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Abstract—This paper characterizes the aggregate interference
at the primary user (PU) due to M secondary users (SUs) in
an underlay cognitive network, where appropriate SU activ-
ity protocols are employed in order to limit the interference
generated by the SUs. Different from prior works, we assume
that the PU can be located anywhere inside an arbitrarily-
shaped convex network region. Using the moment generating
function (MGF) of the interference from a random SU, we
derive general expressions for the n-th moment and the n-
th cumulant of the aggregate interference for guard zone and
multiple-threshold SU activity protocols. Using the cumulants,
we study the convergence of the distribution of the aggregate
interference to a Gaussian distribution. In addition, we compare
the well-known closed-form distributions in the literature to
approximate the complementary cumulative distribution function
(CCDF) of the aggregate interference. Our results show that care
must be undertaken in approximating the aggregate interference
as a Gaussian distribution, even for a large number of SUs, since
the convergence is not monotonic in general. In addition, the
shifted lognormal distribution provides the overall best CCDF
approximation, especially in the distribution tail region, for
arbitrarily-shaped network regions.

I. INTRODUCTION

Cognitive radio network is a promising technology for 5G

wireless communication networks [1]. In cognitive networks,

the unlicensed secondary users (SUs) are allowed dynamic and

opportunistic access to the licensed spectrum band allocated to

the primary users (PUs) [2]. Based on the access technology of

the licensed spectrum sharing, the cognitive networks can be

classified into underlay, overlay and interweave networks [3].

In this paper, we focus on underlay cognitive networks in

which the SUs coexist with the PU in the licensed band by

keeping the interference power at PU under a certain limit.

Hence, the characterization of the aggregate interference from

the SUs is a crucial problem in underlay cognitive networks.

Recently, the characterization of the aggregate interference

in underlay cognitive networks has received attention in the

literature [4–7]. Considering an infinite cognitive network

region, the closed-form bounds for the moment generating

function (MGF) of the aggregate interference were derived

in [4]. Considering the PU to be located at the center of an

annulus-shaped region, the MGF and mean of the aggregate

interference were derived in [5] and the cumulants of the

aggregate interference were derived in [6]. For a disk region

with arbitrary location of PU and Rayleigh fading channels,

the MGF and cumulants of the aggregate interference were

derived in [7]. However, in practice, the shape of the network

can be arbitrary.

Using the cumulants of the aggregate interference, the dis-

tribution of the aggregate interference can be approximated by

the well known distributions [8, Technique 3]. In this context,

for wireless ad-hoc networks, the aggregate interference from

a large number of interfering nodes was approximated as a

Gaussian variable in [9]. However, as shown in [9], when the

number of interfering node is moderate, the kurtosis is not

close to zero and the Gaussian distribution does not provide

a good approximation. As alternatives, the inverse Gaussian

distribution was proposed in [10] and the lognormal distribu-

tion was proposed in [11]. For interweave cognitive networks,

it was shown in [12] that the lognormal distribution increased

the approximation error in the distribution tail region. Hence

the shifted lognormal distribution was proposed in [12] and the

Gamma distribution was proposed in [13] for Nakagami fading

channels. For underlay cognitive networks, which are the focus

of this paper, the truncated stable distribution was proposed

in [6]. However, it does not have a closed-form representation

in general and is determined by its characteristic function.

To best of authors’ knowledge, a comparison of the different

distributions to approximate the aggregate interference distri-

bution in arbitrarily-shaped underlay cognitive networks has

not been addressed in the literature to date.

In this paper, we focus on characterizing the aggregate

interference in arbitrarily-shaped underlay cognitive network

regions with arbitrary location of the PU. We consider both

the guard zone protocol [4, 5] and the multi-threshold protocol

(which includes the single-threshold protocol as a special

case) [6], which are SU activity protocols commonly employed

in underlay cognitive networks in order to limit the interfer-

ence generated by SUs. Compared to prior works, the major

contributions of this paper are:

• We derive the analytical expressions for the n-th moment

and the n-th cumulant of the aggregate interference

from the SUs for the guard zone and multi-threshold

protocols. We show that existing n-th moment results

in the literature arise as special cases from our general

expressions.

• We study the convergence of the aggregate interference

distribution to a Gaussian distribution via the higher order

statistics (i.e., skewness and kurtosis). We show that cau-

tion must be taken in using the Gaussian approximation,
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even for a large number of SUs, as the rate of convergence

to a Gaussian depends on the path-loss exponent, the

fading and the parameters of SU activity protocols and

the convergence is in general non-monotonic.

• We compare the different closed-form distributions avail-

able in the literature to approximate the CCDF of the

aggregate interference in arbitrarily-shaped convex re-

gions. We show that the shifted lognormal distribution

provides the overall best approximation, especially in the

distribution tail region.

The rest of this paper is organized as follows. Section II

describes the system model, including the SU activity proto-

cols. The general n-th cumulant expressions to characterize the

aggregate interference are derived in Section III. The statistical

tools used to study the distribution of aggregate interference

are discussed in Section IV. The numerical and simulation

results are provided in Section V. Finally Section VI concludes

the paper.

II. SYSTEM MODEL

We consider an underlay cognitive network with a primary

user and M secondary users independently and uniformly

distributed (i.u.d.) inside an arbitrarily-shaped convex region

A, in the two dimensional Euclidean space R
2. The interfered

PU can be located anywhere inside this network region A,

as depicted in Fig. 1. Under this setup, the distance between

i-th SU and PU, denoted as Ri, is a random variable (RV)

with probability distribution function (PDF) fRi
(ri). For any

irregular convex polygon region with an arbitrarily-located

reference point, the distance distribution fRi
(ri) and the

corresponding cumulative distribution function (CDF) FRi
(ri)

can be determined in closed-form using the algorithm in [14,

15] and the accompanying software implementation [16].

We assume that all the transmitting channels are identically

and independently distributed (i.i.d.). We model the wireless

channel as the path-loss plus block fading channel, i.e., the

propagation loss at distance r can be expressed as Gl(r),
where G denotes the fading power gain on the channel and

l(r) = min {1, r−α} is the bounded path-loss model with path-

loss exponent α, which avoids the singularity at r = 0 [17].

We assume that all the nodes are in the frequency duplex

mode. Similar to [6], to know the channel strength to the PU,

each SU senses the PU’s uplink channel. In other words, the

sensing is achieved by receiving the signal transmitted by the

PU for each SU via the sensing channel (from PU to SU). The

sensing channel is assumed to be fully uncorrelated with the

SU transmitting (i.e., interfering) channel (from SU to PU).

Each SU determines whether to transmit or not according to

the adopted SU activity protocol. Our purpose is to character-

ize the statistics of aggregate interference from the M SUs at

the given location of the PU, while taking into account the SU

activity protocol. We can express the aggregate interference at

PU as

Iagg =

M
∑

i=1

Ii =

M
∑

i=1

PTGil(Ri)1(condition), (1)

V1 S1 V2

V3

S4

V4

S3

S2

Fig. 1. Illustration of an arbitrarily-shaped underlay cognitive network region
(N = interfered PU, • = SU). Sj and Vj (j = 1, 2, 3, 4) denote the side and
vertex of this convex shape.

where Ii is the interference generated by the i-th SU, l(Ri) =
min

{

1, R−α
i

}

, PT denotes the transmit power for SU, which

is assumed to be the same for all SUs, and Gi represents

the instantaneous fading power gain on the SU transmitting

channel with PDF fGi
(gi). 1(condition) is an indicator function

which is equal to one as long as the condition within it,

which depends on the SU activity protocol, holds. In the

following, we consider the two important SU activity protocols

for the underlay cognitive networks and formulate the explicit

expression for Iagg for each protocol1.

A. Guard Zone Protocol

In this protocol, the PU is protected by a guard zone of

radius rf around itself [4, 5]. Any SU that enters this region

becomes inactive and does not transmit, i.e., no interference

is generated from the SUs inside the guard zone. Then the

aggregate interference from SUs is given by

Iagg =

M
∑

i=1

PTGiR
−α
i 1(Ri>rf ). (2)

B. Multi-Threshold Protocol

For the multi-threshold protocol, each SU adjusts its trans-

mit power based on the received instantaneous power on the

sensing channel [6]. The sensed signal power at the i-th SU is

given by PTs
Hil(Ri), where PTs

denotes the transmit power

for PU and has been set to unity for analytical convenience.

Assume that there are L level of transmit power and let γl−1

(l = 1, . . . , L) and γl denote the lower and upper threshold

for a certain transmit power level l, respectively. When the

sensed power lies in the range of γl−1 and γl, the SU transmits

the power at level l, denoted by P(T,l). Mathematically, the

transmit power for the i-th SU is

PT =











P(T,1), γ0 ≤ Hil(Ri) < γ1;

... ...

P(T,L), γL−1 ≤ Hil(Ri) ≤ γL;

(3)

Throughout the paper, we assume that γ0 = 0 and γL = ∞.

Note that when P(T,L) is set to zero, the SU becomes

inactive once its received power on the sensing channel is

greater than the threshold γL−1. Additionally, for the case of

two power levels (L = 2) and the power for the second level

1The detailed performance comparison of different secondary user activity
protocols has been addressed in [18].
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being zero (P(T,2) = 0), the multi-threshold protocol reduces

to the single-threshold protocol [6].

For the above setup, the aggregate interference from SUs

can be written as

Iagg =

M
∑

i=1

L
∑

l=1

P(T,l)GiR
−α
i 1(γl−1≤Hil(Ri)<γl). (4)

III. AGGREGATE INTERFERENCE

In this section, we provide the mathematical formulation

to characterize the aggregate interference from SUs under the

considered SU activity protocols.

A. Mathematical Formulation

Since the SUs are i.u.d. inside the finite network region, the

moment generating function of Iagg is given by

MIagg
(s) = EIagg

{exp (−sIagg)} = {MI(s)}M , (5)

where EIagg
{·} denotes the expectation with respect to the

RV Iagg and MI(s) = EI {exp (−sI)} is the MGF of the

interference from a random SU. Note that we have dropped

the index i in Ii (similarly, in Ri, Gi and Hi) because of the

assumptions that the SUs are i.u.d. and the fading channels

are i.i.d..

Using its definition, the n-th cumulant of Iagg is related to

the MGF of Iagg by [19]

κIagg
(n) =(−1)n

dn lnMIagg
(s)

dsn

∣

∣

∣

∣

s=0

=(−1)nM
dn lnMI(s)

dsn

∣

∣

∣

∣

s=0

= MκI(n), (6)

where κI(n) denotes the n-th cumulant of the interference

from a random SU.

As it is not easy to directly evaluate κI(n) for n > 2, we

compute the n-th moment of the interference from a random

SU, denoted by µI(n), instead. Using the recursive moment-

cumulant relationship [9], we can rewrite (6) as

κIagg
(n) = M



µI(n)−
n−1
∑

j=1

(

n− 1

j − 1

)

κI(j)µI(n− j)



 ,

(7)

and µI(n) is related to MI(s) by [19]

µI(n) = (−1)n
dnMI(s)

dsn

∣

∣

∣

∣

s=0

. (8)

In the following, we present analytical results for µI(n) for

the two SU activity protocols considered in this paper.

B. Guard Zone Protocol

For the guard zone protocol, the interference from a random

SU is I = PTGl(R)1(R>rf ). Using the definition of MGF, the

MGF of I is given by

MI(s) =EG,R

{

exp
(

−sPTGl(R)1(R>rf )

)}

=

∫ ∞

0

∫ rmax

rf

exp (−sPTGl(R)) fG(g)fR(r)drdg,

(9)

where rmax denotes the maximum range of the RV R and

EG,R{·} denotes the expectation with respect to RVs G, R.

Substituting (9) into (8), the n-th moment of I can be

computed as

µI(n) =(PT )
n

∫ ∞

0

gnfG(g)dg

∫ rmax

rf

(l(R))
n
fR(r)dr

=Pn
T EG {Gn}

(

(FR(1)− FR(rf )) 1(rf<1)

+

∫ rmax

max(1,rf )

r−nαfR(r)dr

)

, (10)

where FR(·) and fR(r) are the CDF and PDF of the distance

from a SU to the PU.

Remark 1: For the guard zone protocol, the n-th moment

expressed in (10) generally admits the closed-form solution.

Note that EG [Gn] represents the n-th moment for the fad-

ing power gain, for which the closed-form expression exists

for most common fading distributions. For example, when

the transmitting channel undergoes the Nakagami-m fading

with the fading coefficient mg , EG [Gn] =
(mg+n−1)!
mn

g (mg−1)! [9].

Similarly, the integration involving fR(r) can be computed in

closed-form once fR(r) is determined using [16].

C. Multi-Threshold Protocol

For the multi-threshold protocol, as the interference is I =
∑L

l=1 P(T,l)GR−α1(γl−1≤Hl(R)<γl), the conditional probabil-

ity mass function of the interference, which is conditioned on

the distance R, can be written as

Pr(I = I|R) =























∫ γ1/l(R)

0
fH(h)dh, I = P(T,1)Gl(R);

∫ γ2/l(R)

γ1/l(R)
fH(h)dh, I = P(T,2)Gl(R);

... ...
∫∞

γL−1/l(R)
fH(h)dh, I = P(T,L)Gl(R);

(11)

Thus, we can write the MGF of the interference from a

random SU as

MI(s) =EG {ER {Pr(I = I|R) exp (−sI)}}

=

L
∑

l=1

∫ ∞

0

∫ rmax

0

exp
(

−sP(T,l)Gl(R)
)

×
(

FH (γl/l(R))− FH (γl−1/l(R))
)

fR(r)fG(g)drdg.
(12)

Substituting (12) into (8), µI(n) is expressed as

µI(n) =

∫ ∞

0

gnfG(g)dg

L
∑

l=1

Pn
(T,l)×

∫ rmax

0

(l(R))
n (

FH (γl/l(R))− FH (γl−1/l(R))
)

fR(r)dr

=EG [Gn]

L
∑

l=1

Pn
(T,l)

(

(

FH (γl)− FH (γl−1)
)

FR(1) +

∫ rmax

1

r−nα
(

FH (γlr
α)− FH (γl−1r

α)
)

fR(r)dr

)

,

(13)
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µI(n) =
(mg + n− 1)!

mn
g (mg − 1)!

2

W 2(2− nα)

(

L−1
∑

l=1

(

Pn
(T,l) − Pn

(T,l+1)

)

(

W 2−nαΓ[mh, 0,mhγlW
α]

Γ[mh]
− nα

2

Γ[mh, 0,mhγl]

Γ[mh]

−(mhγl)
n− 2

α
Γ[mh − n+ 2

α ,mhγl,mhγlW
α]

Γ[mh]

)

+ Pn
(T,L)

(

W 2−nα − nα

2

)

)

. (14)

where FH(·) denotes the CDF of fading power gain on the

sensing channel.

Special Case: When the PU is located at the center of a

disk with radius W , we have fR(r) = 2r/W 2. Assuming all

the fading channels experience the Nakagami-m fading, we

can derive the closed-form result for the n-th moment given

in (14), where nα 6= 2, mg and mh represent the fading

parameter on SU transmitting channel and sensing channel

respectively, Γ[x] =
∫∞

0
tx−1 exp(−t)dt and Γ[x, a, b] =

∫ b

a
tx−1 exp(−t)dt are the complete and incomplete gamma

functions, respectively [19]. The result from (14) is the same

as the result from [6] with the same system model. However,

the method of deriving the n-th moment in [6] is only valid

for the annulus-shaped region with PU located at its center.

IV. CHARACTERIZATION OF THE AGGREGATE

INTERFERENCE

In this section, we describe the statistical tools which can

be used to characterize the aggregate interference.

A. Skewness, Kurtosis and Convergence to a Gaussian

The skewness and kurtosis describe the ‘symmetry’ and

‘peakedness’ of the distribution of a RV, respectively. The

skewness, β1, and kurtosis, β2, of a RV X are related to its

n-th cumulant by [19]

β1 (X) =
κX(3)

κX(2)3/2
, (15)

and

β2 (X) =
κX(4)

κX(2)2
. (16)

Together, the skewness and kurtosis can be employed to

assess the normality of a distribution [20]. For a Gaussian

distribution, β1 = β2 = 0. Thus, if both β1(X) → 0 and

β2(X) → 0, we can say that the RV X is closely approximated

by a Gaussian distribution [9].

B. Distribution Approximation of the Aggregate Interference

The exact n-th cumulant of Iagg can be derived by substitut-

ing (10) and (13), respectively, into (7) for the considered SU

activity protocols. Once κIagg
(n) is known, its distribution can

be approximated by the well known closed-form distributions.

In this section, we detail the various distributions which can

be used to approximate the complementary cumulative distri-

bution function (CCDF) of Iagg. Their accuracy is compared

in Section V.

Gaussian distribution: The CCDF of Gaussian distribution

is [19]

Pr (Iagg > z)
Gaussian

= Q

(

z − κIagg
(1)

√

κIagg
(2)

)

, (17)

where Q(·) is the Q-function, κIagg
(1) and κIagg

(2) are 1st and

2nd cumulant of Iagg, respectively.
Inverse Gaussian distribution: The CCDF of Inverse Gaussian
distribution is [19]

Pr (Iagg > z)inverse Gaussian = Q

(
√

κIagg(1)
3

κIagg(2)z

(

z

κIagg(1)
− 1

)

)

− exp

(

2κIagg(1)
2

κIagg(2)

)(

1−Q

(

−

√

κIagg(1)
3

κIagg(2)z

(

z

κIagg(1)
+ 1

)

))

.

(18)

Lognormal distribution: The CCDF of Lognormal distribution

is [19]

Pr (Iagg > z)
lognormal

= Q

(

ln z − κIagg
(1)

√

κIagg
(2)

)

. (19)

where ln(·) is the natural logarithm.

Shifted lognormal distribution: The CCDF of shifted lognor-

mal distribution can be approximated by [21]

Pr (Iagg > z)
shifted lognormal ≈ Q

(

ln(z − c)− µ

σ

)

, (20)

where

σ2 = ln

(

(

k +
√

k2 − 1
)

1

3

+
(

k −
√

k2 − 1
)

1

3 − 1

)

,

(21a)

µ =
ln

(

κIagg (2)

exp(σ2)−1

)

− σ2

2
, (21b)

c = κIagg
(1)− exp

(

µ+
σ2

2

)

, (21c)

k = 1 + β1 (Iagg)
2
/2. (21d)

where β1(·) is defined in (15).

Gamma distribution: The CCDF of Gamma distribution is [13]

Pr (Iagg > z)
Gamma

= 1−
Γ
[

κIagg (1)
2

κIagg (2)
, 0,

κIagg (1)

κIagg (2)
z
]

Γ
[

κIagg (1)
2

κIagg (2)

] , (22)

where Γ[x] and Γ[x, a, b] are the complete and incomplete

gamma functions, respectively.
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Fig. 2. Skewness and Kurtosis of the aggregate interference versus the radius
of guard zone, rf for different path-loss exponents (α = 2, 4, 6) for the case
that PU is located at the center of a disk region with radius W = 100,
M = 1000 SUs and the Nakagami-m fading channels (m = 4).
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Fig. 3. Skewness and Kurtosis of the aggregate interference versus the
negative exponent of the threshold, − log10 γ for different Nakagami-m
fading parameters (m = 4, 6, 10) for the case that PU is located at the center
of a disk region with radius W = 100, M = 1000 SUs and the path-loss
exponent α = 2.5.

V. RESULTS

In this section, we present numerical and simulation results

to characterize the aggregate interference. The simulation

results are generated by uniformly distributing M nodes inside

the considered regions over 10 million simulation runs.

A. Convergence to a Gaussian

First, we investigate the effect of the channel parameters

on the convergence of Iagg to a Gaussian distribution using

skewness and kurtosis. We consider the scenario that the PU

is located at the center of a disk region with radius W = 100,

M = 1000 SUs and all channels experience Nakagami-m
fading.

Fig. 2 plots the skewness and kurtosis of Iagg versus the

radius of guard zone, rf , for the guard zone protocol for

different path-loss exponents (α = 2, 4, 6) and m = 4. We can

see from Fig. 2 that curves are monotonic for the considered

range of rf . With smaller α, skewness and kurtosis converge

to 0 at a faster rate.

Fig. 3 shows the skewness and kurtosis of Iagg versus

the negative exponent of the threshold, − log10 γ, for the

single-threshold protocol for different fading parameters (m =
4, 6, 10) and α = 2.5. We can see that a larger m (less

severe fading) leads to a faster convergence to a Gaussian.

However, the curves are not monotonic. Hence, caution must

be undertaken in approximating Iagg as a Gaussian, even for

a large number of SUs (i.e., M = 1000 considered in Fig. 3).

B. CCDF Approximation of the Aggregate Interference

In this section, we compare the different CCDF approxima-

tion methods. We consider the following two scenarios: (i) a

square region with side length 100 and the PU is located at

the corner of this region; (ii) a polygon region as depicted in

Fig. 1 with side lengths S1 = 200
√

2/3, S2 = 200/
√
3 and

S3 = S4 = S1/2 and the PU is located at the intersection point

of the two diagonals. All the communication channels undergo

the Nakagami-m (m = 4) fading and path-loss exponent is

α = 3.5. The radius of the guard zone range is rf = 30,

the threshold for the single-threshold protocol is γ = 10−5

and transmit power for SU is PT = 1 for these two portocols.

For the multi-threshold-protocol, we assume three power levels

with (γ1 = 10−5,P(T,1) = 1), (γ2 = 10−3,P(T,2) = 0.1),

(γ3 = ∞,P(T,3) = 0).

Fig. 4 and Fig. 5 plot the approximate CCDF of Iagg for

scenario (i) and (ii), respectively. The analytical results are

plotted using (10), (13) and (7), along with (17) for Gaussian

distribution, (18) for inverse Gaussian, (19) for lognormal

distribution, (20) for shifted lognormal distribution and (22)

for Gamma distribution.

Comparing Fig. 4(a) and Fig. 5(a), we can see that the

shifted lognormal and Gamma distributions both provide

good approximations for the guard zone protocol. Comparing

Fig. 4(b) and Fig. 5(b), and Fig. 4(c) and Fig. 5(c), we can

see that the shifted lognormal distribution provides the best

match for the single-threshold and multi-threshold protocols

in the distribution tail region. Overall, our results show that

the shifted lognormal distribution provides the best CCDF

approximation for the considered SU activity protocols and

arbitrarily-shaped regions.

VI. CONCLUSIONS

In this paper, we have studied the aggregate interference

inside an arbitrarily-shaped underlay cognitive network region

with an arbitrary location of PU and different SU activity

protocols. Using the MGF of the interference from a random

SU, we have derived the n-th moment and the n-th cumulant of

the aggregate interference from the SUs. Using the cumulants,

we studied the aggregate interference’s convergence to a

Gaussian distribution. In addition, we compared the different

distributions which can be used to approximate the distribution

of aggregate interference using the exact cumulants. Our

results showed that the shifted lognormal distribution provides

the best CCDF approximation, especially in the distribution

tail region, compared to other distributions considered in the

literature.
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(a) Guard zone protocol (rf = 30, PT = 1).
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(b) Single-threshold protocol (γ = 10−5, PT = 1).

0 0.2 0.4 0.6 0.8 1

x 10
−3

10
−4

10
−3

10
−2

10
−1

10
0

Aggregate Interfernce I
agg

C
C

D
F

Simulation

Gaussian

Inverse Gaussian

Lognormal

Shifted lognormal

Gamma

Shifted
lognormalGaussian

(c) Multi-threshold protocol (γ1 = 10−5,P(T,1) =

1), (γ2 = 10−3,P(T,2) = 0.1), (γ3 =

∞,P(T,3) = 0).

Fig. 4. CCDF approximation for the case that PU is located at the corner of a square region with side length 100, Nakagami-m (m = 4) fading and path-loss
exponent α = 3.5.

1.2 1.4 1.6 1.8 2 2.2 2.4

x 10
−4

10
−4

10
−3

10
−2

10
−1

10
0

Aggregate Interfernce I
agg

C
C

D
F

Simulation

Gaussian

Inverse Gaussian

Lognormal

Shifted lognormal

Gamma

Shifted
lognormalGaussian

(a) Guard zone protocol (rf = 30, PT = 1).

1 2 3 4 5

x 10
−4

10
−4

10
−3

10
−2

10
−1

10
0

Aggregate Interfernce I
agg

C
C

D
F

Simulation

Gaussian

Inverse Gaussian

Lognormal

Shifted lognormal

Gamma

Gaussian
Shifted
lognormal

(b) Single-threshold protocol (γ = 10−5, PT = 1).

0 0.5 1 1.5 2

x 10
−3

10
−4

10
−3

10
−2

10
−1

10
0

Aggregate Interfernce I
agg

C
C

D
F

Simulation

Gaussian

Inverse Gaussian

Lognormal

Shifted lognormal

Gamma

Shifted
lognormalGaussian

(c) Multi-threshold protocol (γ1 = 10−5,P(T,1) =

1), (γ2 = 10−3,P(T,2) = 0.1), (γ3 =

∞,P(T,3) = 0).

Fig. 5. CCDF approximation for the case that PU is located at the intersection of two diagonals of a polygon region as depicted in Fig. 1, Nakagami-m
(m = 4) fading and path-loss exponent α = 3.5.
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