ω1) is constructed as follows.

For each node Si, let wi,1, wi,2 . . . , wi,k be the k adjustable
power levels at Si with wi,l1 < wi,l2 , 1 ≤ l1 < l2 ≤ k. A
widget Gi = (Vi, Ei) for Si is built and shown in Fig 1,
Vi = {si, vi,1, vi,2, . . . , vi,k} and Ei = {〈si, vi,l〉 : 1 ≤ l ≤
k}, where si represents the node Si, vi,l represents node
i working at transmission power level l, the directed edge
from si to vi,l represents the lth power level and the weight
assigned to it is the power wi,l, 1 ≤ l ≤ k. Having been

i,k-1w

i,kw

i,2w

wi,1

v

vi,1

vi,k-1

vi,k

i,2

is

Figure 1: The widget Gi = (Vi, Ei) for node Si

built the widgets, it is ready to construct G. V = ∪n
i=1Vi,

E = ∪n
i=1Ei ∪ Edist, and ω1 : E �→ R, where Edist is

the set of edges between the nodes of different widgets,
which is defined as follows. For two nodes Si and Sj with
i �= j, let d(Si, Sj) be the distance from Si to Sj . If Si

uses power wi,l at level l to broadcast a message and Sj is
able to receive the message, then there is a directed edge
〈vi,l, sj〉 in Edist with weight zero. In other words, Sj is
within the transmission range of Si when Si uses power
wi,l to broadcast messages, 1 ≤ i ≤ n and 1 ≤ l ≤ k.
Now consider the weight assignment of edges in G. For
each 〈si, vi,l〉 ∈ Ei ⊂ E, ω1(si, vi,l) = wi,l; and for each
〈vi,l, sj〉 ∈ Edist, ω1(vi,l, sj) = 0. As results, the directed
weighted graph G has been built and has the following prop-
erties.

Lemma 1. Given the directed graph G(V,E, ω1) defined
above, then (i) G contains (k + 1)n nodes and at most kn2

directed edges, i.e., |V | = (k + 1)n and |E| ≤ kn2. (ii) Let
N(vi,l) be the set of neighboring nodes of vi,l in G, then,
N(vi,l1) ⊆ N(vi,l2) if 1 ≤ l1 < l2 ≤ k. (iii) G contains two
types of nodes; type-1 node si ∈ V , whose outgoing degree is
k and incoming degree is degin(si) = |{vj,l : Si is within the
transmission range of Sj if Sj uses power wj,l to broadcast
messages, 1 ≤ l ≤ k, 1 ≤ j ≤ n, and i �= j}|; and type-2 node
vi,l ∈ V , whose incoming degree is 1 and outgoing degree is
degout(vi,l) = |{sj : Sj is within the transmission range
of Si if Si uses power wi,l to broadcast messages, 1 ≤ l ≤
k, 1 ≤ j ≤ n, and i �= j}, 1 ≤ i ≤ n}|.

Proof. We first show property (i). For each node si in
G, there are at most k incoming edges derived from another
node sj which corresponds to the k transmission power levels
of Sj with i �= j, 1 ≤ j ≤ n. Thus, the total number of
incoming edges of si is at most k(n− 1), 1 ≤ i ≤ n. There
are n such nodes in G. Therefore,

|Edist| ≤ k(n− 1)n = kn2 − kn. (4)
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Since Ei ∩ Ej = ∅, Ei ∩ Edist = ∅ and |Ei| = k, i �= j,
1 ≤ i, j ≤ n,

|E| = | ∪n
i=1 Ei ∪Edist| =

n∑

i=1

|Ei|+ |Edist|

≤ kn + kn2 − kn = kn2. (5)

We then show property (ii). Following the construction of G,
let sj ∈ N(vi,l1 ), which means that the node Sj is within the
transmission range of Si if Si uses power wi,l1 to broadcast a
message and Sj is able to receive the message. Certainly, Sj

is still within the transmission range of Si if Si uses power
wi,l2 to broadcast messages due to that wi,l1 < wi,l2 . Thus,
for any sj ∈ N(vi,l1), it must be in N(vi,l2 ) too.

We finally show property (iii). For type-1 node si which is
the representative of node Si, its incoming degree degin(si)
follows the definition of G, and its outgoing degree is k which
corresponds to its k transmission power levels. While for
every power level node vi,l, its incoming degree is 1 and
outgoing degree is determined by its transmission power wi,l

and the number of the other nodes that are within its trans-
mission range of Si when Si uses power wi,l to broadcast
messages, 1 ≤ i ≤ n, 1 ≤ l ≤ k.

Having the auxiliary graph G, without loss of generality
we assume that the node S1 is the source and every other
node is reachable from s1. Otherwise, no such a minimum-
energy broadcast tree in the wireless network exists. The
rest is to find a directed Steiner tree in G rooted at s1 in-
cluding each terminal node in D = {si | 2 ≤ i ≤ n}. In
the following we show the exact solution of the minimum-
energy broadcast tree problem on the wireless network can
be found through finding a Steiner tree in G.

Lemma 2. The Steiner tree in G(V,E, ω1) defined gives
an exact solution for the minimum-energy broadcast tree
problem.

Proof. Assume that Topt is a minimum-energy broad-
cast tree with source S1 for the wireless network. Following
the construction of G, there is a corresponding tree T in
G rooted at s1 including the nodes in S for Topt. Let Tst

be a Steiner tree in G rooted at s1 including the nodes in
D. Then, we have W (T ) ≤ W (Tst) because the sum of
transmission powers at all nodes in Topt is the minimum one
and equal to W (T ), where W (T ′) is the weighted sum of
the edges in a tree T ′ of G. While Tst is such a minimum
weighted tree rooted at s1 that includes the nodes in D
by the Steiner tree definition, W (Tst) ≤ W (T ). Therefore,
W (Tst) = W (T ).

The Steiner tree Tst defined in G(V,E, ω1) has the follow-
ing unique properties.

Lemma 3. Given the Steiner tree Tst in G(V,E, ω1) de-
fined, (i) Tst is a tree in which no two directed edges derived
from a single node Si are included. In other words, for a
given node Si, not both 〈si, vi,x〉 and 〈si, vi,y〉 are included
in Tst, 1 ≤ x, y ≤ k, 1 ≤ i ≤ n, and i �= j. (ii) For
every other node sj, the number of edges in the path from
the root s1 to sj is even, and for every sj′ on the path, both
its incoming degree and outgoing degree are one except the
incoming degree of s1 is zero, 1 ≤ j′ ≤ n, and j′ �= 1.

Proof. We show property (i) by contradiction. Assume
that both of the directed edges are included in Tst with x <
y. By the construction of Tst, neither vi,x nor vi,y is the leaf
node of Tst; otherwise, both vi,x and vi,y are not included in
Tst. Now, assume 〈vi,x, sj〉 is a directed edge from vi,x in Tst

with weight zero, by the definition of G. Then, there must
be a directed edge 〈vi,y , sj〉 with weight zero in G by case
(ii) of Lemma 1 due to that wi,x ≤ wi,y . Thus, another tree
Tst−{〈si, vi,x〉, 〈vi,x, sj〉}∪{〈vi,y , sj〉} in G can be found, in
which s1 is still the root and all nodes in D are included. The
weight of this resulting tree is W (Tst) − wi,x (< W (Tst)),
which contradicts that Tst is the Steiner tree rooted at s1

including the nodes in D. Therefore, no two directed edges
derived from a single node are included in Tst, which means
that there is only a power level chosen at each node if the
Steiner tree can be found.

We now show property (ii). Let P be a directed path from
s1 to sj in Tst consisting of edges e1, e2, . . . , em where the tail
of e1 is tail(e1) = s1 and the head of em is head(em) = sj

and tail(ei) = head(ei−1), 2 ≤ i ≤ m. Observe that for
every edge in P , e2i−1 ∈ Ej′ with a positive weight, which
is an edge in the widget of a node Sj′ , and e2i ∈ Edist with
weight zero, 1 ≤ i ≤ �m/2�. While e1 ∈ E1 and em ∈ Edist,
m must be even, i.e., the number of edges in P is even.
Since Tst is a directed tree, the incoming degree of every
node including sj′ is one. The outgoing degree of sj′ is one
too, following the argument for property (i).

Given the Steiner tree Tst, to set power at each node is
easy, which is presented as follows. For a node Si, if its
corresponding edge 〈si, vi,l〉 in Tst, then the power at Si is
adjusted to wi,l, 1 ≤ i ≤ n and 1 ≤ l ≤ k. Therefore, the
rest is how to find Tst in G efficiently. However, it is well
known that there is unlikely to have a polynomial algorithm
for finding a directed Steiner tree in G unless P = NP .
Instead, we will focus on finding an approximate Steiner
tree in G.

Let Tapp be an approximate Steiner tree in G rooted at s1

including the nodes in D, which has been obtained by ap-
plying the algorithm in [5], and let W (Tapp) be the weight
of Tapp. Note that Tapp may not be the broadcast tree that
we wanted, because it may contain two directed edges de-
rived from a single node. One such an example is shown
in Fig 2, where an approximate Steiner tree in G is found.
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Figure 2: An approximate Steiner tree
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From which we can see that both 〈si0 , vi,x〉 and 〈si0 , vi,y〉
are included in Tapp. This means that two different power
levels of node Si0 are needed for this broadcast session,
which obviously violates the restriction imposed in case (i)
of Lemma 3. To remove such violation, we modify Tapp to
make it become another tree T ′

app which obeys the restric-
tion in Lemma 3 as follows. Assume that x < y, then we
have wi0,x < wi0,y . Delete the edges 〈si0 , vi,x〉 of weight
wi0,x, 〈vi0,x, sj〉, 〈vi0,x, sk〉, and 〈vi0,x, sl〉 of weight zeros
from Tapp. Add edges 〈vi0,y , sj〉, 〈vi0,y , sk〉, and 〈vi0,y, sl〉
of weight zeros which are all in G into Tapp. As results, the
modified tree is a tree rooted at s1 including all the nodes in
D and its weight W (T ′

app) (= W (Tapp)− wi0,x < W (Tapp))
is strictly less than W (Tapp). In case more than two edges
derived from a single node are in Tapp, to deal with the
case, among the edges, only the edge with the maximum
weight will be kept, and all the other edges will be deleted
using the similar construction as the above. Consequen-
tially, T ′

app is the tree needed, from which an assignment
of power level for every node is straightforward and omit-
ted. In summary, the proposed algorithm is given below.

Algorithm Mini Broad Tree(N,L, k)
begin
1. Construct the auxiliary graph G(V,E, ω1);
2. Find an approximate Steiner tree Tapp on G

by applying the algorithm in [5];
3. Construct T ′

app by modifying Tapp if needed;
4. Set power level at each node, according to

the information given by T ′
app.

end

Thus, we have the following theorem.

Theorem 2. Given a wireless network M(N, L) with k
adjustable power levels at each node, there is an approximate
algorithm to find a minimum-energy broadcast tree rooted at
a source. The sum of transmission powers is O(nε) times of
the optimum. The time complexity of the proposed algorithm

is O((k + 1)
1
ε n

3
ε ), where k is the number of power levels at

each node on the wireless network and ε is constant with
0 < ε ≤ 1.

Proof. Following algorithm Mini Broad Tree, Step 1 takes
O(kn2) time because G contains (k+1)n nodes and at most
kn2 directed edges. Step 2 is the dominant which takes

O((k + 1)
1
ε n

3
ε ) time by Theorem 4 in [5], because G con-

tains (k + 1)n nodes and n terminal nodes. Step 3 takes
O(n) time by examining the outgoing edges of each non-leaf
node in Tapp. Step 4 takes O(n) time by checking each non-
leaf node with outgoing degree 1. Thus, the entire algorithm

takes O((k + 1)
1
ε n

3
ε ) time.

Now we analyze the performance ratio of the proposed al-
gorithm as follows. It has been already known that W (T ′

app) <
W (Tapp), following the proof of Lemma 3, while W (Tapp) ≤
cnεW (Tst)) by the approximate algorithm in [5]. Thus,
W (T ′

app) < cnεW (Tst) = cnεW (T ) = O(nεW (T )), where
c is constant.

The proposed algorithm above is a centralized algorithm,
we here propose a distributed implementation for it in a
distributed environment, in which each node A knows its
neighboring nodes B, where B is within the transmission

range of A when A uses its maximum power level to trans-
mit messages. The key is to map the auxiliary graph G into
the physical wireless network, which is described as follows.
Each node (mobile) Si contains the widget Gi, and there are
at most k virtual links 〈vi,l′ , sj〉,〈vi,l′+1, sj〉, . . ., 〈vi,k, sj〉
between physical node Si and node Sj if Sj is within the
transmission range of Si, 1 ≤ l′ ≤ k, 1 ≤ i, j ≤ n. Thus, the
auxiliary graph G has been mapped to the physical wireless
network. Having the auxiliary graph G, run a distributed
algorithm for finding a directed Steiner tree including all
nodes si, 1 ≤ i ≤ n, on G. We here use the physical wireless
network to simulate the steps in G, i.e., each mobile node
(Si) will act as (k + 1) nodes si, vi,1, . . ., vi,k in G. There-
fore, the performance ratio between the approximation so-
lution and the exact solution of the problem is determined
by the distributed implementation of the directed Steiner
tree algorithm. The simplest distributed implementation
of the Steiner tree algorithm is through running a distrib-
uted single-source shortest path algorithm, which delivers
an approximate solution within O(n) times of the optimum.
Having constructed the approximate Steiner tree, setting
the power level for each mobile node is easy, following the
information given by the tree.

4.2 Broadcast tree with the same type of bat-
tery at each node

In this section we consider a special case where each node
is equipped with the same type of battery, i.e., each node has
identical k-level powers, i.e., wi,l = wj,l for i �= j, 1 ≤ l ≤ k,
1 ≤ i, j ≤ n. We show that there is a better approximate
algorithm for the minimum-energy broadcast tree problem,
which delivers a solution within O(log3 n) times of the op-
timum. Following the same spirit of the algorithm in the
preceding section, the approximate solution for the problem
is found through finding an approximate solution for an op-
timization problem on an auxiliary graph. To this end, in
the following we focus on the construction of the auxiliary
graph.

Let V1,V2,. . ., Vp be a partition of the nodes in the wire-
less network. Then, Vi ∩ Vj = ∅, Vi �= ∅, and ∪p

i=1Vi =
{s1, s2, . . . , sn}, where sl represents node Sl, 1 ≤ i, j ≤ p
with i �= j, 1 ≤ l ≤ n. Based on the node partition defined,
a weighted, bipartite graph G = (X,Y,E, ω) is constructed
as follows. X = ∪n

i=1{vi,1, vi,2, . . . , vi,k | si is a node} where
node vi,l represents the lth level power of Si and its weight
is ω(vi,l) = wi,l, 1 ≤ l ≤ k, 1 ≤ i ≤ n. Y = {V1,V2, . . . ,Vp}
and ω : X �→ R. An edge (vi,l,Vj) ∈ E if and only if at
least a node sj′ ∈ Vj is within the transmission range of Si

when Si uses power wi,l to broadcast messages. Obviously,
(vj′,l,Vj) ∈ E if sj′ ∈ Vj for all l, 1 ≤ l ≤ k. If multiple
nodes in Vj are within the transmission range of Si when Si

uses power wi,l to broadcast messages, there is only an edge
(vi,l,Vj) ∈ E. Clearly, G is a simple, bipartite graph, and
has the following properties.

Lemma 4. Let X1 be a subset of X in G covering all
nodes in Y such that the weighted sum W (X1) (=

∑
v∈X1

ω(v))

of nodes in it is minimized. Then, (i) no two nodes vi,l1 and
vi,l2 derived from a node Si are included in X1, 1 ≤ l1 <
l2 ≤ k. (ii) Denote by Wmin the weighted sum of nodes in
X1, i.e., Wmin =

∑
v∈X1

ω(v). Let Popt be the minimum
power needed for broadcasting messages source at a node to
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all the other nodes in the network. Then,

Wmin ≤ Popt. (6)

Proof. Let N(vi,l) be the set of neighboring nodes of vi,l

in G. We show case (i) by contradiction. Assume that both
vi,l1 ∈ X1 and vi,l2 ∈ X1 with l1 < l2, then wi,l1 < wi,l2

by the definition. Thus, N(vi,l1) ⊆ N(vi,l2). We now have
X ′

1 = X1 − {vi,l1}, which also covers all nodes in Y and
the weighted sum of the nodes in X ′

1 is W (X ′
1) = W (X1)−

wi,l1 < W (X1) = Wmin. This contradicts the fact that X1

is the set of the minimum weighted sum of nodes satisfying
the constraint.

We now show case (ii). Let X2 be a subset of X which
corresponds to the nodes in the optimal broadcast tree. We
show that the nodes in X2 must cover all nodes in Y . Oth-
erwise, assume that there is a node Vj ∈ Y which is not cov-
ered by any node in X2. Since Vj �= ∅, let sj′ be any node in
Vj , then (vj′,l,Vj) ∈ E by the definition of G and vj′,l �∈ X2

by the assumption, for all l, 1 ≤ l ≤ k. Therefore, sj′ is a
leaf node in the broadcasting tree and is within the trans-
mission range of another node Si where Si in the optimal
broadcast tree uses a power level wi,l to broadcast messages.
Thus, vi,l ∈ X2, and there is an edge (vi,l,Vj) ∈ E, i.e., Vj

is covered by node vi,l. This contradicts the initial assump-
tion that Vj is not covered by any node in X2. Therefore,
X2 is a covering set which covers all nodes in Y . While X1

is a such minimum covering set, so, W (X1) ≤W (X2). Fur-
thermore, W (X1) = Wmin and W (X2) = Popt, therefore, we
have Wmin ≤ Popt.

Now, given a node partition P = {V1,V2, . . . ,Vp} and a
covering set X ′ (⊆ X) of G(X,Y,E, ω) that is not necessary
to be the minimum one, we show how to construct a new
node partition P ′. For convenience, assume that the degree
of every node vi,l ∈ X of G is at least 2. If there is a
vi,l ∈ X with degree 1, let (vi,l,Vj) be the unique edge,
then si ∈ Vj by the definition of G. This means that no
other nodes are able to receive the message of Si if Si uses
power wi,l to broadcast a message. So, such node is useless
for message broadcasting purpose and will be deleted from
G. Without loss of generality, from now on we assume that
every node vi,l ∈ X of G has degree of at least 2. The new
node partition P ′ based on the information supplied by X ′

and the current node partition P , is constructed as follows.

Algorithm Node Partition(G, X ′, P ′)
begin
1. Let P = {V1,V2, . . . ,Vp};
2. A subgraph G[X ′] = (X ′, Y, (X ′ × Y ) ∩E,ω) of G

is constructed, which is an induced subgraph
by the nodes in X ′ ∪ Y ;

3. Find connected components in G[X ′]. Let CC1, CC2, . . .,
CCp′ be the node sets of connected components in G[X ′].

4. A new partition P ′ ← {CC1 ∩ Y,CC2 ∩ Y, . . . , CCp′ ∩ Y }
is constructed.

end

It is easy to show that p′ ≤ �p/2� due to that every node in
X of G has a degree at least 2. Having constructed the node
partition, we are ready to present an algorithm for finding
an approximate minimum-energy broadcast tree, which is
presented as follows.

Algorithm Mini Broad Tree Equal(N, L, k)
begin
Let P = {{s1}, {s2}, . . . , {sn}};
for i← 1 to n do

p(si)← 0; /* the initial power assigned to node Si */
endfor;

i← 0; /* the number of iterations */
repeat
1. Construct an auxiliary weighted bipartite graph

G(X, Y,E,ω) using P ;
2. Find a covering set X1 ⊆ X in G(X,Y,E, ω) such that

the weighted sum of nodes in it is minimized;
3. Check whether more than one node in X1 is derived

from a node. If so, delete all the other nodes except
the one with the maximum weight.

Let X ′
1 be the resulting subset of X1;

4. for each node vi,l ∈ X ′
1 do

p(si)← max{p(si), wi,l};
endfor;

5. Construct a new partition P ′ by
calling Node Partition(G, X ′

1, P
′);

6. P ← P ′; i← i + 1;
until (i = �log n�);
7. Assign the edges in the tree directions. Set the power

level for each node, following the given information.
end;

Before we continue, we notice the wireless network has the
following transmission power symmetric property.

Lemma 5. Given a wireless network where each node has
identical, adjustable k power-levels, then for any two nodes
Si and Sj with i �= j, if Sj is within the transmission range of
Si when Si uses power wi,l to broadcast a message, then Si is
also within the transmission range of Sj when Sj uses power
wj,l to broadcast a message due to wi,l = wj,l, 1 ≤ i, j ≤ n
and 1 ≤ l ≤ k.

We now have the following theorem.

Theorem 3. Given a wireless network M(N,L) with k
adjustable, identical power levels at each node, there is an
approximate algorithm to find a minimum-energy broadcast
tree rooted at a source. The total transmission power needed
for maintaining the broadcast tree is O(log3 n) times of the
optimum. The time complexity of the proposed algorithm is
O(kn2 log n), where k is the number of power levels at each
node in the wireless network.

Proof. The computational complexity of the proposed
algorithm is analyzed as follows. The construction of the
bipartite graph G(X,Y,E, ω) takes O(kn2) time because G
contains at most |X| + |Y | ≤ kn + n nodes and kn2 edges.
The algorithm proceeds at rounds, and there are at most
�log n� rounds. At each round, the graph G is constructed,
and a covering set X1 (⊆ X) with the minimum weighted
sum needs to be found. However, it is well known that there
is unlikely to have a polynomial algorithm for finding such
a set unless P=NP. Instead, we use Chvatal’s algorithm [4]
to find a covering set which delivers an approximate solu-
tion within O(log n) times of the optimum. While finding
such an approximate solution takes O(kn2) time due to that
G contains at most O(kn2) edges, the running time of the
entire algorithm is therefore O(kn2 log n).
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The rest is to analyze the performance ratio of the pro-
posed algorithm. As mentioned, the algorithm proceeds in
rounds. At each round, it actually performs merging di-
rected broadcast trees. Initially, there are n broadcast trees.
At each round, the nodes in a single partition component
Vj form a broadcast tree. Once a covering set X ′

1 in G is
found, the new node partition can then be found, and sev-
eral broadcast trees are merged into a single broadcast tree
if their corresponding partition components are in the same
connected component of the induced subgraph G[X ′

1]. To
perform the merge of the two trees, we need changing the
directions of edges in the path from the tree root to a node
in it. In the following we give more details of tree merge.

Assume that Vi and Vj are two partition components in
P and sx ∈ Vi. Let T1 be the broadcast tree consisting
of the nodes in Vi and T2 be the broadcast tree rooted at
sj1 , consisting of the nodes in Vj . Assume that vx,l ∈ X ′

1

and there is an edge (vx,l,Vj) ∈ E. To merge T1 and T2

into a directed broadcast tree T , without loss of generality,
assume that the root of T1 will be the root of T (if the root
of T2 will be the root of T , the discussion is similar and
omitted). Assume that the edge (vx,l,Vj) ∈ E is derived
due to that sjy ∈ Vj is within the transmission range of
Sx when Sx uses power wx,l to broadcast messages. T can
be constructed through adding a directed edge 〈sx, sjy 〉 and
changing the directions of the edges in the path in T2 from
the root sj1 to node sjy , which is shown in Fig. 3.
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Figure 3: An illustration of tree merges

Suppose that the algorithm has executed the first (i−1)th
rounds, now consider it is going to run the ith round. We
distinguish extra power needed for tree merge at this round
into the following four cases.

Case (i). The directed edge 〈sx, sjy 〉 is an edge from a
leaf node sx of T1 to a non-leaf node sjy of T2. To change
the directions of edges in path from sj1 to sjy in T2, the
transmission power of Sji must be adjusted to p(sji−1), 2 ≤
i ≤ y by Lemma 5. Thus, if the power p(sjy ) of Sjy is less
than the power p(sjy−1) of its parent node Sjy−1 in T2, then,
the extra power (except the powers used in X ′

1) for this tree
merge is p(sjy−1)− p(sjy ) ≤ p(sjy−1).

Case (ii). The directed edge 〈sx, sjy 〉 is an edge from a
leaf node sx of T1 to a leaf node sjy of T2. For this case, the
extra power for this tree merge is p(sjy−1) due to that in T2

p(sjy ) is a leaf node and its power is zero. Now its power in
T must be at least p(sjy−1) to be able to broadcast messages
to its parent Sjy−1 in T2.

Case (iii). The directed edge 〈sx, sjy 〉 is an edge from a

non-leaf node sx of T1 to a leaf node sjy of T2. If p(sx) >
wx,l, then node Sx still uses power p(sx) to broadcast mes-
sages, where wx,l is the power used by Sx at the current
round. For this case, the extra power for this tree merge is
p(sjy−1) due to that sjy is a leaf node in T2 and its power
is zero in T2.

Case (iv). The directed edge 〈sx, sjy 〉 is an edge from a
non-leaf node sx of T1 to a non-leaf node sjy of T2. For
this case, if the current power p(sjy ) of Sjy is greater than
the power p(sjy−1) of its parent node Sjy−1 in T2, no extra
power is needed for such merge. Otherwise, the extra power
for this merge is p(sjy−1) − p(sjy ) ≤ p(sjy−1). In the end,
the total extra power needed for the implementation of tree
merges at the ith round is no more than the transmission
power sum of the broadcast trees at the (i−1)th round. Let
∆i be the transmission power sum of the broadcast trees at
the ith round. Then,

∆i ≤ log(
n

2i
)Wmin + ∆i−1, (7)

where the first term in the right hand side of Inequality 7 is
the weighted sum of nodes in X ′

1, which is no greater than
log |Y | × Wmin, while |Y | ≤ n

2i at the ith round. ∆0 ≤
log nPopt. As results, we have

∆i ≤ (i + 1) log nPopt, (8)

1 ≤ i ≤ �log n�. Thus, the total transmission power of an
approximate minimum-energy broadcast tree is

�log n�∑

i=0

∆i ≤
�log n�∑

i=0

(i + 1) log nPopt = O(log3 nPopt).

5. APPROXIMATE ALGORITHMS FOR
MINIMUM-ENERGY MULTICAST TREE
PROBLEM

It is well known that finding a minimum-cost multicast
tree in a wired network is NP-complete. The problem in a
wireless ad hoc network is at least as hard as its counter-
part in the wired network. Therefore, finding a minimum-
energy multicast tree in a wireless network is a difficult prob-
lem. In the following we apply the design methodology for
the minimum-energy broadcast tree problem to solve the
minimum-energy multicast tree problem.

5.1 Multicast tree with k adjustable power lev-
els at each node

Following the same spirit as we construct a minimum en-
ergy broadcast tree in the wireless network, here we first
construct an auxiliary, weighted, directed graph G(V,E, ω1).
Let D = {si : if node Si is a terminal node}, then find an
approximate directed Steiner tree in G rooted at the source
including all nodes in D. Let TD be the approximate Steiner
tree. Check the edges in TD to see whether they satisfy the
restriction imposed by case (i) of Lemma 3. Let T ′

D be
the resulting tree after modifying TD such that it meets the
restriction. Accordingly, an approximate minimum-energy
multicast tree is built and the power levels of the nodes in-
volved in the network are determined. Thus, we have the
following theorem.

120



Theorem 4. Given a wireless network M(N, L) with k
adjustable power levels at each node, a source node S1, and
a set D of terminal nodes, there is an approximate algo-
rithm to find a minimum-energy multicast tree rooted at S1.
The total transmission power needed is |D|ε times of the op-
timum. The time complexity of the proposed algorithm is

O(((k + 1)n)
1
ε |D| 2ε + kn2), where k is the number of power

levels at each node in the wireless network and ε is constant
with 0 < ε ≤ 1.

Proof. The proof is exactly the same as that for Theo-
rem 2, omitted.

5.2 Multicast Tree with equal power levels at
each node

We here consider a special case of the problem where each
node has identical k-level powers, i.e., wi,l = wj,l for i �= j,
1 ≤ l ≤ k, 1 ≤ i, j ≤ n. We show that there is a better ap-
proximate algorithm for the minimum-energy multicast tree
problem, which delivers a solution within O(log3 |D|) times
of the optimum, where D is the set of terminal nodes. Fol-
lowing the same idea of the algorithm Mini Broad Tree Equal,
the approximate solution for the problem is found through
finding an approximate solution for an optimization problem
on an auxiliary graph. The only difference lies on the con-
struction of the auxiliary bipartite graph G = (X,Y,E, ω).
In this case, Y is a partition of the terminal nodes. Initially
|Y | = |D|. In each subsequent round, any partition of Y is a
partition of the nodes corresponding to the terminal nodes
in D. Thus, we have the following theorem.

Theorem 5. Given a wireless network M(N, L) with k
adjustable, identical power levels at each node, a source node
and a set D of terminal nodes, there is an approximate al-
gorithm to find a minimum-energy multicast tree rooted at a
source. The total transmission power consumed of the multi-
cast tree is O(log3 |D|) times of the optimum. The time com-
plexity of the proposed algorithm is O(kn|D| log |D|), where
k is the number of power levels at each node in the wireless
network.

Proof. The proof is similar to that for Theorem 3, omit-
ted.

6. THE ANALYSIS OF THE BIP ALGORITHM
In [19] they introduced an approximate algorithm called

the Broadcast Incremental Power (BIP) algorithm for the
minimum-energy broadcast tree problem. Unfortunately,
they didn’t give the performance of the BIP algorithm. In
this section we analyze the performance of the BIP algo-
rithm by showing that it is Ω(n) times of the optimum in
the worst case. In contrast to this known algorithm for the
minimum-energy broadcast tree problem, the performance
ratio of our approximation algorithm is O(nε), 0 < ε ≤ 1,
which trade-offs the time spent for finding an approximate
solution and the accuracy of the approximate solution ob-
tained.

6.1 The BIP algorithm
BIP is similar in principle to Prim’s algorithm for the min-

imum spanning tree problem, in the sense that new nodes

are added to the broadcast tree one at a time (on a min-
imum cost basis) until all nodes are included in the tree.
Initially, the source node is added into the tree. The major
difference between Prim’s algorithm and the BIP algorithm
is that BIP must dynamically update the costs at each step
to reflect that the cost of adding new nodes to a transmitting
node’s list of neighbors is the incremental cost, whereas the
inputs to Prim’s algorithm are the link costs Di,j which re-
main unchanged throughout the execution of the algorithm.
Consider an example in which node Si is already in the tree
and it may be either a transmission node or a leaf node, and
a node Sj is not yet in the tree. For all such nodes Si and
Sj , the BIP algorithm evaluates

D′
i,j = Di,j − p(Si) (9)

where Di,j is the link-based cost of transmission between
node Si and node Sj , and p(Si) is the power level at which
node Si is already transmitting (prior to the addition of
node Sj ; if node i is currently a leaf node, p(Si) = 0).
The quantity D′

i,j represents the incremental cost associ-
ated with adding node Sj to the set of nodes to which node
Si already transmits. The pair {i, j} that results in the min-
imum value of D′

i,j is chosen. Thus, a new node is added to
the broadcast tree at every step of the algorithm.

6.2 The performance ratio of the BIP algo-
rithm

Theorem 6. Given a wireless network M(N,L), the per-
formance ratio between the solution delivered by the BIP al-
gorithm and the exact solution is no less than cpmin

2pmax
× n,

where pmin = min{wi,l | 1 ≤ i ≤ n, 1 ≤ l ≤ k}, pmax =
max{wi,l | 1 ≤ i ≤ n, 1 ≤ l ≤ k}, and c is constant.

Proof. We show that there is a wireless network such
that the solution delivered by the BIP algorithm is no less
than cpmin

2pmax
× n×OPT , where OPT is the optimal solution

of the problem.
Consider a wireless network consists of nodes layered within

3 levels, where there is a source node at layer 1, there are g
nodes at layer 2, there are βg nodes at layer 3, both β and
g are positive integers, and β is constant.

Assume that the source node has two power levels with
values w1 and (1 + α)(w1 + w2) respectively, where α is a
constant with 0 < α ≤ 1/2. When the source node uses
power w1 to broadcast messages, all the nodes at layer 2 are
within its transmission range; while the source node uses
power (1+α)(w1 +w2) to broadcast messages, all the nodes
at layers 2 and 3 are within its transmission range.

The nodes at layer 3 are partitioned into g groups and
each group contains exactly β nodes. All of the nodes at
layer 3 are no transmission powers. For each node v at
layer 2 using power w2 to broadcast messages, there is a
corresponding group at layer 3 in which the nodes are within
the transmission range of v. Thus, the wireless network
consists of n = 1 + g + βg nodes. Thus,

g =
n− 1

1 + β
. (10)

Having constructed the wireless network, the BIP algo-
rithm is applied on it. Then, the sum of transmission pow-
ers in the broadcast spanning tree obtained by the BIP algo-
rithm is w1+gw2. It is obvious that the optimal solution for
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the problem is a star centered at the source node using the
power (1 + α)(w1 + w2) to broadcast messages. Let ABIP

be the approximate solution delivered by the BIP algorithm
and AOPT be the optimal solution of the problem. Then,
the performance ratio between the approximate solution and
the optimal solution is as follows.

ABIP

AOPT
=

w1 + gw2

(1 + α)(w1 + w2)
≥ pmin(1 + g)

2pmax(1 + α)
(11)

=
pmin(

β+n
1+β

)

2pmax(1 + α)
(12)

>
pmin × n

2pmax(1 + α)(1 + β)
(13)

=
pmin

4pmax(1 + α)
n, when β = 1 (14)

= Ω(n) (15)

Throughout the above analysis, it can be seen that the per-
formance of the BIP algorithm is not good in some cases
if the power values of the network are independent of the
problem size n.

7. CONCLUSIONS
In this paper we first have shown that the minimum-

energy broadcast tree problem is NP-complete. We then
have proposed an approximate algorithm for the problem
with a bounded performance guarantee. We have also given
an approximate algorithm for a special case of the problem
where each node is equipped with the same type of battery,
which delivers a better approximate solution. The technique
for the minimum-energy broadcast tree problem have been
extended to solve the minimum-energy multicast tree prob-
lem. Despite that a better approximate solution for the
minimum-energy broadcast tree problem has been proposed
in this paper, it is interesting and challenging to answer
the following questions in a positive or negative way. (1)
Whether there is an approximate algorithm for the prob-
lem with a constant performance ratio. (2) Whether the
problem is still NP-hard if the power level at each node is
adjustable infinitely.
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